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Abstract

This paper concerns pinched surfaces, also known as pseudosurfaces. A
map is a graph G embedded on an oriented pinched surface. An arc of
a map is an edge of G with a fixed direction. A regular map is one with
a group of orientation-preserving automorphisms that acts regularly on
the arcs of a map, i.e., that acts both freely and transitively.

We study regular maps on pinched surfaces. We give a relation be-
tween a regular map on a pinched surface and a natural corresponding
regular map on a surface with the pinch points pulled apart. We give
several constructions for regular pinched maps and present a plethora of
examples. These include strongly connected maps on pinched surfaces
(those that do not have a finite set of disconnecting points), as well as
examples formed by gluing other regular maps along a finite set of points.
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1 Introduction

Let S be an orientable surface, not necessarily connected. Each component of S is
a sphere with some number of handles attached. It is convenient to consider the
surface together with a fixed orientation. A map, M , is the surface together with
an embedded graph G. We require the embeddings to be cellular, that is, each
component of S − G is homeomorphic to an open disk. It follows that the number
of components of S equals the number of components of G.

Let X1, X2, . . . , Xk be disjoint finite sets of points in S. Create Š by identifying
each Xi into a single point xi for i = 1, . . . , k. Then Š is called a pinched surface and
each xi is called a pinch point. A small neighborhood of xi in Š is homeomorphic to
|Xi| copies of the plane identified at their origins. Each of these planes is called a
sheet. The surface Š can be turned into an oriented pinched surface by choosing an
orientation of each connected component of S. We call the original S the unpinched
surface corresponding to Š. Observe that S is well-defined for a given pinched surface
Š. We say that S is formed by pulling apart the pinch points of Š.

Figure 1 shows a cube embedded on a sphere, and then the related pinched surface
with antipodal points a = A identified. The resulting surface has a single pinch point
with two sheets. Pulling apart the pinch point restores the original spherical cube.
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Figure 1: Identifying antipodes a and A on a cube

We assume throughout the paper that our pinched surfaces Š are connected.
However, it is possible that pulling apart the pinch points disconnects Š, that is, S
is disconnected. Each component of S is called a strong component of Š. If S has
only one strong component, then Š is strongly connected. Equivalently, Š is strongly
connected if and only if there does not exist a finite set of points disconnecting it.

As before, a map M̌ on Š is a pinched surface with an embedded graph Ǧ, but
here we require that every pinch point is the image of a vertex. Following the model
in [9] we still require maps to be cellular. Maps M on surfaces are a special case of
maps M̌ on pinched surfaces: there are no pinch points. We will frequently make
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definitions for pinched surfaces with the understanding they apply to surfaces. Maps
on surfaces are sometimes described in terms of rotation systems, each vertex is given
a cyclic permutation of its incident edge-ends. Maps on pinched surfaces arise when
you allow an arbitrary permutation of the edge-ends incident with a vertex.

An automorphism of M̌ is a self-homeomorphism of the oriented pinched surface
that preserves both the orientation and the embedded graph. The set of all auto-
morphisms form a group, called naturally enough the (full) automorphism group,
denoted Aut(M̌).

Let Γ be a group of automorphisms of M̌ , not necessarily the full automorphism
group. We are interested on how Γ acts on the vertices, edges, and arcs of Ǧ (an arc
is an edge with a fixed direction). Recall that an action of Γ on a set X is transitive
if for any pair x, y ∈ X there is an element of Γ mapping x to y. The action is free
if the only element of Γ that fixes a point of X is the identity. The action is regular
if it is both transitive and free, i.e., for any x, y ∈ X there is exactly one element of
Γ mapping x to y.

Each automorphism of M̌ permutes the vertices. If Γ is regular on the arcs,
then it is transitive on the vertices. Hence if one vertex is on a pinch point, then
every vertex is on a pinch point. Moreover all pinch points have the same number of
sheets and each sheet has the same number of arcs; in particular every vertex is of
the same degree. A group of automorphisms acting regularly on the arcs has deg(v)
automorphisms fixing v, so it does not act freely on the vertices when this common
degree exceeds one. It is convenient to have a name for all arcs pointed out from v
and on the same sheet of v: call it a cone.

A regular pinched map is a pinched map with a group of automorphisms that act
regularly on the arcs. Regular maps without pinch points have been widely studied.
In this context orientation-reversing automorphisms are frequently allowed, so that
the automorphism group is flag transitive, but we will not pursue this extension here.
For more on this concept see the survey article [8], and for small examples see [2].

