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ABSTRACT 

This paper presents a convolutional neural network (CNN) 

that uses input from a polyphonic pitch estimation system 

to predict perceived minor/major modality in music audio. 

The pitch activation input is structured to allow the first 

CNN layer to compute two pitch chromas focused on dif-

ferent octaves. The following layers perform harmony 

analysis across chroma and time scales. Through max 

pooling across pitch, the CNN becomes invariant with re-

gards to the key class (i.e., key disregarding mode) of the 

music. A multilayer perceptron combines the modality ac-

tivation output with spectral features for the final predic-

tion. The study uses a dataset of 203 excerpts rated by 

around 20 listeners each, a small challenging data size re-

quiring a carefully designed parameter sharing. With an R2 

of about 0.71, the system clearly outperforms previous sys-

tems as well as individual human listeners. A final ablation 

study highlights the importance of using pitch activations 

processed across longer time scales, and using pooling to 

facilitate invariance with regards to the key class. 

1. INTRODUCTION 

1.1 Modality 

Minor and major modality is a function of scale, harmony 

and tonality and is perceptible even to very young children 

[20]. However, the rich variability of music harmony ren-

ders many compositions hard to classify into a minor or 

major mode. Researchers have therefore investigated mo-

dality as a continuous variable in listening tests, producing 

more or less uniformly distributed averages with high in-

ternal consistency. Such a continuous variable, ranging 

from minor to major, has interchangeably been referred to 

as modality [12-14, 28, 34], mode [1], key mode [33], mode 

majorness [33], and majorness [2, 28, 33]. We will mainly 

use the term “modality” or “minor/major modality”.1 This 

paper aims to improve on previous methodologies for pre-

dicting perceived modality, designing a CNN that is able 

to model associated intricacies of musical harmony.  

In a listener study [14], rated modality had a significant 

correlation (0.3-0.6) with rated speed, articulation, pitch 

(low/high) and timbre/brightness – happy tunes in major 

mode are likely more often performed with a higher artic-

ulation (staccato). This means that a system can be de-

signed to predict perceived modality simply by picking up 

aspects in the audio not directly associated with harmony. 

Music information retrieval (MIR) systems relying on 

such confounding factors of variation have been chal-

lenged by Sturm [37]. The CNN architecture proposed in 

this study tries to minimize these interactions by specifi-

cally targeting properties directly linked to modality, as ex-

panded upon, e.g., in Section 2.4.  

1.2 Previous Studies Predicting Modality 

Two previous studies have attempted to predict perceived 

modality from music audio. The first study [14] used par-

tial least squares regression applied to audio features from 

the MIR toolbox [28, 29]. Two models were tried, the first 

using dedicated modality features and the second also in-

cluding other spectral features. They were evaluated on the 

same two datasets used in the present study (Section 5.1), 

reaching an R2 of 0.43 (0.38) and 0.47 (0.53) respectively 

(results for the second model in parenthesis).  

A second study [1] have instead used the Inception v3 

architecture [38] applied to a mel-frequency spectrogram. 

Results on a dataset of 5000 15 seconds (s) excerpts with 

lower ground truth consistency was R2 = 0.23 (based on 

the Pearson’s correlation coefficient of 0.48 reported in an 

additional/supplemental paper [2]). The model was devel-

oped to handle numerous perceptual features and may not 

be ideal for modality; the pooling operations applied 

across mel-frequency obfuscates tonal interrelationships at 

ranges larger than the pooling kernels. Since the filters 

span the time dimension, the model may to some extent 

instead make predictions from other aspects of the audio 

that covaries with modality, as outlined in Section 1.1.  

