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Abstract

Given any /(-tuple (31, S92, .. 735) of positive integers, there is an integer
N = N(sl,sg, e ,Sg) such that an orthogonal design of order 2" (31 +
So 4+ Sg) and type (2”31, 289, ..., 2”3g) exists, for each n > N. This
complements a result of Eades et al. which in turn implies that if the
positive integers sy, S, ..., sp are all highly divisible by 2, then there is a
full orthogonal design of type (31, Sy ..., 34).

1 Introduction

A Hadamard matriz of order n is a square {£1}-matrix H of order n such that
HH'" = nl,, where H' is the transpose of H. A complex orthogonal design of order
n and type (31, e 8@), denoted COD(n; S1yenns 8@), is a square matrix X of order
n with entries from {0, €;21, ..., e}, where the x;’s are commuting variables and
€; € {1, +i} for each j, that satisfies

J4
j=1

where X* denotes the conjugate transpose of X and [, is the identity matrix of
order n. A complex orthogonal design (COD) in which ¢; € {£1} for all j is called
an orthogonal design, denoted OD(n; S1y... ,Sg). An orthogonal design (OD) in
which there is no zero entry is called a full OD. Equating all variables to 1 in any
full OD results in a Hadamard matrix.

It is shown (see [9]) that the number of variables in an OD of order n = 29, b
odd, cannot exceed the Radon number p(n), where p(n) is defined as follows:

p(n) :=8c+2% where a=4c+d, 0<d<4.
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The credit for the consideration of asymptotic existence results should be given
to Seberry [9, 15] for her fundamental approach in showing that for each positive
integer p, there is a Hadamard matrix of order 2"p for each n > 2log,(p — 3). Thus
for each positive integer n, the existence of Hadamard matrices is in doubt for only
a finite number of orders of the form 2'n. Two of Seberry’s students, Robinson [13]
and Eades [6], did extensive work on ODs in their Ph.D. theses and made significant
advances towards showing the asymptotic existence of a number of ODs. The work
of Wolfe [16] provided enough ammunition for other researchers to pursue a different
approach to the asymptotic existence of ODs. There are now a number of asymptotic
existence results for ODs and thus Hadamard matrices; see [1, 2, 3, 4, 5, 8, 12] for a
sample.

Eades in his Ph.D. thesis [7] states that

If the positive integers s, s9, ..., Sy, are all highly divisible by 2, then
in many cases the existence of an OD of type si, So, ..., s, and order n
may be established.

He then proves the following general construction.

Theorem 1 Suppose that r and n are positive integers, by, bo, ..., by are powers of 2,
and there is an OD of type (b1, ba,...,by) and order 2'n. If s1, Sa, ..., S, are positive
integers with sum 2%(by + by + -+ - + by) for some d > 0, then there is an integer N
such that for each a > N, there is an

OD(2a+d+rn; 2%51,2%9, ..., 2“3u).

One of the main results of the paper is an improvement of this result of Fades.
We show that the existence of the ODs of type (by,bs,...,b;) and order 2"n can
be removed from Theorem 1. More specifically, we prove in Section 2, Theorem
4, that for any (-tuple (31, So,. .. 735) of positive integers, there is an integer N =
N(sl, Sy .. ,Sg) such that for each n > N there is an OD of order 2" (31+32+. . .—|—Sg)
and type (2”31, 2"59, . .. ,2"3g).

Let M be an OD(n; C1, .. .,ck) on variables aq, ..., ag, and N be an OD(n; dy,
. ,dm) on variables i, ..., 3, where the two sets of variables are disjoint. Then
the pair (M; N) is said to form an amicable orthogonal design, denoted

AOD(n; Clyey Cls dl,...,dm),
if MN'* = NM". The pair (M; N) is called anti-amicable if MN* = —NM*.

Let X be a COD(n; c1,. .. ,ck) on variables aq, ..., ap, and Y be a COD(n; dy,
s dm) on variables (3, ..., (,,, where the two sets of variables are disjoint. Then
(X;Y) is called an amicable complex orthogonal design, denoted

ACOD(?”L, Cly...,Ck; dl,---adm)v
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it XY*=YX"

We deal with the asymptotic existence of amicable orthogonal designs in Section
3. More specifically, we show in Theorem 5 that for any two sequences (uq, ..., us)
and (vy,...,v;) of positive integers, there are integers h, hy, hy and N such that
there exists an

AOD<2”h; gnthiy, | gnthiy . oontha, 2”*’12%),

for each n > N.

