AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 31 (2005), Pages 21-35

1-identifying codes on trees

NATHALIE BERTRAND*

ENS Cachan
61, avenue du Président Wilson
94235 Cachan Cedex
FRANCE

bertrand@lsv.ens-cachan.fr

IRENE CHARON OLIVIER HUDRY ANTOINE LOBSTEIN
CNRS & ENST

46, rue Barrault
75634 Paris Cedex 13
FRANCE

charon@infres.enst.fr hudry@infres.enst.fr lobstein@infres.enst.fr

Abstract

Consider a connected undirected graph G = (V,E), a subset of ver-
tices C C V, and an integer r > 1; for any vertex v € V, let B,(v)
denote the ball of radius r centered at v, i.e., the set of all vertices within
distance 7 from v. If for all vertices v € V, the sets B,(v) N C are all
nonempty and different, then we call C' an r-identifying code. We study
the smallest cardinalities or densities of these codes in trees. In particular,
we prove that, in a tree with n vertices, any 1-identifying code contains at
least M vertices, and, investigating the complete g-ary trees, we also
prove that the minimum cardinality of a 1-identifying code in a complete
binary tree with 2" — 1 vertices is exactly [20(2" — 1)/31].

1 Introduction

Given a connected undirected graph G = (V, E) and an integer » > 1, we define
B,(v), the ball of radius r centered at v € V, by

B,(v) ={z €V :d(z,v) <},

where d(z,v) denotes the number of edges in any shortest path between v and .
Whenever d(z,v) < r, we say that and v r-cover each other (or simply cover if

* Work done during a stay at the ENST.

22 BERTRAND, CHARON, HUDRY AND LOBSTEIN

Figure 1: A graph G admitting no l-identifying code.

there is no ambiguity). A set X C V covers a set Y C V if every vertex in Y is
covered by at least one vertex in X.

A code C is a nonempty set of vertices, and its elements are called codewords.
For each vertex v € V', we denote by

Ke,.(v) =CnN B, (v)

the set of codewords which r-cover v. Two vertices vy and vy with K¢, (v1) # K, (v2)
are said to be r-separated, or separated, by code C'.

A code C is called r-identifying if the sets K¢ ,(v),v € V, are all nonempty and
distinct [6]. It is called r-locating-dominating if the same is true for all v € V'\ C [5].
In other words, in the first case all vertices must be covered and pairwise separated
by C, in the latter case only the noncodewords need to be covered and separated.

Remark 1. For given graph G = (V, E) and integer r, there exists an r-identifying
code C C V if and only if

Vvl,v2 S V (Ul # U2)7 BT(Ul) 7é BT(UZ)-

Indeed, if for all vi,vy € V, B,(v1) and B,(vy) are different, then C = V is r-
identifying. Conversely, if for some vy,v2 € V, B,(v1) = B,(vq), then for any code
C CV, we have K¢, (v1) = K¢, (v2). For instance, there is no r-identifying code in
a complete graph. See also Example 1 below.

Remark 2. For given graph G = (V, E) and integer r, an r-locating-dominating
code always exists (simply take C' = V), and any r-identifying code is r-locating-
dominating.

Example 1. Consider the graph G in Figure 1. We see that B;(a) = {a,b,d, e},
Bi(b) = {a,b,c,e}, Bi(c) = {b,c}, Bi(d) = {a,d,e}, Bi(e) = {a,b,d,e}; conse-
quently, because B;(a) = Bj(e), there is no 1-identifying code in G (cf. Remark 1
above). On the other hand, C = {a,b} is l-locating-dominating, since the sets
Kei(c) = {b}, Kc1(d) = {a}, and K¢ 1(e) = {a,b}, are all nonempty and different.

The motivations come, for instance, from fault diagnosis in multiprocessor systems.
Such a system can be modeled as a graph where vertices are processors and edges
are links between processors. Assume that at most one of the processors is mal-
functioning and we wish to test the system and locate the faulty processor. For

1-IDENTIFYING CODES ON TREES 23

this purpose, some processors (constituting the code) will be selected and assigned
the task of testing their neighbourhoods (i.e., the vertices at distance at most r).
Whenever a selected processor (= a codeword) detects a fault, it sends an alarm
signal, saying that one element in its neighbourhood is malfunctioning. We require
that we can uniquely tell the location of the malfunctioning processor based only
on the information which ones of the codewords gave the alarm, and in this case an
identifying code is what we need.