1.3 Pitch Chroma and Deep Layered Learning 

Chroma features, imposing spectral energies across a wide 

frequency range onto the twelve pitch classes of a musical 

octave, have a long tradition in MIR [15, 17, 35]. Pitch 

chromas have also been derived both from MIDI data and 

estimated through the autocorrelation function in the past 

[39]. A problem with the chroma is that it often is affected 

by interferences and becomes noisy [23]. Researchers have 

used various techniques to mitigate these issues, including 

harmonic percussive source separation [40] and cepstral 

whitening [31]. A multilayer perceptron (MLP) has also 

been used, with chord annotations defining ground truth 

pitch classes [23]. In this paper, we instead use the output 

from a high accuracy/resolution polyphonic pitch tracking 

system [8]. The pitch transcription is reshaped and fed as 

input to a CNN so that several pitch chromas emphasizing  © Anders Elowsson. Licensed under a Creative Commons 

Attribution 4.0 International License (CC BY 4.0). Attribution: Anders 

Elowsson, Anders Friberg. “Modeling Music Modality with a Key-Class 

Invariant Pitch Chroma CNN”, 20th International Society for Music In-

formation Retrieval Conference, Delft, Netherlands, 2019. 

1Since “mode” and “modality” have a wider scope, perhaps “modalite” 

could be a useful nomenclature for future studies.  
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different octaves can be learned within its first layer. The 

full architecture thus uses intermediate targets to restruc-

ture the learning problem according to the inherent organ-

ization of music. Such a “deep layered learning” approach 

[6], learning intermediate equivariant music representa-

tions, has been used for various MIR problems in recent 

years [e.g., 5, 19, 26]. 

1.4 CNNs and Ensemble Learning 

The CNN proposed in this study use filter kernels operat-

ing across pitch/pitch class, pitch octaves and time scales, 

applying the same processing to each time frame. Previous 

CNNs for harmony processing have instead used filter ker-

nels operating across time and frequency, for tasks such as 

key estimation [22, 25] and chord recognition [18, 24].  

A CNN trained two times with randomly initialized pa-

rameters will generally produce two different predictions 

to the same input data. This is something that makes neural 

networks useful for ensemble learning [16]. The average 

(ensemble) prediction from several models containing 

more or less decorrelated errors will be better than ran-

domly choosing one of them [32, 36]. Ensemble learning 

is used in this paper, as specified in Section 4. 

1.5 Overview of the Paper 

This paper presents a pitch chroma CNN architecture for 

predicting perceived modality. Section 2 describes how the 

pitch activation input to the CNN is computed and struc-

tured. In Section 3, the network architecture and training 

procedure is outlined. Section 4 describes how several 

CNNs were combined into an ensemble, and how a global 

prediction was made using additional features in an ensem-

ble of MLPs. The two datasets and the evaluation proce-

dure is described in Section 5, and results presented in Sec-

tion 6. Section 7 presents an ablation study, testing how 

the design of the model affect predictive performance, and 

Section 8 offers conclusions. 

2. PREPARING THE INPUT REPRESENTATION 

2.1 Defining a Start and End Time for Each Excerpt 

A start and end time were first determined for each musical 

excerpt (ME) so that the CNN would not have to make any 

predictions for silent parts in the beginning and end. A 

magnitude log-frequency spectrogram with 60 bins per oc-

tave was computed as described in [8] (pre-filtering). Let 

x be a vector representing the frequency response in time 

frame i. The overall magnitude of that time frame, across 

all frequency bins, was then defined as 

𝑚𝑖 = √𝑥
2̅̅ ̅,                                         (1) 

using the elementwise square and arithmetic mean, and 

forming m as a vector across time. The signal level was 

defined as 𝐿𝑖 = 20 log10𝑚𝑖, and the resulting vector fil-

tered with a Hann window of width 61 frames (0.35 s). The 

average signal level of the ME was instead defined as 

𝐿𝑎 = 20 log10 𝑚̅. The first time frame with a signal level 

within 10 dB of 𝐿𝑎  defined the start, and the last frame 

within 10 dB of 𝐿𝑎 defined the end of the ME.   

2.2 Pitchogram 

The input to the CNN was extracted from the Pitchogram 

representation computed with an existing machine learn-

ing system [8]. That system uses two stages to compute the 

Pitchogram. First, a sparse filter kernel operates across a 

log-frequency spectrogram to compute activations corre-

sponding to tentative fundamental frequencies (f0s), up-

sampled through parabolic interpolation to a centitone res-

olution. These tentative f0s are then analyzed in a deeper 

network and computed activations inserted at the corre-

sponding pitch bin in the Pitchogram. The Pitchogram thus 

contains f0 activations and has a pitch resolution of 1 

cent/bin and a time resolution of 5.8 ms/frame.  

