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Abstract

We consider the set of permutations that are sorted by two passes through
a pop stack. We characterize these permutations in terms of forbidden
patterns (classical and barred) and enumerate them according to the
ascent statistic. Then we show these permutations to be in bijection
with a special family of polyominoes. As a consequence, the permutations
sortable by this machine are shown to have the same enumeration as three
classical permutation classes.

1 Introduction

In this paper we study the permutations that are sortable by two passes through a
pop stack. We first introduce necessary definitions and notation and give a survey
of related results. In Section 2.1 we characterize the two-pop-stack sortable permu-
tations, and in Section 2.2 we enumerate the permutations according to the number
of ascents. The enumeration shows that the number of such permutations follows a
linear recurrence with constant coefficients, so we give a second enumeration argu-
ment that reflects this recursive structure. In Section 3 we show these permutations
to be in bijection with a special family of polyominoes.

We also note that pop stacks can be used to model genome rearrangements, as
the most common rearrangement on genomes is reversal. Rather than the traditional
greedy model which reverses only one decreasing sequence at a time, a pop stack re-
verses all maximal contiguous decreasing subsequences of the permutation at each
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stage. Our particular algorithm for networking pop stacks makes this greedier algo-
rithm apply at each pass. While certainly not an optimal algorithm, the structure
involved with pop stacks makes it easier to handle multiple reversals at once.

1.1 Permutations

Let Sn be the set of permutations of [n] = {1, 2, . . . , n}. Given π ∈ Sn and ρ ∈ Sk

we say that π contains ρ as a pattern if there exist 1 ≤ i1 < · · · < ik ≤ n such
that πia < πib if and only if ρa < ρb; in this case we say that πi1πi2 · · ·πik is order-
isomorphic to ρ. Otherwise, π avoids ρ. Alternatively, let the reduction of the word
w, denoted red(w), be the word formed by replacing the ith smallest letter of w with
i. Then π contains ρ if there is a subsequence of π whose reduction is ρ.

Example 1.1. The permutation π = 35841726 contains the permutation ρ = 3241
since the reduction of the subsequence 5472 is red(5472) = 3241.

Our results also require a second kind of permutation pattern.

Definition 1.2. A barred pattern is a permutation ρ ∈ Sk where any entry may
have a bar over it. A permutation π is said to contain ρ if π contains a permutation
pattern made up of the non-barred entries of ρ that does not extend to a permutation
pattern including all entries of ρ.

As such, the permutation π avoids a barred pattern ρ if each copy of the pattern
consisting of non-barred entries of ρ in π extends to a copy of the permutation made
up of all entries of ρ.

Example 1.3. The permutation π = 35841726 avoids the permutation ρ = 35241
since the only occurrence of 3241 (realized by 5472) is part of an occurrence of the
pattern 35241 (realized by 58472).

Given two permutations α ∈ Sj and β ∈ S�, the direct sum, denoted α⊕ β is the
permutation resulting from the concatenation of α with β where all digits of β are
incremented by j. For example, 321⊕ 1⊕ 21⊕ 321 = 321465987.

An ascent of permutation π is an index i where πi < πi+1, while a descent is an
index i where πi > πi+1. We denote the number of ascents of π by asc(π) and the
number of descents by des(π).

Definition 1.4. The plot of a permutation π ∈ Sn is the set of points

{(i, πi)|1 ≤ i ≤ n} .

For example, the plot of 321465987 is given in Figure 1.
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Figure 1: The plot of π = 321465987

1.2 Sorting Networks

A stack is a last-in first-out data structure with push and pop operations. Knuth [8]
studied permutations that are sortable by one pass through a stack; in other words,
there is a sequence of push and pop operations to transform the permutation π ∈ Sn

into the increasing permutation 1 · · ·n as output. Knuth showed that a permutation
is sortable by one pass through a stack if and only if π avoids the pattern 231. There

are Cn such permutations of length n, where Cn =

(
2n
n

)
n+ 1

is the nth Catalan number.
Other researchers have studied networks with multiple stacks in series or in parallel,
including Even and Itai [7], Pratt [10], and Tarjan [13].