If the selected codewords are assumed to work without failure, or if their only
task is to test their neighbourhoods (i.e., they are not considered as processors any-
more) and we assume that they perform this simple task without failure, then we
shall search for locating-dominating codes. These codes can also be considered for
modeling the protection of a building, the rooms of which are the vertices of a graph.

Locating-dominating codes were introduced in [5], identifying codes in [6], and they
constitute now a topic of their own: both were studied in a large number of various
papers, investigating particular graphs or families of graphs (such as planar graphs,
certain infinite regular grids, or the n-cube), dealing with complexity issues, or using
heuristics such as the noising methods for the construction of small codes. See, e.g.,
[3], [4], and references therein.

Here, we shall study 1-identifying codes in trees. More specifically:

— In Section 2, we address the following question: in a tree with a given number of
vertices, how small can a l-identifying code be? The same question for 1-locating-
dominating codes had been answered in [7].

— In Section 3, we study the complete g-ary trees, and give the exact value of the
smallest size of a l-identifying code in a complete g-ary tree of any size, ¢ > 2.
Observe that the case ¢ = 1 corresponds to chains, which are studied in [1], [2].

2 Bounds on trees

In [7], it is shown that in a tree with n vertices, a 1-locating-dominating code has at
least n/3 vertices. We have a similar result for identifying codes.

Theorem 1 For all n > 3 and all trees with n vertices, a 1-identifying code has at
least
3(n+1)
7

vertices.

Proof. Assume that T = (V, E) is a tree with n vertices, and that C'is a 1-identifying
code in T'. Let E' be the set of edges having codewords at both ends, and e’ = |E'|.
For every v € V, let f(v) = [{c € C : d(v,c) = 1}|, and finally let C* = {c € C :
fle) =0}
Looking at the edges linking one noncodeword and one codeword, or two code-
words, we see that
D fw) <|El+¢ <n-1+¢. (1)

veV

24 BERTRAND, CHARON, HUDRY AND LOBSTEIN

Obviously,

Z fle) = 2€'. (2)

ceC\C*

Finally, there are at most |C'\ C*| noncodewords v with f(v) =1, and therefore

Y fw)22VACI=C\C |+ Y (o). (3)

veV c€EC\C*

Combining (1), (2) and (3), we get

a1
n—1>2n-3|C|+|C |+§ Z fle).

ceC\C*

We now estimate the sum on the right-hand side. If F = (C'\ C*,E’), then a
connected component in F with i vertices contributes 2(i — 1) to the sum, so the
average f(c) in this component is 2(¢ — 1)/i. Because C' is 1-identifying, the size of
each connected component in F is at least three, and hence the overall average of
f(c) over C'\ C* is at least 4/3. We therefore get

2
n =122 -3l +1C"] + (101 - |C°]) 2 20— 1[C],

and the claim follows. A

For infinitely many values of n, we can construct a tree with n vertices admitting
a l-identifying code of size 3(n + 1)/7.

Theorem 2 If n = 6 + 7(m — 1), m > 2, then there exists a tree with n vertices
which admits a 1-identifying code having

3(n+1)
7

=3m

elements.

Proof. The construction is the following: first take pattern (a) in Figure 2, then
pattern (b) m — 1 times, linking each time the leftmost vertex of pattern (b) to the
top rightmost vertex of the previous construction. This construction obviously yields
a l-identifying code.

A

Note that some trees require as many as n — 1 codewords for a 1-identifying code;
this is the case for the “star”, i.e., the tree consisting of one root linked to n — 1
leaves (n > 3).

Finally, we show that a possible constant lower bound cannot be reached by a
finite tree, and that a density of 3/7 can be achieved for a (periodic) 1-identifying
code in an infinite tree.

1-IDENTIFYING CODES ON TREES 25

[T1

(@) ()

Figure 2: Patterns for 1-identifying codes in trees. Codewords are in black.

Z

Figure 3: The construction of T5.

Theorem 3 If the density of every 1-identifying code in every finite tree is at least c,
where ¢ is a positive constant, then there is no finite tree whose density is c.

