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Abstract

We propose sparse-matrix belief propagation,
which executes loopy belief propagation in pair-
wise Markov random fields by replacing in-
dexing over graph neighborhoods with sparse-
matrix operations. This abstraction allows for
seamless integration with optimized sparse lin-
ear algebra libraries, including those that per-
form matrix and tensor operations on modern
hardware such as graphical processing units
(GPUs). The sparse-matrix abstraction allows
the implementation of belief propagation in a
high-level language (e.g., Python) that is also
able to leverage the power of GPU paralleliza-
tion. We demonstrate sparse-matrix belief prop-
agation by implementing it in a modern deep
learning framework (PyTorch), measuring the
resulting massive improvement in running time,
and facilitating future integration into deep
learning models.

1 INTRODUCTION

Belief propagation is a canonical inference algorithm for
graphical models such as Markov random fields (MRFs)
or Bayesian networks (Pearl, 2014; Wainwright et al.,
2008). In graphs with cycles, loopy belief propagation
performs approximate inference. Loopy belief propaga-
tion passes messages from the variable nodes to their
neighbors along the graph structure. These messages are
fused to estimate marginal probabilities, also referred to
as beliefs. After enough iterations of the algorithm, these
beliefs tend to represent a good approximate solution to
the actual marginal probabilities. In this paper, we con-
sider pairwise MRFs, which only have unary and pairwise
factors.

One drawback of loopy belief propagation is that, though

the algorithm is relatively simple, its implementation re-
quires management of often irregular graph structures.
This fact usually results in tedious indexing in software.
The algorithm’s message-passing routines can be com-
piled to be rather efficient, but when implemented in a
high-level language, such as those used by data scien-
tists, they can be prohibitively slow. Experts typically
resort to writing external software in lower-level, com-
piled languages such as C++. The implementation of
belief propagation (and its variants) as separate, compiled
libraries creates a barrier for its integration into high-level
data science workflows.

We instead derive loopy belief propagation for pairwise
MRFs as a sequence of matrix operations, resulting in
sparse-matrix belief propagation. In particular, we use
sparse-matrix products to represent the message-passing
indexing. The resulting algorithm can then be imple-
mented in a high-level language, and it can be executed
using highly optimized sparse and dense matrix opera-
tions. Since matrix operations are much more general
than loopy belief propagation, they are often built in as
primitives in high-level mathematical languages. More-
over, their generality provides access to interfaces that
implement matrix operations on modern hardware, such
as graphical processing units (GPUs).

In this paper, we describe sparse-matrix belief propaga-
tion and analyze its running time, showing that its running
time is asymptotically equivalent to loopy belief propaga-
tion. We also describe how the abstraction can be used
to implement other variations of belief propagation. We
then demonstrate its performance on a variety of tests. We
compare loopy belief propagation implemented in Python
and in C++ against sparse-matrix belief propagation using
scipy.sparse and PyTorch on CPUs and PyTorch on GPUs.
The results illustrate the advantages of the sparse-matrix
abstraction, and represent a first step toward full integra-
tion of belief propagation into modern machine learning
and deep learning workflows.



1.1 RELATED WORK

Belief propagation is one of the canonical variational in-
ference methods for probabilistic graphical models (Pearl,
2014; Wainwright et al., 2008). Loopy belief propaga-
tion is naturally amenable to fine-grained parallelism, as
it involves sending messages across edges in a graph
in parallel. The algorithm is classical and well studied,
but because it involves tight loops and intricate index-
ing, it cannot be efficiently implemented in high-level or
mathematical programming languages. Instead, practi-
tioners rely on implementations in low-level languages
such as C++ (Schmidt, 2007; Andres et al., 2012). Spe-
cific variations for parallel computing have been proposed
(Schwing et al., 2011), and other variations have been im-
plemented in graph-based parallel-computing frameworks
(Low et al., 2014; Malewicz et al., 2010). Specialized
implementations have also been created for belief propa-
gation on GPUs (Zheng et al., 2012).

While loopy belief propagation is the canonical message-
passing inference algorithm, many variations have been
created to address some of its shortcomings. Some varia-
tions modify the inference objective to make belief prop-
agation a convex optimization, such as tree-reweighted
belief propagation (Wainwright et al., 2003) and con-
vexified belief propagation (Meshi et al., 2009). Other
variations compute the most likely variable state rather
than marginal probabilities, such as max-product belief
propagation (Wainwright et al., 2008) and max-product
linear programming (Globerson and Jaakkola, 2008).