2.3 Extracting Semitone-spaced Pitch Vectors 

The Pitchogram was down-sampled to 1 bin/semitone be-

fore processing by the modality CNN. To do this, a Hann 

window of height 141 bins (cents) was first applied across 

pitch to smooth the pitch response. Then, to adjust MEs 

that deviate globally from standard tuning (specifying A4 

to a frequency of 440 Hz), the Pitchogram of each ME was 

“tuned”. This was especially important for some of the 

MEs from the film music datasets (Section 5.1), where the 

orchestral performances had different tunings. The tuning 

was achieved by locating the maximum activation in a vec-

tor v of length 100, where each element corresponds to the 

sum of pitchogram activations at a specific cent value (i.e., 

all bins 47 cents above standard tuning were summed as 

the 47th entry of the vector). Only one vector was computed 

for each ME (i.e., global tuning). The whole Pitchogram 

was then shifted ±50 cent based on the index of the maxi-

mum element. Finally, semitone-spaced activations were 

extracted between MIDI pitch 26-96, resulting in a pitch 

vector for each frame of height 71.  

2.4 Varying Time Scales 

We assume that listeners use pitch information at varying 

time scales to form an overall impression of the modality 

of a piece of music. At the shortest time scale, concurrent 

tones can form harmonic relationships that sound more 

like a major chord or a minor chord. At slightly longer time 

scales, tones played in succession may together imply the 

mode of the chord. At even longer time scales, the combi-

nation of tones and their relative activation may resemble 

key profiles/tonal hierarchies [27] that are more or less in-

dicative of a major or minor tone scale. We wanted to de-

velop a model that was agnostic to various factors that may 

covary with modality, such as accentuation (see Section 

1.1), in the hope that our model would then generalize bet-

ter to other datasets lacking these covariations. This pre-

cluded many models tracking variations in pitch activa-

tions across time (e.g., recurrent neural networks). There-

fore, in order to still account for tonal relationships evolv-

ing over time, the pitch response was smoothed across time 

with filters of varying width, producing pitch vectors re-

sponding at varying time scales. The smoothing was done 

with Hann windows of width 

𝑤 = 10 × 3𝑛  + 1                          (2) 

Proceedings of the 20th ISMIR Conference, Delft, Netherlands, November 4-8, 2019

542



  

 

where n varied between 1-5. The shortest Hann window 

therefore had a width of 31 frames (0.18 s) and the longest 

a width of 2431 frames (14.1 s). Since the unfiltered pitch 

vector was also included, the processing was applied at six 

different time scales. The smoothed pitch vectors were fi-

nally stacked across width, as shown in the left pane of 

Figure 1. This enabled the system to combine them during 

processing with a filter of width and stride 6 (Section 3.1). 

2.5 Octave Spaced Depth (Chroma) 

The proposed CNN computes a pitch chroma within its 

first layer. To facilitate this, the pitch vector was divided 

into 5 overlapping sections spaced an octave apart, each 

covering 23 semitones. The sections were concatenated 

across depth, resulting in aligned pitch classes (facilitating 

chroma processing within the CNN with filters extending 

across depth). This depth dimension is illustrated for a sin-

gle time frame in the right pane of Figure 1. The CNN in-

put of each time frame was thus prepared. It can be under-

stood as a 23 ×  6 ×  5 three-dimensional tensor, where 

height (23) represents pitch class, width (6) represents dif-

ferent time scales and depth (5) represents pitch octaves.    

 

Figure 1. Two dimensions of the 3D-tensor input to the 

CNN for a single time frame, consisting of pitch activation 

from [8] restructured across pitch, time scale and pitch 

class. The time frame is taken 8 seconds into ME No 4 in 

the film clips dataset, where a G♯ minor chord was played. 

The left pane consists of activations at varying time scales 

in the third octave. The right pane consists of the different 

pitch octaves, shown at the shortest time scale.  