Proof. Assume on the contrary that there is a tree T3, with p vertices 4, ..., zp,
which admits a 1-identifying code C1 = {z4, ..., Ii\cll}’ whose density meets the
lower bound c¢. Then we can construct a second tree, 75, with 2p + 1 vertices, which
admits a 1-identifying code with smaller density: take a copy T} of T1, and define T
as the union of Ty and 77, with an additional vertex z and additional edges {z;,, 2}
and {zj ,z} (see Figure 3).

It is straightforward to check that Cy = C; U C] is a l-identifying code in T; but
the density of Cy is smaller than the density of C;:

|Gyl 2|0y < (ST

2p+1 2p+1 p

a contradiction. A

)

Theorem 4 There exists an infinite tree admitting a 1-identifying code with den-
sity 3/7.

Proof. Repeat an infinite number of times the construction of Theorem 2. A
3 The complete ¢-ary tree

For ¢ > 2, we denote by CT} the complete g-ary tree of depth h (see Figure 4 for
q =4, h = 3); this tree has

1 qh—l
Xz: Zq17 = q_l

1<i<h

26 BERTRAND, CHARON, HUDRY AND LOBSTEIN

2 S5=q +1

6 20=q%+q+1

Figure 4: The complete quaternary tree of depth 3.
(@ : ®) !
2 /\ 3 i ./31\0)

Figure 5: Codes in complete trees. Codewords are in black.

vertices, which we will number from 1 to X}, going from left to right and from top
to bottom.
We shall say that line i (1 <4 < h) consists of the ¢*~! vertices numbered from

Y @ Lt 3

Let M{(CT?) and MIP(CT?) be the smallest cardinalities of a 1-identifying code
and of an r-locating-dominating code, respectively, in CT% — it’s no use defining
M!(CT?), since no r-identifying code exists in CT} for r > 1: there exist two leaves
¢y and ¢y such that B,(¢;) = B,({), cf. Remark 1.

In the binary case, we shall drop the superscript and simply write CT, for CT 3
and X, for X7.

Note that there is a fundamental difference for identifying codes between the
cases ¢ = 2 and ¢ > 2, whereas there is no such difference for locating-dominating
codes. This is illustrated by Figure 5, which, although very simple, is crucial for the
understanding of identifying and locating-dominating codes in complete trees. In this
figure, two codes are represented in the complete binary and ternary trees of depth
two, each code consisting of the root and all, but one, vertices in the second line of
vertices. To the left, one has a code which is 1-locating-dominating, not 1-identifying.
To the right, one has a code which is 1-locating-dominating and 1-identifying.

This is why we first study what we think is the most difficult case, that is, the
case of 1-identifying codes in the complete binary tree.

Our method will consist in cutting a complete tree into slices having a small
number of lines. Inside these slices, we can have a view of the best codes, and finally
find the best cardinality in the whole tree.

We consider (see Figure 6) one slice with four lines or fewer, together with one
slice with 5k + 4 lines (k > 0), the latter slice being divided into & slices with five

1-IDENTIFYING CODES ON TREES 27

4
or less

k times

Figure 6: A partial view of the complete binary tree, partitioned into slices. Black
vertices represent some of the codewords.

lines and one slice with four lines.
We first consider CT sx44 (k > 0) and give some lemmas and one corollary involv-
ing CT4 and CTs.

Lemma 1 In CTy, there are at least ten codewords in a l-identifying code, and a
construction with evactly ten codewords can be achieved.

Proof. We number the vertices of C74 from 1 to 15 starting from left to right and
from top to bottom. We denote by T the “left part” of CT4, consisting of the
vertices {2,4,5,8,9,10,11}, and by Tk the “right part” of CT4, consisting of the
vertices {3,6,7,12,13,14,15}.
First, the code
¢ =1{1,3,6,7,8,9,10,11,12,14} (4)

contains ten elements and is clearly 1-identifying.

Next, we try to construct a 1-identifying code C' with nine elements only. If such
a code exists, then, without loss of generality, we can assume that there are at most
four codewords in T7,.

Because 8 and 9 have to be covered and separated by C, there are at least two
codewords among 4, 8, and 9. The same is true with 5, 10, and 11, so we have already
four codewords. As a consequence, 2 is not a codeword.

Note that the same argument for {6,12,13} and {7,14,15} shows that there are
at least four codewords in Tg.

