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Abstract

A Roman dominating function on a graph G = (V, E) is a function
f : V → {0, 1, 2} satisfying the condition that every vertex u with
f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight
of a Roman dominating function is the value f(G) =

∑
u∈V f(u). The

Roman domination number of G is the minimum weight of a Roman
dominating function on G. The Roman bondage number of a nonempty
graph G is the minimum number of edges whose removal results in a
graph with the Roman domination number larger than that of G. This
paper determines the exact value of the Roman bondage numbers of two
classes of graphs, complete t-partite graphs and (n − 3)-regular graphs
with order n for any n ≥ 5.

1 Introduction

In this paper, a graph G = (V, E) is considered as an undirected graph without loops
and multi-edges, where V = V (G) is the vertex set and E = E(G) is the edge set. For
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each vertex x ∈ V (G), let NG(x) = {y ∈ V (G) : xy ∈ E(G)}, NG[x] = NG(x) ∪ {x},
and EG(x) = {xy : y ∈ NG(x)}. The cardinality |EG(x)| is the degree of x, denoted
by dG(x). For two disjoint nonempty and proper subsets S and T in V (G), we use
EG(S, T ) to denote the set of edges between S and T in G, and G[S] to denote a
subgraph of G induced by S.

A subset D ⊆ V is a dominating set of G if NG(x) ∩ D 	= ∅ for every vertex
x in G − D. The domination number of G, denoted by γ(G), is the minimum
cardinality of all dominating sets of G. To measure the vulnerability or the stability
of the domination in an interconnection network under edge failure, Fink et at. [8]
proposed the concept of the bondage number in 1990. The bondage number, denoted
by b(G), of G is the minimum number of edges whose removal from G results in a
graph with larger domination number of G. For over twenty years, bondage numbers
have received considerable research attention. The recent paper by Xu [21] surveys
some progress, variations, and generalizations of bondage numbers.

One of generalizations of bondage numbers is the Roman bondage number. The
Roman dominating function on G, proposed by Stewart [18], is a function f : V →
{0, 1, 2} such that each vertex x with f(x) = 0 is adjacent to at least one vertex y
with f(y) = 2. For S ⊆ V let f(S) =

∑
u∈S

f(u). The value f(V (G)) is called the

weight of f , denoted by f(G). The Roman domination number, denoted by γR(G),
is defined as the minimum weight of all Roman dominating functions, that is,

γR(G) = min{f(G) : f is a Roman dominating function on G}.

A Roman dominating function f is called a γR-function if f(G) = γR(G). Roman
domination numbers have been studied in, for example [2–4, 7, 9, 12–19].

The Roman bondage number, denoted by bR(G) and proposed first by Rad and
Volkmann [10], of a nonempty graph G is the minimum number of edges whose
removal from G results in a graph with larger Roman domination number. Precisely
speaking, the Roman bondage number is

bR(G) = min{|B| : B ⊆ E(G), γR(G − B) > γR(G)}.

An edge set B for which γR(G−B) > γR(G) is called the Roman bondage set and
the minimum one the minimum Roman bondage set. In [2], the authors showed that
the decision problem for bR(G) is NP-hard even for bipartite graphs. The Roman
bondage number has been further studied for example in [1, 2, 5, 6, 10, 11].

For a complete t-partite graph Km1,m2,...,mt , its bondage number was determined
by Fink et al. [8] for the undirected case and by Zhang et al. [22] for the directed case.
Motivated by these results, in this paper we consider its Roman bondage number.
Let Km1,m2,...,mt be a complete t-partite undirected graph with m1 = m2 = · · · =

mi < mi+1 ≤ · · · ≤ mt and n =
t∑

j=1

mj . When t = 2, Jafari Rad and Volkmann [10]

determined that bR(Km1,m2) = m1, with the exception of K3,3, for which bR(K3,3) = 4.
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In this paper, we determine that for t ≥ 3,

bR(Km1,m2,...,mt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� i
2

, if mi = 1 and n ≥ 3;

2 if mi = 2 and i = 1;
i if mi = 2 and i ≥ 2;
n − 1 if mi = 3 and i = t ≥ 3;
n − mt, if mi ≥ 3 and mt ≥ 4.

