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Abstract

In this paper we summarize the known properties of Stirling numbers
of the second kind and Bell numbers for graphs, and we also prove new
results about them. These give us an alternative way to study r-Stirling
numbers of the second kind and r-Bell numbers.

1 Introduction

Stirling numbers of the second kind and Bell numbers play a fundamental role in
enumerative combinatorics, they count the number of partitions of a finite set. More

precisely, for positive integers k ≤ n, the Stirling number of the second kind
{n

k

}
is the number of partitions of an n-element set into k subsets, while the nth Bell
number Bn is the number of partitions of a set with n elements (and as usual, let{n

0

}
= 0,

{
0

0

}
= 1, B0 = 1). Note that a partition of a non-empty finite set X

means {A1, . . . , Ak} with A1, . . . , Ak being pairwise disjoint, non-empty subsets of
X whose union is X. Here we notice that set partitions are the topic of a recent
book [19].

Several variants and generalizations of Stirling numbers of the second kind and
Bell numbers are known, we mention here only three of them. (For some other
variants see, e.g., [20] and references therein.)

Let n ≥ 2 and k ≤ n be positive integers. A partition of {x1, . . . , xn} is called a
nonconsecutive partition if xi and xi+1 cannot be in the same block (i = 1, . . . , n−1).
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KERESKÉNYI-BALOGH ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 264–274 265

Nonconsecutive partitions are also known under several other names in the literature,

like Fibonacci, reduced or restricted partitions. Then
{n

k

}′
=

{
n − 1

k − 1

}
is the

number of nonconsecutive partitions of an n-element set into k subsets [24], [25] (see
also a problem about banner colourings in the book [11]), and B′

n = Bn−1 gives the
number of nonconsecutive partitions of a set with n elements [25], [27], [28], [31] (see
also some problems in [1], [30]).

The notion of nonconsecutive partitions can be generalized as follows. Let n, k, m
be positive integers with n ≥ m+1 and m ≤ k ≤ n. A partition of {x1, . . . , xn} is an
m-nonconsecutive partition if xi and xj cannot be in the same block for 1 ≤ |i− j| ≤
m. m-nonconsecutive partitions also have some other names in the literature, for
example m-Fibonacci, m-restricted, m-regular, m-separated or m-sparse partitions.

Then
{n

k

}(m)

=

{
n − m

k − m

}
counts the number of m-nonconsecutive partitions of an

n-element set into k subsets [8], [9], [17], [24], [26] and B
(m)
n = Bn−m is the number

of m-nonconsecutive partitions of a set with n elements [2], [17], [18], [26], [27], [31].

Finally, let n, k, r be non-negative integers satisfying n + r ≥ 1 and k ≤ n. A
partition of {x1, . . . , xn+r} is called an r-partition if x1, . . . , xr belong to distinct

blocks. The r-Stirling number of the second kind
{n

k

}
r

is the number of r-partitions

of an (n + r)-element set into k + r subsets. It was first defined by A. Z. Broder [7]
and later redefined by R. Merris [21]. The nth r-Bell number Bn,r is the number of
r-partitions of a set with n + r elements (and B0,0 = 1), which was recently defined
and studied by I. Mező [23].

Stirling numbers of the second kind and Bell numbers for graphs were defined
by B. Duncan and R. Peele [15], although they appeared implicitly earlier in several
papers and books. In Section 2 of this paper we summarize the previously known
results related to these numbers, but we provide new, simpler, alternative proofs if
possible, additionally we show some new properties. In Section 3 we give the values
of these numbers for particular graphs. Finally, by the help of the general theorems,
properties of r-Stirling numbers of the second kind and r-Bell numbers will be proven
in Section 4, some of them being unknown before.

2 Stirling numbers of the second kind and Bell numbers for
graphs

Let G be a simple (finite) graph. A partition of V (G) is called an independent
partition if each block is an independent vertex set (i.e. adjacent vertices belong to
distinct blocks). Then for a positive integer k ≤ |V (G)|, let the Stirling number of

the second kind

{
G

k

}
for graph G be the number of independent partitions of V (G)

into k subsets, moreover let

{
G

0

}
= 0, and define the Bell number BG for graph G
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as the number of independent partitions of V (G). Then BG =

|V (G)|∑
k=0

{
G

k

}
.