Now suppose that 4 is a codeword. How to separate 8 and 9 with only one new
codeword? One of them, say 8, must be a codeword, but this is not sufficient to

28 BERTRAND, CHARON, HUDRY AND LOBSTEIN

separate 4 and 8. Therefore, 4 is not a codeword, and the same is true with 5, so
CNTy={8,9,10,11}.

So 2 is not covered by C N Ty, and necessarily 1 € C. Since |C| < 9, we see that
|CNTR| = 4. Applying to Tk the argument used for T, shows that 3, 6, and 7 cannot
be codewords.

This however leads to a contradiction, since 2 and 3 are covered only by the
codeword 1, which is not sufficient to separate them. A

Observe that in the second part of the previous proof, we made no assumption
on how vertex 1 is covered and separated by the code from the other vertices. The
contradiction came only by considering vertices 2 to 15. Therefore we have the
following, stronger, corollary.

Corollary 1 In CT4, a code which covers all vertices except maybe the root, and
separates all vertices from one another except maybe from the root, contains at least
ten elements. A

Lemma 2 Consider the tree CTs as a possible part of a larger complete binary tree
CThw, h > 5. A code C in CT}, which covers and pairwise separates all vertices in
CTs, contains at least ten codewords in CT 5.

Proof. We number the vertices of C75 from 1 to 31 starting from left to right and
from top to bottom. The fact that CT5 can belong to a larger tree means that the
vertices 1, 16, 17, ..., 31, can be the extremities of other edges, i.e., may be covered
by codewords outside CT 5.

Again, denote by Ty, = {2,4,5,8,9,10,11,16,17, 18,19, 20, 21, 22, 23} the left part
of CTs and Tx = {3,6,7,12,13,14,15, 24,25, 26,27,28,29, 30,31} the right part. If
|CNCT5| <9, we can assume without loss of generality that |C'NTL| < 4.

Because 8 and 9 must be covered and separated by C, there are at least two
codewords in {4,8,9,16,17,18,19}. The same is true with {5,10,11, 20, 21,22, 23}.
Hence there are exactly two codewords in {4,8,9,16,17,18,19} and exactly two
codewords in {5,10,11, 20, 21,22,23}. This shows that 2 is not a codeword, and
also, in a similar way, that |C' N Tg| > 4.

Now suppose that 4 € C'. How to separate 8 and 9 with only one new codeword?
Either one of them, say 8, is a codeword, in which case 4 and 8 are not separated
by C'; or none of them is a codeword: then one, say 9, must be covered by a codeword
taken in {18,19}, and again 4 and 8 are not separated. So necessarily 4 ¢ C, and
similarly 5 ¢ C, which means that 2 is not covered by C yet and implies that
1 € C. In turn, this means that |C N Tg| = 4, that 3,6,7 ¢ C, and finally that
Kc1(2) = Kc1(3) = {1}, a contradiction. A

We now show that a construction with ten elements can be achieved.

Lemma 3 Consider the tree CTs as a possible part of a larger complete binary tree
CThw, h > 5. Under certain conditions, a code with exactly ten codewords in CTs can
be constructed, which covers and pairwise separates all vertices in CT 5.

1-IDENTIFYING CODES ON TREES 29

Figure 7: The intersection of a code with C75. Codewords are in black.

1

Figure 8: The neighbourhood of the root in CT4 or CT5. The black vertex is a
codeword. Other vertices are or are not codewords.

Proof. Let us assume that C7 5 is included in a larger complete binary tree, in which
we have a code C' containing each of the 32 sons of 16, 17, ..., 31; if

CNCTs=1{1,3,6,7,8,9,10,11,12,14} (5)

(see Figure 7), we easily see that all vertices inside CT5 are covered and pairwise
separated by C. A

Note that in the codes given by (4) and (5), vertex 1 is a codeword, i.e., the
neighbourhood of the root is as in Figure 8.

Roughly speaking, the information given by Lemma 1 and Corollary 1 on one
hand, by Lemmas 2 and 3 on the other hand, is the following: if CT, is in the
bottom part of C7T, in Figure 6, then ten codewords are necessary and sufficient to
take care of its vertices; if CT 5 is not in the bottom part of C7, in Figure 6, then
ten codewords are necessary and can be sufficient. This is more precisely detailed in
the proofs of the following two lemmas, involving CT s5j44, where k£ > 0.