Consider K3,3,...,3 of order n ≥ 9, which is an (n − 3)-regular graph. The above
result means that bR(K3,3,...,3) = n − 1. In this paper, we further determine that
bR(G) = n − 2 for any (n − 3)-regular graph G of order n ≥ 5 and G 	= K3,3,...,3.

In the proofs of our results, when a Roman dominating function of a graph is
constructed, we only give its nonzero value of some vertices.

For terminology and notation on graph theory not given here, the reader is re-
ferred to Xu [20].

2 Preliminary results

Lemma 2.1 (Cockayne et al. [4]) For a complete t-partite graph Km1,m2,...,mt with
1 ≤ m1 ≤ m2 ≤ · · · ≤ mt and t ≥ 2,

γR(Km1,m2,...,mt) =

⎧⎨
⎩

2, if m1 = 1;
3, if m1 = 2;
4, if m1 ≥ 3.

Lemma 2.2 (Jafari Rad and Volkmann [10]) Let G be a graph of order n ≥ 3 and
t be the number of vertices of degree n − 1 in G. If t ≥ 1, then bR(G) = � t

2
�.

Lemma 2.3 (Sheikholeslami and Volkmann [17]) For a nonempty graph G of order
n ≥ 3, γR(G) = 3 if and only if Δ(G) = n − 2.

Lemma 2.4 (Sheikholeslami and Volkmann [17]) If G is a graph with order n ≥ 4
and Δ(G) = n − 3, then γR(G) = 4.

Lemma 2.5 Let G be an (n − 3)-regular graph of order n ≥ 5 and B be a Roman
bondage set of G. Then EG(x) ∩ B 	= ∅ for any x ∈ V (G).

Proof. By Lemma 2.4, γR(G) = 4. Let G′ = G − B. Since B is a Roman bondage
set in G, γR(G′) > 4. By contradiction, assume EG(x) ∩ B = ∅ for some x ∈ V (G).
Suppose that V (G) \ NG[x] = {y, z}. Define f = (V0, V1, V2), where V1 = {y, z},
V2 = {x}, V0 = V (G) \ (V1 ∪ V2)). Since every u /∈ {x, y, z} is adjacent to x in G′, f
is a Roman dominating function of G′ with f(G′) = 4. Thus, γR(G′) ≤ f(G′) = 4 <
γR(G′), a contradiction.
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Lemma 2.6 Let G be an (n − 3)-regular graph of order n ≥ 5, let B be a Roman
bondage set of G, and let x be any vertex, with V (G)\NG[x] = {y, z}. If EG(x)∩B =
{xw}, then |EG({y, z, w}, x′) ∩B| ≥ 1 for any vertex x′ ∈ V (G) \ {x, y, z, w} that is
adjacent to each vertex in {y, z, w} in G.

Proof. Let G′ = G − B. By Lemma 2.4, γR(G′) > 4. By contradiction, suppose
EG({y, z, w}, x′) ∩B = ∅ for some vertex x′ ∈ V (G) \ {x, y, z, w} that is adjacent to
each vertex in {y, z, w} in G. Set f(x) = f(x′) = 2. Then, f is a Roman dominating
function of G′ with f(G′) = 4 since NG′ [x] ∪ NG′[x′] = V (G), a contradiction.

Lemma 2.7 Let G be an (n − 3)-regular graph of order n ≥ 7 and B be a Roman
bondage set of G. For three vertices x, y and z that are pairwise non-adjacent in G,
if each of them is incident with exact one edge in B, then |B| ≥ n−2 and, moreover,
|B| ≥ n − 1 if G = K3,3,...,3.

Proof. By the hypothesis, for any v ∈ {x, y, z}, |EG(v)∩B| = 1 and v is adjacent to
every vertex in V (G\{x, y, z}) in G. Let xu ∈ EG(x)∩B. We claim yu ∈ EG(y)∩B
and zu ∈ EG(z) ∩ B. In fact, by contradiction, without loss of generality suppose
yv ∈ EG(y)∩B and zw ∈ EG(z)∩B with u 	= v and u 	= w. The vertex u is adjacent
to y and z in G − B. Set f(x) = f(u) = 2. The function f is a Roman dominating
function of G with f(G − B) = 4, which contradicts γR(G − B) > 4 by Lemma 2.4.