2.6 Segmentation 

Each ME was divided into 6 overlapping segments of 

length 9 seconds (1550 time frames). Since no ME was 

longer than 54 seconds, these segments spanned the entire 

ME. Each segment of an ME was assigned the same 

ground truth annotation that had been established from lis-

tener ratings (Section 5.1). Since each frame (input tensor) 

had 23 × 6 × 5 = 690 input values, each segment had 

slightly above a million input values (690 × 1550).  

3. CNN ARCHITECTURE AND TRAINING 

3.1 CNN Architecture 

The CNN that was applied to each 9 seconds segment is 

shown in Figure 2. The same processing architecture was 

applied to each time frame of the segment. Convolutional 

filters always operated across unspanned dimensions, and 

zero-padding was never utilized, thereby shrinking the 

output space when applying the filters. Rectified linear 

units (ReLUs) were used as activation functions. Since the 

dataset in the study was small (203 MEs), it was important 

(and a challenge) to keep the number of learnable param-

eters small while retaining the ability to model the intrica-

cies of musical harmony. The network had a total of 413 

learnable parameters, including parameters for the batch-

normalization that was applied after each ReLU layer.  

As shown in the figure, the first chroma layer is used 

for converting input tensors to pitch chromas. Two filters 

learn weights for each octave, operating across pitch 

(height) and time scales (width). The two resulting pitch 

chromas are split into two branches, and processed with 1 

and 5 filters respectively in the subsequent harmony anal-

ysis layer. This was done to reduce the total number of pa-

rameters while still achieving the following objectives: 

• Allow the system to use two pitch chromas so that it 

could, for example, independently filter and account 

for information in the bass and higher pitches.  

• Output 6 different activations for each time scale and 

pitch class from the harmony analysis layer using only 

12 × 6 + 6 = 78 filter parameters.  

Each filter used for harmony analysis spans an octave so 

that all pitch classes are taken into account when compu-

ting an activation (attempts at dividing the harmony anal-

ysis into two layers with shorter filters gave slightly lower 

results). Since the input has a height of 23, each filter is 

applied at 12 positions when operating across pitch, one 

for each pitch class. Thus, the input and filter sizes are the 

minimum sizes for which the same combination of all pitch 

classes at various keys can be subjected to the same filters.    

The two branches were concatenated across depth and the 

next filter (orange) then spanned the various time scales. 

The subsequent max pooling filter (purple) provides invar-

iance with regards to the key class that the music was per-

formed in, since it spans all 12 pitch/key classes. Based on 

the max pooling design, it can be expected that the previ-

ous layers of the CNN learn to either react to minor or ma-

jor chords, minor or major tonal hierarchies, or various 

combinations thereof. The strongest indications of both 

major and minor modality across key are then passed to 

the subsequent fully connected (locally) layer (orange) for 

further processing. This layer is implemented as 7 filters 

that span the entire local input space (a fully connected 

layer would instead span the entire segment, something 

that is not desirable). A second filter (orange) combines the 

previous activations into a single frame prediction.  

Finally, average pooling (purple) of the frame predic-

tions is applied across the entire 9 seconds segment to pro-

duce a segment prediction (red) as a regression output.  
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Figure 2. The CNN architecture for predicting perceived modality, shown for a single input tensor (time frame). Neigh-

boring time frames are faded and dashed. All dimensions (except singleton) are indicated with black or colored numbers, 

and the number of filters is indicated with white numbers. White arrows indicate batch normalization followed by ReLUs. 

In the chroma layer, two filters (green and blue) compute pitch chromas from the input. The two chromas are processed to 

analyze the relationship between different pitch classes. Various time scales are then combined through six filters (orange), 

and max pooling applied (purple) to provide invariance with regards to the key class of the music. A fully connected layer 

is implemented through filters (orange) that span the entire feature space for a specific time frame. Finally, one filter is 

used to compute a frame prediction, and average pooling is applied to generate a prediction for the entire segment (red).  

3.2 Training 

The system was evaluated with 10-fold cross-validation, 

(Section 5.2). For each fold, the CNN was trained with the 

Adam optimizer [21], using the mean-squared-error loss 

function, an initial learning rate of 0.01, and a drop factor 

(every epoch) of 0.98. The gradient decay factor was set to 

0.9 and the factor for L2 regularization was set to 0.0001. 