All the variants of Stirling numbers of the second kind and Bell numbers men-
tioned in the Introduction are special cases of these notions for certain graphs. For
the empty graph G = En, the path graph G = Pn, the generalized m-path graph
G = P

(m)
n (a simple graph with n ≥ m + 1 vertices, in which two vertices are ad-

jacent if and only if the difference of their indices is at most m), and G = Rn,r

(a graph that consists of a complete graph with r vertices and n isolated vertices),
independent partitions of V (G) are the ordinary partitions, the nonconsecutive par-
titions, the m-nonconsecutive partitions, and the r-partitions of the vertex set of G,
respectively.

By simple observation we get for any simple graph G that

{
G

k

}
= 0 if 0 ≤ k ≤

χ(G) − 1, where χ(G) is the chromatic number of G. This would allow us to start

summation from χ(G) instead of 0 in some formulas below. Moreover

{
G

|V (G)|
}

= 1

and

{
G

|V (G)| − 1

}
=

( |V (G)|
2

)
− |E(G)|.

By a standard argument we can show that reduction relations hold for Stirling
numbers of the second kind and Bell numbers for graphs, they can be found in [15].

Theorem 2.1. If G is a simple graph, e ∈ E(G) and 0 ≤ k ≤ |V (G)| − 1, then

{
G

k

}
=

{
G − e

k

}
−

{
G/e

k

}
and BG = BG−e − BG/e,

where G − e and G/e are the simplified graphs obtained by deleting and contracting
edge e from G, respectively.

Since any proper vertex colouring of G with exactly k colours naturally induces an
independent partition of V (G) into k subsets, we can prove the following theorem. It
appears relatively often in the literature about chromatic polynomials with different
notation (see, e.g., [3], [4], [10], [13], [15], [29]).

Theorem 2.2. If G is a simple graph and pG(x) is the chromatic polynomial of G,
then

pG(x) =

|V (G)|∑
k=0

{
G

k

}
xk,

where xk denotes the kth falling factorial of x.

C. Berceanu [2] showed that Bell numbers for graphs can be written as the linear
combination of ordinary Bell numbers with the coefficients of the chromatic polyno-
mial. He used some linear operators of the polynomial vector space in his proof. A
similar equality appeared in matrix form for Stirling numbers of the second kind for
graphs by B. Duncan and R. Peele [15]. Now we offer a different and simpler proof.
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Theorem 2.3. If G is a simple graph, 0 ≤ k ≤ |V (G)| and pG(x) =

|V (G)|∑
j=0

ajx
j, then

{
G

k

}
=

|V (G)|∑
j=k

aj

{
j

k

}
and BG =

|V (G)|∑
j=0

ajBj.

Proof. For simplicity, denote by n the number of vertices of G. We prove the theorem
by induction on |E(G)|.

It is true for G = En, since we have pG(x) = xn,

{
G

k

}
=

{n

k

}
, BG = Bn.

Let |E(G)| ≥ 1 and suppose that our statement holds for graphs with fewer edges.

Then

{
G

n

}
= 1 =

{n

n

}
, which is the equation to be proved for k = n, because

an = 1. It means that we need to prove the first formula only for 0 ≤ k ≤ n − 1.

Let e ∈ E(G) and pG−e(x) =
n∑

j=0

bjx
j , pG/e(x) =

n−1∑
j=0

cjx
j . Since pG(x) =

pG−e(x) − pG/e(x), we have

aj =

{
bj − cj if 0 ≤ j ≤ n − 1
bj if j = n.

Then Theorem 2.1 and the induction hypothesis for G − e and G/e give

{
G

k

}
=

{
G − e

k

}
−

{
G/e

k

}
=

n∑
j=k

bj

{
j

k

}
−

n−1∑
j=k

cj

{
j

k

}
=

n∑
j=k

aj

{
j

k

}

and

BG = BG−e − BG/e =
n∑

j=0

bjBj −
n−1∑
j=0

cjBj =
n∑

j=0

ajBj .

The expected value of the chromatic polynomial value of a Poisson random vari-
able can be given by a sum with Stirling numbers of the second kind for graphs.

Theorem 2.4. If G is a simple graph, λ > 0 and ξ ∼ Poisson(λ), then

EpG(ξ) =

|V (G)|∑
k=0

{
G

k

}
λk.

Proof. Using Theorem 2.2, we get

EpG(ξ) =

∞∑
j=0

pG(j)
λj

j!
e−λ =

∞∑
j=0

λj

j!
e−λ

|V (G)|∑
k=0

{
G

k

}
jk =
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|V (G)|∑
k=0

{
G

k

}
e−λ

∞∑
j=0

λj

j!
jk =

|V (G)|∑
k=0

{
G

k

}
e−λλk

∞∑
j=k

λj−k

(j − k)!
=

|V (G)|∑
k=0

{
G

k

}
λk.