Let V (G)\NG[u] = {s, t}, and let V ′ = V (G)\{x, y, z, u, s, t}. By the hypothesis,
each vertex in {y, z, u} is adjacent to all vertices in V ′ in G. By Lemma 2.6, for any
vertex x′ ∈ V ′, if such a vertex exists, |EG({u, y, z}, x′) ∩ B| ≥ 1, and so

|EG({u, y, z}, V ′) ∩ B| ≥ |V ′| = n − 6. (2.1)

By Lemma 2.5, |EG(s) ∩ B| ≥ 1 and |EG(t) ∩ B| ≥ 1, and so we have that

|(EG(s) ∪ EG(t)) ∩ B| ≥
{

1 if st ∈ E(G);
2 if st /∈ E(G).

(2.2)

It follows from (2.1) and (2.2) that

|B| ≥ |{xu, yu, zu}|+ |(EG(s) ∪ EG(t)) ∩ B|
+|EG({u, y, z}, V ′) ∩ B|

≥
{

n − 2 if st ∈ E(G);
n − 1 if st /∈ E(G).

If G = K3,3,...,3, then st /∈ E(G) and, hence, |B| ≥ n − 1.

Lemma 2.8 Let G be an (n − 3)-regular graph of order n ≥ 5 and B be a Roman
bondage set of G. Let x ∈ V (G), V (G) \ NG[x] = {y, z}. If EG(x) ∩ B = {xw} and
G′ = G − B, then |E(G′[{y, z, w}])| ≤ 1. In fact,

|E(G[{y, z, w}]) ∩ B| ≥
{

1 if |E(G[{y, z, w}])| = 2;
2 if |E(G[{y, z, w}])| = 3.
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Proof. Suppose to the contrary that |E(G′[{y, z, w}])| ≥ 2. Without loss of gener-
ality, let yw, zw ∈ E(G′). Denote f(x) = f(w) = 2. Note that x is adjacent to every
vertex except w, y and z in G′. Thus, f is a Roman dominating function of G′ with
f(G′) = 4, a contradiction with γR(G′) > 4 by Lemma 2.4.

3 Results on complete t-partite graphs

For a complete bipartite graph Km,n with 1 ≤ m ≤ n and n ≥ 2, Jafari Rad and
Volkmann [10] proved that bR(Km,n) = m, with the exception of the case m = n = 3,
for which bR(K3,3) = 4. In the following, we determine the Roman bondage number
of a complete t-partite graph for t ≥ 3.

Theorem 3.1 Let G = Km1,m2,...,mt be a complete t-partite graph with m1 = m2 =

· · · = mi < mi+1 ≤ · · · ≤ mt and n =
t∑

j=1

mj. If t ≥ 3, then

bR(G) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� i
2
� if mi = 1 and n ≥ 3;

2 if mi = 2 and i = 1;
i if mi = 2 and i ≥ 2;
n − 1 if mi = 3 and i = t ≥ 3;
n − mt if mi ≥ 3 and mt ≥ 4.

Proof. Let {X1, X2, . . . , Xt} be the corresponding t-partitions of V (G), where Xi =
mi.

(1) If mi = 1 and n ≥ 3, then G has i vertices of degree n− 1. So by Lemma 2.2,
bR(G) = � i

2
�.

(2) If mi = 2, then Δ(G) = n−2. By Lemma 2.1, γR(G) = 3. Let B ⊆ E(G) be a
Roman bondage set of G with |B| = bR(G) and G′ = G−B. So γR(G′) > γR(G) = 3,
and by Lemma 2.3, Δ(G′) ≤ n − 3. Thus, |B ∩ EG(x)| ≥ 1 for every vertex in Xj

(1 ≤ j ≤ i), that is, |B| ≥ 2 if i = 1 and |B| ≥ i if i > 1.

If i = 1, then the only two vertices of degree n − 2 are in X1, and the removal
of any two edges incident with distinct vertices in X1 implies that a graph G′′ with
Δ(G′′) ≤ n − 3, and hence γR(G′′) 	= 3 by Lemma 2.3. Since γR(G′′) ≥ γR(G) = 3,
γR(G′′) ≥ 4. Thus, bR(G) ≤ 2 and hence bR(G) = 2.

