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Abstract

A Roman dominating function on a graph G = (V| E) is a function
f V. — {0,1,2} satisfying the condition that every vertex u with
f(u) = 0 is adjacent to at least one vertex v with f(v) = 2. The weight
of a Roman dominating function is the value f(G) = ),y f(u). The
Roman domination number of G is the minimum weight of a Roman
dominating function on G. The Roman bondage number of a nonempty
graph G is the minimum number of edges whose removal results in a
graph with the Roman domination number larger than that of G. This
paper determines the exact value of the Roman bondage numbers of two
classes of graphs, complete t-partite graphs and (n — 3)-regular graphs
with order n for any n > 5.

1 Introduction

In this paper, a graph G = (V, E) is considered as an undirected graph without loops
and multi-edges, where V' = V(G) is the vertex set and £ = E(G) is the edge set. For
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each vertex x € V(G), let Ng(x) = {y € V(G) : zy € E(G)}, Nglz] = Ng(z) U{z},
and Eg(r) = {zy : y € Ng(z)}. The cardinality |Eg(z)| is the degree of x, denoted
by dg(z). For two disjoint nonempty and proper subsets S and 7" in V(G), we use
E¢(S,T) to denote the set of edges between S and 7' in G, and G[S] to denote a
subgraph of G induced by S.

A subset D C V is a dominating set of G if Ng(x) N D # () for every vertex
z in G — D. The domination number of G, denoted by +(G), is the minimum
cardinality of all dominating sets of G. To measure the vulnerability or the stability
of the domination in an interconnection network under edge failure, Fink et at. [§]
proposed the concept of the bondage number in 1990. The bondage number, denoted
by b(G), of G is the minimum number of edges whose removal from G results in a
graph with larger domination number of G. For over twenty years, bondage numbers
have received considerable research attention. The recent paper by Xu [21] surveys
some progress, variations, and generalizations of bondage numbers.

One of generalizations of bondage numbers is the Roman bondage number. The
Roman dominating function on G, proposed by Stewart [18], is a function f: V —
{0,1,2} such that each vertex x with f(z) = 0 is adjacent to at least one vertex y
with f(y) = 2. For S C V let f(S) = > f(u). The value f(V(G)) is called the

u€esS
weight of f, denoted by f(G). The Roman domination number, denoted by vr(G),

is defined as the minimum weight of all Roman dominating functions, that is,
Yr(G) = min{ f(G) : f is a Roman dominating function on G}.

A Roman dominating function f is called a ygr-function if f(G) = vg(G). Roman
domination numbers have been studied in, for example [2-4,7,9,12-19].

The Roman bondage number, denoted by br(G) and proposed first by Rad and
Volkmann [10], of a nonempty graph G is the minimum number of edges whose
removal from G results in a graph with larger Roman domination number. Precisely
speaking, the Roman bondage number is

br(G) = min{|B| : B C E(G),w(G — B) > 1(G)}.

An edge set B for which yg (G — B) > r(G) is called the Roman bondage set and
the minimum one the minimum Roman bondage set. In [2], the authors showed that
the decision problem for bg(G) is NP-hard even for bipartite graphs. The Roman
bondage number has been further studied for example in [1,2,5,6,10,11].

For a complete t-partite graph K,,, 1, ..m,, its bondage number was determined
by Fink et al. [8] for the undirected case and by Zhang et al. [22] for the directed case.
Motivated by these results, in this paper we consider its Roman bondage number.
Let K, ms...m; be a complete t-partite undirected graph with m; = mg = -+ =

.....

j=1
determined that bg (K, my) = M1, with the exception of K3 3, for which br(K33) = 4.
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In this paper, we determine that for ¢ > 3,

L%J, if m;=1and n > 3;
2 if m; =2andi=1;
bR (K my,my) = § 1 if m; =2 andi>2;

n—1 ifm;=3andi=t>3;
n—my, if m; > 3 and m; > 4.

Consider K33 3 of order n > 9, which is an (n — 3)-regular graph. The above
result means that bg(Ks3 3) = n — 1. In this paper, we further determine that
br(G) = n — 2 for any (n — 3)-regular graph G of order n > 5 and G # Kj3 3.

In the proofs of our results, when a Roman dominating function of a graph is
constructed, we only give its nonzero value of some vertices.