Wolfe [16], continuing Shapiro’s work [14], studied amicable and anti-amicable
orthogonal designs in detail. The following result from his work will be used in
Section 3. We give a construction which will be needed later.

Theorem 2 Given an integer n = 2°d, where d is odd and s > 1, there exist two sets
A = {Al, . ,AS+1} and B = {Bl, . ,BS+1} of signed permutation matrices of
order n such that

(1) A consists of pairwise disjoint anti-amicable matrices,

(1) B consists of pairwise disjoint anti-amicable matrices,

(#i) for each i and j, A;B} = B;A;.

Proof. Foreach2 <k <s-+1let

Ay = <®5211> Q1I;, A= (@f;f[) QR® (@fsz> Q Iy,

and
Bi=(@LP)el, Bi= (o) eQe(e,P)el
01 1 0 0 1 ) .
where P = 10 ], Q = {0 q ], R = [ q 0] and I and [; are the identity
matrices of orders 2 and d, respectively. Then the matrices A; and B; (1 <i < s+1)
satisfy the three properties (i), (ii) and (). O
The nonperiodic autocorrelation function [11] of a sequence A = (xy,...,x,) of

type 1 square matrices of order m, is defined by

n—j
t . .
N Za:iﬂ-aji if j=0,1,2,...,n—1
Na(j) =4 &=
0 i1>n
where ! is the transpose of ;.

Let X = {z1,...,2,,y1,...,Yn} be a set of type 1 matrices. Then a pair of
sequences A = (z1,...,x,) and B = (y1,...,y,) is called a Golay pair of length n
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in type 1 matrices x;,y;, 1 < @ < n, if Na(j) + Np(j) = 0 for all j > 0. Note
that by our definition, the pair A = (z,y) and B = (y, —z) do not form a Golay
pair of length 2 in type 1 matrices in general, because N4(1) + Ng(1) = 0 only if
zy' — yx' = 0. However, A = (z,y) and B = (z, —y) form a Golay pair of length 2
in type 1 matrices x and y. Note that the directed sequences terminology is used in

[10, 11] for a similar concept.

Although the results of this note apply to more general settings, we would concen-
trate only on type 1 matrices of the form _aﬁ g } , where o and  are commuting
variables.

We use the standard notation a;) to show that the figure a is repeated £ times
and circ(ay, ..., a,) to denote a circulant matrix with the first row (ay,...,a,).

2 The asymptotic existence of orthogonal designs

We start with the following well-known result (see [10] Section 2).

Lemma 1 For any positive integer n, there is a Golay pair of length 2" in two type
1 matrices each appearing 2"~' times in each of the sequences.

Proof. Let A,_; and B,_; be a Golay pair of length 2"~! in two type 1 matrices
each appearing 2”72 times in both A,_; and B,_;. Then A, = (An_l, Bn_l) and
B, = (An_l, —Bn_l) form a Golay pair of length 2™ in two type 1 matrices as desired,
where (A, B) means sequence A followed by sequence B. O]

Theorem 3 For any given sequence of positive integers (b, ay, as, . .., ay), there exists

a full COD of type <2N(m) L), N (m) . 2‘(2), L 2N 2?4“)), where m = 4k +b+ 2 if

b is even, m = 4k + b+ 1 if b is odd, and N(m) is the smallest positive integer such
that m < p(2N(m)_l).

