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Abstract

We extend the preorder on k-tuples of dominant weights of a simple
complex Lie algebra g of classical type adding up to a fixed weight λ
defined by Chari, Sagaki and the author [Posets, tensor products and
Schur positivity, Algebra and Number Theory, to appear]. We show that
the induced extended partial order on the equivalence classes has a unique
minimal and a unique maximal element. For k = 2 we compute its size
and determine the cover relation.

To each k-tuple we associate a tensor product of simple g-modules
and we show that for k = 2 the dimension increases also along with
the extended partial order, generalizing a theorem proved in the afore-
mentioned paper. We also show that the tensor product associated to the
maximal element has the biggest dimension among all tuples for arbitrary
k, indicating that this might be a symplectic (respectively, orthogonal)
analogue of the row shuffle defined by Fomin et al. [Amer. J. Math. 127
(2005), 101–127].

The extension of the partial order reduces the number elements in
the cover relation and may facilitate the proof of an analogue of Schur
positivity along the partial order for symplectic and orthogonal types.

1 Introduction

Let g be a finite-dimensional, simple complex Lie algebra and P + the set of dominant
integral weights. For a given λ ∈ P +, k ≥ 1 let P+(λ, k) denote the subset of k-tuples
of dominant integral weights adding up to λ. Chari, Sagaki and the author ([4]) have
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defined a preorder � on P+(λ, k), by extending a natural preorder for sl2 and k = 2,
that is if λ = nω, then

(λ − aω, aω) � (λ − bω, bω) :⇔ min{n − a, a} ≤ min{n − b, b}.

To each element (λ1, . . . , λk) ∈ P+(λ, k), the tensor product of simple finite-dimen-
sional modules V (λ1)⊗ . . .⊗V (λk) is associated. It was shown that the dimension of
this tensor product increases along with the preorder ([4, Theorem 1(i)]). Even more,
for g of type A2 and k = 2 or g and k arbitrary and λ a multiple of a minuscule
weight, it was shown that there exist injective maps of g-modules along with the
preorder ([4, Theorem 1 (ii),(iii)]).

We shall recall that the preorder on P+(λ, k) depends on the root system of g,
in fact each positive root gives a certain set of inequalities that determinede the
preorder. This allows a quite elementary proof of the dimension theorem using
Weyl’s dimension formula. On the other hand, to understand the partial order, one
is interested in the cover relation. For a given element (λ1, . . . , λk) the cover elements
are quite hard to compute and it involves the combinatorics of the root system and
the associated Weyl group of g. In [4] a classification of covers is given for k = 2
only.

In order to prove the existence of an injective map of g-modules along with the
preorder, it is enough to prove it for the cover relation only. The existence was
proven for g of type A2 for each possible cover by using the combinatorics of Young
tableaux. But even in type C2, the number of possible covers increases as the order
of the Weyl group increases, this makes the case by case consideration (as for A2)
not appropriate.

In the present paper, we extend the partial order and prove the tensor product
theorem even for this extended order. For this let P+ = Z

n
≥0 and, as above, for a

given λ ∈ P+, we denote the k-tuples adding up to λ by P+(λ, k). We introduce
a preorder � on P+(λ, k) and we show that if one uses the canonical embedding
ι : P+ ↪→ P+, the dominant weights of a simple Lie algebra, then � is an extension
of �. In fact if g is of type An the partial orders are equivalent (Remark 3.1), we
will use this to adapt certain results from [4] to the present paper.

We show that � has a unique maximal element λmax ∈ P+(λ, k)/∼, the equivalence
classes induced by the preorder. For the preorder � this is true in type An only. See
for example (Example 3.1) where in type C2 for a certain λ, the set P+(ι(λ), 2) has
two maximal elements, while P+(λ, 2) has a unique one. Further, we can compute
the size of the poset and give a classification of the cover relation.

To (λ1, . . . , λk) ∈ P+(λ, k) we associate a tensor product of simple finite-dimensional
g-modules, namely V (ι(λ1)) ⊗ . . . ⊗ V (ι(λk)). We will show

Theorem 1.1. Let λ = (λ1, λ2) � μ = (μ1, μ2) ∈ P+(λ, 2), then

dim V (ι(λ1)) ⊗ V (ι(λ2)) ≤ dim V (ι(μ1)) ⊗ V (ι(μ2)),

with equality if and only if λ = μ ∈ P+(λ, 2)/∼.
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This theorem was proven in [4] with respect to �, by using Weyl’s dimension formula.
It was enough to prove it for the sl2-case where this is quite elementary. In our case,
the preorder �, we have to prove the case where g is of type C2 separately using a
case by case consideration (Theorem 5.1). From here and the sl2-case we can deduce
the proof in general (Section 5).

Using the theorem we can show that for all μ = (μ1, . . . , μk) ∈ P+(λ, k) we have

dim V (ι(μ1)) ⊗ . . . ⊗ V (ι(μk)) ≤ dim V (ι(λ1)) ⊗ . . . ⊗ V (ι(λk)) (1.1)

where (λ1, . . . , λk) = λmax and equality if and only if μ = λ in P+(λ, k)/∼.

We shall make a couple of remarks here. If g is of type An, then (1.1) follows from
the stronger statement that there is an injective map of g-module from the tensor
product of left hand side of (1.1) to the tensor product of the right hand side. This
statement was proven via the strong connection from λmax to the so-called row shuffle
(see [4, Section 2.4, 2.5] for more details). The existence of such an injective map was
conjectured by Fomin-Fulton-Li-Poon, Lascoux-Leclrec-Thibon and Okounkov ([6],
[11], [7]), and recently proven by Lam, Postnikov, Pylyavskyy ([8]). A phenomenon
like this is called Schur positivity (the difference of the characters of the modules is
a non-negative linear combination of Schur functions). For more on this subject see
also [1], [2], [5], [9], [10], [12]. One might see (1.1) as evidence that λmax could be the
generalization of the row shuffle to simple Lie algebras of symplectic or orthogonal
type.
We conjecture that we have injective maps of g-modules along with �. Since the
order � reduces the number of possible covers enormously, we have reduced the
cases that have to be considered in order to prove a kind of Schur positivity in the
symplectic or orthogonal case. This will be discussed elsewhere.