In this paper we study regular maps on pinched surfaces. In Section 2 we relate
these to regular maps on the corresponding unpinched surface. In a sense this gives
all regular pinched maps. However, in some circumstances there are more convenient
ways to construct regular pinched maps. In Section 3 we give some strongly connected
examples. In Section 4 we give examples that are not strongly connected. We
then turn our attention in Section 5 to a pretty way of constructing pinched maps
using powers of regular embedding and discuss some limitations of this method. We
conclude in Section 6 with some open problems.

2 Group actions and the Main Theorem

Each pinched map M̌ with graph Ǧ has a unique corresponding (possibly discon-
nected) unpinched map M with graph G. The arcs of M̌ are in direct correspondence
with the arcs of M . Hence any permutation γ of the arcs of M corresponds to a
permutation γ̌ of the arcs of M̌ . The precise nature of this relationship will be made
clear in our Main Theorem 2.1, where we show when the regularity of one group of
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automorphisms guarantees the regularity of the corresponding group.
We first need some notions from the theory of permutation groups [3]. Let Γ be

a set of permutations acting on a set A. A block of this action is a subset B ⊂ A
such that for all γ ∈ Γ, either γ(B) = B or γ(B) ∩ B = ∅. If the action of Γ is
transitive, as will always be the case in this paper, then any translate of a block is a
block, all blocks are the same size, the blocks partition A, and every γ ∈ Γ permutes
the blocks.

Any action always has two trivial block partitions: (a) the partition where every
block is a singleton, and (b) the partition with a single block B = A. If these are the
only block partitions under a group action, then the action is primitive, otherwise
the action is imprimitive. A block which is minimal in the set of all blocks of size
> 1 is called a minimal block. Primitive and imprimitive actions of a group on a set
are widely studied, again see [3].

Let P = {V1, V2, . . . , Vk} be a partition of the vertex set of a graph G. Form the
quotient graph Ǧ = G/P whose vertices are the parts of P and with an edge joining
ViVj for each edge with ends in these two parts. In other words, identify the vertices
in each part to a single vertex keeping any edge multiplicities that arise. If G is
embedded forming a map M , embed the quotient map M̌ by identifying the vertices
on the surface. This M̌ has Ǧ embedded in a pinched surface.

The following example illustrates these concepts.

Example 1 Identifying antipodes in a cube: Consider the 3-dimensional cube as a
map M . Let a,A, b, B, c, C, d,D be the vertices of its graph G where x is antipode of
X. The group Γ of (orientation-preserving) automorphisms of the cube is transitive
on the 24 arcs, so M is a regular map. Each pair {x,X} is a block as Γ acts on the
vertices. Form a quotient map M̌ = M/P by identifying a = A, b = B, c = C, d =
D, forming a sphere with four pinch points. Any automorphism of M is also an
automorphism of M̌ . The automorphisms are still transitive on the arcs of Ǧ, so M̌
is a regular pinched map.

Figure 1 shows a cube and the identification of two antipodal vertices, a and A.
Figure 2 illustrates the simultaneous identification of all four pairs of antipodes. In
Figure 2 the edge-ends are either dashed or solid depending on whether they are
originally incident to a vertex or its antipode. The faces are found using the usual
face-tracing algorthim (see [5]): walk along an edge and when encountering a vertex
continue along the next edge anti-clockwise. But here since each vertex is a pinch
point, continue along the next edge anti-clockwise of the same nature, dashed or
solid. Thus at any vertex the three outward arcs with dashed ends form one cone
and the three with solid ends form the other cone. This face-tracing algorithm yields
the six quadrilateral faces of the pinched map corresponding to the six faces of the
original unpinched cube.

With this example in mind, we present the Main Theorem.

Theorem 2.1 Let M be a map formed by a graph G embedded on a (not necessarily
connected) oriented surface S and let Γ be a group of automorphisms of the map
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Figure 2: Identifying all antipodes on a cube

acting regularly on its arcs. Suppose that the action of Γ on the vertices has a block
structure P = {V1, . . . , Vk}. Then the corresponding group Γ̌ acts regularly as a group
of automorphisms on the arcs of the pinched quotient map M̌ = M/P .

Conversely, if Γ̌ acts regularly on the arcs of M̌ , then the corresponding Γ acts
regularly on the arcs of the unpinched map M formed by pulling apart the pinch
points. The action of Γ on V (G) has a block structure corresponding to the cones of
the pinch points of M̌ .

Proof: An automorphism γ of M permutes the vertices of G. Since it has block
structure P , it corresponds to an automorphism γ̌ of M/P . The group Γ acts regu-
larly on the arcs of M , so Γ̌ acts regularly on M̌ = M/P .