For terminology and notation on graph theory not given here, the reader is re-
ferred to Xu [20].

2 Preliminary results

Lemma 2.1 (Cockayne et al. [4]) For a complete t-partite graph K, my.. m, with
I<my<my<---<myandt > 2,

2, if m =1,
’YR(Kml,mg ..... mt) = 37 if my = 27
4, if my Z 3.

Lemma 2.2 (Jafari Rad and Volkmann [10]) Let G be a graph of order n > 3 and
t be the number of vertices of degree n — 1 in G. Ift > 1, then br(G) = [£].

Lemma 2.3 (Sheikholeslami and Volkmann [17]) For a nonempty graph G of order
n >3, w(G) = 3 if and only if A(G) =n — 2.

Lemma 2.4 (Sheikholeslami and Volkmann [17]) If G is a graph with order n > 4
and A(G) =n — 3, then 7(G) = 4.

Lemma 2.5 Let G be an (n — 3)-reqular graph of order n > 5 and B be a Roman
bondage set of G. Then Eg(x) N B # 0 for any x € V(G).

Proof. By Lemma 2.4, vg(G) = 4. Let G’ = G — B. Since B is a Roman bondage
set in G, Yr(G') > 4. By contradiction, assume Fg(x) N B = () for some z € V(G).
Suppose that V(G) \ Nglz] = {y, z}. Define f = (Vy, V1, V2), where V; = {y, z},
Vo ={a}, Vo = V(G) \ (V1 UV3)). Since every u ¢ {x,y, 2} is adjacent to x in G', f
is a Roman dominating function of G’ with f(G’) = 4. Thus, 7r(G') < f(G') =4 <
Yr(G"), a contradiction. I
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Lemma 2.6 Let G be an (n — 3)-regular graph of order n > 5, let B be a Roman
bondage set of G, and let x be any vertex, with V(G)\ Nglz] ={y, z}. If Eg(z)NB =
{zw}, then |E¢({y, z,w},2") N B| > 1 for any vertex 2’ € V(G) \ {z,y, z,w} that is
adjacent to each vertex in {y,z,w} in G.

Proof. Let G' = G — B. By Lemma 2.4, yx(G’) > 4. By contradiction, suppose
Ec({y, z,w}, ') N B = for some vertex o’ € V(G) \ {z,y, z,w} that is adjacent to
each vertex in {y, z,w} in G. Set f(x) = f(a’) = 2. Then, f is a Roman dominating
function of G" with f(G') = 4 since Ng/[x] U Nev[2'] = V(G), a contradiction. I

Lemma 2.7 Let G be an (n — 3)-reqular graph of order n > 7 and B be a Roman
bondage set of G. For three vertices x,y and z that are pairwise non-adjacent in G,

if each of them is incident with exact one edge in B, then |B| > n—2 and, moreover,
Bl >n—1if G=Ks3,_ 3.

Proof. By the hypothesis, for any v € {x,y, z}, |E¢(v) N B| = 1 and v is adjacent to
every vertex in V(G \{z,y,2}) in G. Let zu € Eg(x)NB. We claim yu € Eg(y)NB
and zu € Eg(z) N B. In fact, by contradiction, without loss of generality suppose
yv € Eg(y)NB and zw € Eg(z)N B with u # v and u # w. The vertex u is adjacent
toy and z in G — B. Set f(z) = f(u) = 2. The function f is a Roman dominating
function of G with f(G — B) = 4, which contradicts yg(G — B) > 4 by Lemma 2.4.

Let V(G)\ Nglu] = {s,t}, and let V' = V(G)\{z,y, z,u, s,t}. By the hypothesis,
each vertex in {y, z,u} is adjacent to all vertices in V' in G. By Lemma 2.6, for any
vertex ' € V', if such a vertex exists, |Eg({u,y, z},2") N B| > 1, and so

|Ec({u,y,2}, V)N B| > |V'|=n—6. (2.1)
By Lemma 2.5, |[Eg(s) N B| > 1 and |Eg(t) N B| > 1, and so we have that

(BN Bl { ) i e e 22)

It follows from (2.1) and (2.2) that

1Bl = {zu, yu, zu}| + [(Ea(s) U Eq(t)) N B
HE(;({u,y,z},V’)ﬂB]
S n—2 if st € E(GQ);
— |l n—-1 if st¢ E(G).