Let S(π) be the output from passing π through a single stack. Knuth’s result
shows that S(π) = 12 · · ·n if and only if π avoids 231. If we keep the convention that
the stack must be increasing from top to bottom, then S(π) is well-defined. We push
a new element onto the stack when the stack is empty or when the next available
input is smaller than the top element of the stack. We pop an element to output when
the top element of the stack is smaller than the next available input or when the input
is empty. With this convention, S(1) = 1 and for n > 1, S(π1 · · ·πi−1nπi+1 · · ·πn) =
S(π1 · · ·πi−1)S(πi+1 · · ·πn)n. West [14] defined two-stack-sortable permutations as
those for which S(S(π)) = 12 · · ·n. He showed that a permutation is sortable by two
passes through a stack if and only if π avoids 2341 and 35241, and Zeilberger [15]

showed that there are
2(3n)!

(n+ 1)!(2n+ 1)!
such permutations of length n.

Notice that West’s definition is not the most efficient sorting algorithm since it
does not look ahead to use the second pass through the stack strategically. However,
in addition to requiring only linear time to implement, this approach also never
creates new inversions along the way. That is, if entries πi and πj are in the correct
(i.e., increasing) relative order at some stage in the stack sorting process, they will
remain that way in all future iterations. We also note that this sorting algorithm is
distinct from sorting with stacks in parallel or in series.

In this paper, we consider the analogous characterization and enumeration results
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for pop stacks. A pop stack is a stack where the only way to move an element from
the stack to the output is to pop everything in the stack (in last-in first-out order).
That is, a pop stack can reverse the maximal contiguous decreasing subsequences of
a permutation. Both Avis and Newborn [5] and Atkinson and Stitt [4] studied pop
stacks in series. Atkinson and Sack [3] and Smith and Vatter [11] also considered pop
stacks in parallel. It follows from the work of Avis and Newborn that a permutation
π is sortable by one pass through a pop stack if and only if π avoids 231 and 312.
There are 2n−1 such permutations. Permutations that avoid 231 and 312 are known
as layered permutations since they are the direct sum of decreasing permutations.
Further, layered permutations of length n are in bijection with compositions (that
is, ordered integer partitions) of n since these permutations are uniquely determined
by the lengths of the layers.

Example 1.5. The permutation 321465987, whose plot is shown in Figure 1, is a
layered permutation with layers of size 3, 1, 2, and 3, so it corresponds to the compo-
sition 3 + 1 + 2 + 3.

2 Two Pop Stacks

Our main concern is permutations which are sortable by two passes through a pop
stack. Let P (π) be the output from running π through a single pop stack. Keeping
the convention of West, if the stack is increasing from top to bottom, then P (π) is
well-defined. Let π1 · · ·πi be the longest decreasing prefix of π ∈ Sn. Then P (1) = 1
and for n > 1, P (π) = πi · · ·π1P (πi+1 · · ·πn). If P (P (π)) = 12 · · ·n, we say that π
is two-pop-stack sortable and write π ∈ P2,n. Further, we let P2 =

⋃
n≥0P2,n. We

characterize and enumerate the permutations in P2,n below. Both results rely on the
following definition and lemma.

A block of a permutation is a maximal contiguous decreasing subsequence. For
example if π = 21534, there are three blocks: B1 = 21, B2 = 53, and B3 = 4.
Conceptually, a block is a set of letters that get output at the same time when we
run π through a pop stack. Blocks characterize P2 in the following way:

Lemma 2.1. Let π be a permutation with blocks B1, . . . , B�. Then, π is two-pop-
stack sortable if and only if for 1 ≤ i ≤ �− 1, max(Bi) ≤ min(Bi+1) + 1.

Proof. Suppose π has blocks B1, . . . , B�. By definition, each block consists of a
decreasing sequence of elements and so max(Bi) is the first element in block i while
min(Bi+1) is the last element in block i + 1. By definition of P (π), max(Bi) and
min(Bi+1) are adjacent letters in P (π).

If π ∈ P2, then P (π) is layered. This means that adjacent elements in P (π)
have one of two relationships. Either they form an ascent (in which case max(Bi) <
min(Bi+1)) or they form a descent. If two letters form a descent in a layered permu-
tation, they must have consecutive values, that is max(Bi) = min(Bi+1) + 1.
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B1 B2 B3 Brev
1 Brev

2 Brev
3

π P (π)

Figure 2: The permutation 215364 before and after one pass through a pop stack

Figure 2 gives an illustration of Lemma 2.1 using the plot (as defined in Defi-
nition 1.4) of the permutation π = 215364 before and after one run through a pop
stack. Blocks 1 and 2 show the behavior where max(B1) < min(B2) while blocks 2
and 3 have max(B2) = min(B3) + 1. In either event, applying the pop stack algo-
rithm causes the consecutive blocks to form layered subpermutations. Hence P (π)
is a layered permutation.