Now we are in position to prove a Dobiński type formula for Bell numbers for
graphs, named after the author of [12].

Theorem 2.5. If G is a simple graph, then

BG =
1

e

∞∑
j=0

pG(j)

j!
.

Proof. Let ξ ∼ Poisson(1). Then EpG(ξ) =

∞∑
j=0

pG(j)
1j

j!
e−1 =

1

e

∞∑
j=0

pG(j)

j!
. On the

other hand, by Theorem 2.4 we have EpG(ξ) =

|V (G)|∑
k=0

{
G

k

}
1k = BG.

By the inclusion-exclusion principle, we can derive an explicit formula for Stirling
numbers of the second kind for graphs. We should mention that a similar formula
appeared in [24].

Theorem 2.6. If G is a simple graph and 0 ≤ k ≤ |V (G)|, then

{
G

k

}
=

1

k!

k∑
j=0

(−1)j

(
k

j

)
pG(k − j).

Proof. It can be easily checked for k = 0, using pG(0) = 0. For 1 ≤ k ≤ |V (G)|,
we count surjective proper vertex colourings of G with colour set {c1, . . . , ck} in two
different ways.

If we consider a surjective proper vertex colouring of G, then the set of preimages
of c1, . . . , ck is an independent partition of V (G) into k subsets. We can assign
k! surjective proper vertex colourings for one such partition, hence their number is

k!

{
G

k

}
.

Denote by X the set of proper vertex colourings of G with the above colour set
and Yi = {f ∈ X | ci /∈ f(V (G))} (i = 1, . . . , k). Then |X| = pG(k), and the
cardinality of the intersection of any j sets of type Yi is pG(k − j). By the inclusion-
exclusion principle, the number of surjective proper vertex colourings with k colours

is |X \ (Y1 ∪ . . . ∪ Yk)| =

k∑
j=0

(−1)j

(
k

j

)
pG(k − j).

The following theorem is due to W. Yang [31] (for the definition of generalized m-
trees, see that paper). This theorem immediately implies the results for the numbers
of nonconsecutive and m-nonconsecutive partitions.
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Theorem 2.7. If m ≥ 1, G is a generalized m-tree with n ≥ m + 1 vertices and
0 ≤ k ≤ n, then

{
G

k

}
=

⎧⎨
⎩

0 if 0 ≤ k ≤ m − 1{
n − m

k − m

}
if m ≤ k ≤ n

and BG = Bn−m.

Especially, if G is a tree with n ≥ 2 vertices and 0 ≤ k ≤ n, then

{
G

k

}
=

⎧⎨
⎩

0 if k = 0{
n − 1

k − 1

}
if 1 ≤ k ≤ n

and BG = Bn−1.

Proof. We give the proof for the values of Stirling numbers of the second kind for
generalized m-trees, then we get the Bell numbers for them directly by summation.
This could be done by induction on n, choosing the finally added vertex v ∈ V (G),
using the induction hypothesis for G − v and applying the recurrence for ordinary
Stirling numbers of the second kind, but our proof is based on Theorem 2.2.

The chromatic polynomial of a generalized m-tree G with n vertices is

pG(x) = xm(x − m)n−m = xm
n−m∑
k=0

{
n − m

k

}
(x − m)k =

n∑
k=m

{
n − m

k − m

}
xk,

whence

{
G

k

}
=

{
n − m

k − m

}
for m ≤ k ≤ n, and

{
G

k

}
= 0 for 0 ≤ k ≤ m − 1 by

Theorem 2.2.

Remark. If G is a tree with n + 1 vertices, then

pG(x) = x(x − 1)n =
n∑

j=0

(−1)n−j

(
n

j

)
xj+1.

Theorems 2.3 and 2.7 give Bn = BG =

n∑
j=0

(−1)n−j

(
n

j

)
Bj+1 and

{n

k

}
=

{
G

k + 1

}
=

n∑
j=k

(−1)n−j

(
n

j

){
j + 1

k + 1

}
. By binomial transform we get the well-known formulas

Bn+1 =
n∑

j=0

(
n

j

)
Bj and

{
n + 1

k + 1

}
=

n∑
j=k

(
n

j

){
j

k

}
.

Finally, we should mention some further results. B. Duncan [14] described Stirling
numbers of the second kind and Bell numbers for graphs having two components. The

Bell polynomial (a variant of the so-called σ-polynomial) BG(x) =

|V (G)|∑
k=0

{
G

k

}
xk of a



KERESKÉNYI-BALOGH ET AL. /AUSTRALAS. J. COMBIN. 58 (2) (2014), 264–274 270

graph G was studied by F. Brenti [5], and by F. Brenti, G. F. Royle, D.G. Wagner [6],

and they deduced log-concavity and unimodality of

({
G

k

})|V (G)|

k=0

for some families

of graphs. After submission of the first version of the present paper, D. Galvin and
D.T. Thanh [16] proved similar log-concavity results for Stirling numbers for forests
and cycle graphs.