If G = Ksj3,_ 3, then st ¢ E(G) and, hence, |B| > n — 1. 1

Lemma 2.8 Let G be an (n — 3)-reqular graph of order n > 5 and B be a Roman
bondage set of G. Let v € V(G), V(G) \ Nglz| = {y,2}. If Eq(x) N B = {zw} and
G' =G — B, then |E(G'{y, z,w}])| < 1. In fact,

stz (3 8 G
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Proof. Suppose to the contrary that |E(G'[{y, z,w}])| > 2. Without loss of gener-
ality, let yw, zw € E(G"). Denote f(x) = f(w) = 2. Note that x is adjacent to every
vertex except w, y and z in G'. Thus, f is a Roman dominating function of G’ with
f(G") =4, a contradiction with yg(G’) > 4 by Lemma 2.4. I

3 Results on complete t-partite graphs

For a complete bipartite graph K,,, with 1 < m < n and n > 2, Jafari Rad and
Volkmann [10] proved that bg(K,,,) = m, with the exception of the case m =n = 3,
for which bg(K33) = 4. In the following, we determine the Roman bondage number
of a complete t-partite graph for ¢ > 3.

Theorem 3.1 Let G = Ky, iy

t
ce=my <mipg <o <my andn =Y m;. Ift >3, then

m, be a complete t-partite graph with my = my =

.....

7j=1
(4] if m; =1 and n > 3;
2 if m;=2andi=1;
br(G) =< i@ if m; =2 and i > 2;

n—1 if mj=3andi=1t>3;
n—m; if m; > 3 and m; > 4.

Proof. Let {X1, X,..., X;} be the corresponding t-partitions of V(G), where X; =
m;.

(1) If m; = 1 and n > 3, then G has i vertices of degree n —1. So by Lemma 2.2,
br(G) = [3].

(2) If m; = 2, then A(G) = n—2. By Lemma 2.1, 7z (G) = 3. Let B C E(G) be a
Roman bondage set of G with |B| = bg(G) and G' = G—B. So 7&(G’) > r(G) = 3,
and by Lemma 2.3, A(G') < n — 3. Thus, |BN Eg(z)| > 1 for every vertex in X
(1 <j<i),thatis, |[B| >2ifi=1and |B|>iifi> 1.

If i = 1, then the only two vertices of degree n — 2 are in X, and the removal
of any two edges incident with distinct vertices in X implies that a graph G” with
A(G") < n — 3, and hence vgr(G") # 3 by Lemma 2.3. Since vg(G") > vgr(G) = 3,
Yr(G") > 4. Thus, bg(G) < 2 and hence bg(G) = 2.

If i > 1, then the subgraph H induced by |J X; of G is a complete i-partite
j=1

graph with each partition consisting of two vertices, which is 2-edge-connected and

2(i — 1)-regular, and so has a perfect matching M with |M| =i. Thus, G — M has

the maximum degree n — 3. Similar before, b (G) = i.

(3) Assume m; = 3 and i = t. The graph G is (n — 3)-regular. Let z € V(G)
and H = G — Eg(z), then yg(H) = 1+ yr(Ks23,.3) = 4 by Lemma 2.1. By the
conclusion (2), br(K23,.3) = 2. And hence

.....
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Now, we prove that bgr(G) > n — 1. By contradiction, assume that there is a
Roman bondage set B of G such that |B| <n—2. Let G’ = G — B. By Lemma 2.1,
Yr(G") > Yr(G) = 4 and by Lemma 2.5, for any vertex x € V(G), |Eg(xz) N B| > 1.
If |Eg(z)NB| > 2 for any vertex x € V(G), then the subgraph induced by B has the
minimum degree at least two, and so |B| > n, a contradiction. Thus, there exists
a vertex x; in G such that |Eg(z1) N B| = 1. Let x1y; € B and, without loss of
generality, let X = {x1, 29, 23} and Xy = {y1, 92, y3}. By Lemma 2.8,

|E(G[{y1, z2, z3}]) N B| > 1, (3.1)
and by Lemma 2.5,
|Ec(y2) N B| > 1 and |Eg(ys) N Bl > 1. (3.2)
Let Vi = V(G) \ (X, UX,). By Lemma 2.6,
|\Ec({y1, 22, 23},2') N B| > 1 for any 2’ € V, (3.3)

and so
|EG({?JI7$27173};VI)OB| Zn_6 (34)
It follows from (3.1), (3.2) and (3.4) that

n—22>|B| >z} + |E(GH{ys, z2, 23}]) N B
+|Ea({y1, z2, w3}, V1) N Bl + |Eg(y2) N Bl

+|Eq(ys) N Bl + |E(G[W1]) N B| (3.5)
>1414+n—-6)+1+1+0
>n— 2.