We also introduce divided notation for permutations. This was used specifically
in reference to a pop stack by the second author and Vatter [12] where divisions
represented by vertical lines indicate when entries are to be popped at intermediate
stages while attempting to sort the permutation π by a pop stack. The algorithm
used here forces a division between πi and πi+1 exactly when πi and πi+1 form an
ascent, that is, at the end of each block.

At each division, the entries are reversed by the first run through the pop stack.
Thus a two-pop-stack sortable permutation π must avoid the divided permutations
2|3|1, 2|13, 32|1, 132 as these are precisely the permutations that cause P (π) to con-
tain a 231 pattern. Similarly, π must avoid 3|1|2, 3|21, 13|2, 213 as these are exactly
the permutations that cause P (π) to contain a 312 pattern. As there must be a
division between any two entries forming an ascent, we obtain the following lemma.

Lemma 2.2. A permutation π is two-pop-stack sortable if and only if π avoids
2|3|1, 32|1, 3|1|2, 3|21 when π is written with divisions between all ascents.

2.1 Characterization

In Lemma 2.1 and Lemma 2.2, we characterized two-pop-stack sortable permuta-
tions in terms of blocks and divided permutations. Here, we characterize these
permutations in the more conventional language of pattern avoidance. Lemma 2.1
and Lemma 2.2 are equivalent to the following theorem.

Theorem 2.3. Permutation π is two-pop-stack sortable if and only if π avoids the
patterns 2341, 3412, 3421, 4123, 4231, 4312, 41352, and 41352.

Proof. Suppose that π is not two-pop-stack sortable. By Lemma 2.1, there exist
two adjacent blocks of π, Bi and Bi+1, such that max(Bi) ≥ min(Bi+1) + 2. Let
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a = max(Bi) and b = min(Bi+1). Clearly a > b. Further since a and b are in
different blocks, there must be one ascent between them; that is, a and b are the first
and last letters of either a 231 pattern, a 312 pattern, or a 4231 pattern.

If a and b are the first and last letters in a 231 pattern and a ≥ b+2, there must
be another digit c such that a > c > b. If c appears before a, then c together with
the 231 pattern forms a 2341 pattern. If c appears in block Bi, then c together with
the 231 pattern forms a 3241 pattern. If c appears in block Bi+1, then c together
with the 231 pattern forms a 3421 pattern. If c appears after b, then c together with
the 231 pattern forms a 3412 pattern.

If a and b are the first and last letters in a 312 pattern and a ≥ b+2, there must
be another digit c such that a > c > b. If c appears before a, then c together with
the 312 pattern forms a 3412 pattern. If c appears in block Bi, then c together with
the 312 pattern forms a 4312 pattern. If c appears in block Bi+1, then c together
with the 312 pattern forms a 4132 pattern. If c appears after b, then c together with
the 312 pattern forms a 4123 pattern.

If a and b are the first and last digits in a 4231 pattern, then a ≥ b+ 2 already.
Therefore, if there exist two adjacent blocks of π, Bi and Bi+1, such that max(Bi)

≥ min(Bi+1) + 2, then π contains at least one of 2341, 3241, 3412, 3421, 4123, 4132,
4231, or 4312 as a pattern. However, the digits serving as a and b in are in adjacent
blocks. If we have a 3241 pattern where a plays the role of ‘3’ and b plays the role of
‘1’, then there can be no letter less than b that appears between ‘3’ and ‘2’ as there
is only one ascent, namely from Bi to Bi+1. In other words, π contains a copy of
4352 (i.e. 3241) that does not extend to a 41352 pattern; that is π contains 41352.
Similarly, if we have a 4132 pattern where a plays the role of ‘4’ and b plays the role
of ‘2’, then there can be no letter greater than a that appears between ‘3’ and ‘2’.
In other words, π contains a copy of 4132 that does not extend to a 41352 pattern;
that is, π contains 41352.

Therefore, if π is not two-pop-stack-sortable, π contains at least one of the pat-
terns 2341, 3412, 3421, 4123, 4231, 4312, 41352, or 41352.

To show the converse, recall Lemma 2.2 characterizes two-pop-stack sortable per-
mutations by the avoidance of 2|3|1, 32|1, 3|1|2, 3|21 when permutations are written
with divisions between each descent.

The patterns 2341, 3412, 3421, 4123, 4231, 4312, 41352, and 41352, must have at
least the following divisions:

2|3|41, 3|41|2, 3|421, 41|2|3, 42|31, 431|2, 413|52, and 41|352 respectively.