Linearized belief propagation approximates the message
update formulas with linear operations (Gatterbauer et al.,
2015), which, like our approach, can benefit from highly
optimized linear algebra libraries and specialized hard-
ware. However, our approach aims to retain the exact
non-linear formulas of belief propagation (and variants),
while linearized belief propagation is an approximation.

Our approach of using sparse matrices as an abstraction
layer for implementing belief propagation relies on sparse
matrix operations being implemented in efficient, opti-
mized, compiled libraries. Special algorithms have been
developed to parallelize these operations on GPUs, en-
abling sparse-matrix computations to use the thousands
of cores typically available in such hardware (Bell and
Garland, 2008). Other libraries for sparse-matrix com-
putation, such as those built into MATLAB (Gilbert
et al., 1992) and scipy.sparse often seamlessly pro-
vide multi-core parallelism. Frameworks for large-scale,
distributed matrix computation, such as Apache Spark
(Bosagh Zadeh et al., 2016), can also be used as back-
ends for our approach. Finally, one of the more im-
portant recent advances in computing hardware, field-
programmable gate arrays (FPGAs), also support sparse-

matrix operations (Zhuo and Prasanna, 2005).

By formulating belief propagation as a series of matrix
and tensor operations, we make it fit into modern deep
learning software frameworks, such as PyTorch (Paszke
et al., 2017) and TensorFlow (Abadi et al., 2016). Since
these frameworks are designed to easily switch between
CPU and GPU computation, we use PyTorch for one
of our belief propagation implementations in our exper-
iments. The added advantage is that, once these frame-
works fully support back-propagation through sparse
matrix products, we will be able to immediately back-
propagate through belief propagation. Back-propagating
through inference has been shown to allow more robust
training of graphical model parameters (Domke, 2013).

2 BACKGROUND

In this section, we review belief propagation and some
common—but not often documented—simplifications.
Define a pairwise Markov random field (MRF) as a fac-
torized probability distribution such that the probability
of variable x ∈ X is

Pr(X = x) =
1

Z
exp

∑
i∈V

φi(xi) +
∑

(i,j)∈E

φ(xi, xj)

 ,

(1)
where the normalizing constant Z is

Z =
∑
X∈X

exp

∑
i∈V

φi(xi) +
∑

(i,j)∈E

φ(xi, xj)

 , (2)

and x represents the full state vector of all variables, xi ∈
Xi represents the state of the ith variable, andG = {V, E}
is a graph defining the structure of the MRF.

The goal of marginal inference is to compute or approxi-
mate the marginal probabilities of the variables

{Pr(x1), . . . ,Pr(xn)} (3)

and of other subsets of variables. In pairwise MRFs, the
marginal inference is often limited to the unary marginals
and the pairwise marginals along the edges.

2.1 LOOPY BELIEF PROPAGATION

Belief propagation is a dynamic programming algorithm
for computing marginal inference in tree-structured MRFs
that is often applied in practice on non-tree, i.e., loopy,
graphs. Loopy belief propagation is therefore a heuristic
approximation that works well in many practical scenar-
ios. The algorithm operates by passing messages among
variables along the edges of the MRF structure.



The message sent from variable xi to variable xj is

mi→j [xj ] = log

(∑
xi

exp (axi)

)
, (4)

where (as shorthand to fit the page)

axi = φij(xi, xj) + φi(xi) +
∑

k∈Ni\j

mk→i[xi]− dij ;

(5)
Ni is the set of neighbors of variable i, i.e., Ni =
{k|(i, k) ∈ E}; and dij is any constant value that is even-
tually cancelled out by normalization (see Eq. (7)). The
message itself is a function of the receiving variable’s
state, which in a discrete setting can be represented by a
vector (hence the bracket notation mi→j [xj ] for indexing
by the state of the variable).

The estimated unary marginals, i.e., the beliefs, are com-
puted by fusing the incoming messages with the potential
function and normalizing:

Pr(xj) ≈ exp(bj [xj ]) =

exp

φj(xj) +
∑
i∈Nj

mi→j [xj ]− zj

 ,
(6)

where z is a normalizing constant

zj = log

∑
xj

exp

φj(xj) +
∑
i∈Nj

mi→j [xj ]

 .

