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Abstract

The generalized k-connectivity κk(G) of a graph G was introduced by
Chartrand et al. in 1984. It is natural to introduce the concept of gener-
alized k-edge-connectivity, λk(G). For general k, the generalized k-edge-
connectivity of a complete graph is obtained. For k ≥ 3, tight upper and
lower bounds of κk(G) and λk(G) are given for a connected graph G of
order n, namely, 1 ≤ κk(G) ≤ n − �k

2
� and 1 ≤ λk(G) ≤ n − �k

2
�. More-

over, graphs of order n such that κk(G) = n − �k
2
� and λk(G) = n − �k

2
�

are characterized. Nordhaus-Gaddum-type results for the generalized k-
connectivity are also obtained. For k = 3, we study the relation between
the edge-connectivity and the generalized 3-edge-connectivity of a graph.
Upper and lower bounds of λ3(G) for a graph G in terms of the edge-
connectivity λ of G are obtained, that is, 3λ−2

4
≤ λ3(G) ≤ λ, and two

graph classes are given showing that the upper and lower bounds are
tight. From these bounds, we obtain λ(G) − 1 ≤ λ3(G) ≤ λ(G) if G is
a connected planar graph, and we also obtain the relation between the
generalized 3-connectivity and generalized 3-edge-connectivity of a graph
and its line graph.

1 Introduction

All graphs in this paper are undirected, finite and simple. We refer to the book [2]
for graph theoretical notation and terminology not described here. The generalized
connectivity of a graph G, introduced by Chartrand et al. in [4], is a natural and nice
generalization of the concept of (vertex-)connectivity. For a graph G = (V, E) and a
set S ⊆ V of at least two vertices, an S-Steiner tree or a Steiner tree connecting S (or
simply, an S-tree) is such a subgraph T = (V ′, E ′) of G that is a tree with S ⊆ V ′.
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Two Steiner trees T and T ′ connecting S are internally disjoint if E(T )∩E(T ′) = ∅
and V (T )∩V (T ′) = S. For S ⊆ V (G), the generalized local connectivity κ(S) of S is
the maximum number of internally disjoint trees connecting S in G. The generalized
k-connectivity of G, denoted by κk(G), is then defined as κk(G) = min{κ(S)|S ⊆
V (G) and |S| = k}. Thus, κ2(G) = κ(G). Set κk(G) = 0 when G is disconnected.
Results on the generalized connectivity can be found in [5, 14, 15, 16, 17, 18, 19, 21].

A natural idea is to introduce the concept of generalized edge-connectivity. For
S ⊆ V (G), the generalized local connectivity λ(S) of S is the maximum number
of edge-disjoint Steiner trees connecting S in G. Then the generalized k-edge-
connectivity λk(G) of G is defined by λk(G) = min{λ(S)|S ⊆ V (G) and |S| = k}.
Thus λ2(G) = λ(G). Set λk(G) = 0 when G is disconnected. In general, the param-
eters κk and λk are different. Take, for example, G to be a graph obtained from two
copies of the complete graph K4 by identifying one vertex in each of them. One can
easily check that λ3(G) = 2 but κ3(G) = 1.

The generalized edge-connectivity is related to an important problem, which is
called the Steiner Tree Packing Problem. For a given graph G and S ⊆ V (G),
this problem seeks to find a set of edge-disjoint Steiner trees connecting S in G, of
maximum cardinality. The difference between the Steiner Tree Packing Problem and
the generalized edge-connectivity is as follows. The Steiner Tree Packing Problem
studies local properties of graphs, since S is given beforehand, but the generalized
edge-connectivity focuses on global properties of graphs since it first needs to find
the maximum number λ(S) of edge-disjoint trees connecting S and then S runs over
all k-subsets of V (G) to get the minimum value of λ(S).

The problem for S = V (G) is called the Spanning Tree Packing Problem (note
that the Steiner Tree Packing Problem is a generalization of the Spanning Tree
Packing Problem). For any graph G of order n, the spanning tree packing number,
or STP number, is the maximum number of edge-disjoint spanning trees contained
in G. For the spanning tree packing number, Palmer gave a good survey (see [22]).
One can see that the STP number of a graph G is just κn(G) or λn(G).

In addition to being natural combinatorial measures, the generalized connectivity
and generalized edge-connectivity can be motivated by their interesting interpreta-
tion in practice, as well as theoretical considerations.

From a theoretical perspective, both extremes of this problem are fundamental
theorems in combinatorics. One extreme of the problem is when we have two ter-
minals. In this case internally (edge-)disjoint trees are just internally (edge-)disjoint
paths between the two terminals, and so the problem becomes the well-known Menger
theorem. The other extreme is when all the vertices are terminals. In this case in-
ternally disjoint trees and edge-disjoint trees are just spanning trees of the graph,
and so the problem becomes the classical Nash-Williams-Tutte theorem (for short
proofs, see [9]).

Theorem 1. (Nash-Williams [20],Tutte [24]) A multigraph G contains a system of
k edge-disjoint spanning trees if and only if

‖G/P‖ ≥ k(|P| − 1)
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holds for every partition P of V (G), where ‖G/P‖ denotes the number of edges in
G between distinct blocks of P.

The following corollary is immediate from Theorem 1.

Corollary 1. Every 2�-edge-connected graph contains a system of � edge-disjoint
spanning trees.

Kriesell [11] conjectured that this corollary can be generalized for Steiner trees.

Conjecture 1. (Kriesell [11]) If a set S of vertices of G is 2k-edge-connected (see
Section 2 for the definition), then there is a set of k edge-disjoint Steiner trees in G.

Motivated by this conjecture, the Steiner Tree Packing Problem has obtained
wide attention and many results have been worked out; see [10, 11, 12, 13, 25].