Notice that no additional divisions can prevent 2|3|41 from containing 2|3|1 nor can
they prevent 3|41|2, 41|2|3 from containing 3|1|2. The division needed to prevent
3|421 or 42|31 from containing a 3|21 pattern forces the new containment of a 2|3|1
pattern. And the division needed to prevent 431|2 from containing a 32|1 forces the
new containment of a 3|1|2 pattern.

Finally consider the barred patterns. Notice 413|52 with no additional divisions
contains a 32|1 pattern. An additional division between the ‘4’ and ‘3’ indicates
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an ascent occurred between these entries (possibly involving one of them). An entry
larger than the ‘4’ yields a 3421 subpattern and an entry less than the ‘3’, but greater
than the ‘2’ yields a 4231 subpattern. Further, an entry with value between ‘3’ and
‘4’ does not cause an ascent to occur and creates an additional need for a division
for the same reason as above. Only an entry smaller than the ‘2’ will allow for the
divided permutation 41|3|52 which is two-pop-stack sortable. A similar argument
shows permutations containing 41|352 are not two-pop-stack sortable.

2.2 Enumeration

Next, we determine |P2,n|. By definition, a permutation has an ascent at position i
exactly when πi and πi+1 are in different blocks. Therefore, the number of blocks of
π is one more than the number of ascents of π. In light of Lemma 2.1 it is natural
to consider two-pop-stack sortable permutations with a fixed number of ascents.

Proposition 2.4. Let a(n, k) = |{π ∈ P2,n|asc(π) = k}| and let
b(n, k) = |{π ∈ P2,n|asc(π) = k and the last block of π has size 1}|.
For n ≥ 0:

a(n, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 k = 0 or k = n− 1

0 k < 0 or k ≥ n ≥ 1

2

n−1∑
i=1

a(i, k − 1)− b(n− 1, k − 1) otherwise

and

b(n, k) =

⎧⎪⎨
⎪⎩
1 k = n− 1

0 k < 1 or k ≥ n

2a(n− 1, k − 1)− b(n− 1, k − 1) otherwise.

Proof. For a(n, k), we first note that a permutation of length n must have at least
zero ascents and no more than n − 1 ascents. There is one way to have no ascents
(the decreasing permutation) and one way to have all n − 1 possible ascents (the
increasing permutation).

More generally, Lemma 2.1 shows that there are two ways for adjacent blocks to
interact:

max(Bi) < min(Bi+1) or max(Bi) = min(Bi+1) + 1.

This first situation may occur no matter the sizes of blocks Bi and Bi+1. However,
the second case may only happen if at least one of the blocks has size greater than 1;
if both blocks have size 1 and max(Bi) = min(Bi+1)+1 then max(Bi) and min(Bi+1)
form a descent and are actually in the same block.

Suppose that we wish to build a permutation of length n with k > 0 ascents.
Consider the permutation formed by the first k blocks of the permutation, which has
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length i, (1 ≤ i ≤ n−1) and k−1 ascents. There are two ways to add a new block of
size n− i and produce a two-pop-stack sortable permutation, with one exception: if
i = n− 1, and the permutation formed by the first k blocks ends in a block of size 1,
then there is a unique way to add a final block of size 1. The 2

∑n−1
i=1 a(i, k− 1) term

reflects the fact that there are generally two ways to add a final block to achieve a
permutation of length n with k ascents. The b(n − 1, k − 1) term subtracts off the
number of permutations for which there was only one way to add a final block to
achieve a permutation of length n with k ascents.

The argument for b(n, k) is similar. Since permutations counted by b(n, k) end
in a block of size 1, the only way to have no ascents is for n = 1 and k = 0, which
is covered in the k = n − 1 case. Then, as before a permutation of length n cannot
have less than zero ascents and can have no more than n− 1 ascents. There is still
one way to have all n− 1 possible ascents (the increasing permutation).

More generally, suppose that we wish to build a permutation of length n with
k > 0 ascents and that ends in a block of size 1. Consider the permutation formed
by the first k blocks of the permutation, which has length n−1. There are two ways
to add a new block of size 1 to produce a permutation of length n, unless the last
block of the permutation on n− 1 letters already ended in a block of size 1.

Proposition 2.4 implies following result:

Theorem 2.5.