A mini-batch size of 32 (segments) was used, shuffling the 

training data every epoch. The CNN was trained for 25 

epochs. If the computed R2 on the training split (the tracks 

used for training in each of the ten folds) was below 0.83 

after 25 epochs, the network was reinitialized and training 

restarted (to avoid networks stuck in a local minimum). 

This happened in around 3 % of the cases. We tested the 

main model without the restarting condition in the ablation 

study (Section 7.1), which produced a minimal difference. 

Note that there was no validation stopping, for the same 

reasons as outlined in [10]: small validation sets are unreli-

able performance indicators, and maximizing performance 

for individual networks will not necessarily maximize 

performance of ensembled (Section 4) networks. 

4. GLOBAL ESTIMATES AND ENSEMBLING  

Two different global estimates were computed for each 

ME, one estimate from an ensemble of the CNN (ECNN), 

and one estimate from an ensemble of MLPs (EMLP) re-

fining the output activations from each CNN. 

4.1 CNN 

The CNN modality prediction for each ME was computed 

as the average of all frame predictions (see Figure 2). This 

means that the local CNN architecture up until average 

pooling was applied to each frame at run-time.  

We used ensemble learning to improve the accuracy of 

the CNN predictions (Section 1.4). Ten CNNs were trained 

for each fold, and the average of their predictions was used.  

4.2 Additional MLP 

In addition, another global estimate was computed for each 
ME with an EMLP, using the global CNN prediction and 

input features from the Pitchogram and spectrogram. The 

intention was to use and examine the effect of various (po-

tentially confounding) features in the audio that the CNN 

was designed to not model. 

Pitch activations in the tuned Pitchogram were averaged 

across time and summed to a vector, indexing into the vec-

tor based on each bins’ distance to the closest semitone (0-

50 cents). The 6 first discrete cosine transform  (DCT III) 

components of the vector were then extracted as features. 

These features capture the extent and shape of micro-tun-
ing deviations (PT) across the track (e.g., from vibrato).  

We also computed both a vibrato suppressed (VS) and 

vibrato enhanced (VE) spectral flux (SF), using the max-

filtering processing strategy first described in [9], devel-

oped to model perceived speed from onset densities in 

pitched instruments. The processing was applied to the 

whitened log-frequency signal level spectrogram com-

puted as described in [8]. The VE SF was computed by 

subtracting the VS SF from the regular half-wave rectified 

bin-wise SF, thereby retaining energy only in the bins sup-

pressed in the VS SF. For both versions, we computed the 

mean across time after half-wave rectification, producing 
an SF vector across frequency. The 6 first DCT compo-

nents were extracted from these vectors as features. We 

then used the same log-frequency spectrogram, computed 

the mean across time, and extracted the first 6 DCT com-

ponents of the resulting vector (spectral distribution, SD). 

The average CNN output activation from all frames 

(Section 4.1) was also used as an input feature (naturally, 

this was the most important feature). In summary, the MLP 

had 1 + 6 × 4 = 25 input features, divided into four feature 

groups (PT, VS, VE and SD) and one CNN prediction. 

The MLP was rather small and resembled the MLP de-

veloped for predicting performed dynamics in [10]. It had 

two hidden layers each consisting of 8 neurons. The net-

work was trained for 5 epochs with the Levenberg-
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Marquadt optimization [30]. Hyperbolic tangent (tanh) 

units were used as activation functions in all layers except 

for the last linear output activation. Each input feature was 

normalized by its minimum and maximum value to the 

range ±1. Ensemble learning was used, taking the average 

prediction of 20 MLP models. Since the ECNN consisted 

of 10 CNNs, and since one EMLP was trained for each 

CNN, the final prediction in each fold was computed as an 

average of 10 ×  20 = 200 MLP models.  

5. DATASETS AND EVALUATION PROCEDURE 

5.1 Datasets 

The dataset for the study was assembled from two music 

audio datasets. The first dataset (D1) consists of 100 audio 

excerpts of popular music (average length 30 s) that were 

produced from MIDI [14]. The second dataset (D2) from 

[4] consists of 110 audio excerpts of film music (average 

length 15 s). As previously noted [7], the film music da-

taset contains duplicates. Seven duplicates were found and 

removed, reducing the size of D2 down to 103 MEs. The 

MEs are polyphonic and use a wide range of instruments. 