The generalized edge-connectivity and the Steiner Tree Packing Problem have
applications in VLSI circuit design; see [7, 8, 23]. In this application, a Steiner tree is
needed to share an electronic signal by a set of terminal nodes. Another application,
which is our primary focus, arises in the Internet Domain. Imagine that a given
graph G represents a network. We choose k arbitrary vertices as nodes. Suppose
one of the nodes in G is a broadcaster, and all the other nodes are either users or
routers (also called switches). The broadcaster wants to broadcast as many streams
of movies as possible, so that the users have the maximum number of choices. Each
stream of movie is broadcast via a tree connecting all the users and the broadcaster.
So, in essence we need to find the maximum number of Steiner trees connecting all
the users and the broadcaster, namely, we want to obtain λ(S), where S is the set of
k nodes. Clearly, this is a Steiner tree packing problem. Furthermore, if we want to
know whether for any k nodes the network G has the above properties, then we need
to compute λk(G) = min{λ(S)} in order to prescribe the reliability and the security
of the network.

For general k, the generalized k-edge-connectivity of a complete graph is obtained.
Tight upper and lower bounds of κk(G) and λk(G) are given for a connected graph
G of order n, that is, 1 ≤ κk(G) ≤ n − �k

2
� and 1 ≤ λk(G) ≤ n − �k

2
�.

By the Nash-Williams-Tutte theorem, graphs of order n such that κk(G) = n−�k
2
�

and λk(G) = n−�k
2
� are both characterized. Nordhaus-Gaddum-type results for the

generalized k-connectivity are also obtained in Section 3. For k = 3, we study the
relation between the edge-connectivity and the generalized 3-edge-connectivity of a
graph. Kriesell in [11] showed that for any two natural numbers t, � there exists
a smallest natural number f�(t) (respectively, g�(t)) such that for any f�(t)-edge-
connected (respectively, g�(t)-edge-connected) vertex set S of a graph G with |S| ≤ �
(respectively, |V (G) − S| ≤ �), there exists a system T of t edge-disjoint trees such
that S ⊆ V (T ) for each T ∈ T . He determined f3(t) = �8t+3

6

. In Section 4, we use

his result to derive a tight lower bound of λ3(G). We also give a tight upper bound
of λk(G). Altogether we find that 3λ−2

4
≤ λ3(G) ≤ λ. Two graph classes are given

showing that the upper and lower bounds are tight. From these bounds, we obtain
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two results: one is λ(G) − 1 ≤ λ3(G) ≤ λ(G) if G is a connected planar graph; the
other is the relation between the generalized 3-connectivity and generalized 3-edge-
connectivity of a graph and its line graph.

2 Preliminaries

For a graph G, let V (G), E(G), L(G) and G denote the set of vertices, the set of
edges, the line graph and the complement graph of G, respectively. As usual, the
union of two graphs G and H is the graph, denoted by G ∪ H , with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H). For S ⊆ V (G), we denote by G \ S
the subgraph obtained by deleting from G the vertices of S together with the edges
incident with them. If S = {v}, we simply write G \ v for G \ {v}. If S is a subset
of vertices of a graph G, the subgraph of G induced by S is denoted by G[S]. If M
is the edge subset of G, then G \ M denotes the subgraph obtained by deleting the
edges of M from G. Here G \ {e} is abbreviated to G \ e. If M is a subset of edges
of a graph G, the subgraph of G induced by M is denoted by G[M ]. We denote by
EG[X, Y ] the set of edges of G with one vertex in X and the other in Y . If X = {x},
we simply write EG[x, Y ] for EG[{x}, Y ].

Chartrand et al. in [5] obtained the first result in generalized connectivity.

Theorem 2. [5] For every two integers n and k with 2 ≤ k ≤ n,

κk(Kn) = n − �k/2�.

For distinct vertices x, y in G, let λ(x, y; G) denote the local edge-connectivity of
x and y. S ⊆ V (G) is called n-edge-connected, if λ(x, y; G) ≥ n for all x �= y in S.
In [11], Kriesell gave the following result.

Lemma 1. [11] Let t ≥ 1 be a natural number, and G be a graph, and let {a, b, c} ⊆
V (G) be �8t+3

6

-edge-connected in G. Then there exists a system of t edge-disjoint

{a, b, c}-trees.

Chartrand et al. [6] investigated the relation between the connectivity and edge-
connectivity of a graph and its line graph.

Lemma 2. [6] If G is a connected graph, then

(1) κ(L(G)) ≥ λ(G) if λ(G) ≥ 2.

(2) λ(L(G)) ≥ 2λ(G) − 2.

(3) κ(L(L(G))) ≥ 2κ(G) − 2.

Palmer [22] gave the STP number of a complete bipartite graph.

Lemma 3. [22] The STP number of a complete bipartite graph Ka,b is � ab
a+b−1


.
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3 Results on κk(G) and λk(G) for general k

After the preparation of the above section, we start to give our main results of this
paper.

3.1 Results for complete graphs

The following two observations are easily seen.

Observation 1. If G is a connected graph, then κk(G) ≤ λk(G) ≤ δ(G).

Observation 2. If H is a spanning subgraph of G, then κk(H) ≤ κk(G) and λk(H) ≤
λk(G).

For general k and the complete graph Kn, the value of κk(Kn) was determined
by Chartrand et al.; see Theorem 2. Now we give the result for λk(Kn).

Choose S ⊆ V (G) with |S| = k. Let T be a maximum set of edge-disjoint
trees in G connecting S. Let T1 be the set of trees in T whose edges belong to
E(G[S]), and T2 be the set of trees containing at least one edge of EG[S, S̄], where
S̄ = V (G) \ S. Thus, T = T1 ∪ T2. (Throughout this paper, T , T1, T2 are always
defined as this.)

Lemma 4. Let S ⊆ V (G), |S| = k and T be a tree connecting S. If T ∈ T1, then
T uses k − 1 edges of E(G[S])∪EG[S, S̄]. If T ∈ T2, then T uses at least k edges of
E(G[S]) ∪ EG[S, S̄].