∑
π∈P2

x|π|yasc(π) =
∞∑
n=0

n−1∑
k=0

a(n, k)xnyk =
1− xy − x2y + x3y − 2x3y2

1− x− xy − x2y − 2x3y2

Proof. Consider
A(x, y) =

∑
n≥0

∑
k≥0

a(n, k)xnyk

and
B(x, y) =

∑
n≥0

∑
k≥0

b(n, k)xnyk.

From the recurrences in Proposition 2.4 we obtain

A(x, y) =
1

1− x
+

2xy

1− x
(A(x, y)− 1)− xyB(x, y)

and

B(x, y) = x+ x2y +
2x3y

1− x
+ 2xy

(
A(x, y)− 1

1− x

)
− xy (B(x, y)− x) .

Solving this system for A(x, y) yields the bivariate generating function in the theorem.
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Expanding the generating function in Theorem 2.5 to see low-order terms, we
have:

1− xy − x2y + x3y − 2x3y2

1− x− xy − x2y − 2x3y2
=1 + x+ (y + 1)x2 + (y2 + 4y + 1)x3

+ (y3 + 8y2 + 6y + 1)x4

+ (y4 + 12y3 + 20y2 + 8y + 1)x5

+ (y5 + 16y4 + 48y3 + 36y2 + 10y + 1)x6

+ · · ·

We will return to the sequences from Proposition 2.4 in Section 4 as well as utilize
the ascent structure of these sortable permutations in Section 3. First however, notice
plugging in y = 1 yields the enumeration of two-pop-stack sortable permutations.

Corollary 2.6. ∑
π∈P2

x|π| =
1− x− x2 − x3

1− 2x− x2 − 2x3

This generating function corresponds to sequence A224232 in the On-Line En-
cyclopedia of Integer Sequences [9]. From this rational generating function, we see
that the number of two-pop-stack sortable permutations follows a linear recurrence
with constant coefficients; that is,

|P2,n| = 2 |P2,n−1|+ |P2,n−2|+ 2 |P2,n−3| . (1)

Equation 1 can also be found more simply, but without the refinement obtained
by counting the number of ascents, by considering the placement of the 1 in a two-
pop-stack sortable permutation as shown below.

Let In = 1 · · ·n be the increasing permutation of length n and let Jn = n · · · 1
be the decreasing permutation of length n. Let J

(+k)
n = (n + k) · · · (1 + k) be the

decreasing permutation of length n where all digits have been incremented by k.
Then, we can decompose the set P2,n as described in Theorem 2.7.

Theorem 2.7. Suppose π ∈ Sn where n ≥ 4. Then π ∈ P2,n if and only if one of
the following is true:

1. π = 1⊕ π̂ where π̂ ∈ P2,n−1,

2. πi = 1 for some i ≥ 2 where π1 · · ·πi−1 is the longest decreasing prefix of
π1 · · ·πi−1πi+1 · · ·πn, and π̂ = red(π1 · · ·πi−1πi+1 · · ·πn) ∈ P2,n−1,

3. π1π2π3 = 312 and π̂ = red(π4 · · ·πn) ∈ P2,n−3.

4. π1π2π3 = 413, π4 · · ·πn begins with a decreasing prefix of length at least 2 that
ends in the digit 2, and π̂ = red(π4 · · ·πn) ∈ P2,n−3,
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5. π = 2π21(π2 − 1)π5 · · ·πn where π5 > π2 and red(π2π5 · · ·πn) ∈ P2,n−3

6. π = 2π2 · · ·πi−11πi+1 · · ·πn for some i ≥ 3 where π2 · · ·πi−1 is decreasing and
red(π2 · · ·πi−1πi+1 · · ·πn) ∈ P2,n−2, and if i = 3, then π2 < π4.

For example, |P2,4| = 16. Here are the 16 permutations separated according to
the six cases in Theorem 2.7:

1. 1234, 1243, 1324, 1432, 1342, 1423

2. 2134, 2143, 3142, 3214, 4213, 4321

3. 3124

4. (none)

5. 2413

6. 2314, 2431

Proof. First, we claim that 1 must appear in the first two blocks of π. Suppose to
the contrary that the digit 1 appears in block 3 or later, and let π∗ = P (π). If the
first two blocks of π have size 1, they will still be the first two blocks in π∗ and there
will be an ascent between these blocks. If either of the first two blocks of π has
size greater than 1, then in π∗ this block will be reversed to an increasing sequence.
Either way, there will be an ascent in π∗ before the digit 1. On the other hand, since
π∗ is one-pop-stack sortable, it must be the direct sum of decreasing permutations,
so the first block of π∗ = Ji for some i ≥ 1. This means there cannot be an ascent in
π∗ before the digit 1. Therefore, the digit 1 must appear in the first two blocks of π.