3 Examples

Now we summarize the values of Stirling numbers of the second kind and Bell num-
bers for some special graphs. This is an extended version of the table of [15], which

contained only Bell numbers for fewer graphs. In our table En, Kn, Sn, Pn, S
(m)
n ,

P
(m)
n , Cn, Wn, Km,n denote the empty graph, the complete graph, the star graph,

the path graph, the generalized m-star graph (the graph built up from a complete
graph with m vertices by joining new vertices precisely to the original ones), the gen-
eralized m-path graph, the cycle graph, the wheel graph and the complete bipartite
graph, respectively. Stirling numbers of the second kind for graphs with non-listed

parameters k are equal to 0. (For Km,n, we define

{
m

j

}
(j > m) and

{
n

k − j

}

(k − j > n) to be 0. While for the complements of Pn and Cn, fn+1 and �n denote
the (n + 1)th Fibonacci and the nth Lucas number.)

The values in our table can be derived by direct combinatorial arguments or using
Theorems 2.1 and 2.7.

G

{
G

k

}
BG

En

{n

k

}
(1 ≤ k ≤ n) Bn

Kn 1 (k = n) 1

Sn, Pn (n ≥ 2)
{

n − 1
k − 1

}
(1 ≤ k ≤ n) Bn−1

S
(m)
n , P

(m)
n (n ≥ m + 1)

{
n − m

k − m

}
(m ≤ k ≤ n) Bn−m

Cn (n ≥ 3)
n−1∑

j=k−1

(−1)n−1−j

{
j

k − 1

}
(2 ≤ k ≤ n)

n−1∑
j=1

(−1)n−1−jBj

Wn (n ≥ 4)
n−2∑

j=k−2

(−1)n−2−j

{
j

k − 2

}
(3 ≤ k ≤ n)

n−2∑
j=1

(−1)n−2−jBj

Km,n

k∑
j=0

{
m

j

}{
n

k − j

}
(1 ≤ k ≤ m + n) Bm · Bn

Sn (n ≥ 2) n − 1 (k = n − 1) and 1 (k = n) n

Pn (n ≥ 2)
(

k

n − k

)
(
⌈n

2

⌉
≤ k ≤ n) fn+1

Cn (n ≥ 4)
n

k

(
k

n − k

)
(
⌈n

2

⌉
≤ k ≤ n) �n
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4 r-Stirling numbers of the second kind and r-Bell numbers

As we said before, an r-partition of an (n+r)-element set is a partition where the first
r elements of the set belong to distinct blocks. Or equivalently, it can be considered as
an independent partition of the vertex set of the previously defined graph Rn,r. Then
r-Stirling numbers of the second kind and r-Bell numbers count these partitions (see
[7], [21], [22], [23]). In graph theoretical language, for non-negative integers n, k, r

with n + r ≥ 1 and k ≤ n,
{n

k

}
r

=

{
Rn,r

k + r

}
and Bn,r = BRn,r . We notice that{

Rn,r

l

}
= 0 for 0 ≤ l ≤ r − 1, since χ(Rn,r) = r.

For special parameters r and k, the following equalities hold (with the possible
values of the other parameters):

{n

k

}
0

=
{n

k

}
,

{n

k

}
1

=

{
n + 1

k + 1

}
,

{n

0

}
r

= rn,
{n

1

}
r

= (r + 1)n − rn,

{
n

n − 1

}
r

= rn +
(n

2

)
,

{n

n

}
r

= 1,

Bn,0 = Bn, Bn,1 = Bn+1, B0,r = 1, B1,r = r + 1.

Now r-Stirling numbers of the second kind satisfy a recurrence relation. Namely,
if n, k ≥ 1, r ≥ 0 and k ≤ n, then{

n + 1

k

}
r

=

{
n

k − 1

}
r

+ (k + r)
{n

k

}
r
.

We prove the following theorems by using the results of Section 2 about Stirling
numbers of the second kind and Bell numbers for graphs. The base of the proofs will
be that the chromatic polynomial of the graph Rn,r is pRn,r(x) = xnxr.

Theorem 4.1. If n ≥ 1 and r ≥ 0, then (x + r)n =

n∑
k=0

{n

k

}
r
xk.