Proof. It is easy to see that for each tree T in T1, T uses k − 1 edges in E(G[S]),
namely, T uses k − 1 edges of E(G[S]) ∪ EG[S, S̄].

For T ∈ T2, by deleting all the vertices of T from S̄, we obtain some components
of T in S, denoted by C1, C2, . . . , Cs. Let |Ci| = ci. Then |E(Ci)| = ci − 1 and∑s

i=1(ci −1) = k− s. Since there exists one edge of T between each Ci and S̄, where
1 ≤ i ≤ s, it follows that T uses (k − s) + s = k edges in E(G[S]) ∪ EG[S, S̄].

Theorem 3. For every two integers n and k with 2 ≤ k ≤ n,

λk(Kn) = n − �k/2�.

Proof. Let G = Kn. We choose S ⊆ V (G) such that |S| = k. Let |T | = y and
|T1| = x. From Lemma 4, each tree T ∈ T1 uses k − 1 edges in E(G[S]) ∪ EG[S, S̄],
and so |T1| = x ≤ �(k

2

)
/(k − 1)
 = �k

2

. Since each tree T ∈ T2 uses k edges in

E(G[S]) ∪ EG[S, S̄], we have |T1|(k − 1) + |T2|k ≤ |EG[S, S̄]| + |E(G[S])|, that is,
x(k − 1) + (y−x)k ≤ (

k
2

)
+ k(n− k). So λk(G) ≤ y ≤ k−1

2
+ n− k + x

k
= n−�k

2
�+ x

k

since x ≤ �k
2

 and y is an integer.

From the above arguments, we conclude that λk(Kn) ≤ n− �k
2
�. Combining this

with Theorem 2 and Observation 1, we have λk(Kn) = n − �k
2
�.
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From Theorems 2 and 3, we get that λk(G) = κk(G) for a complete graph G = Kn.
However, this is a very special case. Actually, λk(G) − κk(G) could be very large.
For example, let G be a graph obtained from two copies of the complete graph Kn

by identifying one vertex in each of them. Then for k < n, λk(G) = n − �k
2
�, but

κk(G) = 1.

3.2 Graphs with κk(G) = n − �k/2� and λk(G) = n − �k/2�, respectively

At first, we give the tight bounds for κk(G) and λk(G):

Proposition 1. For a connected graph G of order n and 3 ≤ k ≤ n, 1 ≤ κk(G) ≤
n − �k/2�. Moreover, the upper and lower bounds are tight.

Proof. From Observation 2 and Theorem 2, we have κk(G) ≤ κk(Kn) = n − �k
2
�.

Since G is connected, then κk(G) ≥ 1. The result holds.

One can easily check that the complete graph Kn attains the upper bound and
any tree Tn on n vertices attains the lower bound.

The same upper and lower bounds can be established for the generalized k-edge-
connectivity.

Proposition 2. For a connected graph G of order n and 3 ≤ k ≤ n, 1 ≤ λk(G) ≤
n − �k/2�. Moreover, the upper and lower bounds are tight.

Next, we will characterize graphs with κk(G) = n − �k
2
� and λk(G) = n − �k

2
�,

respectively. Let us start with some lemmas, which will be used later.

Lemma 5. For even k with 4 ≤ k ≤ n, λk(Kn \ e) < n − k
2

for any e ∈ E(Kn).

Proof. Let G = Kn \ e. We choose S ⊆ V (G) such that |S| = k and Kn[S] con-
taining e. Let |T | = y and |T1| = x. Since every tree T ∈ T1 uses k − 1 edges
in E(G[S]) ∪ EG[S, S̄], |T1| = x ≤ ((

k
2

) − 1
)
/(k − 1) = k

2
− 1

k−1
. From Lemma 4,

each tree T ∈ T2 uses k edges of E(G[S]) ∪ EG[S, S̄]. Thus |T1|(k − 1) + |T2|k ≤
|EG[S, S̄]| + |E(G[S])|, that is, x(k − 1) + (y − x)k ≤ (

k
2

)
+ k(n − k) − 1. So

λk(G) = y ≤ k−1
2

+ n − k + x−1
k

≤ n − k
2
− 1

k−1
< n − k

2
.

Lemma 6. If k is odd with 3 ≤ k ≤ n, and M is an edge set of the complete graph
Kn such that |M | ≥ k+1

2
, then λk(Kn \ M) < n − k+1

2
.

Proof. Let G = Kn \ M . We can choose S ⊆ V (G) such that |S| = k and |M ∩(
E(Kn[S]) ∪ EKn [S, S̄])| ≥ k+1

2
. Let |T | = y and |T1| = x. Since each tree T ∈ T1

uses k − 1 edges in E(G[S])∪EG[S, S̄], |T1| = x ≤ (
k
2

)
/(k − 1) = k−1

2
. From Lemma

4, each tree T ∈ T2 uses k edges of E(G[S]) ∪ EG[S, S̄]. Thus |T1|(k − 1) + |T2|k ≤
|EG[S, S̄]| + |E(G[S])|, that is, x(k − 1) + (y − x)k ≤ (

k
2

)
+ k(n − k) − k+1

2
. So

λk(G) = y ≤ k−1
2

+ n − k + x
k
− k+1

2k
≤ n − k+1

2
− 1

2k
< n − k+1

2
.
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Lemma 7. If n is odd and M is an edge set of the complete graph Kn such that
0 ≤ |M | ≤ n−1

2
, then G = Kn \ M contains n−1

2
edge-disjoint spanning trees.

Proof. Let P =
⋃p

i=1 Vi be a partition of V (G) with |Vi| = ni (1 ≤ i ≤ p), and Ep

be the set of edges between distinct blocks of P in G. The case p = 1 is trivial, and
thus we assume p ≥ 2. Then

|Ep| ≥
(

n

2

)
−

p∑
i=1

(
ni

2

)
− |M | ≥

(
n

2

)
−

p∑
i=1

(
ni

2

)
− n − 1

2
.