Thus, all the equalities in (3.5) hold, which implies that all the equalities in (3.1),
(3.2) and (3.3) hold, and |E(G[V41]) N B| = 0.

Let Eq(y2) N B = {you} and Eg(ys) N B = {ysv}. Assume that t > 5. There
exists some ¢ with 3 <14 <t such that neither of u and v belongs to X;. Thus, each
vertex in X; is incident with exact one edge in B. By Lemma 2.7, |B| > n —1, a
contradiction. Now, we consider the remaining case ¢t = 3 or 4.

By Lemma 2.7, if there exists some ¢ with 3 < ¢ < ¢ such that neither u nor v
belongs to X;, then |B| > n — 1, a contradiction. Thus, if ¢ = 3, then at least one
of v and v belongs to X3; if £ = 4, then one of v and v belongs to X3 and the other
belongs to Xy4. Let X3 = {21, 22, 23}. Without loss of generality, assume u = z;. By
(3.1), without loss of generality, assume x5y, € B. By (3.1), (3.2) and (3.3), we have

B = {m1y1, 1ay1, Y221, y3v} U (Ba({y1, 22, 23}, V1) N B). (3.6)

Since Eg(y2)N B = {y221}, by Lemma 2.8, [{y121, Y321} N B| > 1. By Lemma 2.6,
|EG({y1,y3,z1},x3) n B| > 1. By (36)7 T3l ¢ B7 and hence

|Ec({ys, z1},23) N B| > 1. (3.7)
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If w # v, then y12; € B since Eg(ys) N B = {ysv} # {ysz1}. By (3.3),
|Ec({y1, 2, 23},21) N B| = 1. Since y121 € B, x321 ¢ B. By (3.7), ysz3 € B,
which implies 3 = v and Eg(y3) N B = {ysx3}. And then, by Lemma 2.8,
{z3y1, z3y2} N B| > 1, a contradiction with (3.6).

Now, assume u = v. If ¢ = 4, then one of v and v belongs to X3 and the other

belongs to X4, a contradiction. The only remaining case is t = 3 and ©v = v. Since
E¢(ys) N B ={ysz1} and by (3.7), 2321 € B. By (3.6), we have

B = {z1y1, moy1, Y221, Y321, 2321 } U (Eg(22) N B) U (Eg(23) N B), (3.8)

where Eg(2z2) N B € {229, 2322, Y122} and Eg(23) N B € {xa23, 1323, y123}. By (3.3),
|Eg(20) N B| = |Eg(z3) N B| = 1.

If Eg({x2,23},{22,23}) N B = 0, then |Eg(x) N B| = 1 for each z € X; =
{x1,29,23}. By Lemma 2.7, |B| > n — 1 = 8, a contradiction. Suppose without
loss of generality that zo2' € B, where 2’ € {3, 23}. Assume 2/ = z5. Then by
(3.8), Eg(2z2) N B = {x920}. By Lemma 2.8, [{z221, 2223} N B] > 1. By (3.8), the
only possible is x9z3 € B. Thus, B = {x1y1, Z2y1, Y221, Y321, T321, 222, T2z f. Since
Eq(x3) N B = {x321}, by Lemma 2.8, [{z121, 2221} N B| > 1, a contradiction. Now,
assume x’ = 3. Then Eg(z2) N B = {x322}. By Lemma 2.6, |Eg({xs, 21, 23}, y1) N
B| > 1. By (3.8), y123 € B. Thus, B = {x1y1, T2y1, Y221, Y321, T321, L322, Y123 }. Since
E¢(z3) N B = {y123}, by Lemma 2.8, [{y121, 7122} N B| > 1, a contradiction.

