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Abstract

In this paper, we give some examples of contraction critical 5-connected
graphs in which there exists one vertex not in any triangle. On the
other hand, we prove that for any contraction critical 5-connected graph
G there is a vertex x of degree 5 such that each edge incident to z is
contained in some triangle of G. This generalizes the result of Ando,
Kawarabayashi and Kaneko for the case of 5-connected graphs.

1 Introduction

We only consider finite simple undirected graph. Let k be a positive integer, G a
k-connected graph. An edge of G is said to be a k-contractible edge if its contraction
yields again a k-connected graph. By Tutte’s famous result, any 3-connected graph
with order at least 5 has a 3-contractible edge. But for & > 4, Thomassen ([7])
showed that there are infinitely many k-connected k-regular graphs which do not
have a k-contractible edge. So, the contraction critical k-connected graph for k& > 4
was introduced, which is the non-complete k-connected graph without k-contractible
edges. The contraction critical 4-connected graphs are characterized, which are two
special classes of 4-regular graphs. For k > 5, the characterization for contraction
critical k-connected graphs seems to be very hard. In general, Egawa ([3]) showed
that every contraction critical k-connected graph has a vertex of degree at most
L%J —1. Then, for 4 < k < 7 every contraction critical k-connected graph contains a
vertex of degree k. Thomassen ([7]) proved that any contraction critical k-connected
graph contains one triangle. Mader ([5]) improved this result and obtained that
every contraction critical k-connected graph G contains at least |G| triangles, where
|G| = |V(G)] is the number of vertices of G. In his same paper, Mader also gave
some examples of contraction critical connected graph with higher connectivity in
which there is a vertex not in any triangle. Recently, Kriesell ([4]) proved that
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Figure 1:

every contraction critical k-connected graph contains at least §|G| triangles. By
his improvement, he asked the following question: Is every vertex of a contraction
critical 5-connected graph contained in some triangle? But this is not true. In the
following, we give two sequences of contraction critical 5-connected graphs in each of
which there exists indeed a vertex not in any triangle. The graph G; in Figure 1 is
a contraction critical 5-connected graph in which the vertex x has degree six and it
is not in any triangle. We can modify GG; to a contraction critical 5-connected graph
that contains a vertex of even degree (> 6) which is not in any triangle. The graph
G, in Figure 1 is a contraction critical 5-connected graph in which x has degree seven
and it is not in any triangle. We can modify G5 to a contraction critical 5-connected
graph that contains a vertex of odd degree (> 5) which is not in any triangle. We
show that G, G5 are contraction critical 5-connected graphs in the appendix.

Focusing on a special class of contraction critical k-connected graphs, Ando et
al. [1] proved the following result. A k-connected graph G is called minimally k-
connected if G — e is not k-connected for each edge e of G.

Theorem 1 Let G be a minimally contraction critical k-connected graph which does
not contain Cy + Ky. Then, G contains a vertex x of degree k such that each edge
incident to x is contained in some triangle.

Here we show that the conclusion of Theorem 1 still holds for any contraction
critical 5-connected graph. In fact, we obtain the following theorem.

Theorem 2 Let G be a contraction critical 5-connected graph. Then, G contains a
vertex x of degree 5 such that each edge incident to x is in some triangle.

For terms not defined here we refer the reader to [2]. Let G = (V(G), E(G))
be a graph where V(@) is the vertex set of G and E(G) is the edge set of G. Let
|G| = |V(G)] and let x(G) denote the vertex connectivity of G. An edge joining
the vertex x,y is written as zy. For z € V(G), we define Ng(z) = {y € V(G) :
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Figure 2: G

zy € E(G)}. By dg(x) = |Ng(xz)| we denote the degree of x. For F C V(G), let
NG(F) =UzerNg(z) — F. A set T C V(G) is called a separating set of a connected
graph G if G—T has at least two connected components. A separating set with x(G)
vertices is called a smallest separating set. Let G be a non-complete graph, and let T
be a smallest separating set. The union of at least one but not of all the components
of G—T is called a T—fragment. A fragment of G is a T-fragment for some smallest
separating set 7. Let FF C V(G) be a T-fragment and let F = V(G) — (FUT).
Then, by definition F # () which means that F is also a T-fragment. Note that
Ng(F) =T = Ng(F). The set of all smallest separating sets of G is denote by Tg.
We often omit the index G if it is clear from the context.