The overall modality had previously been rated by two 

groups of 19 and 21 listeners for the two datasets. Listeners 

were asked to rate the modality of each excerpt on a quasi-

continuous scale between minor (1) and major (10), listen-

ing on high-quality loudspeakers. The ratings were aver-

aged across listeners, producing a single ground truth rat-

ing of perceived modality for each ME. Reliability was rel-

atively high, with a standardized Cronbach’s alpha (CA) 

[3, 11] of 0.94 and 0.97 for the two datasets.  

The datasets were pooled into a single dataset (203 

MEs), which was used for training and testing.  

5.2 Evaluation Procedure 

The accuracy of the model was computed with the coeffi-

cient of determination, R2, between predictions and ground 

truth annotations. We used the square of Pearson’s corre-

lation coefficient (including an intercept).  

The models were evaluated with 10-fold cross-

validation, using a stratified sampling so that each training 

set contained about the same number of MEs from D1 and 

D2. To improve the reliability of the results, the complete 

experiment was repeated ten times, re-partitioning the val-

idation split each time.2 To get 95 % confidence intervals 

(CIs), ten results (R2s) were sampled with replacement and 

the mean computed, repeating the procedure 106 times. 

The resulting distribution of mean R2s could then be used 

for extracting CIs; it indicates the reliability of the test re-

sults based on its variation over test runs.  

6. RESULTS 

6.1 Main Results 

The final result for the ECNN and the ECNN in combina-

tion with the global EMLP is presented in Table 1.  

 

 

 

Model R2 95 % CI D1 D2 

ECNN 0.672 0.665-0.679 0.645 0.710 

ECNN+EMLP 0.716 0.710-0.722 0.710 0.745 

Table 1. Squared correlation (R2) between the ground truth 

ratings of perceived modality in music audio and the pre-

dictions of the two proposed models; also measured indi-

vidually within the two datasets (D1 and D2). 

The full system reached an R2 of 0.716 for the predic-

tions of perceived modality in the two datasets (corre-

sponding to a correlation, r, of 0.846). The predictions 

from the CNN ensemble without the subsequent EMLP, 

minimizing contributions from confounding factors of var-

iation, were almost as accurate, with an R2 of 0.672.  

As seen in Table 1, the second dataset (D2) consisting 

of film clips was easier to predict than the first one (D1). 

This difference is in line with results of the previous study 

on the same datasets that reported an R2 of 0.43 (full 

model, 0.38) for D1 and 0.47 (full model, 0.53) for D2. The 

higher CA (Section 5.1) for this dataset indicates that lis-

teners also had stronger agreement when rating it. Figure 3 

shows predictions in relation to ground truth annotations. 

 

Figure 3. Predicted modality (x-axis) in relation to rated 

modality (y-axis) for datasets D1 (blue) and D2 (green) in 

one of the test runs (R2 = 0.706) for the ECNN+EMLP. 

The dashed grey line indicates perfect prediction. Numbers 

indicate the index of each ME for future comparisons. 

6.2 Comparison with Previous Systems and Humans 

Figure 4 provides context regarding the prediction accu-

racy. The proposed system (blue bars) clearly outperforms 

previous systems (Section 1.2, white bars). Note that [1] 

was tested on a different dataset, so differences in predic-

tive performance should be interpreted with caution. Hu-

man performance (circles) was computed from the listen-

ers of the original listening test using a similar strategy as 

proposed in [10]. The performance of n listeners was de-

rived by sampling (with replacement) n listeners and com-

puting the R2 between their mean rating and the mean rat-

ing from the non-sampled listeners. The procedure was re-

peated 105 times, using the 105 results to compute a mean 

and 95 % CIs. For n = 1, sampling is not applicable, and 

the 95 % CIs were defined as the listener with the second 

lowest and second highest R2. 