If i > 1, then the subgraph H induced by
i⋃

j=1

Xj of G is a complete i-partite

graph with each partition consisting of two vertices, which is 2-edge-connected and
2(i − 1)-regular, and so has a perfect matching M with |M | = i. Thus, G − M has
the maximum degree n − 3. Similar before, bR(G) = i.

(3) Assume mi = 3 and i = t. The graph G is (n − 3)-regular. Let x ∈ V (G)
and H = G − EG(x), then γR(H) = 1 + γR(K2,3,...,3) = 4 by Lemma 2.1. By the
conclusion (2), bR(K2,3,...,3) = 2. And hence

bR(G) ≤ |EG(x)| + bR(K2,3,...,3) = (n − 3) + 2 = n − 1.
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Now, we prove that bR(G) ≥ n − 1. By contradiction, assume that there is a
Roman bondage set B of G such that |B| ≤ n− 2. Let G′ = G−B. By Lemma 2.1,
γR(G′) > γR(G) = 4 and by Lemma 2.5, for any vertex x ∈ V (G), |EG(x) ∩ B| ≥ 1.
If |EG(x)∩B| ≥ 2 for any vertex x ∈ V (G), then the subgraph induced by B has the
minimum degree at least two, and so |B| ≥ n, a contradiction. Thus, there exists
a vertex x1 in G such that |EG(x1) ∩ B| = 1. Let x1y1 ∈ B and, without loss of
generality, let X1 = {x1, x2, x3} and X2 = {y1, y2, y3}. By Lemma 2.8,

|E(G[{y1, x2, x3}]) ∩ B| ≥ 1, (3.1)

and by Lemma 2.5,

|EG(y2) ∩ B| ≥ 1 and |EG(y3) ∩ B| ≥ 1. (3.2)

Let V1 = V (G) \ (X1 ∪ X2). By Lemma 2.6,

|EG({y1, x2, x3}, x′) ∩ B| ≥ 1 for any x′ ∈ V1, (3.3)

and so
|EG({y1, x2, x3}, V1) ∩ B| ≥ n − 6. (3.4)

It follows from (3.1), (3.2) and (3.4) that

n − 2 ≥ |B| ≥ |{x1y1}| + |E(G[{y1, x2, x3}]) ∩ B|
+|EG({y1, x2, x3}, V1) ∩ B| + |EG(y2) ∩ B|
+|EG(y3) ∩ B| + |E(G[V1]) ∩ B|

≥ 1 + 1 + (n − 6) + 1 + 1 + 0
≥ n − 2.

(3.5)

Thus, all the equalities in (3.5) hold, which implies that all the equalities in (3.1),
(3.2) and (3.3) hold, and |E(G[V1]) ∩ B| = 0.

Let EG(y2) ∩ B = {y2u} and EG(y3) ∩ B = {y3v}. Assume that t ≥ 5. There
exists some i with 3 ≤ i ≤ t such that neither of u and v belongs to Xi. Thus, each
vertex in Xi is incident with exact one edge in B. By Lemma 2.7, |B| ≥ n − 1, a
contradiction. Now, we consider the remaining case t = 3 or 4.

By Lemma 2.7, if there exists some i with 3 ≤ i ≤ t such that neither u nor v
belongs to Xi, then |B| ≥ n − 1, a contradiction. Thus, if t = 3, then at least one
of u and v belongs to X3; if t = 4, then one of u and v belongs to X3 and the other
belongs to X4. Let X3 = {z1, z2, z3}. Without loss of generality, assume u = z1. By
(3.1), without loss of generality, assume x2y1 ∈ B. By (3.1), (3.2) and (3.3), we have

B = {x1y1, x2y1, y2z1, y3v} ∪ (EG({y1, x2, x3}, V1) ∩ B). (3.6)

Since EG(y2)∩B = {y2z1}, by Lemma 2.8, |{y1z1, y3z1}∩B| ≥ 1. By Lemma 2.6,
|EG({y1, y3, z1}, x3) ∩ B| ≥ 1. By (3.6), x3y1 /∈ B, and hence

|EG({y3, z1}, x3) ∩ B| ≥ 1. (3.7)
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If u 	= v, then y1z1 ∈ B since EG(y3) ∩ B = {y3v} 	= {y3z1}. By (3.3),
|EG({y1, x2, x3}, z1) ∩ B| = 1. Since y1z1 ∈ B, x3z1 /∈ B. By (3.7), y3x3 ∈ B,
which implies x3 = v and EG(y3) ∩ B = {y3x3}. And then, by Lemma 2.8,
|{x3y1, x3y2} ∩ B| ≥ 1, a contradiction with (3.6).