Assume that CT 514 is part of a larger tree CTp, 5k +8 > h > 5k + 4, where
only the root of CT 544 can be linked to a vertex of CTy \ CT s44; in other words,
the set of leaves of CT 544 is included in the set of leaves of CT . This keeps the
possibility of later adding a slice with four lines or fewer on top of CT sgys. Under
this condition, we have the following lower bound.

30 BERTRAND, CHARON, HUDRY AND LOBSTEIN

Lemma 4 If CT 5144 is part of a larger tree CTh, 5k +8 > h > bk + 4, where only
the root of CT spya can be linked to a vertex of CTp \ CT skra, a 1-identifying code in
CT 1 contains at least
10(2X5544 +1)
31

elements in CT sy, where Xspea = 2°%7% — 1 is the number of vertices in CT spq.

Proof. Note that 2X5z44 + 1 = 2%+% — 1 is divisible by 31 = 2° — 1, so the bound
10(2Xs5444 + 1)/31 is an integer.

The case k£ = 0 has been solved by Lemma 1 and Corollary 1, so we assume here
that & > 0.

Let C be a l-identifying code in CT ;. As before, we number the vertices of
CT spea from 1 to Xgppg = 2%+ — 1. We partition CT spp4 (cf. Figure 6) into
— trees CT5, with roots 2% 4+, 0<i<k—1,0<j < 2% — 1;
— trees CT 4, with roots 2% + 5, 0 < j < 2°F — 1.

By Corollary 1 and Lemma 2, each of these subtrees contains at least ten code-
words; therefore,
20D — 1 10(2X 5544 + 1)

31 31 '

|CNCT sp4a] 210) 27 =10

0<i<k
A

10(2X5r4a+1)

On the other hand, for C7 5,44, we can give a construction with >

codewords.
Lemma 5 In CT 544, there is a 1-identifying code with

10(2X 5004 + 1)
31

elements, where Xsppq = 2°%7* — 1 is the number of vertices in CT sji4.

Proof. Again we can assume that k£ > 0. We partition C7 5,44 in the same way as
in the proof of the previous lemma. In each of the trees CT5, we take as codewords
the ten vertices corresponding to (5). In each of the trees CT 4, we take as codewords
the ten vertices corresponding to (4).

We claim that the code C thus constructed is 1-identifying in C7 s;44. Because
we always take the root, 1, as a codeword in the constructions of (5) and (4), we see
that we are in the conditions of the proof of Lemma 3. Therefore, using Lemma 3
and Lemma 1, we see that inside each CT 4 or CT 5, each vertex is covered and each
pair of vertices is separated by C.

Problems can arise only at a border between two slices. So all we have to check
is that moreover, a vertex 2%+ (1 <i < k, 0 < j < 2% —1) is separated by C from
its father f and its grandfather g, and, for j even, from its brother 2 + j + 1, and
that its two sons, s; and $,, are separated by C from f. Since the neighbourhood of

1-IDENTIFYING CODES ON TREES 31

border

Figure 9: The neighbourhood of 25+ j (j even). Black vertices are codewords. Other
vertices are or are not codewords.

aroot in CT4 or CT s is as in Figure 8, the neighbourhood of 2% + j is as in Figure 9.
The checking is now immediate. A

Remark 3. Observe that in the previous construction, 1 € C' NCT 5444, SO the root
of CT 5144 also has its neighbourhood as in Figure 8.

Now we have to add a slice with four lines or fewer on top of a tree CT spy4, in
order to deal with CT . We need the following three lemmas, which state that if the
first slice is a complete binary tree of depth four, three, two, or one, then, under some
conditions, it is necessary and sufficient to have five, two, one, and zero codeword(s),
respectively.

Lemma 6 Consider the tree CT 4 as a possible part of a larger complete binary tree
CThw, h > 4, with the assumption that the root of CT4 is the root of CTy. A code
C in CTy, which covers and pairwise separates all vertices in CT 4, contains at least
five codewords in CTy4.

Proof. The fact that CT4 can belong to a larger tree with same root means that
the vertices 8, 9, ..., 15, can have descendants, i.e., may be covered by codewords
outside CT 4.