We need more definitions introduced in [5]. For a graph G, let S be a non-empty
set of subsets of V(G). An S-fragment of G is a T-fragment of G for any T € Tg
such that there is an S € § with S C T. An inclusion-minimal S-fragment of G
is called an S-end and one of the least vertex numbers is called an S-atom. The
following properties of fragments are folklore (for the proof see [5]), we will use them
without any further reference .

Let T,T'" € Tg. Let F be a T-fragment of G and let F' be a T'-fragment of G. If
FNF' # 0, then |FNT'| > |F'NT| and |F'NT| > |FNT'|. If FNF' # 0 # FNF’, then
both FNF" and FNF" are fragments of G, and N(FNF') = (F'NT)U(T'NT)U(FNT").
If FNF' # Q and FNF' is not a fragment of G, then FNF' = ), and |FNT'| > |F'NT]|
and |F' NT| > |[FNT'|. Also, by the definition, the two end vertices of any edge in
a contraction critical k-connected graph are contained in some smallest separating
set.

2 Some properties of contraction critical 5-connected graphs

It is proved in [8] that any vertex of a contraction critical 5-connected graph is
adjacent to a vertex of degree 5. In fact, from [8] we have the following result.

Lemma 1 ([8]) Let G be a contraction critical 5-connected graph and F a fragment
of G. If w € N(F) and N(w) N N(F) # 0 and |F| > 2, then N(w) N (F UN(F))
contains a vertex of degree 5.

By using a more technical method, we ([6]) showed that any vertex in a contrac-
tion critical 5-connected graph is adjacent to at least two vertices of degree 5. The
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bound ‘two’ is best possible. Indeed, there are some contraction critical 5-connected
graphs (see Figure 2, the vertices u, v of G3) which contain some vertices having only
two neighbors of degree 5.

Lemma 2 ([4]) Let A be a fragment of cardinality 2 in a contraction critical 5-
connected graph, and let t; and ty be two distinct vertices in N(A) such that [N(t,)N
Al =|N(t2)NA| = 1. Then one of t1,ts has a neighbor of degree 5 in N(A)—{t1,t2}.

Lemma 3 Let G be a contraction critical 5-connected graph and let Vi denote the
set of the vertices of degree 5 in G. Let x € V(G) and let A be a fragment of G such
that x € N(A) and |A| > 3 and |A] > 2. If [N(z) N A| = 1, then there exists a vertex
y € N(z) N N(A)NVs such that N(z) N AC N(y) N A and |[N(y) N A| > 2.

Proof. Let z € N(z) N A, and let T be a smallest separating set containing {z,z}
and F be a T-fragment.

If ACT,as |A| >3 and z € N(A)NT, then [T NA| <1. So, either FNA#0
or FNA# 0. Without loss of the generality, we may assume F N A # (. Then
|[FAN(A)| > |ANT| = |A] > 3, and thus [FNN(A)| < 1. Tt follows that FNA = 0,
and hence [F| = 1. Let F = {y}. Then, y € N(A)N V5 and AU {2} C N(y).

If A¢Z T, we may assume that F N A # (. Since N(z) N A = {z} and z € T,
N@)n(FNA)=0. So, (TNA)YU(TNN(A)U(FNN(A))| > 5. For otherwise,
FNAis a fragment such that € N(F N A), which implies N(z) N (F N A) # 0.
However, this contradicts the fact that N(z)N(FNA) = 0. It follows that, FNA = ()
and |[ANT|>|FNN(A)|. We show that |F| = |[FNN(A)|=1. If [FNN(A)| > 2,
then |ANT| > 3. Thus [ANT| < 1 which implies that F N A = (), contradicting that
|A] > 2. So, [FNN(A)] < 1. We show that F N A = (). Suppose that F N A # (.
Then, since N(z) N (FNA) =0, we have |(TNA)U(TNN(A)U(FNN(A))| >5
which implies that FNA = @) and |A]| = |[FNA| < 1. This contradicts the assumption
that |A] > 2. Hence, F C N(A) and |[F| =1, and so |ANT| > 2. Let F = {y}.
Then, y € N(A)NVs and (ANT)U{z} C N(y).