We will show that
(

n
2

)−∑p
i=1

(
ni

2

)− n−1
2

≥ n−1
2

(p−1), that is, (n−p)n−1
2

≥ ∑p
i=1

(
ni

2

)
.

We only need to prove that (n− p)n−1
2

≥ max{∑p
i=1

(
ni

2

)}. Since f(n1, n2, . . . , np) =∑p
i=1

(
ni

2

)
obtains its maximum value when n1 = n2 = · · · = np−1 = 1 and np =

n − p + 1, we need to show the inequality (n − p)n−1
2

≥ (
1
2

)
(p − 1) +

(
n−p+1

2

)
, that

is (n − p)p−2
2

≥ 0. It is easy to see that the inequality holds. Thus, |Ep| ≥
(

n
2

) −∑p
i=1

(
ni

2

) − |M | ≥ n−1
2

(p − 1). From Theorem 1, we know that there exist n−1
2

edge-disjoint spanning trees (Note that we can use the result of Theorem 1, although
Nash-Williams and Tutte considered multigraphs but here we are concerned with the
generalized connectivity and generalized edge-connectivity for simple graphs).

Theorem 4. Let G be a connected graph of order n and k be an integer such that
3 ≤ k ≤ n. Then κk(G) = n − �k

2
� if and only if G = Kn for k even; G = Kn \ M

for k odd, where M is an edge set such that 0 ≤ |M | ≤ k−1
2

.

Proof. First we consider the case that k is even. From Theorem 2, we have κk(Kn) =
n − k

2
. Actually, the complete graph Kn is the unique graph with this property. We

only need to show that κk(Kn \ e) < n − k
2

for any e ∈ E(Kn). From Lemma 5 and
Observation 1, we know that κk(Kn \ e) ≤ λk(Kn \ e) < n− k

2
for e ∈ E(Kn). Thus,

the result holds for k even.

Next we consider the case that k is odd.

Necessity: Let G be a graph of order n such that κk(G) = n − k+1
2

. Since G
is connected, we can consider G as a graph obtained by deleting some edges from
the complete graph Kn. If G = Kn \ M such that |M | ≥ k+1

2
, then κk(Kn \ M) ≤

λk(Kn \ M) < n − k+1
2

by Observation 1 and Lemma 6, a contradiction. Thus,
G = Kn \ M , where 0 ≤ |M | ≤ k−1

2
.

Sufficiency: We will show that κk(G) ≥ n − k+1
2

if G = Kn \ M such that
0 ≤ |M | ≤ k−1

2
. It suffices to prove that κk(G) ≥ n − k+1

2
for |M | = k−1

2
.

Let S = {u1, u2, . . . , uk} ⊆ V (G) and S̄ = {w1, w2, . . . , wn−k}. We have the
following two cases to consider:

Case 1. M ⊆ E(Kn[S]) ∪ E(Kn[S̄]).

Let M ′ = M∩E(Kn[S]) and M ′′ = M∩E(Kn[S̄]). Then |M ′|+|M ′′| = |M | = k−1
2

and 0 ≤ |M ′|, |M ′′| ≤ k−1
2

. We can consider G[S] as a graph obtained by deleting
|M ′| edges from the complete graph Kk. From Lemma 7, there exist k−1

2
edge-disjoint

spanning trees in G[S]. Actually, these k−1
2

edge-disjoint trees are all trees connecting
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S in G[S]. All these trees together with the trees Ti = wiu1 ∪wiu2 ∪ · · · ∪wiuk (1 ≤
i ≤ n−k) form n− k+1

2
internally disjoint trees connecting S, namely, κ(S) ≥ n− k+1

2

(Note that the trees connecting S can be edge-disjoint in G[S], but must be internally
disjoint in G \ S).

Case 2. M � E(Kn[S]) ∪ E(Kn[S̄]).

In this case, there exist some edges of M in EKn [S, S̄]. Let M ′ = M ∩ E(Kn[S])
and M ′′ = M ∩ E(Kn[S̄]), and let |M ′| = m1 and |M ′′| = m2. Clearly, 0 ≤ mi ≤
k−3
2

(i = 1, 2).

For wi ∈ S̄, we let |EKn[M ][wi, S]| = xi, where 1 ≤ i ≤ n − k. Without loss

of generality, let x1 ≥ x2 ≥ · · · ≥ xn−k. Thus
∑n−k

i=1 xi + m1 + m2 = k−1
2

and
|EG[wi, S]| = k − xi.

Our basic idea is to seek for some edges in G[S], and let them together with the
edges of EG[S, S̄] form n − k internally disjoint trees connecting S.

For w1 ∈ S̄, without loss of generality, let S1 = {u1, u2, . . . , ux1} such that ujw1 ∈
M (1 ≤ j ≤ x1) and S2 = S \ S1 = {ux1+1, ux1+2, . . . , uk}. Clearly, S = S1 ∪ S2 and
ujw1 ∈ E(G) (x1 + 1 ≤ j ≤ k), namely, S2 = NG(w1)∩ S. One can see that the tree
T ′

1 = w1ux1+1 ∪ w1ux1+2 ∪ · · · ∪ w1uk is a Steiner tree connecting S2. Our idea is to
seek for x1 edges in EG[S1, S2] and add them to T ′

1 to form a Steiner tree connecting
S. For each uj ∈ S1 (1 ≤ j ≤ x1), we claim that |EG[uj, S2]| ≥ 1. Otherwise,
let |EG[uj, S2]| = 0. Then |EKn[M ][uj, S2]| = k − x1 and |M | ≥ |EKn[M ][uj, S2]| +
dKn[M ](w1) ≥ (k−x1)+x1 = k, which contradicts to |M | = k−1

2
. Since |EG[uj, S2]| ≥

1 for each uj (1 ≤ j ≤ x1), we can find a vertex ur (x1 + 1 ≤ r ≤ k) such that
e1j = ujur ∈ E(G[S]). Let M1 = {e11, e12, . . . , e1x1} and G1 = G \M1. Thus the tree
T1 = w1ux1+1 ∪ w1ux1+2 ∪ · · · ∪ w1uk ∪ e11 ∪ e12 ∪ · · · ∪ e1x1 is our desired one.