Because 4 and 5 must be covered and separated by C, there are at least two
codewords in T}, = {2,4,5,8,9,10,11}. The same is true for 6 and 7, therefore, with
Tr = {3,6,7,12,13,14,15}, |C N Tg| > 2. If we try with only four codewords, this
means that [CNTy| = |[CNTg| =2,and 1 ¢ C. Since 1 must be covered by C, we
can assume without loss of generality that 2 € C. Since 4 and 5 have to be separated
by C, one of them, say 4, has to be covered by a second codeword. Either 4 € C is
covered by itself, and 2 and 4 are not separated, or 4 is covered by 8 € C or 9 € C,
in which case 2 and 5 are not separated. In both cases, we see that it is impossible
to have only four codewords. A

Lemma 7 Consider the tree CT 4 as a possible part of a larger complete binary tree
CTh, h > 4, with the assumption that the root of CT4 is the root of CTy. Under
certain conditions, a code with exactly five codewords in CT 4 can be constructed,
which covers and pairwise separates all vertices in CT 4.

32 BERTRAND, CHARON, HUDRY AND LOBSTEIN

Proof. Let us assume that C7 4 is included in a larger complete binary tree, in which
we have a code C' containing each of the 16 sons of 8, 9, ..., 15; if

CNCTs=1{1,4,5,6,7}, (6)

we easily see that all vertices inside CT 4 are covered and pairwise separated by C.

A

The following easy lemma deals with the trees of depth three, two, and one, and
we omit the proof.

Lemma 8 Fori = 3,2,1, consider the tree CT; as a possible part of a larger complete
binary tree CTy, h > i, with the assumption that the root of CT; is the root of CT 4.

A code in CTy, which covers and pairwise separates all vertices in CT ;, contains
at least f(i) codewords in CT;, where

£(3)=2, f(2) =1, and f(1) = 0.

Assume that a code C; C CT) contains each of the 2° sons of 271, 2071 41, ...,
20 —14n CT;. If

03 ﬁCTs - {273}7 02 ﬁCTQ - {1}7 Cl ﬁCTl = (D,

then C; has exactly f(i) codewords in CT;, and C; covers and pairwise separates all
vertices in CT ;. A

We are now ready to give our result in the binary case.

Theorem 5 For allh > 1,

miery = [%]

31
where X, = 2" — 1 is the number of vertices in CT .

Proof. We consider the five cases h = bk+j, j =0, 1, 2, 3, or 4. The case j = 4 was
dealt with in Lemmas 4 and 5. We now show how to handle the remaining cases.
If k£ = 0 (seven, three, or one vertices), it is straightforward to check that, respec-
tively, five, two, or one codeword(s) are necessary and sufficient.
Ifk>1:
—If j = 3, partition C7 5143 into one CT 4 and sixteen CT 5,_; linked, two by two, to
the eight leaves 8, 9, ..., 15 of CT4. Let X' = X5, = 2%71 — 1 = (X}, — 15)/16.
Since 5k — 1 = 5(k — 1) + 4 and since we are placed in the conditions of Lemma 6
and of Lemma 4, we have in C7T 5513 a number of codewords which is at least

5+ 16

10(2X"+1) 20X, +15 [20X,
31 o 31 T 31

On the other hand, using Remark 3 and the same argument as in the proof of
Lemma 5, we see that taking as codewords in CT 4 the five vertices given by (6) and

1-IDENTIFYING CODES ON TREES 33

in each CT 35—y the 10(2X’ + 1)/31 vertices of Lemma 5, we obtain a 1-identifying
code in CT 543, which has the announced size.

—If j = 2, partition C7 52 into one CT 3 and eight CT 551 linked to the four vertices
4,5,6,7 of CT3. Then, using the lower bound from Lemma 8, the computation goes

248

103220 1) 20X, +2 [20X,
31 31 | 31

—If j = 1, partition C7 5;41 into one CT o and four C7 s¢_;. Then, using the lower
bound from Lemma 8, the computation goes

1+410(@4&) 20X, + 11 [20X,
31 31| 31|

— If j = 0, partition CT 5, into one CT; and two CT s;_1. Then, using the lower
bound from Lemma 8, the computation goes

1002210 1 1) 20X, {20)(,1}

2
0+ 31 31 31

A

The same technique could, more or less, be easily adapted in order to deal with
the cases ¢ > 2 (1-identifying codes) and ¢ > 2 (1-locating-dominating codes). There
exists however a shortcut: in [7], there is an algorithm which, given a tree, outputs
a l-locating-dominating code with the smallest possible cardinality. Examining how
the algorithm runs on complete trees, one can see that the result consists of the
following code in CT}:

— if a line has index ¢ # 1 congruent to h modulo 3, then each vertex on line ¢ — 1
has exactly ¢ — 1 of its ¢ sons in C; if 1 = h (mod 3), then 1 € C;

— if a line has index congruent to h — 1 modulo 3, then C' contains all the vertices of
this line;

—if a line has index congruent to h—2 modulo 3, then this line contains no codewords.