2Running the main 10-fold cross-validation experiment ten times took 

about 5.5 days, training the ECNN with a GeForce GTX 1080 GPU         

(5 days; 10 × 10 × 10 = 1 000 CNNs) and the EMLP  using 5 parallel 

i7-6700K CPU threads (0.5 days; 10 × 20 × 10 × 10 = 20 000 MLPs). 
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Figure 4. Modality estimation results (R2) of the proposed 

system (blue), previous systems (white), individual human 

listeners (green circle), and ensembled human listeners 

(red circles). Black lines indicate 95 % CIs. 

7. ABLATION STUDY 

7.1 CNN 

Important stages of the CNN architecture were examined 

by training the ECNN with various alterations of the CNNs. 

The different stages/properties tested were:  

Time scales: None-2431 – All different time scales (Sec-

tion 2.4) were tested separately.  

Key class invariance pooling (Pool): Avg – A CNN using 

average pooling instead of max pooling. Conv – A fully 

convolutional architecture that instead reduced the pitch 

dimension through four layers with two filters of height 

{5 4 3 3}, followed by a single filter of height 1. 

Input: Mag – Using a magnitude log-frequency spectro-

gram as input, computed as described in [8] (pre-filtering). 

dB – Using the whitened log-frequency signal level spec-

trogram from [8]. For both versions, the spectrum covered 

the same range of 71 semitones, using overlapping trian-

gular filters to reduce the frequency resolution.  

Pitch chroma (PC): Mean – The mean of the five octaves 

was computed directly and passed as input, using 6 har-

mony analysis filters in the first layer 

Results relative to the main CNN model are shown in 

Figure 5 and conclusions of the experiment provided in 

Section 8. The same validation split was used for all tests 

to increase consistency. This split was also used for the 

main model for computing a performance reference. 

 

Figure 5. The variation in R2 for different CNN settings in 

relation to the main CNN model. The 95 % CIs (±0.007) 

from the main experiment are indicated by the grey area.3  

 

7.2 MLP 

We also tested various combinations of EMLP input fea-

tures.4 The results shown in Figure 6 indicate that a com-

bination of SF features with vibrato suppression (VS) and 

vibrato enhancement (VE) was important.  

 

Figure 6. The change in R2 in relation to the ECNN results, 

when using various EMLP feature groups (Section 4.2). 

Black lines indicate 95 % CIs for the relative improvement 

over the ECNN in each test run. 

8. CONCLUSIONS 

A convolutional neural network for predicting perceived 

modality in music was implemented. Its predictive perfor-

mance was well above that of previous systems as well as 

the average human listener, performing better than around 

95 % of the human annotators. It requires the combined 

ratings of 3 listeners to reach the same predictive perfor-

mance as the model. The CNN used pitch activations from 

a pitch tracking system as input; the ablation study showed 

that this input representation improves performance sub-

stantially in relation to spectral input (Mag and dB). The 

methodology of max pooling across key classes to provide 

invariance seems beneficial since it improved performance 

in relation to a fully convolutional model. However, aver-

age pooling, in which the network instead has to rely on 

earlier ReLUs to discard irrelevant activations in certain 

key classes seems to be an equally attractive, or even bet-

ter, option for achieving key class invariance.  

The CNN was restricted from using filters operating 

across time, to reduce the influence of irrelevant confound-

ing factors of variations, such as accentuation and spectral 

fluctuations. Instead, the CNN received input filtered to 

account for different time scales. The ablation study indi-

cates that a time scale of around 4-5 seconds is the most 

relevant and that instantaneous time scales, only using har-

monic information from concurrent tones, significantly re-

duces performance. Performance only dropped slightly 

when the pitch chroma layer of the CNN was discarded 

and the mean (across octaves) pitch chroma instead used 

as input (Mean PC, Figure 5). The small size of the dataset 

likely reduces the importance of this CNN layer; tracking 

interactions between pitches in different registers requires 

more learnable parameters, which requires more input data 

for generalization.  

We hope that the results can inspire further develop-

ment of CNN architectures accounting for musical invari-

ances, including, and beyond, key class and pitch class. 
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3Note that these CIs define the 95 % range within which the mean of ten  

complete 10-fold cross-validation runs varies. The ECNN ablation 

study used one complete 10-fold cross-validation run per architecture. 

4All feature groups were tested with the same global CNN activation as 

an additional feature, and evaluated across the full ten experimental runs. 
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