For w2 ∈ S̄, without loss of generality, let S1 = {u1, u2, . . . , ux2} such that ujw2 ∈
M (1 ≤ j ≤ x2) and S2 = S \ S1 = {ux2+1, ux2+2, . . . , uk}. Clearly, S = S1 ∪ S2 and
ujw2 ∈ E(G) (x2 + 1 ≤ j ≤ k), namely, S2 = NG(w2)∩ S. One can see that the tree
T ′

2 = w2ux2+1 ∪ w2ux2+2 ∪ · · · ∪ w2uk is a Steiner tree connecting S2. Our idea is to
seek for x2 edges in EG1 [S1, S2] and add them to T ′

2 to form a Steiner tree connecting
S. For each uj ∈ S1 (1 ≤ j ≤ x2), we claim that |EG1 [uj, S2]| ≥ 1. Otherwise, we let
|EG1 [uj, S2]| = 0. For e /∈ EG1 [uj , S2], e ∈ M or e ∈ M1 = {e11, e12, . . . , e1x1}. Then
|EKn[M ][uj, S2]| ≥ k−x2−x1 and |M | ≥ |EKn[M ][uj, S2]|+dKn[M ](w1)+dKn[M ](w2) ≥
(k − x2 − x1) + x1 + x2 = k, which contradicts to |M | = k−1

2
. Since |EG1 [uj, S2]| ≥ 1

for each uj (1 ≤ j ≤ x2), we can find a vertex ur (x2 + 1 ≤ r ≤ k) such that
e2j = ujur ∈ E(G1[S]). Let M2 = {e21, e22, . . . , e2x2} and G2 = G1 \ M2. Thus the
tree T2 = w2ux2+1 ∪ w2ux2+2 ∪ · · · ∪ w2uk ∪ e21 ∪ e22 ∪ · · · ∪ e2x2 is our desired tree.
Clearly, T2 and T1 are two internally disjoint trees connecting S.

For wi ∈ S̄ (3 ≤ i ≤ n − k), without loss of generality, let S1 = {u1, u2, . . . , uxi
}

such that ujwi ∈ M (1 ≤ j ≤ xi) and S2 = S \ S1 = {uxi+1, uxi+2, . . . , uk}. Clearly,
S = S1 ∪ S2 and wiuj ∈ E(G) (xi + 1 ≤ j ≤ k), namely, S2 = NG(wi) ∩ S. One
can see the tree T ′

i = wiuxi+1 ∪ wiuxi+2 ∪ · · · ∪ wiuk is a Steiner tree connecting S2.
Our idea is to seek for xi edges in EGi−1

[S1, S2] and add them to T ′
i to form a Steiner

tree connecting S. For each uj ∈ S1 (1 ≤ j ≤ xi), we claim that |EGi−1
[uj, S2]| ≥ 1.
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Otherwise, let |EGi−1
[uj , S2]| = 0. For e /∈ EGi−1

[uj, S2], we have that e ∈ M or

e ∈ ⋃i−1
r=1 Mr. Then |EKn[M ][uj, S2]| ≥ k − xi −

∑i−1
r xr and |M | ≥ |EKn[M ][uj, S2]|+∑i

r dKn[M ](wr) ≥ (k − ∑i
r xr) +

∑i
r xr = k, which contradicts to |M | = k−1

2
. Since

|EGi−1
[uj, S2]| ≥ 1 for each uj (1 ≤ j ≤ xi), we can find a vertex ur (xi + 1 ≤ r ≤ k)

such that eij = ujur ∈ E(Gi−1[S]). Let Mi = {ei1, ei2, . . . , eixi
} and Gi = Gi−1 \ Mi.

Thus the tree Ti = wiuxi+1∪wiuxi+2∪· · ·∪wiuk∪ei1∪ei2∪· · ·∪eixi
is our desired one

(Note that if xi = 0 then we do not need to search for some edges of E(Gi−1[S]) and
Ti = wiu1 ∪wiu2 ∪ · · · ∪wiuk is our desired tree). Clearly, Ti and Tj (1 ≤ j ≤ i− 1)
are two internally disjoint trees connecting S.

We continue this procedure until we find out n − k trees connecting S, say
T1, T2, . . . , Tn−k. Now we terminate this procedure. Clearly, we can consider
Gn−k[S] = G[S] \ ⋃n−k

i=1 Mi as a graph obtained by deleting |M ′| + ∑n−k
i=1 |Mi| edges

from the complete graph Kk. Since
∑n−k

i=1 xi + m1 + m2 = k−1
2

, we have 1 ≤∑n−k
i=1 |Mi| + m1 ≤ k−1

2
. From Lemma 7, there exist k−1

2
edge-disjoint trees con-

necting S in G[S] (Note that these trees can be edge-disjoint by the definition of
generalized k-connectivity). These trees together with T1, T2, . . . , Tn−k form n− k+1

2

internally disjoint trees connecting S, namely, κ(S) ≥ n − k+1
2

.

From the above discussion, we get that κ(S) ≥ n − k+1
2

for S ⊆ V (G), which
implies that κk(G) ≥ n − k+1

2
. From this together with Proposition 1, we have

κk(G) = n − k+1
2

.