ThUS, bR<K3’3 ..... 3) =n—1.

(4) We now assume m; > 3 and m; > 4. By Lemma 2.1, we have yg(G) = 4. Let
u be a vertex in X; and f be a yg-function of G— Eg(u). Then u is an isolated vertex.
Thus f(u) = 1. Since G — u is a complete t-partite graph with at least 3 vertices in
every partition, by Lemma 2.1, f(G—u) = 4. Thus 7g(G — Eg(u)) =5 > 4 = yr(G),
and hence bg(G) < |Eg(u)| =n — my.

Now, we show bgr(G) > n —m,. Let B be a Roman bondage set of minimum size
of G, and let G’ = G — B.

Assume that there is a vertex z in G such that Eg(z) N B = . For some
J, 1 < j <t, we have z € Xj. If there exists some y € V(G — X;) such that
Ec(y,X;) N B =10. Set f(z) = f(y) = 2. Then f is a Roman dominating function
of G’ with f(G’) = 4, a contradiction. Thus,

Eq(y,X;)NB # 0 for any y € V(G — X;).

It follows that
B = V(G X, =n —m; > n—m,.

Now, we assume that

|Eg(x)NB| > 1 for any z € V(G). (3.9)

If |Eg(x) N B| > 2 for any x € V(G), then the subgraph induced by B has the
minimum degree at least two, from which we have |B| > n > n — m.
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We suppose that there exists a vertex z; € V(G) such that |Eg(z;) N B| = 1.
Let 1 € X and 29, 23,..., 7y, be the other vertices of X;. Let y; be the unique
neighbor of 1 in Eg(z1)N B, and let X}, contains y;. Let V' = V(G) \ (X; UX}) and
V" = {y1, 22,73, ..., 2, }. If there is some 2" € V' such that [Eg(2', V") N B| = 0,
set f(z) = f(2') = 2, then f is a Roman dominating function of G’ with f(G’) = 4,
a contradiction. Thus,

|Eq(2,V")NB| > 1 for any 2/ € V' (3.10)
It follows from (3.9) and (3.10) that
br(G) = |B| > |V'| + | Xk| > n —my.

Thus, br(G) =n — my.
The theorem follows. ]

4 Results on (n — 3)-regular graphs

By Theorem 3.1, we immediately have bg (K33, 3) = n — 1 if its order is n. The
graph K33  3is an (n—3)-regular graph if its order n satisfies n > 9. In this section,

we show that the Roman bondage number of any (n — 3)-regular graph G of order n
is equal ton —2,if G # K33 3.

Lemma 4.1 Let G be an (n — 3)-reqular graph of order n > 7 and B be a Roman
bondage set of G. Let z,w € V(G) and zw € E(G). Let V(G) \ Nglz] = {y, z}
and V(G) \ Nglw] = {p,q}. If Eg(x) N B = {zw} and {y,z} N {p,q} # 0, then
|B| >n— 2.

Proof. By Lemma 2.4, 7g(G) = 4. Let G’ = G — B. Then 1x(G") > 4. By
Lemma 2.5, Eg(y" )N B # () for any ¢’ € V(G). By contradiction, assume |B| < n—3.
We have two cases.

Case 1 {y, 2} = {p,q}.
In this case, yz € E(G) since G is (n—3)-regular. Let Uy = V(G)\{z,y, z, w}.
Then any vertex in U, is adjacent to each in {w,y, z}. By Lemma 2.6, for each
2’ € Uy, we have |Eg({w,y,z},2") N B| > 1, and so |Eg({w,y,z},U;) N B| >
|U1r| = n — 4. Tt follows that

n—=32|B| > H{zw}|+[Ec({w,y, 2}, U1) N Bl + |E(G[U1]) N B
>14+(n—4)+0 (4.1)
=n-—3.

This means that all equalities in (4.1) hold, that is, yz ¢ B, BE(G[U1])N B = 0,
|Eq({w,y,z},2') N B] = 1 and then, |Eg(2') N B| =1 for any vertex 2’ € Uy.
Let yr € B for some r € U; since Eg(y)NB # 0, and let V(G)\ Ng[r] = {s, t}.
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Assume st ¢ E(G). Then r, s, t are three vertices not adjacent to each other in
G, and each one of them is incident with exact one edge in B. By Lemma 2.7,
|B| > n — 2, a contradiction.