The paper is organized as follows:
In Section 2 we recall necessary notation for simple Lie algebras, define the preorder
� and relate it to the preorder �. In Section 3 we analyze the preorder further,
computing the unique maximal element, while in Section 4 we restrict ourselves to
k = 2 and recall the previously known results about the cover relation. Section 5 is
dedicated to the proof of Theorem 1.1.

2 Notation and definitions

In this section we recall the basic notation and introduce the main object of this
paper, the preorder �.

Let P = Z
n and P+ = Z

n
≥0; we set I = {1, . . . , n}. We denote by

{ωi = (0, . . . , 0, 1, 0, . . . , 0) | i ∈ I}
the canonical basis of P. We denote further ω∗

i ∈ HomZ(P, Z) the dual element of
ωi. Then for any λ ∈ P we have

λ =
∑
i∈I

ω∗
i (λ)ωi.
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We have an alternative description by setting εi = ωi − ωi−1, and then

λ =
∑
i∈I

(ω∗
i + . . . + ω∗

n)(λ)εi.

Let Sn be the symmetric group in n letters and si,i+1 (i = 1, . . . , n − 1) the simple
transpositions generating Sn. Now Sn acts on P via

si,i+1(εj) = εsi,i+1(j) =

⎧⎪⎨
⎪⎩

εj if j < i or j > i + 1

εj+1 if j = i

εj−1 if j = i + 1

It is standard to see that for any λ = (a1, . . . , an) ∈ P
|Snλ ∩ P+| = 1,

so there is a unique element in the Snλ-orbit which is in P+.

2.1

We fix λ ∈ P+ and k ∈ Z≥0, and we set

P+(λ, k) = {λ = (λ1, . . . , λk) | λi ∈ P+ , λ1 + . . . + λk = λ}.

Then P+(λ, k) is a finite set for all λ ∈ P+. Given λ ∈ P+(λ, k), we define for each
pair i ≤ j ∈ I and 1 ≤ � ≤ k:

r(i,j),�(λ) = min{
j∑

k=i

ω∗
k(λn1 + . . . + λn�

) | 1 ≤ n1 < . . . < n� ≤ k}.

We have for all i ≤ j ∈ I, �, λ

0 ≤ r(i,j),�(λ) ≤ r(i,j),�+1(λ),

and for all i ≤ j ∈ I and λ, μ ∈ P+(λ, k)

r(i,j),k(λ) = r(i,j),k(μ).

Given λ, μ ∈ P+(λ, k), we set

λ � μ :⇔ r(i,j),�(λ) ≤ r(i,j),�(μ) for all i ≤ j ∈ I, 1 ≤ � ≤ k. (2.1)

This defines a preorder on P+(λ, k) and we set

λ ∼ μ :⇔ r(i,j),�(λ) = r(i,j),�(μ) for all i ≤ j ∈ I, 1 ≤ � ≤ k,

to obtain an induced partial order on P+(λ, k)/∼.

Sk acts on P+(λ, k) by permuting the components but is invariant on equivalence
classes:

σ(λ) ∼ λ ∀ σ ∈ Sk.
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2.2

Following Bourbaki [3], we introduce certain notation for Lie algebras.

Let g be a simple, complex finite dimensional Lie algebra of classical type, denote
by n the rank of g, I = {1, . . . , n}, and fix a triangular decomposition n+ ⊕ h ⊕ n−.
Denote by R (respectively, R+) the roots (positive roots) of g, P (respectively, P +)
the (dominant) integral weights. For a given α ∈ R+, the coroot is denoted by hα.
The simple roots are denoted by αi, the corresponding coroots hi and the fundamental
dominant weights ωi. We denote by W the Weyl group associated to g; si the simple
reflections and ( , ) an invariant bilinear form on h∗ × h. For later use we will give a
complete list of all positive coroots (in terms of simple coroots).

Remark 2.1. List of coroots of simple, finite-dimensional Lie algebras of classical
type.

1. type An:

{hi,j = hi + . . . + hj | i ≤ j ∈ I}
2. type Cn:

{hi,j = hi + . . . + hj | i ≤ j ∈ I}
{hi,j = hi + . . . + hj−1 + 2hj + . . . + 2hn | i < j ∈ I}

3. type Bn:

{hi,j = hi + . . . + hj | i ≤ j ∈ I}
{hi,j = hi + . . . + hj−1 + 2hj + . . . + 2hn−1 + hn | i ≤ j ∈ I}

4. type Dn:

{hi,j = hi + . . . + hj | i ≤ j ∈ I}
{hi,n = hi + . . . + hn−2 + hn | 1 ≤ i ≤ n − 2}

{hi,j = hi + . . . + hj−1 + 2hj + . . . + 2hn−2 + hn−1 + hn | 1 ≤ i < j < n − 1}.