Theorem 5. For a connected graph G of order n and n ≥ k ≥ 3, λk(G) = n − �k
2
�

if and only if G = Kn for k even; G = Kn \ M for k odd, where M is an edge set
such that 0 ≤ |M | ≤ k−1

2
.

Proof. First we consider the case that k is even. From Proposition 2 and Lemma 5,
we have that λk(Kn) = n − k

2
if and only if G = Kn.

Next we consider the case that k is odd. If G = Kn \ M (0 ≤ |M | ≤ k−1
2

), then
λk(G) ≥ κk(G) = n− k+1

2
by Observation 1 and Theorem 4. From this together with

Proposition 2, we know that λk(G) = n − k+1
2

. Conversely, assume that λk(G) =
n − k+1

2
. Since G is connected, we can consider G as a graph obtained by deleting

some edges from the complete graph Kn. If G = Kn \ M such that |M | ≥ k+1
2

,
then λk(G) < n − k+1

2
by Lemma 6, a contradiction. So G = Kn \ M , where

0 ≤ |M | ≤ k−1
2

.

Remark 1. The graphs with κk(G) = n − �k
2
� or λk(G) = n − �k

2
� have been

characterized by Theorems 4 and 5. A natural question is, for the lower bounds,
whether we can characterize the graphs with κk(G) = 1 or λk(G) = 1. It seems
not easy to solve such a problem. Note that the minimal graphs with κk(G) = 1
or λk(G) = 1 are the trees of order n. So, an interesting problem could be what is
the maximal graphs with κk(G) = 1 or λk(G) = 1? Actually, one can check that a
connected graph G obtained from the complete graph Kn−1 by attaching a pendant
edge is a such graph, which is obviously a unique maximum such graph. However, the
problem of characterizing all the maximal graphs remains unsolved. Here maximal
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(minimal) means that adding (deleting) any edge will destroy κk(G) = 1 or λk(G) =
1, whereas maximum means a such graph that has the largest number of edges.

3.3 Nordhaus-Gaddum-type results

Alavi and Mitchem in [1] considered the Nordhaus-Gaddum-type results for the con-
nectivity and edge-connectivity. We are concerned with analogous inequalities in-
volving generalized k-connectivity.

Theorem 6. For any graph G of order n, we have

(1) 1 ≤ κk(G) + κk(G) ≤ n − �k/2�;
(2) 0 ≤ κk(G)κk(G) ≤ [n−�k/2�

2
]2.

Moreover, the upper and lower bounds are tight.

Proof. (1) To avoid confusion, we denote the generalized local connectivity of a k-
subset S in a graph G by κ(G; S). Since G ∪ G = Kn, for any k-subset S we have
κ(G; S) + κ(G; S) ≤ κ(Kn; S). Suppose that κk(Kn) = κ(Kn; S0) for some k-subset
S0. Then we have κk(Kn) = κ(Kn; S0) ≥ κ(G; S0) + κ(G; S0) ≥ κk(G) + κk(G).
This together with κk(Kn) = n − �k

2
� results in κk(G) + κk(G) ≤ n − �k

2
�. If

κk(G) + κk(G) = 0, then κk(G) = κk(G) = 0. Thus G and G are all disconnected,
which is impossible. So κk(G) + κk(G) ≥ 1.

(2) It follows immediately from (1).

To see that the lower bound of (1) is tight, it suffices to take G as the complete
bipartite graph K1,n−1 since κk(K1,n−1) + κk(K1,n−1) = 1 + 0 = 1.

The following observation indicates the graphs attaining the lower bound of (2).

Observation 3. κk(G)κk(G) = 0 if and only if G or G is disconnected.

We construct a graph class to show that the two upper bounds are tight for k = n.

Example 3. Let n, r be two positive integers such that n = 4r+1. From Lemma 3,
we know that κn(K2r,2r+1) = λn(K2r,2r+1) = r. Let E be the set of the edges of these r
spanning trees in K2r,2r+1. Then there exist 2r(2r+1)−4r2 = 2r remaining edges in
K2r,2r+1 except the edges in E . Let M be the set of these 2r edges. Set G = K2r,2r+1\
M . Then κn(G) = r, M ⊆ E(G) and G is a graph obtained from two cliques K2r and
K2r+1 by adding 2r edges in M between them, that is, one end of each edge belongs
to K2r and the other belongs to K2r+1. Note that E(G) = E(K2r) ∪ M ∪E(K2r+1).
Now we show that κn(G) ≥ r. As we know, K2r contains r Hamiltonian paths, say
P1, P2, . . . , Pr, and so does K2r+1, say P ′

1, P
′
2, . . . , P

′
r. Pick up r edges from M , say

e1, e2, . . . , er, let Ti = Pi ∪ P ′
i ∪ ei(1 ≤ i ≤ r). Then T1, T2, . . . , Tr are r spanning

trees in G, namely, κn(G) ≥ r. Since |E(G)| =
(
2r
2

)
+

(
2r+1

2

)
+2r = 4r2 +2r and each

spanning tree uses 4r edges, these edges can form at most �4r2+2r
4r


 = r spanning trees,

that is, κn(G) ≤ r. So κn(G) = r. Clearly, κn(G) + κn(G) = 2r = n−1
2

= n − �n
2
�

and κn(G) · κn(G) = r2 =
[n−�n/2�

2

]2
.
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Remark 2. The above example only shows that the upper bound of (2) in Theorem 6
is tight for the case k = n. A natural question is to find examples showing that
the upper bounds of Theorem 6 are tight for each k with 3 ≤ k < n. Note that
the complete graph G = Kn can attain the upper bound of (1), but clearly G
is disconnected. Therefore, when we require that both G and G are connected,
is there a graph which can attain the upper bounds of Theorem 6 respectively or
simultaneously for each k with 3 ≤ k ≤ n ?