For the converse, each automorphism γ̌ ∈ Γ̌ permutes the cones. Hence it also
defines an automophism γ of M . This action of γ on the arcs of M is regular and
has block structure P .

Let M be a regular unpinched map of degree d on a connected surface. Its au-
tomorphism group has a presentation in terms of two generators, one of order d
generating the cyclic stabilizer of a vertex and the other of order 2 generating the
stabilizer of an edge. More strongly, unpinched regular maps on connected surfaces
may be identified with presentations of such two-generator groups. The automor-
phism group of a regular pinched map M/P does not always admit such a simple
presentation since the vertex stabilizers need not be cyclic. The block structures of P
correspond to subgroups of Γ containing a vertex stabilizer, and so do not correspond
to two-generator groups.

We have considered a subgroup of automorphisms of the map acting regularly on
the arcs. We examine when this is the full automorphism group.

Lemma 2.2 Let M̌ be a strongly-connected oriented pinched embedding. Then any
orientation-preserving automorphism acts freely on the arcs.

Proof: Suppose that an automorphism γ fixes an arc a. We need to show that it
fixes all arcs. Since γ fixes the embedding it fixes all corners. Since it is orientation
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preserving it fixes all arcs rooted at the tail of a. This γ also fixes the arc a−1, and
so fixes all arcs at the tail of a−1 which is the head of a. The map M̌ is strongly
connected, so for any two arcs there sequence of these operations carry any arc to
any other, so all arcs are fixed. (This can also be proven using Theorem 2.1 and the
results in [5].)

The fact that the relations “share a tail” and “are inverse” extend transitively to
the entire arc set can be considered as an alternate definition of strong connectivity.

Corollary 2.3 Any group of automorphisms acting regularly on a strongly connected
pinched map must be the full automorphism group.

The situation when M̌ is not strongly connected is a bit more complicated. If M̌ is
disconnected, then the full automorphism group does not necessarily act freely. Any
automorphism of one component could be paired with the identity automorphism of
a second component. In general, if there are n components of M̌ each isomorphic
to M , then the automorphism group of M̌ is a wreath product of the automorphism
group of M with the full symmetric group Sn.

3 Examples that are strongly-connected

Recall that a surface is strongly-connected if pulling apart the pinch points does not
disconnect the surface. By Corollary 2.3 the only group that can act regularly on
the arcs of a map on a strongly-connected surface is the full automorphism group.
We give some examples.

Example 2 Trivial quotients: Every group action has two trivial block structures:
that where all parts are of size 1, and that with only one part. If the action on the
vertices has all parts of size 1, then the map M is the same as its quotient M̌ . If
there is only one vertex part, then M̌ has just a single point.

Example 3 Bipartite graphs: Let M be a connected regular map based on a bipar-
tite graph with partite sets V1, V2. The action of the automorphism group on the
vertices has P = {V1, V2} as a block structure. Forming the quotient gives a regular
pinched map with exactly two pinch points. The cube is bipartite and Example 1
gives a pinched quotient with four vertices. This shows that an action on the vertices
can have more than one nontrivial block structure, and hence give rise to more than
one regular pinched map.

Example 4 Graphical properties: Generalizing on the previous example, there can
be other graphical properties that natually lead to block actions. For example,
G could be a complete multipartite graph: the parts are blocks under any graph
automorphism. Or G could be the octahedron, icosohedron, n-dimensional cube, or
any other graph where there is a unique vertex of u of maximum distance from any
given v. Any graph isomorphism must have u, v as a block. Regular embeddings
of these graphs must respect these block structures, and so lead to regular pinched
maps with each pinch point having two sheets.
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Example 5 The Heawood graph on the torus: Consider the Heawood graph embed-
ded as a regular map on the torus (this is the dual of the embedding of K7 on the
torus). The group of automorphisms of this map acts regularly on the arc set. It
acts imprimitively on the vertex set: it is possible to partition the vertices into seven
pairs which are blocks. Hence there is a quotient of this embedding yielding a regular
pinched embedding with 7 pinch points each having 2 sheets.

Example 6 C4 × C4 on the torus: Consider the regular embedding of C4 × C4 on
the torus. There are several block partitions on the vertices of this rotation. For the
first, let a block be {(i, j), (i + 2, j + 2)}. This gives 8 blocks, each of size 2. By
unioning together some of these blocks we get coarser block partitions. For example,
if we union two of the old blocks to form {(i, j), (i+ 2, j), (i, j + 2), (i+ 2, j + 2)} we
again get a block partition with 4 blocks each of size four. We can again group these
blocks in pairs to get the block partition corresponding to the bipartite vertex sets
on C4 × C4. Finally, we can union to a single block with a trivial block partition.