Clearly, in both cases we have that y € N(z)NN(A)NV; and N(z)NA C N(y)nA
and |[N(y) N Al > 2. [ |

3 Proof of Theorem 2

From now on, we always assume that G is a contraction critical 5-connected graph.
Vs denotes the set of the vertices of degree 5. Suppose that Theorem 2 is not true.
Then, each vertex of degree 5 of G is adjacent to at least one edge which is not
contained in any triangle. Let E' C E(G) be the set of such edges that are incident
to a vertex of degree 5 and not in any triangle. Let S = {{z,y}|zry € E'}. Let A be
an S-atom. Let 2y € E', z,y € N(A) and d(z) = 5. Then, N(z) N N(y) = () and
hence |A| > 2.

Assertion 1 |A] >3 and ANV; = 0.
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Proof. At first we show that |A] > 3. Assume |[A| = 2 and let A = {zy,31}.
Suppose that z; € N(z) N A and y; € N(y) N A. Since N(z) N N(y) N A = 0, we
have N(z) N A = {21} and N(y) N A = {y1}. Thus, d(z1) = 5 = d(y1). Hence,
N(z1) =(A—{y})U{y:} and N(y;) = (A — {z}) U {z1}. By Lemma 2, z or y has
a neighbor of degree 5 in N(A) — {x,y}. We may assume that = has a neighbor of
degree 5 in N(A) — {x,y}. Now it is easy to verify that all edges incident to z; are
contained in some triangles, a contradiction. Hence, |A| > 3.

Next we show that ANVs = 0. If ANVs # 0, let z € AN Vs, then there is an
edge zz' € E' such that 2’ € AUN(A). Let T be a smallest separating set such that
2,2 € T. Then, TN A # 0. By corollary 3 of [5], we have |A| < 2, contradicting
|A| > 3. This proves Assertion 1. [ |

Since A is an S-atom, we have [A] > |A| > 3. Let 2 € N(z) N A, let T be a
smallest separating set such that z,z € T and let F’ be a T-fragment.

Assertion 2 A¢Z T.

Proof. Assume A C T. Then, as v € N(A)NT and |A| > 3, we have [T N A| < 1.
Thus, either F N A or F N A is nonempty. We may assume F N A # (), then
|[FNN(A)| > |TNA|l=|A] >3, and thus [FNN(A)| < 1. It follows FNA = (), and
hence |F| = 1. Let F = {w}. So, d(w) = 5 and |[N(w) N A| > 3 and zw € E(G).
As N(w) N A # 0, we have that [N(w) N N(A)] = 1 = |N(w) N A]. Note that
2z € N(x) N N(w), we have w # y. Then, |N(z) N N(A)| > 2. As N(z)NA £ 0,
|N(z) N A| =1 or [N(z) N A = 2 holds. We distinguish two cases.

Case 1. |N(z) N A] = 1. Then, N(z) N A = {z}. Let A’ = A — {z}. Then,
N(A") = (N(A) — {z}) U {z} and A’ is a fragment. Note that w € N(A') and z €
N(A)NN(w), we have N(w) NN (A’) # 0. Clearly, |A’'| > |A|+1 > 4. By Lemmal,
w has a neighbor of degree 5 in A" U N(4’), as N(w) N (A UN(A") C N(w) N A,
contradicting that AN V5(G) = 0.

Case 2. |N(z) N Al = 2. Then, |[N(z) N A| = 2 = |N(z) N N(A4)|, and thus
|N(z)NA| = 1. Let N(z)NA = {z'}. Note that N(z)NN(A) = {w,y}, by Lemma3,
we have z' € N(w) U N(y). Since N(z) N N(y) = 0, we have 2’ € N(w), and thus
N(z)NA=N(w)NnA={z}. It follows that (N(A) — {z,w}) U {z'} is a separating
set of cardinality 4, a contradiction. This proves Assertion 2. |

As A Z T. We may assume that F N A # (.
Assertion 3 F C N(A), [TNA| > |F| and |F| = 1.