Suppose 1 is in the first block of π, and consider the various sizes of the first
block.

If the first block has size 1, then π = 1⊕ π̂ for some π̂ ∈ P2,n−1. This is case 1.
If the first block has size i ≥ 2, then πi = 1 and either πi−1 < πi+1 or πi−1 > πi+1.

πi−1 < πi+1 is case 2. Case 3 is πi−1 > πi+1 where πi−1 = 3 and case 4 is πi−1 > πi+1

where πi−1 = 4. In both case 3 and case 4, notice that Lemma 2.1 implies that
i = 2 and |B2| = 1 since we have the case that max(B1) = min(B2) + 1. In case
4, the lemma further implies that B3 consists of a decreasing sequence ending in 2.
If πi−1 > πi+1 and a = πi−1 > 4, then π /∈ P2,n since block 2 of π∗ would need
to be equal to J

(+1)
a−1 but it is impossible to construct a decreasing subsequence of

consecutive values of length four or more after one pass through a pop stack.
Finally, suppose 1 is in the second block of π. Then by Lemma 2.1, the maximum

element of the first block is 2. If the second block has size 2 and π2 > π4, we are in
case 5. Otherwise, we are in case 6.

Notice that cases 1 and 2 give two different ways to build a member of P2,n from
a member of P2,n−1. Case 6 gives 1 way to build a member of P2,n from any member
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of P2,n−2. Case 3 gives 1 way to build a member of P2,n from any member of P2,n−3.
Case 4 gives a way to build a member of P2,n from any member of P2,n−3 that begins
with a descent, and case 5 gives a way to build a member of P2,n from any member
of P2,n−3 that begins with an ascent.

Together, we have that

|P2,n| = 2 |P2,n−1|+ |P2,n−2|+ 2 |P2,n−3| .

The sequence obtained from this recurrence (A224232) also enumerates a different
family of combinatorial objects as seen in Section 3.

3 Polyominoes

Both one-pop-stack sortable and two-pop-stack sortable permutations are in bijec-
tion with special families of polyominoes. Although the fact that these sets are
equinumerous has been shown computationally, the bijections given in this section
are new. Moreover, they map ascents and descents of the appropriate permutations
to nice features of the polyominoes.

Recall that a polyomino is an edge-connected set of cells on the lattice Z
2. The

size of a polyomino P is the number of cells in P . The polyominoes of size at most
3 are given in Figure 3. In particular there is one polyomino of size 1, two of size 2,
and six of size 3. In general, the number of polyominoes of size n for large n remains
an open problem. However, we will consider a modified type of polyomino.

Figure 3: Small polyominoes in the plane

Following [1] and [2], we consider polyominoes on a twisted cylinder of width
w ∈ Z+. These polyominoes are drawn in the first quadrant of Z2 by identifying all
pairs of cells with coordinates (x, y) and (x−w, y+ 1). Visually, instead of drawing
polyominoes in the plane, we draw them on the surface shown in Figure 4. Notice
that this surface is a cylinder with a helix wrapped around it. Vertical lines together
with the helix partition the surface into cells. If we begin at cell (x, y) and move
one cell to the right w times, we end up in cell (x, y + 1), one cell above (x, y).
Rather than drawing the twisted cylinder embedded in R

3, we may visualize it in R
2

as shown in Figure 5, where we show both the twisted cylinder of width 2 and the
twisted cylinder of width 3. With this convention, there are only four polyominoes
of size 3 on a twisted cylinder of width 2; notice that , , and are all the
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Figure 4: A twisted cylinder

1 2

2 3 4

4 5 6

1 2 3

3 4 5 6

6 7 8 9

width 2 width 3

Figure 5: Twisted cylinders of width 2 and width 3

same polyomino on the twisted cylinder of width 2 since they all cover cells 1, 2,
and 3 in the appropriate part of Figure 5. Polyominoes on twisted cylinders were
introduced to find improved bounds on the number of polyominoes in the plane. The
polyominoes on width 2 and width 3 cylinders also are in bijection with one-pop-stack
and two-pop-stack sortable permutations in a natural way.

From Avis and Newborn [5], π is one-pop-stack sortable if and only if π is lay-
ered and there are 2n−1 such permutations of length n. Similarly, Aleksandrowicz,
Asinowski, and Barequet [1] observe that there are 2n−1 polyominoes of size n on a
twisted cylinder of width 2. We reproduce the result that these permutations and
polyominoes have the same enumeration via a bijection that preserves an additional
property for each set.