Proof. Let (b,a;,as,...,a;) be a sequence of positive integers. We distinguish two
cases:

b
Case 1. b is even. Consider the type 1 matrices z;, 0 <7 < 2’ yjand z;, 1 < j <k

of order 2. For each j, 1 < j <k, let Gj; and Gj2 be a Golay pair of length 2% in
two type 1 matrices y; and z;. Let

j—1
s1=0 and s;=2) 2" 2<j<k+1 (1)

r=1
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b
Let d = 3 + sgy1 and define

MO = Cil"C(O(d), Zo, 0(d—l))7 M1 = Cil"C(Il, 0(2d—1))7 (2)
. b
My, = cire(0n-1), Th, O2d—n)), 2<h< 3

For each j, 1 < j <k, define

N2j_1 1= circ <0(%+sj)7 Gjl, O(Qd—%—sj—2aj))’ N2j 1= circ (0(%+sj+2aj)’ Gj27 O(2d—%—sj+1)>'

Considering that all the variables in these matrices are assumed to be type 1 matrices
of order 2, these matrices are in fact commuting block-circulant matrices (see [9, 11]),
and the 0 entries denote the zero matrix of order 2. Let m = 4k+b+2 and let N(m)
be the smallest positive integer such that m < p(2N (m)_l). So there is a set

A ={A,.. . A} (3)
of mutually disjoint anti-amicable signed permutation matrices of order 2N0-1,
These matrices are known as Hurwitz-Radon matrices (see [9] chapter 1). Suppose
H is a Hadamard matrix of order 2V —1, Let

O = 5 (Mo + M) ® AH + 5 (Mo — M) © Ao H (4)

5 (My+ M) ® AgH + 5 (My = M) @ AH

DO — | —

(SIS

1 1
+ <(Mh + M) ® 3 (Agnsr + Aopao) H + i (M), — M}y) @ §(A2h+1 - A2h+2)H>

2

o
= |l

1
+ ((Nj +N))® §<A2j+b+l + Agjip2)H (5)
1

<.
Il

1
+ i(Nj — N]t) ® §(A2j+b+1 — A2j+b+2>H)~
We show that

CC* = 2N(m)w12N(m)d, (6)

1 1
where w = —zoxf+ -zl +aqah+- - -+$%xté+2“1y1y’i+2“1 22 2%yt 2%k 2 2t
2
To this end, we first note that each of the sets

i

1 1 '
{500+ M), 2(Mo— D), 5+ M), 2 (M- M)},

{(My+257), (N;+N); 2<h<c, 1<j<2%)

N



E. GHADERPOUR ET AL./ AUSTRALAS. J. COMBIN. 58 (2) (2014), 333-346 338

and )
{i(0 = 25), i(N; = NJ): 2<h< 3, 1< <2k)

consist of mutually disjoint Hermitian circulant matrices. Moreover, for u = 0,1, we
have

(M + ML) (M M)’ + 7 (M= ML) (M — ML) = oy

N

and for each h, 2 < h < ga

(My, + M}) (M, + M) + (M, — M) (Mg, — ME)' = dapal Iog.

Also, for each j, 1 < j <k, we have

2j 2j
>0 (N N (N N (N, = N (N = N ) =2 37 (NN + NI,
r=2j—1 r=2j-—1

= 2aj+2 (y]yj + ZjZ‘;)]Qd.
b 1
Note that for each j, 3 < j < 3 + 2k + 1, the matrices §(A2j_1 + AQj)H and

1
5(142]-_1 — Azj)H are disjoint with 0,41 entries. Furthermore, since the set A’
consists of mutually anti-amicable matrices, the set
1 b
{AlH, AgH, AsH, AgH, S(Asjr % Ag)H (35 < 5 +2k+ 1)}

b
consists of mutually anti-amicable matrices. Since for each j, 3 < j < D) + 2k +1,

1 1 t 2N(m)—1 '
= 2N(m)_2.[2N(m)717
the validity of equation (6) follows.
In the equation (6), we now replace o by _Oé }, x1 by _ﬁﬁ g }, xp, by
b Lo noogy
{ i gg },th 50 Ui by { % g; },andzjby { T ]Agjgk. The
i i
resulted matrix will be a full COD of type <2N<m> Ly, 2V 20 2N 2?5)),

where the o, 3, ap’s, Bi's, o’s, Bi’s, a/f’s and 3]s are commuting variables.