The underlying graph C4×C4 is the hypercube Q4, so this construction is related
to those with bipartite graphs and those with unique antipodal points.

4 Examples that are not strongly-connected

We now give examples that are formed, in a sense, by glueing together other regular
maps.

Example 7 Cloning: Say that we have copies Mi, i = 1, . . . , n, of a regular (pos-
sibly pinched) map M where M has automorphism group Γ. Let Γ̌ be a group of
automorphisms acting regularly on arcs of the union of the Mi naturally extending
the action of Γ on the individual maps. Such a group can be formed as say a direct
product Γ × Zn. Make a pinched map M̌n by identifying corresponding vertices in
each of the Mi. Then M̌n is regular.

Example 8 Inflating edges: Let G be a connected graph admitting a regular action
of a group Γ of automorphisms on arcs of the graph. Create M̌ by replacing each
edge of G with a copy of the regular map K2 on the sphere. Then Aut(M̌) ∼= Γ
turns M̌ into a regular pinched map. The number of pinch components of M̌ is the
number of edges in G.

Example 9 Multiplying edges: Again, let G be a connected graph admitting a regu-
lar action of a group Γ of automorphisms on arcs of the graph. Create M̌ by replacing
every edge by a dipole with m parallel edges embedded on a sphere, and consider
the induced natural arc-transitive action of the group Zm×Γ on the arcs of M̌ . This
turns M̌ into a regular pinched map. The number of pinch components of M̌ is the
number of edges in G.

Example 10 Doubling the Fano plane: Replace each triple in the Fano plane with
the regular map C3 on the sphere. The resulting pinched surface has 7 pinch points
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each with 3 cones. Using the automorphism group of the Fano plane it can be seen
that this group acts transitively on arcs of the pinched map. The action is not free,
since we can switch the two triangles representing a fixed line in the Fano plane.
However, there is again a subgroup of automorphisms that acts freely, giving rise to
a regular pinched map. The map can be pictured by taking the embedding of K7

on the torus, 2-coloring the faces, deleting the black faces, and duplicating the white
faces.

Example 11 The complement of the Fano plane: For each triple in the Fano plane
take its complement, a 4-set. Make 7 tetrahedra using each of these 4-sets and
identify them along the vertices, forming a pinched surface. The underlying graph is
2K7, a complete graph with every edge replaced with two parallel edges. Be careful,
when forming the quotient we identify only vertices, not edges, so as to preserve the
set of arcs. The details are left to the reader.

5 Powers of maps

In this section we define the power of a map and examine the relation between
regular pinched maps and their powers. First, we introduce some useful terminology.
A permutation ρ on the arcs of a graph respects feet if for every arc, a and ρ(a)
eminate from the same vertex.

We start with a graph G underlying a map M on a possibly pinched oriented
surface S. We consider the orientation as anti-clockwise as we view a vertex v. The
arcs with their foot at v are permuted in this anti-clockwise manner by a permutation
ρv. If v is not a pinch point, then ρv is cyclic. If v is a pinch point, then the number
of orbits of ρv is the number of cones at v. Let ρ denote the permutation over all
arcs of G. We call ρ the rotation of M (reference [5] gives a nice exposition on the
relation between rotations and embeddings). Observe that ρ respects feet.

Suppose that we are given a graph G and an abstract permutation ρ on the arcs
of G that respects feet. Then ρ determines an embedding of G on a pinched surface
forming an oriented map. Because of this bijection between maps and rotations we
refer to a map as a pair M = (G, ρ).

We are most interested in regular maps, where the number of orbits in a rotation
is independent of the vertex v and all of these orbits are of the same size. Denote
the size of these orbits by dc(ρ), the cone degree of ρ, most conveniently thought of
as the degree of v in each cone in a pinched embedding.

We begin by relating regular maps to the interaction of Γ and ρ. The following is
commonly used for maps on surfaces and easily extends to maps on pinched surfaces.

Proposition 5.1 Let M = (G, ρ) be a pinched map. A permutation γ of arcs of G
is an automorphism of M if and only if for all arcs a, γρ(a) = ργ(a) and γ(a−1) =
γ(a)−1.

Proof: The permutation γ preserves the map if and only if it preserves the faces
and inverse arcs. To preserve the faces you should preserve the rotation, that is,
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it is the same if you first rotate and then apply the automorphism, or apply the
automorphism and then rotate. Hence ρ and γ commute as claimed. Similarly γ
must preserve the involution swapping a and a−1.

Our interest is to relate a map based on G with rotation ρ to the map on G with
the power ρe of the rotation.

Corollary 5.2 If M = (G, ρ) is a regular pinched map, then M e = (G, ρe) is a
regular pinched map.