Now, assume st € E(G). We claim that ys,yt € B. By contradiction, assume
ys ¢ B. Denote f(r) = f(s) = 2. Then, f is a Roman dominating function of
G’ with f(G’) = 4, a contradiction. Also, yt € B by replacing ¢ with s. Then
zs and zt do not belong to B. Denote f(r) = f(z) = 2. Then, f is a Roman
dominating function of G’ with f(G’) = 4, a contradiction.

Case 2 |{y, 2z} N{p,q}| = 1. Without loss of generality, let p = y.

In this case, yz,wz € F(G) and hence |E(G[{y, z,w}])NB| > 1 by Lemma 2.8.
Let r be the only vertex except = not adjacent to z in G. By Lemma 2.6,
|Eq({w,y, z},2") N B| > 1 for any vertex 2’ € Uy = V(G) \ {z,y, z,w,q,7}.

If ¢ = r, then |[Eq({w,y, z},Us) N B| > |Us| = n — 5. Then we can deduce a
contradiction as follows.

n—=32>|B] >|{zw}|+[Ec({w,y,2},Us) N B
+E(G[{y, z, w}]) N Bl + |Ec(q) N B
>14+(n—-5)+1+1
=n-—2.

If ¢ # r, then wr, zq € E(G) and |Eg({w,y, z},Us) N B| > |Us| = n—6. Then,

n—32|B] = [{zw}| +|Ec({w,y, 2}, Uz) N Bl + |E(G[Us]) N B
+E(G{y, 2z, w}]) N Bl + |(Ea(q) U Ea(r)) N B
>1+(n—-6)+0+1+1
=n—3.

(4.2)

It follows that the equalities in (4.2) hold, which implies that |(Eg(q)UEc(r))N
B| =1, E(G[U))NB =0, |Ec({w,y, z},2")NB| = 1 and then, |Eg(z')NB| = 1
for any vertex 2’ € U,. Then (Eg(q) U Eg(r)) N B = {qr}, and hence wr ¢ B,
2q ¢ B.

Let s be the only vertex except w not adjacent to ¢ in G. Then neither of rs
and ws belong to G’, otherwise denote f(q) = f(r) = 2 or f(q) = f(w) = 2.
Then f is a Roman dominating function of G’ with f(G’) = 4, a contradiction.
Now rs,ws ¢ E(G’) imply that ws € B and rs ¢ E(G). Then zs € F(G) and
zs ¢ B since |Eg({w,y,z},s) N B| = 1. Denote f(r) = f(z) = 2. Then f is
a Roman dominating function of G’ with f(G’) = 4, a contradiction. Thus,
|B| >n —2.

The lemma follows. 1
Lemma 4.2 let G be an (n — 3)-reqular graph of order n > 7 and B be a Roman

bondage set of G. Let z,w € V(G) and zw € E(G). If Eg(x) N B = Eg(w) N B =
{zw}, then |B| > n — 2.
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Proof. Let V(G) \ Ng[z] = {y, 2} and V(G) \ Nelw] = {p, ¢}

We claim that {y,z} N {p,q} # 0. By contradiction, suppose {y, z} N {p,q} =
(. Then wy,wz € E(G), and wy,wz ¢ B since Eg(w) N B = {zw}. Denote
f(z) = f(w) = 2. Then f is a Roman dominating function of G’ with f(G') =4, a
contradiction. Thus {y, z} N {p, ¢} # 0, and hence |B| > n — 2 by Lemma 4.1. I

Theorem 4.1 Let G be an (n—3)-reqular graph of ordern > 5. If G is not K33 3,
then br(G) =n — 2.

Proof. If n =5, then G = (5, and so br(G) = 3. Now, we assume n > 6.

By Lemma 2.4, yg(G) = 4. Since G # K33, 3, there exist g, y0,20 € V(G)
such that ypzo € E(G) and V(G) \ Nglzo] = {vo,20}. We consider the Roman
domination number of H = G — xy — ypzo. Since H is (|V(H)| — 3)-regular and
\V(H)| >4, yv(H) = 4 by Lemma 2.4. Thus vg(G — E¢(z0) — yoz0) > 5 and hence
br(G) < |Eg(xo)| +1 =n — 2. Next, we prove that bgr(G) > n — 2.