Theorem 3.1. The one-pop-stack sortable permutations of length n are in bijection
with the polyominoes of size n on a twisted cylinder of width 2. Moreover, there are
the same number of polyominoes of size n on a twisted cylinder of width 2 with k+1
squares without an adjacent square to their right as there are one-pop-stack sortable
permutations of length n with k ascents, namely

(
n−1
k

)
.

Proof. The bijection is as follows. Consider a layered permutation π of length n. Let
bi be the length of block i of π. For each bi, construct a 1×bi rectangular polyomino.
Place these rectangles on a strip of height 1, leaving one empty square between each
rectangle. Wrap the resulting strip around the twisted cylinder of width 2.

Here, descents (i.e. adjacent letters in the same block of π) correspond to left-
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Figure 6: The one-pop-stack sortable permutation 4321657(10)98 and its correspond-
ing polyomino

right adjacent pairs of squares in the corresponding polyomino. Ascents correspond
to squares of the polyomino with no square to their right. Additionally, the last
square of the polyomino cannot have a square to its right.

In Figure 6 we see the permutation 4321657(10)98. In this case b1 = 4, b2 = 2,
b3 = 1, and b4 = 3. We construct rectangular polyominoes of widths 4, 2, 1, and 3
and wrap them around the helix of width 2, leaving an empty square between each
adjacent pair of rectangles.

We showed in Corollary 2.6 that two-pop-stack sortable permutations are counted
by sequence A224232 in the On-Line Encyclopedia of Integer Sequences. Alek-
sandrowicz, Asinowski, and Barequet [1] showed that polyominoes on a twisted cylin-
der of width 3 have this same enumeration. They counted these polyominoes via a
recurrence in cases in a manner similar to the proof of Theorem 2.7 and also gave a
closed formula for the recurrence.

Aleksandrowicz, Asinowski, and Barequet [1] also found bijections between these
polyominoes and three permutation classes containing eight patterns of length 4.

Theorem 3.2. (Aleksandrowicz, Asinowski, and Barequet) The classical permuta-
tion classes

Av(2431, 3412, 3421, 4123, 4213, 4231, 4312, 4321),

Av(2413, 3412, 3421, 4123, 4132, 4213, 4312, 4321), and

Av(1342, 1432, 3142, 3412, 4123, 4132, 4213, 4312)

are Wilf equivalent to each other and are in bijection with the polyominoes on a
twisted cylinder of width 3.

The bijection to be given in this paper between these polyominoes and the two-
pop-stack sortable permutations is based on the block structure permutations need
to be sortable. Moreover, while the sortable permutations studied here are also
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classified by the avoidance of eight patterns, they do not form a classical permutation
class. That is, subpermutations of the sortable permutations are not guaranteed to
be sortable. As such, we obtain a Wilf equivalence between classical permutation
classes and the non-classical permutation class introduced in Theorem 2.3.

For the next theorem, recall a(n, k) is the number of two-pop-stack sortable per-
mutations of length n with k ascents.

Theorem 3.3. The two-pop-stack sortable permutations of length n are in bijection
with the polyominoes of size n on a twisted cylinder of width 3. Moreover, there are
a(n, k) polyominoes of size n on a twisted cylinder of width 3 with k + 1 squares
without an adjacent square to its right.

Proof. As in the bijection for one-pop-stack sortable permutations, descents of π
are sent to left-right adjacent pairs of squares in the corresponding polyomino and
ascents are sent to squares with no square to the right. And again the last square of
the polyomino will have no square to its right.

Consider a two-pop-stack sortable permutation π. Let bi be the length of block
i of π. For each bi, construct a 1 × bi rectangular polyomino. As before, we place
these rectangles on a strip of height 1 with an extra consideration. For blocks Bi and
Bi+1, by Lemma 2.1, either max(Bi) < min(Bi+1) or max(Bi) = min(Bi+1)+ 1. The
first case may happen no matter the size of the blocks, but max(Bi) = min(Bi+1)+1
requires that at least one of the blocks has size greater than 1. Accordingly, if
max(Bi) < min(Bi+1), the corresponding 1× bi and 1× bi+1 rectangles should have
two empty squares between them. This guarantees that the last square in the 1× bi
rectangle is below the first square in the 1 × bi+1 rectangle. On the other hand, if
max(Bi) = min(Bi+1) + 1, the corresponding 1 × bi and 1 × bi+1 rectangles should
have one empty square between them. Since at least one of the blocks has size
greater than one, the two blocks still form part of a connected polyomino. Wrap the
resulting strip around the twisted cylinder of width 3.