3 About the partial order

In [4, Section 2.1] a preorder � on k-tuples of dominant weights for finite-dimensional,
simple complex Lie algebra g of finite rank was introduced. We recall this definition
here. For a given λ ∈ P +, k ∈ Z≥1 we set

P+(λ, k) = {λ = (λ1, . . . , λk) | λi ∈ P+ , λ1 + . . . + λk = λ}.
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Let λ ∈ P+(λ, k), the following integer was defined for 1 ≤ � ≤ k and α ∈ R+

rα,�(λ) = min{(λi1 + . . . + λi�)(hα) | 1 ≤ i1 < . . . < i� ≤ k}.
The preorder � was defined as follows:
Let λ, μ ∈ P +(λ, k), then

λ � μ :⇔ rα,�(λ) ≤ rα,�(μ) for all α ∈ R+, 1 ≤ � ≤ k. (3.1)

We want to identify P+ with a certain subset of P+. Let g be of type An, Cn, Bn+1,
Dn+2; then we embed ι : P+ ↪→ P+ by ωi �→ ωi for 1 ≤ i ≤ n. We call the weights
in ι(P+) admissible, e.g. every λ ∈ P+ is admissible if g is of type An, Cn, λ is
admissible if λ(hn+1) = 0 if g is of type Bn+1 or λ(hn+1), λ(hn+2) = 0 if g is of type
Dn+2. In other words, a weight is called admissible if it is not supported on a spin
node. We have an induced embedding ι : P+(λ, k) ↪→ P+(λ, k).
Let λ ∈ P+ and α ∈ R+, such that hα = hi + . . . + hj for some i ≤ j, then

rα,�(ι(λ)) = r(i,j),�(λ).

This implies immediately

Corollary 3.1. Let g be a complex simple Lie algebra, λ ∈ P+ and λ, μ ∈ P+(λ, k)

ι(λ) � ι(μ) ⇒ λ � μ.

Remark 3.1. If g is of type An all coroots are of the form hi + . . . + hj and, since ι
is surjective, all weights are admissible. In this case we have

ι(λ) � ι(μ) ⇔ λ � μ.

We will use this fact throughout the article to adapt certain results of [4].

3.1

Given λ ∈ P+, then it is easy to see that the poset P+(λ, k)/∼ has a unique minimal
element λmin, namely the Sk-orbit of λ = (λ, 0, . . . , 0). We will show that there is
also a unique maximal element λmax.
Let λ = (a1, . . . , an) ∈ P+, then for i ∈ I

n∑
�=i

a� = pik + ri for some 0 ≤ pi, 0 ≤ ri < k.

We set for i ∈ I, 1 ≤ j ≤ k

mi,j =

{
pi + 1 if j ≤ ri

pi if j > ri

then mi,j ≥ mi+1,j for any i, j. This implies that λj :=
n∑

i=1

mi,jεi ∈ P+. We set

λmax := (λ1, . . . , λk). (3.2)
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Lemma 3.1. Let μ ∈ P+(λ, k), then μ � λmax. And if λmax ∼ μ then μ and λmax

are in the same Sk-orbit.

Before proving the lemma, we will show a useful proposition.

Proposition 3.1. Let μ, τ ∈ P+, s < k ∈ Z≥1. Suppose (λ1, . . . , λs) � (μ1, . . . , μs) ∈
P+(μ, s) and (τ1, . . . , τk−s) ∈ P+(τ, k − s), then

(λ1, . . . , λs, τ1, . . . , τk−s) � (μ1, . . . , μs, τ1, . . . , τk−s) ∈ P+(μ + τ, k).

Proof. First we reduce the proof to the case P+ = Z≥0 (e.g. n = 1). For this
reduction we define for each i ≤ j a map

πi,j : P+ −→ Z≥0 : (a1, . . . , an) �→ ai + . . . + aj.

We can extend this component wise to a map

πi,j : P+(λ, k) −→ Z≥0(πi,j(λ), k). (3.3)

Let λ ∈ P+ and λ � μ ∈ P+(λ, k), then

πi,j(λ) � πi,j(μ) ∈ Z≥0(πi,j(λ), k).

Even more if λ�μ, then there exists i ≤ j such that πi,j(λ)�πi,j(μ) ∈ Z≥0(πi,j(λ), k).
On the other hand if πi,j(λ) � πi,j(μ) ∈ Z≥0(πi,j(λ), k) for all i ≤ j, then λ � μ,
with equality if and only if there is equality for all i ≤ j. So we have (a reformulation
of 2.1):

λ � μ ⇔ πi,j(λ) � πi,j(μ) for all i ≤ j (3.4)

which reduces the proof to the case n = 1. Let P+ = Z≥0, s < k, μ, τ ∈ P+,
(a1, . . . , as)�(b1, . . . , bs) ∈ P+(μ, s), where ai, bi ∈ Z≥0. We may assume a1 ≤ . . . ≤ as

and b1 ≤ . . . ≤ bs, then by assumption

i∑
j=1

aj ≤
i∑

j=1

bj for all 1 ≤ i ≤ s (3.5)

and there exists 1 ≤ i < s such that the inequality is strict.
Let c ∈ Z≥0 and i1 ∈ {1, . . . , s} be the minimum such that c < ai1 , i2 the minimum
such that c < bi2 . We want to check that for all 1 ≤ i ≤ s + 1

r(1,1),i(a1, . . . , as, c) ≤ r(1,1),i(b1, . . . , bs, c). (3.6)

and there exists 1 ≤ i < s + 1 such that the inequality is strict.
For i ≤ min{i1, i2} or i ≥ max{i1, i2} this follows by assumption. To complete this,
we must distinguish two more cases, i1 ≤ i ≤ i2 and i2 ≤ i ≤ i1. About the first one,
the left hand side of 3.6 is

c +

i−1∑
j=1

aj <

i∑
j=1

aj ≤
i∑

j=1

bj
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(the first inequality is due to the definition of i1 and the second due to the assump-
tions), which is the right hand side of the equation.
Let now i2 ≤ i ≤ i1, then the left hand side of 3.6 is

i∑
j=1

aj ≤ c +
i−1∑
j=1

aj ≤ c +
i−1∑
j=1

bj <
i∑

j=1

bj ,

(where the first inequality is due to the definition of i1, the second by assumption
and the third due to the definition of i2), which is the right hand side of 3.6. If � is
such that the inequality in (3.5) is strict then the inequality is strict for � − 1, � or
� + 1 respectively.