If n = 6, then G is the Cartesian product of a complete graph Ky and a cycle
Cj3, that is, G = Ky x (3. Suppose to the contrary that M is a Roman bondage set
of G and |[M| =n —3 = 3. By Lemma 2.5, Eg(y') N M # ( for each y € V(G).
Therefore, M is a perfect matching in G. It is easy to verify that either G — M is a
6-cycle or consists of two 3-cycles. Thus yg(G — M) = yr(G) = 4, a contradiction.
So br(G) >n—2=4.

Now, we assume n > 7. Let B be a minimum Roman bondage set of G and
G' = G — B. Then |B| < n—2 and yr(G’) > 4. We now prove |B| > n — 2.
By contradiction, assume |B| < n — 3. By Lemma 2.5, Eg(y’) N B # ) for any
y' € V(G). Then there exists a vertex z such that |Eg(z) N B| = 1. Let zw € B,
V(G)\ Nala] = {y, 2} and V(G)\ Nalw] = {p,a}. If {y, 2} 1 {p,q} # 0, then | B| >
n — 2 by Lemma 4.1. Thus, we only need to consider the case of {y, z} N {p,q} = 0.
In this case, wy,wz € E(G). We now deduce a contradiction by considering the
following two cases.

Case 1 yz ¢ E(Q).

By Lemma 2.8, |E(G[{y, z,w}])NB| > 1. By Lemma 2.6, |Eg({w,y,z},2)NB| > 1
for any vertex 2’ € X7 = V(G) \ {z,y, z,w,p,q}, and so |Eg({w,y, 2z}, X;) N B| >
| X1| =n — 6. Then,

n—=32>[B| > {zwi|+[Ec({w,y, 2}, X1) N B
+E(Gy, 2z, wi]) N Bl + [(Ec(p) U Ec(q)) N B
>14+n—6)+1+1
=n-—3.

(4.3)

It follows that the equalities in (4.3) hold, which implies that |Eq({p,¢}) N B| = 1.
Then (Eq(p) U Eg(q)) N B = {pq} and then, Es(p) N B = Eg(q) N B = {pq}. By
Lemma 4.2, |B| > n — 2, a contradiction.



FU-TAO HU ET AL./AUSTRALAS. J. COMBIN. 58 (1) (2014), 106-118 116

Case 2 yz € E(G).

Let r and s be the only vertices except x not adjacent to y and z in G, respectively.
By Lemma 2.8, |E(G[{w,y, z}])NB| > 2. By Lemma 2.6, |Eg({w,y,z},2)NB| > 1
for any vertex o’ € Xy = V(G) \ {z,y,2,w,p,q,r,s}. Thus, we have

n—6 if {r,stu{p, ¢} <2
|[Ec({w,y, 2}, Xo) N Bl = [Xo| 2 ¢ n—=T7 if [{r,s}U{p,q}| =3; (4.4)
n—_8 if {r,s}u{p.q} =4

and
L if [{r, s} U{p ¢} <2

[(Eq(p) U Ec(q)U Eg(r)U Eg(s)) N Bl > q 2 if {r,s}U{p,q}/=3; (4.5
2 if {r,s}U{p,q} =4

It follows from (4.4) and (4.5) that

n—3>|B| > {zw}+[Ec({w,y, 2}, Xo) N B+ |E(G[{w,y, 2}]) N B
+|(Ea(p) U Eg(q) U Eg(r) U Eg(s)) N B
S { n—2 if {rs}U{p,q}| <3;
— |\ n=3 if {r,s}U{p,q} =4

(4.6)

The equation (4.6) implies that [{r,s} U{p,q¢}| =4, |B] =n — 3 and |(Eg(p) U
Eq(q)UEg(r)UEg(s))NB| = 2. Then there exist two vertices u, v in {p, g, r, s} such
that Eg(u) N B = Eg(v) N B = {uv}. By Lemma 4.2, |B| > n — 2, a contradiction.

Thus, bg(G) = n — 2, and so the theorem follows. I

Acknowledgements

The authors would like to express their gratitude to the anonymous referees for their
kind suggestions and comments on the original manuscript, which resulted in this
version.