Proof. By Theorem 2.2, we have

(x + r)n(x + r)r = pRn,r(x + r) =

n+r∑
k=0

{
Rn,r

k

}
(x + r)k =

n∑
k=0

{n

k

}
r
(x + r)k+r,

which yields our statement.

Theorem 4.2. If n, k, r ≥ 0, n + r ≥ 1 and k ≤ n, then

{n

k

}
r

=

r∑
j=max{k+r−n,0}

(−1)r−j

[
r

j

]{
n + j

k + r

}
and Bn,r =

r∑
j=0

(−1)r−j

[
r

j

]
Bn+j,

where

[
r

j

]
is an (unsigned) Stirling number of the first kind.
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Proof. The chromatic polynomial of Rn,r is

pRn,r(x) = xnxr = xn ·
r∑

j=0

(−1)r−j

[
r

j

]
xj =

r∑
j=0

(−1)r−j

[
r

j

]
xn+j.

Then applying Theorem 2.3, we get the desired equations.

Corollary. If n, k, r ≥ 0, n + r ≥ 1 and k ≤ n, then

{
n + r

k + r

}
=

r∑
j=max{k+r−n,0}

{
r

j

}{
n

k + r − j

}
j

and Bn+r =

r∑
j=0

{
r

j

}
Bn,j.

Proof. The second statement follows from Theorem 4.2 by Stirling transforms. How-
ever, both formulas can be proved by a direct combinatorial argument; we give the
details for Stirling numbers of the second kind.

We need to partition an (n + r)-element set into k + r subsets. Suppose that
the first r elements belong to j blocks (j = max{k + r − n, 0}, . . . , r). These blocks
can be regarded as j new elements. Then n + j elements have to be partitioned into
k + r subsets such that these new elements are in distinct blocks. It means that for

a given j, the number of partitions is

{
r

j

}{
n

k + r − j

}
j

.

Theorem 4.3. If ξ is a Poisson random variable with parameter λ > 0, n ≥ 1 and
r ≥ 0, then

E(ξ + r)n =

n∑
k=0

{n

k

}
r
λk.

Proof. First, it follows from Theorem 2.4 that

EpRn,r(ξ) =
n+r∑
k=0

{
Rn,r

k

}
λk =

n∑
k=0

{n

k

}
r
λk+r = λr

n∑
k=0

{n

k

}
r
λk.

On the other hand

EpRn,r(ξ) = E(ξnξr) =

∞∑
j=0

jnjr λj

j!
e−λ =

∞∑
j=r

jn λj

(j − r)!
e−λ =

λr
∞∑

j=0

(j + r)nλj

j!
e−λ = λrE(ξ + r)n.

Theorem 4.4. If n, r ≥ 0, then

Bn,r =
1

e

∞∑
j=0

(j + r)n

j!
.
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Proof. It is easy to check for n = r = 0. While applying Theorem 2.5, we get

Bn,r = BRn,r =
1

e

∞∑
j=0

jnjr

j!
=

1

e

∞∑
j=r

jn

(j − r)!
=

1

e

∞∑
j=0

(j + r)n

j!
.

Theorem 4.5. If n, k, r ≥ 0, n + r ≥ 1 and k ≤ n, then

{n

k

}
r

=
1

(k + r)!

k+r∑
j=0

(−1)j

(
k + r

j

)
(k + r − j)n(k + r − j)r.

Proof. This immediately follows from Theorem 2.6 for the graph Rn,r.

References

[1] M. Aigner, A Course in Enumeration, Springer, 2007.

[2] C. Berceanu, Chromatic polynomials and k-trees, Demonstratio Math. 34 (2001), 743–
748.

[3] N. Biggs, Algebraic Graph Theory, Cambridge University Press, 1974.

[4] B. Bollobás, Modern Graph Theory, Springer, 1998.

[5] F. Brenti, Expansions of chromatic polynomials and log-concavity, Trans. Amer. Math.
Soc. 332 (1992), 729–756.

[6] F. Brenti, G. F. Royle and D. G. Wagner, Location of zeros of chromatic and related
polynomials of graphs, Canad. J. Math. 46 (1994), 55–80.

[7] A. Z. Broder, The r-Stirling numbers, Discrete Math. 49 (1984), 241–259.

[8] W.Y. C. Chen, E.Y.P. Deng and R.R. X. Du, Reduction of m-regular noncrossing
partitions, European J. Combin. 26 (2005), 237–243.

[9] W. Chu and C. Wei, Set partitions with restrictions, Discrete Math. 308 (2008),
3163–3168.
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