So we have proven that

(a1, . . . , as) � (b1, . . . , bs) ⇒ (c, a1, . . . , as) � (c, b1, . . . , bs).

By induction we see

(a1, . . . , as) � (b1, . . . , bs) ⇒ (c1, . . . , ck−s, a1, . . . , as) � (c1, . . . , ck−s, b1, . . . , bs).

Proof. (of Lemma 3.1) The lemma has been already proven for P+ = Z
n
≥0 for arbi-

trary n and k = 2 [4, Proposition 5.3] as well as for n = 1 and arbitrary k [4, Lemma
3.3]. It was shown there that if (a1, . . . , ak) is a maximal element in Z≥0(λ, k), then
ai − aj ∈ {0,±1} for all i ≤ j ∈ I. By ordering the tuples (recall the Sk-action), the
unique ordered maximal element is determined by the condition

ai − aj ∈ {0, 1} for i ≤ j ∈ I (3.7)

Let λmax ∈ P+(λ, k) as defined in 3.2. Then πi,j(λ
max) = (a1, . . . , ak) satisfies (3.7)

for all i ≤ j ∈ I. This implies that for given μ ∈ P+(λ, k)

πi,j(μ) � πi,j(λ
max) for all i ≤ j ∈ I.

With (3.4) we can conclude that μ � λmax. It remains to show that if λmax ∼ μ,
then λmax, μ are in the same Sk-orbit.
For this we recall that any λ ∈ P+ can be uniquely written λ =

∑
i∈I biεi, where

bi ≥ bi+1 ≥ 0 for all i. Given ν = (ν1, . . . , νk) ∈ P+(λ, k), we order the νi with
respect to the lexicographic order (by writing them in terms of the basis {εi | i ∈ I}).
We will need that λmax (see 3.2) is uniquely determined by the condition:

∀ i ≤ j : λi − λj =
∑
i∈I

ci,j
� ε� with ci,j

� ∈ {0, 1}. (3.8)

First of all, λmax satisfies this condition. On the other hand, writing λ =
∑

i∈I biεi

and let bi = rik+pi, then the condition implies that (ω∗
i + . . .+ω∗

j )(λ�) ∈ {ri, ri +1},
which implies that λmax is uniquely determined.
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Given μ = (μ1, . . . , μk) ∈ P+(λ, k) a maximal element and we may assume that
μ1 ≥ . . . ≥ μk with respect to the lexicographic order. Then (μi, μj) ∈ P+(μi +μj, 2)
and suppose it is not the maximal element, then there exists (τ1, τ2) ∈ P+(μi +μj, 2)
such that (μi, μj) � (τ1, τ2). Hence if we replace in μ, μi by τ1 and μj by τ2, and
denote the obtained k-tuple μ′, then by Proposition 3.1

μ � μ′ ∈ P+(λ, k).

This is a contradiction, because μ is chosen to be maximal. So we have (μi, μj) is
maximal in P+(μi + μj, 2) for all i ≤ j. As mentioned before, the case k = 2 was
proven in [4, Proposition 5.3]. It was shown that P+(μi + μj, 2) has a unique (up
to S2 action) maximal element. This implies that (μi, μj) satisfies (3.8) (using the
uniqueness for P+(μi + μj , 2)). So for all i ≤ j we have

μi − μj =
∑
i∈I

ci,j
� ε� with ci,j

� ∈ {0, 1}.

But then again with (3.8) we have μ = λ.

We shall remark, that a maximal element in P+(λ, k) with respect to the partial
order � as defined in [4] is not unique in general. See for example:

Example 3.1. Let k = 2, n = 2 and λ = 2ω1 + ω2. Let g be of type C2. Then
P+(ι(λ), 2) consists of three S2-orbits and we have

(ι(λ), 0) ≺ (2ω1, ω2) and (ι(λ), 0) ≺ (ω1 + ω2, ω1)

but (2ω1, ω2) and (ω1+ω2, ω1) are incomparable with respect to �. The partial order
� of P+(λ, 2) gives

(λ, 0) � (2ω1, ω2) � (ω1 + ω2, ω1).

The extension of the partial order (see Corollary 3.1) allows us to order the maximal
elements (with respect to �) to get a unique maximal element with respect to �.

4 The partial order for k = 2

Throughout this section we will restrict ourselves to k = 2. Mainly we are using
certain results from [4]. We will investigate on the partial order further, determined
the cover relation and the size of the poset P+(λ, 2)/ ∼.

Lemma 4.1. Suppose λ = (λ1, λ2) ∼ μ = (μ1, μ2) ∈ P+(λ, 2), then either μ1 =
λ1, μ2 = λ2 or μ1 = λ2, μ2 = λ1, hence the equivalence classes in P+(λ, 2)/ ∼ are
precisely the S2 orbits.

Proof. By using Remark 3.1, the proof is analogue to the proof of [4, Lemma 5.5]
and g being of type An.

We denote the equivalence class of λ = (λ1, λ2) again by λ.
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4.1

It is useful in understanding the poset P+(λ, 2)/ ∼, to understand the associated
cover relation.

Definition 4.1. Let λ, μ ∈ P+(λ, 2)/∼, then μ is called a cover of λ if and only if

1. λ � μ

2. For any ν ∈ P+(λ, 2)/∼ with λ � ν � μ, either λ = ν or ν = μ.

For any λ ∈ P+, P+(λ, 2) is a finite set, hence if λ � μ there exists a finite chain of
successive covers

λ � ν1 � . . . � νk � μ.