Case 2. b is odd. Consider the following circulant matrices of order 2d + 1, where
b—1
d= 5 + sp4+1 with the same s;’s as in equation (1),

M, = circ(:z:l,()(gd)),
b+1

M, = circ(0p—1), T, Oa—ns1)),  2< h < 5
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For each 5, 1 < 75 <k, assume

N2j—1 = circ <0(b;1+s]‘) ) Gjh O<2d—b’Tl—s]-—2“j) >7

NQj = circ <O(H—1+sj+2aj> ) Gj27 0(2d_b—71_sj+1> > .

2

The rest of proof is similar to Case 1, and so m = 4k + b+ 1. O

Remark 1 The choice of N(m) in Theorem 3 and the next few asymptotic results
is crucial; the smaller N(m), the better asymptotic result. All N(m)’s appearing in
this note are either equal to or 1 less than the ceiling of (m+2)/2, depending on the
value of m.

Let (ug,...,us) be an (-tuple of positive integers and suppose 2' is the largest
power of 2 appearing in the binary expansions of u;, ¢ = 1,2, ..., ¢. Using the binary
expansion of each u;, one can write

(51 1
U9 2
Uy 2t

where E = [e;;] is the unique £ x (¢ + 1) matrix with 0 and 1 entries. We call E the
binary matriz corresponding to the ¢-tuple (uq, ..., u,).

For convenience and in order to make the first column of the binary matrix E
nonzero, in the following lemma, we assume that the /-tuples of positive integers
have at least one odd element.

Lemma 2 Suppose that (uy,...,up) is an (-tuple of positive integers such that at
least one of the u;’s is odd. Then there exists an integer m = m(uq, ..., us) such that
there is a

COD(Qm(ul o) 2, 2%3).

Proof. Let (uy,...,us) be an ¢(-tuple of positive integers such that at least one of
u;’s is odd, and let d = uq + - - - + uy.

By applying Theorem 3 all we need is to equate variables appropriately. We do
this by applying the following procedure.

We form the ¢ x (¢ + 1) binary matrix £ = [e;;] corresponding to the (-tuple
(ui,...,up), where t is the largest exponent appearing in the binary expansions of
u;, i =1,2,..., 0. Let

L
Yi-1 = Zeij, 1 §]§t+1 (8)

i=1
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k=t := {%J, (lz] is floor of z) (9)

while £ >0 do
{ﬁk = (mod 4);
k:=k—1;
Vi = Yk + 20k+1;
if k£k#0 then

H
k- 4 I

else
’Yilc = ks }

Now we apply Theorem 3 to the sequence ('y(), Ly 2(vp)5 - - ,t(%)). Thus, there is an
integer m such that there is a

COD(27d; 2™ 15y, 2™ 2aogy, 2 2y 27 2y ) (10)

t t
where m = N<4ny; +76+2) if 74 is even, and m = N(4Z’y§-+’y()+ 1) if 44 is
=1 =1

odd.

Equating variables in (10) in an appropriate way, we obtain a
COD<2md; My 2%,5).
O]

Lemma 3 For any (-tuple (s1,...,s0) of positive integers, there is an integer r =
r(s1,...,8¢) such that there is a

COD(T(sl + o sp); 278, .,2%4).

Proof. Suppose that (s1,...,s,) is an (-tuple of positive integers and let

(S1y.-.,80) = 2%(uy, ..., up),

where ¢ is the unique integer such that one of u;’s is odd. By Lemma 2, there exists
an integer m = m(uy, ..., u,) such that there is a

C’OD<2m(u1+---+u[); 2mu1,...,2mu[>.
Choose r =m — ¢, if m > ¢, and if m < ¢, then A ® H is a
C’OD<2‘7(U1+---+W); 2qu1,...,2qu[> :COD<81+"'+S[; 31,...,se>,

where H is a Hadamard matrix of order 297™, and therefore we may choose r = 0 to
complete the proof. O
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Theorem 4 For any (-tuple (s1,...,Se) of positive integers, there is an integer N =
N(s1,...,80) such that for each n > N there is an

OD(Q"(sl + o+ s); 278, 2”35>.