Now, assume u = v. If t = 4, then one of u and v belongs to X3 and the other
belongs to X4, a contradiction. The only remaining case is t = 3 and u = v. Since
EG(y3) ∩ B = {y3z1} and by (3.7), x3z1 ∈ B. By (3.6), we have

B = {x1y1, x2y1, y2z1, y3z1, x3z1} ∪ (EG(z2) ∩ B) ∪ (EG(z3) ∩ B), (3.8)

where EG(z2)∩B ∈ {x2z2, x3z2, y1z2} and EG(z3)∩B ∈ {x2z3, x3z3, y1z3}. By (3.3),
|EG(z2) ∩ B| = |EG(z3) ∩ B| = 1.

If EG({x2, x3}, {z2, z3}) ∩ B = ∅, then |EG(x) ∩ B| = 1 for each x ∈ X1 =
{x1, x2, x3}. By Lemma 2.7, |B| ≥ n − 1 = 8, a contradiction. Suppose without
loss of generality that z2x

′ ∈ B, where x′ ∈ {x2, x3}. Assume x′ = x2. Then by
(3.8), EG(z2) ∩ B = {x2z2}. By Lemma 2.8, |{x2z1, x2z3} ∩ B| ≥ 1. By (3.8), the
only possible is x2z3 ∈ B. Thus, B = {x1y1, x2y1, y2z1, y3z1, x3z1, x2z2, x2z3}. Since
EG(x3) ∩ B = {x3z1}, by Lemma 2.8, |{x1z1, x2z1} ∩ B| ≥ 1, a contradiction. Now,
assume x′ = x3. Then EG(z2) ∩ B = {x3z2}. By Lemma 2.6, |EG({x3, z1, z3}, y1) ∩
B| ≥ 1. By (3.8), y1z3 ∈ B. Thus, B = {x1y1, x2y1, y2z1, y3z1, x3z1, x3z2, y1z3}. Since
EG(z3) ∩ B = {y1z3}, by Lemma 2.8, |{y1z1, y1z2} ∩ B| ≥ 1, a contradiction.

Thus, bR(K3,3,...,3) = n − 1.

(4) We now assume mi ≥ 3 and mt ≥ 4. By Lemma 2.1, we have γR(G) = 4. Let
u be a vertex in Xt and f be a γR-function of G−EG(u). Then u is an isolated vertex.
Thus f(u) = 1. Since G − u is a complete t-partite graph with at least 3 vertices in
every partition, by Lemma 2.1, f(G−u) = 4. Thus γR(G−EG(u)) = 5 > 4 = γR(G),
and hence bR(G) ≤ |EG(u)| = n − mt.

Now, we show bR(G) ≥ n−mt. Let B be a Roman bondage set of minimum size
of G, and let G′ = G − B.

Assume that there is a vertex x in G such that EG(x) ∩ B = ∅. For some
j, 1 ≤ j ≤ t, we have x ∈ Xj. If there exists some y ∈ V (G − Xj) such that
EG(y, Xj) ∩ B = ∅. Set f(x) = f(y) = 2. Then f is a Roman dominating function
of G′ with f(G′) = 4, a contradiction. Thus,

EG(y, Xj) ∩ B 	= ∅ for any y ∈ V (G − Xj).

It follows that
|B| ≥ |V (G) \ Xj | = n − mj ≥ n − mt.