Proposition 4.1. Let λ ∈ P+, λ = (λ1, λ2) and μ = (μ1, μ2) ∈ P+(λ, 2)/∼. Let
σ ∈ Sn such that σ(λ1 − λ2) ∈ P+. Then

λ � μ ⇔ σ(λ1 − μ1), σ(μ1 − λ2) ∈ P+.

Further if λ � μ is a cover and there exists i ∈ I such that

ω∗
i (σ(λ1 − μ1)) > 0, ω∗

i (σ(μ1 − λ2)) > 0,

then
(μ1, μ2) = (λ1 − σ−1ωi, λ2 + σ−1ωi)

Proof. Recall here, that the pair P, Sn can be identified (via the embedding ι : P −→
P ) with the lattice of integral weights of the simple Lie algebra sln+1 and its Weyl
group. This implies that the statement follows immediately from [4, Proposition 5.4]
and Remark 3.1.

Suppose a cover λ � μ satisfies the conditions in Proposition 4.1, that is that there
exists i ∈ I such that

ω∗
i (σ(λ1 − μ1)) > 0, ω∗

i (σ(μ1 − λ2)) > 0,

then we call it a cover of type I.
Suppose now that for all i ∈ I

ω∗
i (σ(λ1 − μ1)) = 0 or ω∗

i (σ(μ1 − λ2)) = 0,

note that by Proposition 4.1 both are ≥ 0. Then this implies that

μ = σ−1

(
n∑

i=1

ω∗
i (σ(λεi

))ωi

)
,

for some ε = (ε1, . . . , εn) ∈ {1, 2}×n. In this case we call λ � μ a cover of type II.
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Corollary 4.1. Let λ ∈ P+(λ, 2)/ ∼, then λ has at most n covers of type I and
2n−1 − 1 covers of type II.

Proof. For a given λ, the element σ ∈ Sn such that σ(λ1 − λ2) ∈ P+ is uniquely
determined up to elements from the stabilizer of λ1 − λ2. Then it follows that the
type I covers are all obtained via this unique σ. This implies that there are at most
n type I covers.
For the type II cover, the element σ is again fixed, this gives 2n possible covers, the
S2 action of (λ1, λ2) reduces this to 2n−1. Since the identity is trivial, hence not a
cover, we have at most 2n−1 − 1 covers of type II.

4.2

In this section we will compute the size of the poset P+(λ, 2)/ ∼. In this case,
k = 2, this is a simple calculation using Burnside’s Lemma. For arbitrary k it is
still Burnside’s Lemma but the computation is more difficult. There is no formula
known to the author computing this for k > 2 and it seems to be an interesting
combinatorial question.

Proposition 4.2. Let λ =
∑

i∈I miωi ∈ P+. Then

|P+(λ, 2)/∼ | =

{
1
2

(∏
i∈I(mi + 1) + 1

)
if all mi are even

1
2

∏
i∈I(mi + 1) else

Proof. We will use Burnside’s Lemma to compute the orbits of the S2-action. So we
have to compute the fixed points for the elements of S2 on the set of ordered tuples.
The number of ordered tuples is ∏

i∈I

(mi + 1).

So the number of fixed points of the identity is
∏

i∈I(mi + 1). The non-trivial el-
ement in S2 has a fixed point if and only if all mi are even, namely the element
(
∑

i∈I mi/2ωi,
∑

i∈I mi/2ωi). Then Burnside’s formula gives the proposition.

4.3

We will induce the proof of Theorem 1.1 from the rank 2 case (that is n = 2). In
order to prove the rank 2 case, we need more detailed information about the cover
relation in this case. The following proposition is adapted from [4, Proposition 6.1]
and can be proven similarly (by using the identification ι in the sln+1-case).
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Proposition 4.3. Let λ ∈ P+, λ = (λ1, λ2) ∈ P+(λ, 2)/∼. If λ � μ is a cover then
μ is one of the following list:⎧⎪⎪⎨
⎪⎪⎩

μ = (λ1 − σω1, λ2 + σω1) if ω∗
1(σ(λ1 − λ2)) ≥ 2 or

μ = (λ1 − σω2, λ2 + σω2) if ω∗
2(σ(λ1 − λ2)) ≥ 2 or

μ = (λ1 − ω∗
1(σ(λ1 − λ2))σω1, λ2 + ω∗

1(σ(λ1 − λ2))σω1) if ω∗
1(σ(λ1 − λ2)) > 0

(4.1)

where σ ∈ {id, s12,, s2,3} such that σ(λ1 − λ2) ∈ P+.

5 Application to representation theory

We will apply the results on the partial order to certain tensor products of simple
finite–dimensional modules of a simple complex Lie algebra g.

5.1

P+ parameterizes the simple finite-dimensional g-modules, denote by V (λ) the simple
module associated to λ ∈ P+. Its dimension is given by Weyl’s dimension formula

dim V (λ) =
∏

α∈R+

(λ + ρ, hα)

(ρ, hα)

where ρ is half the sum of all positive roots and ( , ) is the invariant bilinear form on
h∗ × h. If we denote (λ + ρ, hα) by 〈λ, hα〉, then we obtain that for λ, μ ∈ P+

dim V (λ) ⊗ V (μ) =
∏

α∈R+

〈λ, hα〉 〈μ, hα〉 (ρ, hα)−2 (5.1)

5.2

We want to prove Theorem 1.1 for P of rank 2, that is n = 2. For this we need the
following useful lemma:

Lemma 5.1. Let a, b, c, d ∈ Z>0, such that a < b < d, a < c < d, and b−a ≥ d−c+2,
then

abcd ≤ (a + 1)(b − 1)(c − 1)(d + 1),

where the inequality is strict if and only if b − a > d − c + 2.