Proof. Let (s1,...,s¢) be a {-tuple of positive integers. From Lemma 3, there is
an integer r = r(sy, ..., s;) such that there is a

COD(2’”($1 + 4 s); 2781, 2’”35),

call it A. We may write A = X + ¢Y, where X and Y are disjoint and amicable
matrices such that X X!+ YY" = AA*. It can be seen that the matrix B,

1 1 -1 1
p-|y 4 ]ex+| 7 ey

is an
OD (2T+1(31 o sg); 27T sy 2 sy 2’”“35).
Let N =7+ 1, and H is a Hadamard matrix of order 2"~". Then B ® H is an
OD<2”(31 + -+ 80); 281, 2”34>.
OJ

Example 1 Consider the 5-tuple (8,12,20, 68, 136). We may write this as 22(2, 3, 5,
17,34). We apply the equation (7) to (2,3,5,17,34) as follows:

2 010000 ;
3 110000/,
5 0=[101000/|]|%
17 1000102
34 0100015

From the equation (8), we have 79 = 3,71 = 3,72 = 1,73 =0,7 = 1 and 75 = 1. By
applying the procedure (9), we find 7, = 5,7 = 1,7 = 1,75 = 1,7, = 0 and ~ = 0.
So, we apply Theorem 3 to the sequence (b, a,as,a3) = (5,1,2,3). Since b is odd,
we use Case 2 of the theorem, and so m =4 x3+5+1=18. N(18) = 10 as 10 is
the smallest positive integer such that 18 < p(2'°~1). Thus there is a

COD<21° (615 210 15), 21020y, 210 22, 210 2?4)>.
By equating variables, we obtain a

COD<28-244; 98.8 28.12, 25.20, 2° .68, 28-136).
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Example 2 We apply the equation (7) to the 4-tuple (1,5,7,17). Thus,

1 10000 ;
50 _ (10100,
N U
17 L0000 1]]|2,

From (8), we have vg = 4,7 = 1,7 = 2,73 = 0,74 = 1. By applying the procedure
(9), we find v, = 6,7] = 1,7, = 1,74 = 0,v;, = 0. Now we apply Theorem 3 to the
sequence (b, ay,as) = (6,1,2). Since b is even, we use Case 1 of Theorem 3, and so
m=4x2+6+2=16. N(16) = 8 as 8 is the smallest positive integer such that
16 < p(257!). Thus there is a

COD(2°-30; 2°-140),2° 24,2 - 2 ).
By equating variables, we obtain a

COD<28-30; 28-1,28-5,28-7,28-17).

3 The asymptotic existence of amicable orthogonal designs
We now include an asymptotic result related to the amicable orthogonal designs.

Lemma 4 If there exists an AC’OD(n; Uy ooy Ug; Upy oo ,vt), then there exists an

AOD(2n; 2uy, ..., 2ug; 2vq, ..., 21},;).

Proof. Suppose that (X;Y) is a complex amicable orthogonal design. We write
X =A+iBandY = C +iD, where A and B (C and D) are disjoint and amicable

matrices such that AA* + BB = XX* and CC'+ DD! =YY*. Let R = [ —01 (1) }
1 1

andH:[1 1

1 . Since (X;Y) is a complex amicable orthogonal design,

AC'+BD'=CA'+ DB', AD'— BC'=CB'— DA".
Let X =A@ RH+B®H andY' =C ® RH + D ® H. Then

X'Y"=2(AC'+ BD") @ I +2(AD' - BC") @ R
V'X'=2(CA'+ DB") ® I +2(CB' — DA") ® R.

Therefore (X’;Y”) is an amicable orthogonal design as desired. O

We are now ready for the main result of this section.
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Theorem 5 For any two sequences (uy,...,us) and (vy,...,v;) of positive integers,
there are integers h, hy, ho and N such that there exists an

AOD (2"11; onthig o on gy gnthey, 2"+h21)t),

for eachn > N.

Proof. Suppose that (uq,...,us) and (vy,...,v;) are two sequences of positive in-
tegers. Let (uq,...,us) = 29 (uf, ..., u}) and (vy,...,v,) = 22(v}, ..., v;), where ¢
and ¢, are the unique integers such that at least one of u;’s and one of v;’s is odd.