Now, we assume that

|EG(x) ∩ B| ≥ 1 for any x ∈ V (G). (3.9)

If |EG(x) ∩ B| ≥ 2 for any x ∈ V (G), then the subgraph induced by B has the
minimum degree at least two, from which we have |B| ≥ n > n − mt.
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We suppose that there exists a vertex x1 ∈ V (G) such that |EG(x1) ∩ B| = 1.
Let x1 ∈ Xj and x2, x3, . . . , xmj

be the other vertices of Xj . Let y1 be the unique
neighbor of x1 in EG(x1)∩B, and let Xk contains y1. Let V ′ = V (G)\ (Xj ∪Xk) and
V ′′ = {y1, x2, x3, . . . , xmj

}. If there is some x′ ∈ V ′ such that |EG(x′, V ′′) ∩ B| = 0,
set f(x) = f(x′) = 2, then f is a Roman dominating function of G′ with f(G′) = 4,
a contradiction. Thus,

|EG(x′, V ′′) ∩ B| ≥ 1 for any x′ ∈ V ′. (3.10)

It follows from (3.9) and (3.10) that

bR(G) = |B| ≥ |V ′| + |Xk| ≥ n − mt.

Thus, bR(G) = n − mt.

The theorem follows.

4 Results on (n − 3)-regular graphs

By Theorem 3.1, we immediately have bR(K3,3,...,3) = n − 1 if its order is n. The
graph K3,3,...,3 is an (n−3)-regular graph if its order n satisfies n ≥ 9. In this section,
we show that the Roman bondage number of any (n− 3)-regular graph G of order n
is equal to n − 2, if G 	= K3,3,...,3.

Lemma 4.1 Let G be an (n − 3)-regular graph of order n ≥ 7 and B be a Roman
bondage set of G. Let x, w ∈ V (G) and xw ∈ E(G). Let V (G) \ NG[x] = {y, z}
and V (G) \ NG[w] = {p, q}. If EG(x) ∩ B = {xw} and {y, z} ∩ {p, q} 	= ∅, then
|B| ≥ n − 2.

Proof. By Lemma 2.4, γR(G) = 4. Let G′ = G − B. Then γR(G′) > 4. By
Lemma 2.5, EG(y′)∩B 	= ∅ for any y′ ∈ V (G). By contradiction, assume |B| ≤ n−3.
We have two cases.

Case 1 {y, z} = {p, q}.
In this case, yz ∈ E(G) since G is (n−3)-regular. Let U1 = V (G)\{x, y, z, w}.
Then any vertex in U1 is adjacent to each in {w, y, z}. By Lemma 2.6, for each
x′ ∈ U1, we have |EG({w, y, z}, x′) ∩ B| ≥ 1, and so |EG({w, y, z}, U1) ∩ B| ≥
|U1| = n − 4. It follows that

n − 3 ≥ |B| ≥ |{xw}| + |EG({w, y, z}, U1) ∩ B| + |E(G[U1]) ∩ B|
≥ 1 + (n − 4) + 0
= n − 3.

(4.1)

This means that all equalities in (4.1) hold, that is, yz /∈ B, E(G[U1])∩B = ∅,
|EG({w, y, z}, x′) ∩ B| = 1 and then, |EG(x′) ∩ B| = 1 for any vertex x′ ∈ U1.
Let yr ∈ B for some r ∈ U1 since EG(y)∩B 	= ∅, and let V (G)\NG[r] = {s, t}.
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Assume st /∈ E(G). Then r, s, t are three vertices not adjacent to each other in
G, and each one of them is incident with exact one edge in B. By Lemma 2.7,
|B| ≥ n − 2, a contradiction.

Now, assume st ∈ E(G). We claim that ys, yt ∈ B. By contradiction, assume
ys /∈ B. Denote f(r) = f(s) = 2. Then, f is a Roman dominating function of
G′ with f(G′) = 4, a contradiction. Also, yt ∈ B by replacing t with s. Then
zs and zt do not belong to B. Denote f(r) = f(z) = 2. Then, f is a Roman
dominating function of G′ with f(G′) = 4, a contradiction.

Case 2 |{y, z} ∩ {p, q}| = 1. Without loss of generality, let p = y.