Proof. We first show that F N A = (). Suppose, to the contrary, that F N A #£ §.
Then, both FN A and FNA are fragments of G. Denote F; = FNA and F, = FNA.
Clearly, N(F}) = (TNA)U(TNN(A))U(FNN(A)) and N(Fy) = (TNA)U(TNN(A))U
(FNN(A)). By the choice of A, we know that y € FNN(A). Asz € TNN(A) and
z € N(z)NT, by Lemmal, we have that N(z)N(F; UN(F})) has a vertex w of degree
5. By Assertion 1, w € N(z) N (FUT)NN(A). Asy € FNN(A), we have |[N(z) N
N(A)| > 2. Clearly, N(z)NF, # (. Then, |[N(z)NA| > 2. Thus, |[N(z)NA| =1 and
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[N(z)NN(A)| = 2. So, N(z)NN(A) = {y, w}. Note that z € N(Fy), N(z)NF; # 0.
So, |N(z) N F3| = 1. Note that {z,y} C N(Fy), by the choice of A, we have
|Fy| > |Al > 3. Clearly, [Fy| > 2. As N(z) N N(Fy) C {y,w} and N(z) N N(y) =0,
by Lemma3, we have that N(z) N Fy = N(N(z) N N(Fy) N Vs) € N({y,w}), and
hence N(z) N Fy, C N(w) N Fy and |[N(w) N Fy| > 2. Then, w € TN N(A). Now
we look at Fy. Since FyNVs C ANVs =0, |Fy| > 2. If |Fi| = 2, by noting that
|N(z)NFi| =1, then F1NV; # 0, a contradiction. So, |F1| > 3. Note that z € Vi, we
have N(z)NN(F;)NVs; = {w}. By Lemma3, we also have N(z)NF; C N(w)NF; and
|N(w)NFy| > 2. Hence, |[N(w)NFy| =2 = |[N(w)NFy|. Let N(z)NF; = {z'}. Then,
F = F; — {7'} is a fragment and 2z’ € N(w). As N(F]) = (N(F,) — {z}) U{z'}, we
have w € N(F}) and N(w)NN(F]) # 0. By Lemmal, N(w)N(F{UN(F}))NVs # 0.
By noting that N(w) N A = N(w) N (F] UN(F])), we have N(w)NANVs #0, a
contradiction. Hence, F N'A = 0.

Now, if FN A # (), then we can similarly deduce that F N A = (), and thus
A CT,and so [N(A)] > 2[A] +1 > 7, a contradiction. So, F N A = (), and hence
F C N(A). Next we show that |[T'N A| > |F|. Otherwise, we have |T N A| = |F],
and thus FN A is a fragment and N(FNA)=(TNA)U(TNN(A)U(FNN(A)).
By the choice of A, we have y € F. As N(z) N N(y) = 0 and z € N(z) N T, we have
|F| > 2. If |F| > 3, then |T N A| > 3, and thus |[TNA| < 1, implying FNA = (). So,
|A] = |T N A] <1, a contradiction. Thus, |F| =2. Let F = {y,y'}. As z & N(y),
d(y) =5 and yy' € E(G), and thus y'z ¢ E(G) and d(y') = 5. Then, we can similarly
deduce as in the proof of Assertion 1 that each edge incident to 3 is in some triangle,
a contradiction. Hence, |T'N A| > |F|. Thus, if |F| > 2, then |T N A| > 3, and so
|TNA| <1, implying that FN A = () and |A| < 1, a contradiction. So, we have that
|F] = 1. This proves Assertion 3. [ |

Let F = {w}. As z € N(z) N N(w), w # y.
Assertion 4 |[N(w) N A| =2 and |N(w) N N(A)| =2 and |[N(w) N A] = 1.