Let uj +---+ul, = ¢ and v] + -+ + v} = co. We may use the procedure (9)

in the proof of Lemma 2 for sequences (u},...,u}) and (v],...,v}) to get sequences

(b,ay,as,...,a;) and (5, a1, e, ..., qp) of positive integers, respectively.
¢

k

We have ¢; = b+4 Z 2% and ¢o = 44 Z 2%, Without loss of generality we may
i=1 =1

assume that ¢; > ¢y, and b and (3 are both even. Let m = mam{4k3—i—b+2, 464—5—1—2}.

Suppose that A = {Al,...,Am} and B = {Bl,...,Bm} are the same set of
matrices of order 2™~ ! as in Theorem 2.

Apply Theorem 3 to the sequence (b, Q1,09 ... ,ak) by using the set A which
contains matrices of order 2! instead of the set A’ in (3) which contains matrices
of order 2V =1 Tt can be seen that there is a COD, say C, of order 2"¢; and type

(2m 10272, 2m e 28y).

Again apply Theorem 3 to the sequence (5 +C1—C, e, Qa, ... ,Oég) by using the
set B instead of the set A" in (3). It can be seen that there is a COD, say D, of order

2™cy and type <2m 1), 2™ - 2?‘41), S 2m 2&@)). Note that there is no need to use

circulant matrices M;’s corresponding to the ¢; — ¢y variables to construct matrix D,
and we do not necessarily need to use all matrices in sets A and B.

Since the circulant matrices used to construct C' and D in (4) are Hermitian of
order ¢; and A; B} = B;Aj for 1 <i,j <m, (C; D) is an

ACOD(2%1; 2™ 1, 2720, 2T 2 27”-1(@,27”-2;“;),...,2"1-2?;)).

Equating variables in C' and D in an appropriate way, we obtain an

ACOD (2mcl; 2™l 2l 2y, 2%;),

ER

and so by Lemma 4, there exists an
AOD(Qm/cl; 2, 2™l 2 ,2m/v£>, (11)

where m' =m + 1.
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Now if ¢ = ¢o = 0, then we choose h = ¢;, hy = hy = 0 and N = m/. If
g1 < ¢ < m/, then we choose h = ¢y, hy = —qi, hs = —¢s and N = m/. For cases
g1 <m < q and m' < ¢ < g9, the Kronecker product of a Hadamard matrix of
order 22~ with the amicable orthogonal design (11) implies h = 2%¢y, hy = ga — @
and he = N = 0. Therefore, there exists an

AOD<2"h; onthigy o onthigy s onthay, o 2"+h2vt),

for each n > N.

If 3 and b are not both even, then we may use Case 2 in Theorem 3 with a similar
argument.

O

Example 3 Let (u1, us, uz, us, us) = (8,12,20, 68, 136) and (v1, v2, vs,v4) = (1, 5,7,

17).  We use the same notation as in the proof of Theorem 5. Thus, we have

(), ub, uf, uy,ut) = (2,3,5,17,34), (v}, vh,v4,v4) = (1,5,7,17), ¢ = 2, g = 0,
4

5
c1 :Zugzﬁl, 02221);:30 and ¢ > co.
i=1

i=1

In Examples 1 and 2, we applied the procedure (9) to the sequences
(u&,u’z,ug,uﬁl,ug) =(2,3,5,17,34) and (v’l,vé,vg,vﬁl) = (1,5,7,17),
and we obtained the two sequences
(b, CL17CL27CL3) =(5,1,2,3) and (5, 041,042) =(6,1,2),

respectively. We may choose m = max {4-3+b+ 1, 4-2+B+2} = max {18, 16} = 18.
Note that b is odd, and [ is even. From the proof of Theorem 5, there is an

ACOD (215 61; 2+ 15,215 24, 215+ 22, 215 98,5 2151, 219 25,215 22, ),
and so there is an

AOD (217615 210 15,217 20y, 20 22,217 2 2% 1,20 24,217 2 ).
Equating variables, we obtain an
AOD (219 61; 219.2,919.3,919.5 91917919, 34; 219,71 2195 9197 919, 17).

Since ¢ < ¢1 < 19, we choose N =19, h =61, hy = —2, hy = 0, and therefore for
each n > 19, there exists an

AOD<2"-61; 9n=2.8 9n=2.19 9n=2.9() 9"~2.68 2"2.136; 2“-1,2”-5,2“-7,2“-17).
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