Proof. We have

(a + 1)(b − 1)(c − 1)(d + 1) = (ab + b − a − 1)(cd + c − d − 1). (5.2)

and by assumption

b − a − 1 ≥ d − c + 1 (5.3)
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This gives

(a + 1)(b −1)(c −1)(d +1) − abcd = cd(b − a − 1) − (ab + b − a − 1)(d − c + 1)
because of (5.3) ≥ cd(b − a − 1) − (ab + b − a − 1)(b − a − 1)

because of a < c, b < d ≥ ((a +1)(b +1) −ab − (b −a −1))(b −a−1)
= (2a + 2)(b − a − 1) ≥ 0

since b − a ≥ 1.

Theorem 5.1. Let P be of rank 2 and λ ∈ P+. Further let g be a simple complex
classical Lie algebra of rank 2, e.g. g is of type A2 or C2. If λ = (λ1, λ2) � μ =
(μ1, μ2) ∈ P+(λ, 2), then

dim V (ι(λ1)) ⊗ V (ι(λ2)) ≤ dim V (ι(μ1)) ⊗ V (ι(μ2)).

Proof. The map ι is an isomorphism for g of type A2 or C2, hence we will identify λ
with ι(λ) throughout the proof to simplify the notation.

Let g be of type A2, then
λ � μ ⇔ λ � ιμ

and the theorem follows from [4, Theorem 1 (i)].
Let g be of type C2, then we have the set of positive coroots {h1, h2, h1,2, h1,2} (see
Remark 2.1).
It suffices to show the theorem for μ = (μ1, μ2) being a possible cover of λ. Let σ ∈ Sn

such that σ(λ1−λ2) ∈ P+, by Proposition 4.3 we may assume that σ ∈ {id, s1,2, s2,3}.
Write λ1 as aω1+bω2 then λ2 = (n−a)ω1+(m−b)ω2, where n = λ1(h1), m = λ1(h2).
We will use Weyl’s dimension formula and recall that ι−1(ρ) = ω1 + ω2 ∈ P+. It
suffices to show the following inequalities:

〈λ1, h1〉 〈λ2, h1〉 〈λ1, h1,2〉 〈λ2, h1,2〉 ≤ 〈μ1, h1〉 〈μ2, h1〉 〈μ1, h1,2〉 〈μ2, h1,2〉 (5.4)

and for hα ∈ {h2, h1,2}

〈λ1, hα〉 〈λ2, hα〉 ≤ 〈μ1, hα〉 〈μ2, hα〉. (5.5)

Both inequalities together give∏
α∈R+

〈λ1, hα〉 〈λ2, hα〉 ≤
∏

α∈R+

〈μ1, hα〉 〈μ2, hα〉

this finishes then by (5.1) the proof.

In [4, Proof of Theorem 1(i)] it was shown that for a given coroot hα

rα,�(ι(λ)) ≤ rα,�(ι(μ)) for all 1 ≤ � ≤ 2 (5.6)

⇒ 〈λ1, hα〉 〈λ2, hα〉 ≤ 〈μ1, hα〉 〈μ2, hα〉. (5.7)
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This gives (5.5) and the rest of the proof is dedicated to proving (5.4). We will show
this by case by case considerations for σ ∈ {id, s1,2}, s2,3 is similar. Throughout the
proof we will use the following simple fact

x < y ∈ Z>0 ⇒ (x + 1)(y − 1) ≤ xy with equality if and only if x = y − 1. (5.8)

We replace in the following λi by λi + ρ, μi by μi + ρ to avoid having a summand
ρ(hα) in each factor. This does not change the argument, the possible covers for this
shifted tuple are exactly the same. Note that

λ1(h1) = a, λ1(hα) = a + 2b, λ2(h1) = n − a, λ2(hα) = n − a + 2(m − b).

If σ = id, then a ≥ n− a, b ≥ m− b, the three possible covers (two of type I and one
of type II, Corollary 4.1) are (see Proposition 4.3)

1. (μ1, μ2) = (λ1 − ω1, λ2 + ω1) (type I).
By assumption

n − a < a and n − a + 1 + 2(m − b) < n − a + 2(m − b),

hence with (5.8) we have (a − 1)(n − a + 1) ≥ a(n − a) and

(a − 1 + 2b)(n − a + 1 + 2(m − b)) ≥ (a + 2b)(n − a + 2(b − m)).

Combining both we have as desired

a(n − a)(a + 2b)(n − a + 2(m − b))

≤ (a − 1)(n − a + 1)(a − 1 + 2b)(n − a + 1 + 2(m − b)).

2. (μ1, μ2) = (λ1 − ω2, λ2 + ω2) is similar.

3. (μ1, μ2) = (aω1 + (m − b)ω2, (n − a)ω1 + bω2) (type II).
By assumption

a + 2b ≥ n − a + 2b ≥ (n − a) + 2(m − b)

and
a + 2b ≥ a + 2(m − b) ≥ (n − a) + 2(m − b).

With (5.8) it follows

(a + 2b)(n − a + 2(m − b)) ≤ (a + 2(m − b))(n − a + 2b)

this then implies as desired

[a(n− a)(a + 2b)][(n− a + 2(m− b))] ≤ [a(n− a)][(a + 2(m− b))(n− a + 2b)].