In this case, yz, wz ∈ E(G) and hence |E(G[{y, z, w}])∩B| ≥ 1 by Lemma 2.8.
Let r be the only vertex except x not adjacent to z in G. By Lemma 2.6,
|EG({w, y, z}, x′) ∩ B| ≥ 1 for any vertex x′ ∈ U2 = V (G) \ {x, y, z, w, q, r}.
If q = r, then |EG({w, y, z}, U2) ∩ B| ≥ |U2| = n − 5. Then we can deduce a
contradiction as follows.

n − 3 ≥ |B| ≥ |{xw}| + |EG({w, y, z}, U2) ∩ B|
+E(G[{y, z, w}]) ∩ B| + |EG(q) ∩ B|

≥ 1 + (n − 5) + 1 + 1
= n − 2.

If q 	= r, then wr, zq ∈ E(G) and |EG({w, y, z}, U2)∩B| ≥ |U2| = n− 6. Then,

n − 3 ≥ |B| ≥ |{xw}| + |EG({w, y, z}, U2) ∩ B| + |E(G[U2]) ∩ B|
+E(G[{y, z, w}]) ∩ B| + |(EG(q) ∪ EG(r)) ∩ B|

≥ 1 + (n − 6) + 0 + 1 + 1
= n − 3.

(4.2)

It follows that the equalities in (4.2) hold, which implies that |(EG(q)∪EG(r))∩
B| = 1, E(G[U2])∩B = ∅, |EG({w, y, z}, x′)∩B| = 1 and then, |EG(x′)∩B| = 1
for any vertex x′ ∈ U2. Then (EG(q) ∪ EG(r)) ∩B = {qr}, and hence wr /∈ B,
zq /∈ B.

Let s be the only vertex except w not adjacent to q in G. Then neither of rs
and ws belong to G′, otherwise denote f(q) = f(r) = 2 or f(q) = f(w) = 2.
Then f is a Roman dominating function of G′ with f(G′) = 4, a contradiction.
Now rs, ws /∈ E(G′) imply that ws ∈ B and rs /∈ E(G). Then zs ∈ E(G) and
zs /∈ B since |EG({w, y, z}, s) ∩ B| = 1. Denote f(r) = f(z) = 2. Then f is
a Roman dominating function of G′ with f(G′) = 4, a contradiction. Thus,
|B| ≥ n − 2.

The lemma follows.

Lemma 4.2 let G be an (n − 3)-regular graph of order n ≥ 7 and B be a Roman
bondage set of G. Let x, w ∈ V (G) and xw ∈ E(G). If EG(x) ∩ B = EG(w) ∩ B =
{xw}, then |B| ≥ n − 2.
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Proof. Let V (G) \ NG[x] = {y, z} and V (G) \ NG[w] = {p, q}.
We claim that {y, z} ∩ {p, q} 	= ∅. By contradiction, suppose {y, z} ∩ {p, q} =

∅. Then wy, wz ∈ E(G), and wy, wz /∈ B since EG(w) ∩ B = {xw}. Denote
f(x) = f(w) = 2. Then f is a Roman dominating function of G′ with f(G′) = 4, a
contradiction. Thus {y, z} ∩ {p, q} 	= ∅, and hence |B| ≥ n − 2 by Lemma 4.1.

Theorem 4.1 Let G be an (n−3)-regular graph of order n ≥ 5. If G is not K3,3,...,3,
then bR(G) = n − 2.

Proof. If n = 5, then G = C5, and so bR(G) = 3. Now, we assume n ≥ 6.

By Lemma 2.4, γR(G) = 4. Since G 	= K3,3,...,3, there exist x0, y0, z0 ∈ V (G)
such that y0z0 ∈ E(G) and V (G) \ NG[x0] = {y0, z0}. We consider the Roman
domination number of H = G − x0 − y0z0. Since H is (|V (H)| − 3)-regular and
|V (H)| ≥ 4, γR(H) = 4 by Lemma 2.4. Thus γR(G − EG(x0) − y0z0) ≥ 5 and hence
bR(G) ≤ |EG(x0)| + 1 = n − 2. Next, we prove that bR(G) ≥ n − 2.

If n = 6, then G is the Cartesian product of a complete graph K2 and a cycle
C3, that is, G = K2 × C3. Suppose to the contrary that M is a Roman bondage set
of G and |M | = n − 3 = 3. By Lemma 2.5, EG(y′) ∩ M 	= ∅ for each y′ ∈ V (G).
Therefore, M is a perfect matching in G. It is easy to verify that either G − M is a
6-cycle or consists of two 3-cycles. Thus γR(G − M) = γR(G) = 4, a contradiction.
So bR(G) ≥ n − 2 = 4.