4 Results for λ3(G) and κ3(G)

4.1 Upper and lower bounds for λ3(G)

From now on, we focus our attention on generalized 3-edge-connectivity. From Propo-
sition 2, we obtained tight upper and lower bounds of λ3(G), that is, 1 ≤ λ3(G) ≤
n − 2. Now we give further tight upper and lower bounds of λ3(G) by the edge-
connectivity, that is, 3λ−2

4
≤ λ3(G) ≤ λ, which will be used in planar graphs and line

graphs. At first we give a tight upper bound for λk(G).

Proposition 3. For any graph G of order n, λk(G) ≤ λ(G). Moreover, the upper
bound is tight.

Proof. Let M be a λ(G)-edge-cut of G, where 1 ≤ λ(G) ≤ n − 1. Then G \ M has
exactly two components. We can choose S = {v1, v2, . . . , vk} so that S ⊆ V (G) and
at least two of the k vertices are in different components. Thus any tree connecting
S must contain an edge in M . By the definition of λ(S), we get λ(S) ≤ |M |. So
λk(G) ≤ λ(S) ≤ |M | = λ(G).

Furthermore, we will show that the graph G = Kk ∨ (n− k)K1 (n ≥ 3k) satisfies
that κk(G) = λk(G) = κ(G) = λ(G) = δ(G) = k (see Figure 1).

Kk

u1 u2 us uk

w1 w2 wk−s wk

uk+1 uk+2u2k−s un−k

u1

u2

u3

uk
uk+1

uk+2

un−k

u2k

Figure 1: Graph G with κk(G) = λk(G) = κ(G) = λ(G) = δ(G) = k.

Let W = {w1, w2, . . . , wk}, U = Kk \ W = {u1, u2, . . . , un−k}, and S be a k-
subset of vertices of G. Without loss of generality, let |S ∩ V (U)| = s (s ≤ k).
Then |S ∩ V (W )| = k − s. Without loss of generality, let ui ∈ S (1 ≤ i ≤ s) and
wj ∈ S (1 ≤ j ≤ k − s). Then the trees Ti = wiu1 ∪ wiu2 ∪ · · · ∪ wius ∪ uk+iw1 ∪
uk+iw2∪· · ·∪uk+iwk−s(i = 1, 2, . . . , k−s) and Tj = wju1∪wju2∪· · ·∪wjus∪wjw1∪
wjw2 ∪ · · · ∪ wjwk−s (j = k − s + 1, k − s + 2, . . . , k) form k pairwise edge-disjoint
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trees connecting S, namely λ(S) ≥ k. Combining this with λk(G) ≤ λ(G) = k, we
get λk(G) = k. Since the above k trees are also internally disjoint trees connecting
S, we have κk(G) = k. So κk(G) = λk(G) = κ(G) = λ(G) = δ(G) = k. Clearly, the
upper bound of Proposition 3 is tight.

Next we give a tight lower bound for λ3(G).

Proposition 4. Let G be a connected graph with n vertices. For every two integers
s and r with s ≥ 0 and r ∈ {0, 1, 2, 3}, if λ(G) = 4s + r, then λ3(G) ≥ 3s + � r

2
�.

Moreover, the lower bound is tight. We simply write λ3(G) ≥ 3λ−2
4

.

Proof. Let λ = �8t+3
6


. From Lemma 1, we have λ3(G) ≥ t (Note that we can use
the result of Lemma 1, although Kriesell [11] considered graphs containing multiple
edges but here we are concerned with the generalized edge-connectivity for simple
graphs).

If λ = 4s, since 8t+3
6

is not an integer, then 4s < 8t+3
6

. Thus λ3(G) ≥ t > 3s − 3
8
,

which implies λ3(G) ≥ 3s. With a similar method, we can obtain that λ3(G) ≥ 3s+1
if λ = 4s + 1, and λ3(G) ≥ 3s + 2 if λ = 4s + 3.

Note that there exists no integer t such that 4s + 2 = �8t+3
6


 if λ = 4s + 2.
But a graph G with λ(G) = 4s + 2 is also (4s + 1)-edge-connected, and so we have
λ3(G) ≥ 3s + 1.

λ3(G) ≥
⎧⎨
⎩

3s if λ = 4s,
3s + 2 if λ = 4s + 3,
3s + 1 if λ = 4s + 1 or λ = 4s + 2.

So the result holds. Simply, we write λ3(G) ≥ 3λ−2
4

.

Now we give graphs attaining the lower bound.

For λ = 4s with s ≥ 1, we construct a graph G as follows (see Figure 2 (a)):
Let P = X1 ∪ X2 and Q = Y1 ∪ Y2 be two cliques with |X1| = |Y1| = 2s and
|X2| = |Y2| = 2s. Let u, v be adjacent to every vertex in P, Q, respectively, and w
be adjacent to every vertex in X1 and Y1. Finally, we finish the construction of the
graph G by adding a perfect matching between X2 and Y2. It can be easily checked
that λ = 4s.

We consider the case S = {u, v, w}. There exist two kinds of edge-disjoint trees
connecting S (see Figure 2 (b)): the tree of Type I is a path u-v1-w-v2-v; the tree of
Type II is T1 or T2, where T1 = uv5 ∪ v3v5 ∪wv3 ∪ v5v7 ∪ v7v and T2 = uv6 ∪ v6v8 ∪
v8v4 ∪ v4w ∪ v8v, respectively. We denote the numbers of trees of Type I and Type
II by x and y, respectively. Note that |EG[w, X1 ∪ Y1]| = 4s and each tree of Type
I uses two edges of EG[w, X1 ∪ Y1], we have x ≤ 2s. Although each tree of Type II
uses one edge of EG[w, X1 ∪ Y1], we have y ≤ 2s since each tree of Type II uses one
edge of EG[X2, Y2] and |EG[X2, Y2]| = 2s. Combining these with 2x+ y ≤ 4s, we can
derive the optimal solution x = s and y = 2s by solving the following integer linear
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u

w

v

X1

X2

Y1

Y2

P Q

u

w

v

X1

X2

Y1

Y2

P Q
v1

v4
v3

v2

v5 v7

v6 v8

Type I

Type II

Figure 2 (a): The graph with λ(G) = 4s and λ3(G) = 3s.
Figure 2 (b): Two types of trees connecting {u, v, w}.

programming: ⎧⎨
⎩

Maximize : x + y
Subject to : x ≤ 2s, y ≤ 2s, 2x + y ≤ 4s,
and x, y ≥ 0.