If σ = s1,2, then a < n − a, 2b − m ≥ n − 2a > 0, the three possible covers are
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1. (μ1, μ2) = (λ1 − s1,2(ω1), λ2 + s1,2(ω1)) (type I).
Here we must distinguish two cases

(a) Suppose a + 2b ≥ n − a + 2(m − b), then (see (5.8)

(a + 1 + 2(b− 1))(n− a − 1 + 2(m− b + 1)) ≥ (a + 2b)(n− a + 2(m− b))

and by assumption

(a + 1)(n − a − 1) ≥ a(n − a).

Combining both proves the claim.

(b) Suppose a + 2b ≤ n− a + 2(m− b). By assumption we have a < n− a, so
to apply Lemma 5.1 it suffices to show:

(n − 2a) − ((n − 2a) + 2(m − 2b)) = −2(m − 2b) ≥ 2.

But this follows, since by assumption 2b − m ≥ 1, so the claim follows

2. (μ1, μ2) = (λ1 − ω2, λ2 + ω2) (type I).
Then a + 2b ≥ n − a + 2(m − b) + 2 (since 2b > m and a < n − a) and so by
(5.8)

(a + 2b)((n − a + 2(m − b))) ≤ (a + 2(b − 1))(n − a + 2(m − b + 1)),

this implies the claim.

3. (μ1, μ2) = (λ1 − s1((n − 2a)(ω1)), λ + s1((n − 2a)(ω1))) (type II).
Then

a + 2b ≥ n − a + 2(b + 2a − n) ≥ (n − a + 2(m − b)),

where the first inequality is due to a < n− a and the second inequality due to
2b − m < n − 2a. Further

a + 2b ≥ a + 2(m + n − b − 2a) ≥ (n − a + 2(m − b)),

where the first inequality is due to 2b−m ≥ n − 2a and the second inequality
due to a < n − a. Then (5.8) implies

(a + 2b)(n − a + 2(m − b)) ≤ (n − a + 2(b + 2a − n))(a + 2(m + n − b − 2a)).

We omit the similar computations for σ = s2,3.

Let g be of type B3 or D4, recall the embedding ι : P+ −→ P+, so the weights we
are considering are supported on the first two nodes only.

Corollary 5.1. Let λ = (λ1, λ2) � μ = (μ1, μ2) ∈ P+(λ, 2), then

dim V (ι(λ1)) ⊗ V (ι(λ2)) ≤ dim V (ι(μ1)) ⊗ V (ι(μ2)).
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Proof. Let g be of type B3 and λ ∈ P+; then ι(λ) is supported on the first two nodes
only, and hence Weyl’s dimension formula reduces to dimV (ι(λ)) =

(〈ι(λ), h2〉2 〈ι(λ), h1+h2〉2 〈2ι(λ), h2〉 〈2ι(λ), h1+h2〉 〈ι(λ), h1〉 〈ι(λ), h1+2h2〉)
∏

α∈R+

1
(ρ, hα)

.

We want to show again the inequality

dim V (ι(λ1)) ⊗ V (ι(λ2)) ≤ dim V (ι(μ1)) ⊗ V (ι(μ2)).

From (5.7) we know that under the assumption λ � μ

〈ι(λ1), h〉 〈ι(λ2), h〉 ≤ 〈ι(μ1), h〉 〈ι(μ2), h〉

for all h ∈ {h1, h2, h1,2 = h1 + h2}. So it remains to prove the inequality for h1,2 =
h1 + 2h2. But this follows from (5.4).

Let g be of type D4, then Weyl’s dimension formula reduces to

dim V (ι(λ)) = (〈ι(λ), h2〉4 〈ι(λ), h1 + h2〉4 〈ι(λ), h1〉 〈ι(λ), h1 + 2h2〉)
∏

α∈R+

1

(ρ, hα)
.

and the analogous argument gives the proof here.

5.3

Here we will finally prove Theorem 1.1, for this let λ ∈ P+ and g be of type
An, Cn, Bn+1, Dn+2. We want to show that if λ � μ ∈ P+(λ, 2), then

dim V (ι(λ1)) ⊗ V (ι(λ2)) ≤ dim V (ι(μ1)) ⊗ V (ι(μ2)).

For this we will use again Weyl’s dimension formula

dim V (ι(λ)) =
∏

α∈R+

〈ι(λ), hα〉
(ρ, hα)

.

and show a general form of the inequalities (5.4) and (5.5), this will prove the claim
of the theorem.

If g is of type An, then this follows immediately from [4, Theorem 1 (i)].

If g is of type Cn and hα a coroot such that there exists i ∈ I with ωi(hα) = 2, we
then say hα has height 2. Then (see Remark 2.1)

hα = hi + . . . + hj−1 + 2(hj + . . . + hn).

for some i < j. The Lie algebra g′ associated to the coroots

hi,j−1 = hi + . . . + hj−1, hj,n = hj + . . . + hn
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(that is the Lie algebra generated by the corresponding root vectors) is of type C2,
the set of the corresponding positive coroots is {hi,j−1, hj,n, hi,j−1+hj,n, hi,j−1+2hj,n}.
Since λ � μ, we have

r(i,j−1),1(λ) ≤ r(i,j−1)(μ), r(j,n),1(λ) ≤ r(j,n),1(μ).

Then the same arguments as in the proof of Theorem 5.1 gives (see 5.4) that

〈ι(λ1), hi,j−1〉 〈ι(λ1), hα〉〈ι(λ2), hi,j−1〉〈ι(λ2), hi,j−1 + 2hj,n〉
≤ 〈ι(μ1), hi,j−1〉〈ι(μ1), hα〉〈ι(μ2), hi,j−1〉〈ι(μ2), hi,j−1 + 2hj,n〉.