References

[1] S. Akbari, M. Khatirinejadand S. Qajar, A note on Roman bondage number of
planar graphs. Graphs and Combinatorics 29 (2013), 327-331.

[2] A. Bahremandpour, F.-T. Hu, S.M. Sheikholeslami, J.-M. Xu, On the Roman
bondage number of a graph. Discrete Mathematics, Algorithms and Applications
5 (1) (2013), 1350001 (15 pages).

[3] E.W. Chambers, B. Kinnersley, N. Prince, D.B. West, Extremal problems for
Roman domination. SIAM J. Discrete Math. 23 (2009), 1575-1586.



[4]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

FU-TAO HU ET AL./AUSTRALAS. J. COMBIN. 58 (1) (2014), 106-118 117

E.J. Cockayne, P.A. Dreyer, Jr., S.M. Hedetniemi, S.T. Hedetniemi, A.A.
McRae, Roman domination in graphs. Discrete Mathematics 278 (1-3) (2004),
11-22.

N. Dehgardi, S.M. Sheikholeslami and L. Volkman, On the Roman k-bondage
number of a graph. AKCE International Journal of Graphs and Combinatorics
8 (2011), 169-180.

K. Ebadi and L. Pushpalatha, Roman bondage and Roman reinforcement num-
bers of a graph. International Journal of Contemporary Mathematics 5 (2010),
1487-1497.

O. Favaron, H. Karami, R. Khoeilar and S.M. Sheikholeslami, On the Roman
domination number of a graph. Discrete Mathematics 309 (2009), 3447-3451.

J.F. Fink, M.S. Jacobson, L.F. Kinch and J. Roberts, The bondage number of
a graph. Discrete Mathematics 86 (1990), 47-57.

X.L. Fu, Y.S. Yang and B.Q. Jiang, Roman domination in regular graphs. Dis-
crete Mathematics 309 (2009), 1528-1537.

N. Jafari Rad and L. Volkmann, Roman bondage in graphs. Discussiones Math-
ematicae Graph Theory 31(4) (2011), 763-773.

N. Jafari Rad and L. Volkmann, On the Roman bondage number of planar
graphs. Graphs and Combinatorics 27 (4) (2011), 531-538.

M. Liedloff, T. Kloks, J.P. Liu and S.L. Peng, Efficient algorithms for Roman
domination on some classes of graphs, Discrete Applied Mathematics 156 (2008),
3400-3415.

M. Liedloff, T. Kloks, J.P. Liu and S. L. Peng, Roman domination over some
graph classes, Graph-Theoretic Concepts in Computer Science 3787 (2005),
103-114.

A. Pagourtzis, P. Penna, K. Schlude, K. Steinhofel, D. Taylor and P. Widmayer,
Server placements, Roman domination and other dominating set variants, in
Proc. Second International Conference on Theoretical Computer Science (2002),
280-291.

W.P. Shang and X.D. Hu, The roman domination problem in unit disk graphs,
Computational Science - ICCS 2007, Pt 3, Proceedings 4489 (2007), 305-312.

W.P. Shang and X.D. Hu, Roman domination and its variants in unit disk
graphs, Discrete Mathematics, Algorithms and Applications 2 (2010), 99-105.

S.M. Sheikholeslami, L. Volkmann, The Roman domination number of a di-
graph. Acta Universitatis Apulensis, 27 (2011), 77-86.



FU-TAO HU ET AL./AUSTRALAS. J. COMBIN. 58 (1) (2014), 106-118 118

[18] L. Stewart, Defend the Roman Empire. Scientific American 281 (1999), 136-139.

[19] H.M. Xing, X. Chen and X.G. Chen, A note on Roman domination in graphs.
Discrete Mathematics 306 (2006), 3338-3340.

[20] J.-M. Xu, Theory and Application of Graphs. Kluwer Academic Publishers, Dor-
drecht/Boston/London, 2003.

[21] J.-M. Xu, On bondage numbers of graphs — a survey with some comments.
International Journal of Combinatorics, vol. 2013, Article ID 595210, 34 pages,
2013. doi:10.1155/2013/595210.

[22] X. Zhang, J. Liu and J.-X. Meng, The bondage number in complete t-partite
digraphs. Information Processing Letters 109 (16) (2009), 997-1000.

(Received 6 Dec 2012; revised 20 July 2013)