Proof: Let Γ be a group of automorphisms of M acting regularly on the arcs of the
map. If γρ = ργ for every γ ∈ Γ, then γρe = ρeγ for every γ ∈ Γ.

We give some examples of regular pinched maps M e derived from regular (some-
times pinched) maps M . We will consider 1 < e < dc(ρ) to avoid redundancies. For
convenience, let d = dc(ρ).

Example 12 Reversing orientation: Let M = (G, ρ) be a regular pinched map and
set M−1 = (G, ρd−1). The orbits of M and M−1 are the same size; in particular,
if M has no pinch points, then M−1 has no pinch points. The pinched map M−1

corresponds to reversing the orientation on the surface of the map M .

Example 13 Exponents of regular maps: Let M = (G, ρ) be a regular map without
pinch points. If M e = (G, ρe) is isomorphic to M , then e is called an exponent of
M . Any exponent e must be coprime with d. Exponents of maps have been widely
studied [7, 1]. The definition of exponents extends to pinched maps for 1 < e < dc(ρ).
Again, any exponent e of a pinched map must be coprime to dc(ρ).

Example 14 Non-coprime exponents—squaring K7 on the torus: Let M be a reg-
ular map with K7 on the torus and let ρ be its rotation. Each orbit of ρ is of size 6.
Form M2 = (K7, ρ

2). The orbits of ρ2 are all of size three, so M2 is a pinched map
with seven pinch points each having two cones of size three.

This square of K7 is exactly the same pinched map formed by the seven parts
with two cones arising from the imprimitive action on the vertices of the regular
Heawood map on the torus.

In general, starting with a regular pinched map M = (G, ρ) with each cone of
size d, the cones in M e = (G, ρe) all have the same size, namely the order of e in Zd.

We now have several constructions of regular pinched maps. On occasion the
same regular map can arise in two different ways, such as in the square of K7 being
the same as the quotient of the Heawood map under its imprimitive action on its
vertices. This leads to the following question.

Question 5.3 Suppose that we are given a strongly connected regular pinched map
M = (G, ρ). When is there a rotation ρ′ and a power e such that M ′ = (G, ρ′) is
regular and M = (M ′)e?



D. ARCHDEACON ET AL. / AUSTRALAS. J. COMBIN. 58 (1) (2014), 16–26 25

Replacing ρ′ by (ρ′)e can be viewed as wrapping the rotation e times around
the vertex v. A stronger form of Question 5.3 asks “Is every regular pinched map
a wrapping of regular map?” The answer to this stronger question is NO. Before
giving a class of regular pinched maps that are not wrappings, we need the following.

Proposition 5.4 A graph G underlies a regular map if and only if Aut(G) has a
subgroup H that acts regularly on the arcs and has cyclic vertex stabilizers.

Proof: If G underlies a regular map, then the automorphism group of that map
has the stated properties. The converse was proven in [4].

Example 15 Marušič’s graphs: Let n ≥ 5 be odd. In [6] there is a construction
of a Cayley graph of degree 4 using the alternating group An such that the full
automorphism group of this Cayley graph is G = Sn × Z2. In this example Aut(G)
acts regularly on arcs in such a way that the stabilizer in Aut(G) of every vertex is
isomorphic to Z2 × Z2.

These graphs can be regularly embedded on a pinched surface, with two cones
at each vertex, each containing two edges. In the vertex stabilizer, the first and
the second cone could correspond to, say, the elements 00, 10 and 01,11, while the
elements 01 and 11 would swap the cones.

Since the vertex stabilizer is not cyclic, Proposition 5.4 shows that these graphs
do not underlie a regular map. Hence these pinched maps are not wrappings.

6 Conclusion

In one sense the study of regular pinched maps is completed by our Main Theorem
2.1: all such maps are quotients of unpinched maps under a block structure of the
group action on the arcs. But these maps come in a garden full of species, each
beautiful in their own way. There are many areas left to explore. The first of these
we have not yet examined.

Question 6.1 What are the regular pinched non-orientable maps?

A strongly-connected regular non-orientable map has an automorphism group
of 4|E(G)| (not 2|E(G)|) since there is no such concept of “orientation-preserving”
maps. The description of these maps is more difficult, but it would be interesting to
see how the techniques of this paper apply.

Back to the orientable case: we have a variety of construction techniques.

Question 6.2 Can we take a combination of the constructions for regular maps,
make regular pinched maps, modify them using our techniques, and create new regular
maps?

Finally, we were intrigued by Question 5.3, but could not answer it in any satis-
factory manner. This can be phrased as “When can you unwrap a regular pinched
map?”
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