If we subtract from the set of all coroots the set {hi,j−1, hi,j−1 + 2hj,n | i < j ∈ I} we
are left with coroots of height 1.
It remains to show that for all such hα we have

〈ι(λ1), hα〉〈ι(λ2), hα〉 ≤ 〈ι(μ1), hα〉〈ι(μ2), hα〉.
This follows as 5.5 from the proof of [4, Theorem 1(i)].

If g is of type Bn+1 and hα is a root of height 2, then

hα = hi,j−1 + 2hj,n + hn+1,

where 1 ≤ i ≤ j ≤ n, and we set hj,j−1 = 0. First of all, if i = j − 1, then
ι(λ)(hα) = 2ι(λ)(hj,n) (since ι(λ) is not supported on hn+1). Since λ � μ implies
that rα,1(ι(λ)) ≤ rα,1(ι(μ)), the proof of [4, Theorem 1(i)] gives the inequality for
this coroot.

If i < j − 1 then the Lie algebra generated by the root vectors corresponding to
hi,j−1, hj,n, hn+1 is a simple Lie algebra of type B3. As in the C2 case above: λ � μ
implies

r(i,j−1),1(λ) ≤ r(i,j−1)(μ), r(j,n),1(λ) ≤ r(j,n),1(μ).

Then Corollary 5.1 gives as for (5.4)

〈ι(λ1), hα〉〈ι(λ1), hi,j−1〉〈ι(λ2), hα〉〈ι(λ2), hi,j−1〉
≤ 〈ι(μ1), hα〉〈ι(μ1), hi,j−1〉〈ι(μ2), hα〉〈ι(μ2), hi,j−1.

The remaining coroots have all height 1, so the needed inequality follows again as in
[4, Theorem 1(i)].

If g is of type Dn+2, and hα of height 2. Then as in the C2 (respectively, B3) case,
we have an induced simple Lie algebra of type D4 and again Corollary 5.1 gives as
for (5.4) the needed inequality here. Again the remaining coroots have all height 1
and the inequalities follow again as in [4, Theorem 1(i)].

All together this implies in the several cases∏
α∈R+

〈ι(λ1), hα〉〈ι(λ2), hα〉 ≤
∏

α∈R+

〈ι(μ1), hα〉〈ι(μ2), hα〉

this gives the proof of Theorem 1.1.
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5.4

To conclude the paper, it remains to prove (1.1), so if μ = (μ1, . . . , μk) ∈ P+(λ, k)
we have

dim V (ι(μ1)) ⊗ . . . ⊗ V (ι(μk)) ≤ dim V (ι(λ1)) ⊗ . . . ⊗ V (ι(λk)) (5.9)

where λmax = (λ1, . . . , λk) and equality if and only if μ ∼ λmax, hence if and only if
μ lies in the Sk-orbit of λmax.

Suppose μ is not in the Sk-orbit of λmax, then (3.8) implies that there exists i < j
such that (μi, μj) is not maximal in P+(μi + μj, 2). Denote the maximal 2-tuple in
P+(μi + μj, 2) by (νi, νj). Then we have by Theorem 1.1

dim V (ι(μi)) ⊗ V (ι(μj)) < dim V (ι(νi)) ⊗ V (ι(νj)).

We define a new k-tuple
ν = (ν1, . . . , νk)

where we set ν� = μ� for � �= i, j. Then Proposition 3.1 implies μ � ν and we have

dim V (ι(μ1)) ⊗ . . . ⊗ V (ι(μk)) < dim V (ι(ν1)) ⊗ . . . ⊗ V (ι(νk)).

Again by (3.8) we have that λmax is uniquely determined by the condition that
(λi, λj) is maximal in P+(λi + λj , 2) for all i < j. So there is an increasing chain of
tuples, such that in each step only two components are changed, so each step is of
the form μ � ν as above. An induction along this chain gives now (1.1).
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[3] N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie. Chapitre
VII, 1975.

[4] V. Chari, G. Fourier and D. Sagaki, Posets, Tensor Products and Schur Posi-
tivity, Algebra and Number Theory (to appear).

[5] G. Dobrovolska and P. Pylyavskyy, On products of sln characters and support
containment, J. Algebra 316 (2007), no. 2, 706–714.

[6] S. Fomin, W. Fulton, C.-K. Li and Y.-T. Poon, Eigenvalues, singular values, and
Littlewood-Richardson coefficients, Amer. J. Math. 127 (2005), no. 1, 101–127.



G. FOURIER /AUSTRALAS. J. COMBIN. 58 (1) (2014), 178–196 196

[7] A. Lascoux, B. Leclerc and J.-Y. Thibon, Ribbon tableaux, Hall-Littlewood
functions, quantum affine algebras, and unipotent varieties, J. Math. Physics
38 (1997), no. 2, 1041–1068.

[8] T. Lam, A. Postnikov and P. Pylyavskyy, Schur positivity and Schur log-
concavity, Amer. J. Math. 129 (2007) no. 6, 1611–1622.

[9] P.R.W. McNamara, Necessary conditions for Schur-positivity, J. Algebraic
Combin. 28 (2008) no. 4, 495–507.

[10] P.R.W. McNamara and S. van Willigenburg, Positivity results on ribbon Schur
function differences, Europ. J. Combin. 30 (2009) no. 5, 1352–1369.

[11] A. Okounkov, Log-concavity of multiplicities with application to characters of
U(∞), Advances in Math. 127 (1997) no. 2, 258–282.

[12] K. Purbhoo and S. van Willigenburg, On tensor products of polynomial repre-
sentations, Canad. Math. Bull. 51 (2008) no. 4, 584–592.

(Received 19 Mar 2013; revised 5 Sep 2013)


	Introduction
	Notation and definitions
	
	

	About the partial order
	

	The partial order for  k equals 2 
	
	
	

	Application to representation theory
	
	
	
	