In Figure 7 we see the permutation 64321587(12)(10)9(14)(13)(11). In this case
b1 = 5, b2 = 1, b3 = 2, b4 = 3, and b5 = 3. We construct rectangular polyominoes
of widths 5, 1, 2, 3, and 3. Blocks 1 and 2 as well as blocks 4 and 5 have max(Bi) =
min(Bi+1) + 1 so we leave one empty square between the corresponding rectangles.
Blocks 2 and 3 as well as blocks 3 and 4 have max(Bi) < min(Bi+1) so we leave two
empty squares between the corresponding rectangles. Then, we wrap the resulting
strip of separated rectangles around the twisted cylinder of width 3.

The following Wilf equivalence is an immediate consequence of Theorems 2.3,
3.2, and 3.3.

Corollary 3.4. The non-classical permutation class

Av(2341, 3412, 3421, 4123, 4231, 4312, 41352, 41352)

is Wilf equivalent to the classical permutation classes

Av(2431, 3412, 3421, 4123, 4213, 4231, 4312, 4321),
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Figure 7: The two-pop-stack sortable permutation 64321587(12)(10)9(14)(13)(11)
with its corresponding polyomino

Av(2413, 3412, 3421, 4123, 4132, 4213, 4312, 4321), and

Av(1342, 1432, 3142, 3412, 4123, 4132, 4213, 4312).

Despite the naturalness of the bijection given in Theorem 3.1 and Theorem 3.3,
it turns out that these are not two special cases of a more general phenomenon.
One might conjecture that three-pop-stack sortable permutations are in bijection
with polyominoes on a twisted cylinder of width 4. However, all 24 permutations of
length 4 are m-pop-stack sortable when m ≥ 3 and there are only 19 polyominoes
of size 4 in the plane (and thus on a a twisted cylinder of width w ≥ 4). The
generalization of the bijections provided does however give an injection from the set
of polyominoes on a twisted cylinder of width w = m + 1 to the set of m-pop-stack
sortable permutations for m ≥ 3.

The enumeration of m-pop-stack-sortable permutations for m ≥ 3 is considered in
a recent paper of Claesson and Guðmundsson [6], without bijective correspondences.

4 Basic properties and conjectures on sortable permutations
classified by ascents

The triangles formed by {a(n, k)} (the number of two-pop-stack sortable per-
mutations of length n with k ascents) and {b(n, k)} (the number of two-pop-stack
sortable permutations of length n with k ascents where the last block has size 1) from
Proposition 2.4 have some other interesting properties in their own right. These co-
efficients characterize the sortable permutations partially in terms of partitions, so
it may not be surprising there are some parallels with the more general notion of
partitions.

For example, if π is two-pop-stack sortable, has length n ≥ 3, and n− 2 ascents,
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then π has n− 1 blocks. There are four ways to structure the one block of size two
(relative to the blocks before and after it) if the block is an interior block and only
two ways to structure the block of size two (relative to the one block adjacent to it)
if it is the first or last block. Hence a(n, n− 2) = 4(n− 2). Lemma 4.1 lists several
small cases that can also be handled relatively easily and also shows a symmetry
found in the b(n, k) case.

Lemma 4.1. We have the following identities:

1. a(n, n− 2) = 4(n− 2) for n ≥ 3.

2. a(n, 1) = 2(n− 2) for n ≥ 4.

3. a(n, 2) = 2n(n− 3) for n ≥ 4.

4. b(n, n− 2) = b(n, 2) = 4(n− 3) + 2 for n ≥ 4.

Based on our data, it also appears the sequences {a(n, k)} and {b(n, k)} may
have some other nice features:

Conjecture 4.2. The sequence {a(n, k)}nk=0 is log-concave for all n.

Conjecture 4.3. The sequence {a(2n+ 1, n)} is enumerated by

n−1∑
i=0

(−1)i
(
2n− 2i

n− i

)(
n− 1

i

)
2n−i for n ≥ 1

and has generating function √
1 + x

1− 7x
.

This formula and generating function appear in OEIS [9] for sequence A085458.

Conjecture 4.4. The set of two-pop-stack sortable permutations of length 2n+1 with
exactly n ascents has an equal number of permutations with last block of size one as
permutations with last block size greater than one. That is, a(2n+1, n) = 2b(2n+1, n)
for all n.
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