Now, we assume n ≥ 7. Let B be a minimum Roman bondage set of G and
G′ = G − B. Then |B| ≤ n − 2 and γR(G′) > 4. We now prove |B| ≥ n − 2.
By contradiction, assume |B| ≤ n − 3. By Lemma 2.5, EG(y′) ∩ B 	= ∅ for any
y′ ∈ V (G). Then there exists a vertex x such that |EG(x) ∩ B| = 1. Let xw ∈ B,
V (G) \NG[x] = {y, z} and V (G) \NG[w] = {p, q}. If {y, z} ∩ {p, q} 	= ∅, then |B| ≥
n − 2 by Lemma 4.1. Thus, we only need to consider the case of {y, z} ∩ {p, q} = ∅.
In this case, wy, wz ∈ E(G). We now deduce a contradiction by considering the
following two cases.

Case 1 yz /∈ E(G).

By Lemma 2.8, |E(G[{y, z, w}])∩B| ≥ 1. By Lemma 2.6, |EG({w, y, z}, x′)∩B| ≥ 1
for any vertex x′ ∈ X1 = V (G) \ {x, y, z, w, p, q}, and so |EG({w, y, z}, X1) ∩ B| ≥
|X1| = n − 6. Then,

n − 3 ≥ |B| ≥ |{xw}| + |EG({w, y, z}, X1) ∩ B|
+|E(G[{y, z, w}]) ∩ B| + |(EG(p) ∪ EG(q)) ∩ B|

≥ 1 + (n − 6) + 1 + 1
= n − 3.

(4.3)

It follows that the equalities in (4.3) hold, which implies that |EG({p, q}) ∩ B| = 1.
Then (EG(p) ∪ EG(q)) ∩ B = {pq} and then, EG(p) ∩ B = EG(q) ∩ B = {pq}. By
Lemma 4.2, |B| ≥ n − 2, a contradiction.
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Case 2 yz ∈ E(G).

Let r and s be the only vertices except x not adjacent to y and z in G, respectively.
By Lemma 2.8, |E(G[{w, y, z}])∩B| ≥ 2. By Lemma 2.6, |EG({w, y, z}, x′)∩B| ≥ 1
for any vertex x′ ∈ X2 = V (G) \ {x, y, z, w, p, q, r, s}. Thus, we have

|EG({w, y, z}, X2) ∩ B| ≥ |X2| ≥
⎧⎨
⎩

n − 6 if |{r, s} ∪ {p, q}| ≤ 2;
n − 7 if |{r, s} ∪ {p, q}| = 3;
n − 8 if |{r, s} ∪ {p, q}| = 4;

(4.4)

and

|(EG(p) ∪ EG(q) ∪ EG(r) ∪ EG(s)) ∩ B| ≥
⎧⎨
⎩

1 if |{r, s} ∪ {p, q}| ≤ 2;
2 if |{r, s} ∪ {p, q}| = 3;
2 if |{r, s} ∪ {p, q}| = 4.

(4.5)

It follows from (4.4) and (4.5) that

n − 3 ≥ |B| ≥ |{xw}| + |EG({w, y, z}, X2) ∩ B| + |E(G[{w, y, z}]) ∩ B|
+|(EG(p) ∪ EG(q) ∪ EG(r) ∪ EG(s)) ∩ B|

≥
{

n − 2 if |{r, s} ∪ {p, q}| ≤ 3;
n − 3 if |{r, s} ∪ {p, q}| = 4.

(4.6)

The equation (4.6) implies that |{r, s} ∪ {p, q}| = 4, |B| = n − 3 and |(EG(p) ∪
EG(q)∪EG(r)∪EG(s))∩B| = 2. Then there exist two vertices u, v in {p, q, r, s} such
that EG(u) ∩ B = EG(v) ∩ B = {uv}. By Lemma 4.2, |B| ≥ n − 2, a contradiction.

Thus, bR(G) = n − 2, and so the theorem follows.
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