Proof. At first we show that |N(w) N A| = 2. By Assertion 3, we have |N(w)NA]|
|[ANT| > 2. Assume that |[N(w) N A] > 3. Then we have |N(w) N N(A4)| =
|N(w) N A| = 1. We claim that |[N(z) N A| > 2. For Otherwise, |[N(z) N A| = 1, and
thus N(z) N A = {z}. Let A= A— {z}. Then A’ is a fragment. As z € N(w) and
2 € N(4'), by Lemmal, we have N(w)NANV; #£ 0. Hence N(w)NANV; # 0 which
contradicts the fact AN Vs = 0. Hence, |N(z) N A| > 2, and thus |N(z) N 4] = 1.
Note that N(z) N N(A) = {y,w} and N(z) N N(y) = 0. Then by Lemma 3, we have
N(z) NA C N(w) N A and |N(w) N A] > 2, which contradicts the assumption that
|N(w) N A = 1. Hence, |[N(w) N A| = 2.

Next we show |N(w) N N(A)| = 2. Assume that |[N(w) N N(A)] = 1. Then
|N(w) N A|] = 2. In this case, by using the same reasoning as above we can deduce
that |[N(z) N A| > 2, and hence |[N(z) N A| = 2. So, N(z) N N(A) = {y,w}. Now
we claim that N(z) N A C T N A. For otherwise, let 2/ € N(z) N A—T N A. Let
T'" be a smallest separating set such that x,2’ € T and let F' be a T’-fragment.
Then, the same discussion for T, F' still hold for 7", F', so we have z’ € N(w), which
contradicts the assumption that |N(w) N A] = 1. Hence, we have N(z) N A C
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TNACN(w)NA, and thus N(z) N A = N(w) N A. Clearly, in this case we have
|N(z) N A| = 1. Still by Lemma3, N(z) N A C N(w) N A. Let N(z) N A = {u'}.
Then A' = A — {u'} is a fragment. As u' € N(w), we have [N(w) N A’| = 1. Note
that N(A") = N(A4) U {u'} — {«}, we have N(w) N N(A") = {u'}. We claim that
|A’| > 3. Assume that |A’| < 2. Then |A| < 3, and thus |A| = 3, which means that
A is also an S-atom. By Assertion 1, we have ANV = 0. As |A'| = 2, we have
|N(w) N A'| > 2, which contradicts the fact that |[N(w) N A’| = 1. So, |A'| > 3.
By Lemma3, N(w) N A" C N(u') N A’. In this situation we observe that each edge
incident to w is contained in some triangles, a contradiction. So, |N(w)NN(A)| > 2,
and thus [N(w) N N(A)| =2 and |[N(w) N A] = 1. [

We are ready to complete the proof of theorem 2. Let N(w)NA = {z, 21}, N(w)N
N(A) = {z,w;} and N(w) N A = {2}. If |IN(z) N A] = 1, then N(z) N A = {z}.
Let Ay = A — {z}. Then, A, is a fragment such that N(A;) = N(A) U {z} — {z}.
Clearly, w € N(A;) and N(w) N N(A;) = {z, w1 }. If |[A;] = 2, as A; NV; =0, then
|N(w) N Ay| = 2, a contradiction. So, |A;| > 3. Then, by Lemma3, z; € N(w;). As
N(w) N A = {2}, still by Lemma3, we have z, € N(w;) U N(z). As zz € E(G),
it follows that each edge incident to w is in some triangle, a contradiction. Hence,
|N(z) N A] > 2. So, N(z) N N(A) = {w,y} and |N(z) N A| = 1. By Lemma3, we
have N(z) N A C N(w)N A, and thus N(z) N A = N(w) N A = {z,}, implying that
N(A)U {22} — {z,w} is a smallest separating set of cardinality 4, a contradiction.
This proves Theorem 2. |
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Appendix

We give an outline showing that G, G5 are contraction critical 5-connected.

1. We first show that G, G, are 5-connected by the following three steps.

(i) Fori=1,2, G; — {z,y} is 3-connected.
(ii) In G; — « there are four internally vertex disjoint paths from y to the other
vertices, and in G; — y there are also four internally vertex disjoint paths from
x to the other vertices.
(ii) There is no such separating set T of cardinality 4 in G; that satisfies
TN{z,y} = 0.
2. In Gj;, we can observe that the two end vertices of many edges have a com-
mon neighbor of degree 5, and the two end vertices of the remaining edges are also
contained in a separating set of cardinality 5.
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