Thus λ(S) ≥ 3s. We can check that for any other three vertices of G the number
of edge-disjoint trees connecting them is not less than 3s. So λ3(G) = 3s and the
graph G attaining the lower bound.

For λ = 4s + 1, let |X1| = |Y1| = 2s + 1 and |X2| = |Y2| = 2s; for λ = 4s + 2, let
|X1| = |Y1| = 2s+1 and |X2| = |Y2| = 2s+1; for λ = 4s+3, let |X1| = |Y1| = 2s+2
and |X2| = |Y2| = 2s + 1, where s ≥ 1. Similarly, we can check that λ3(G) = 3s + 1
for λ = 4s + 1; λ3(G) = 3s + 1 for λ = 4s + 2; λ3(G) = 3s + 2 for λ = 4s + 3.

For the case s = 0, we have G = Pn such that λ(G) = λ3(G) = 1; G = Cn such
that λ(G) = 2 and λ3(G) = 1; G = Ht such that λ(G) = 3 and λ3(G) = 2, where Ht

denotes the graph obtained from t copies of K4 by identifying a vertex from each of
them in the way shown in Figure 3.

Figure 3: λ(Ht) = 3, λ3(Ht) = 2.

As we know, every planar graph G has a vertex of degree at most 5, i.e., δ(G) ≤ 5.
Since λ(G) ≤ δ, we only need to consider a planar graph G with edge-connectivity
λ(G) at most 5. From Proposition 4, it can be deduced that for any graph (not
necessarily planar) if λ(G) = 1, λ3(G) = 1; if λ(G) = 2, λ3(G) ≥ 1; if λ(G) = 3,
λ3(G) ≥ 2; if λ(G) = 4, λ3(G) ≥ 3; and if λ(G) = 5, λ3(G) ≥ 4. Therefore, the
following corollary is obvious.

Corollary 2. If G is a connected planar graph, then λ(G) − 1 ≤ λ3(G) ≤ λ(G).
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4.2 Results for line graphs

This section investigate the relation between the generalized 3-connectivity and gen-
eralized 3-edge-connectivity of a graph and its line graph.

Proposition 5. If G is a connected graph, then

(1) λ3(G) ≤ κ3(L(G)).

(2) λ3(L(G)) ≥ 3
2
λ3(G) − 2.

(3) κ3(L(L(G)) ≥ 3
2
κ3(G) − 2.

Proof. For (1), let e1, e2, e3 be three arbitrary distinct vertices of the line graph of
G such that λ3(G) = t with t ≥ 1. Let e1 = v1v

′
1, e2 = v2v

′
2 and e3 = v3v

′
3 be those

edges of G corresponding to the vertices e1, e2, e3 in L(G), respectively.

Consider three distinct vertices of the six end-vertices of e1, e2, e3. Without loss
of generality, let S = {v1, v2, v3} be three distinct vertices. Since λ3(G) = t, there
exist t edge-disjoint trees T1, T2, . . . , Tt connecting S in G. We define a minimal tree
T connecting S as a tree connecting S whose subtree obtained by deleting any edge
of T does not connect S.

v1 v2 v3

v1

v1

v1

v1 v1

v2 v3

v2 v3

v3v3

v3

v2

v2

v2 v3

xx xy y

x

Type a Type b Type c

Type eType d Type f

Figure 4: Six possible types of Ti ∪ Tj .

Choosing any two edge-disjoint minimal trees Ti and Tj (1 ≤ i, j ≤ t) connecting
S in G, we will show that the trees T ′

i and T ′
j corresponding to Ti and Tj in L(G)

are internally disjoint trees. It is easy to see that Ti ∪ Tj has six possible types, as
shown in Figure 4. Since Ti and Tj are edge-disjoint in G, we can find internally
disjoint trees T ′

i and T ′
j connecting e1, e2, e3 in L(G). We give an example of Type c,

see Figure 5. So κ3(L(G)) ≥ t and we know that the result holds.

For (2), from Propositions 3 and 4 and (2) of Lemma 2 we have that λ3(L(G)) ≥
3
4
λ(L(G)) − 1

2
≥ 3

4
(2λ(G) − 2) − 1

2
= 3

2
λ(G) − 2 ≥ 3

2
λ3(G) − 2.

For (3), from (1) and (2) of this proposition and Observation 1 we have that
κ3(L(L(G))) ≥ λ3(L(G)) ≥ 3

2
λ3(G) − 2 ≥ 3

2
κ3(G) − 2.

One can check that (1) of this proposition is tight since G = Cn can attain this
bound.
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v1
v2 v3

e1

e2

e3

(a)

v1
v2 v3

e1

e2

e3

(b)

Ti Tj Tj
Ti

Figure 5 (a): An example for Ti and Tj connecting S and their line graphs.
Figure 5 (b): An example for T ′

i and T ′
j corresponding to Ti and Tj .

Let L0(G) = G and L1(G) = L(G). Then for k ≥ 2, the k-th iterated line
graph Lk(G) is defined by L(Lk−1(G)). The next statement follows immediately
from Proposition 5 and a routine application of recursions.

Corollary 3. λ3(L
k(G)) ≥ (3

2
)k(κ3(G) − 4) + 4, and κ3(L

k(G)) ≥ (3
2
)�

k
2
�(κ3(G) −

4) + 4.
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