Figure 10 illustrates these constructions in three small complete trees. We can
compute the number of codewords and determine M{P(CT79) for all h and ¢:

— If h = 3s, then no vertex in lines 1, 4, ..., h — 2 is a codeword, all vertices in lines
2,5,..., h—1 are codewords, and a proportion (g — 1)/q of the vertices in lines 3,
6, ..., h are codewords. Therefore

_ q—1 _
|C| :q1+q4+...+qh 2+T(q2+q5+...+qh 1)
¢" =1
-1

PA+@+- 4¢3 =
¢ -1 ¢Xp
@+q+l ¢g—1 @E+qg+1
—If h = 3s+ 1, then similarly
|O|‘12X5+Q+1{ ¢ X; l
P4 g+l | @+g+1]]

34 BERTRAND, CHARON, HUDRY AND LOBSTEIN

FEERII0)

Figure 10: Optimal 1-locating-dominating codes in CT3, CT 4, and CT 5. Codewords
are in black.

—If h =3s+ 2, then

C

qZX,‘Hq[X} w
o @+g+l | @+g+1]]

Therefore, we have the following proposition and corollary on locating-dominating
codes.

Proposition 1 For all ¢ > 2, for all h > 1,

2 q
MEP(CT?) = [Y]] ,

P+q+1

where X} is the number of vertices in CT}. A

Corollary 2 For all h > 1,

aeeery) = |44,

7

where X}, is the number of vertices in CT . A

Apart from showing that the binary and nonbinary cases behave differently for iden-
tifying codes but similarly for locating-dominating codes, Figure 5 has another in-
teresting feature: in Figure 5(b), where ¢ > 2, we also see that in CT, a 1-locating-
dominating code requires as many codewords as a 1-identifying code (and not more,
since any identifying code is a fortiori locating-dominating, cf. Remark 2).

Actually, it appears that in CT}, the 1-locating-dominating codes described above
also are 1-identifying codes when ¢ > 2. The checking is easy, going line by line from
the leaves to the root.

1-IDENTIFYING CODES ON TREES 35
Theorem 6 For all ¢ > 2, for all h > 1,

2 q
M{(CT?JZ[X }

*+q+1
where X} is the number of vertices in CT}. A
In general, it is not true however that an optimal 1-locating-dominating code is

necessarily also 1-identifying in CT¢ (¢ > 2), and we have a counter-example in CT ;.

Acknowledgments

We wish to thank Iiro Honkala and the anonymous referee for some helpful comments.

References

[1] N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying or locating-
dominating codes for some families of graphs, Rapport Interne Télécom Paris-
2003C001, Paris, France, 48 pp, Feb. 2003.

[2] N. Bertrand, I. Charon, O. Hudry and A. Lobstein, Identifying and locating-
dominating codes on chains and cycles, European J. Combin. 25/7 (2004), 969—
987.

[3] I. Charon, O. Hudry and A. Lobstein, Identifying codes with small radius in
some infinite regular graphs, Electron. J. Combin. 9(1) (2002), R11.

[4] I. Charon, O. Hudry and A. Lobstein, Minimizing the size of an identifying or
locating-dominating code in a graph is NP-hard, Theoret. Comput. Sci. 290(3)
(2003), 2109-2120.

[5] C.J. Colbourn, P.J. Slater and L. K. Stewart, Locating dominating sets in series
parallel networks, Congr. Numer. 56 (1987), 135-162.

[6] M.G. Karpovsky, K. Chakrabarty and L.B. Levitin, On a new class of codes
for identifying vertices in graphs, IEEE Trans. Inform. Theory 44(2) (1998),
599-611.

[7] P.J. Slater, Domination and location in acyclic graphs, Networks 17 (1987),
55-64.

(Received 25 Mar 2003)