(7)
For convenience and numerical stability, we will consider
the log-beliefs

bj [xj ] = φj(xj) +
∑
i∈Nj

mi→j [xj ]− zj . (8)

We again use bracket notation for indexing into the be-
liefs because, for discrete variables, the beliefs can most
naturally be stored in a lookup table, which can be viewed
as a vector.

2.2 SIMPLIFICATIONS

The message update in Eq. (4) contains an expression that
is nearly identical to the belief definition in Eq. (8). In the
message update, the exponent is

axi = φij(xi, xj) + φi(xi) +
∑

k∈Ni\j

mk→i[xi]− dij .

(9)
The only difference between this expression and the belief
update is that the belief uses the constant zj to ensure
normalization and the message update omits the message

from the receiving variable (j). For finite message values,
we can use the equivalence

φi(xi) +
∑

k∈Ni\j

mk→i[xi]− dij =

φi(xi) +
∑
k∈Ni

mj→i[xi]−mj→i[xi]− dij =

bi[xi]−mj→i[xi],

(10)

where the last equality sets dij = zi. The message and
belief updates can then be written as

bj [xj ] = φj(xj) +
∑
i∈Nj

mi→j [xj ]− zj ,

mi→j [xj ] =

log

(∑
xi

exp (φij(xi, xj) + bi[xi]−mj→i[xi])

)
.

(11)
These two update equations repeat for all variables and
edges, and when implemented in low-level languages
optimized by pipelining compilers, yield the fastest com-
puter programs that can run belief propagation. However,
the indexing requires reasoning about the graph structure,
making any code that implements such updates cumber-
some to maintain, prone to errors, and difficult to adapt to
new computing environments such as parallel computing
settings.

3 SPARSE-MATRIX BELIEF
PROPAGATION

In this section, we describe sparse-matrix belief propa-
gation and analyze its complexity. Instead of directly
implementing the updates, sparse-matrix belief propaga-
tion uses an abstraction layer of matrices and tensors.
This abstraction allows belief propagation to be written in
high-level languages such as Python and MATLAB, dele-
gating the majority of computation into highly optimized
linear algebra libraries.

3.1 TENSOR REPRESENTATIONS OF THE
MRF, BELIEFS, AND MESSAGES

We store a c by n belief matrix B, where n is the number
of variables and c is the maximum number of states of
any variable. For simplicity, assume all variables have the
cardinality c, i.e., |Xi|= c. This belief matrix is simply the
stacked belief vectors, such that Bij = bj [i]. Similarly,
we rearrange this matrix into an analogously shaped and
ordered unary potential function matrix Φ, where Φij =
φj(xj = i).

We store the pairwise potentials in a three-dimensional
tensor Γ of size c× c× |E|. Each kth slice of the tensor



is a matrix representing the kth edge potential function as
a table, i.e., Γijk = φsktk(i, j).

Consider a view E of the edge set E in which each edge
appears in forward and reverse order, i.e., (i, j) ∈ E if
and only if (j, i) ∈ E. Let the edges also be indexed in
an arbitrary but fixed order

E = {(s1, t1), (s2, t2), . . . , (s|E|, t|E|)}, (12)

and define vectors s = [s1, . . . , s|E|]
> and t =

[t1, . . . , t|E|]
>. These variables encode a fixed ordering

for the messages. The particular order does not matter,
but to convert message passing into matrix operations, we
need the order to be fixed.

In addition to the fixed order, we also define a message
reversal order vector r where

E[ri] = (t, s) if E[i] = (s, t). (13)

We can represent this reversal vector as a sparse, |E|×|E|
permutation matrix R where Rij = 1 iff ri = j.

Define a c by |E| message matrix M whose ith column
is the ith message. In other words, Mij = msj→tj [i], or
equivalently, M is a horizontal stack of all messages:

M =
[
ms1→t1 , ms2→t2 , . . . ,ms|E|→t|E|

]
. (14)

Finally, we define a binary sparse matrix T (for to) with
|E| rows and n columns whose nonzero entries are as
follows:

Tij =

{
1.0 if ti = j

0 otherwise.
(15)

This matrix T maps the ordered messages to the variables
that receive the messages.

We define an analogous matrix F (for from), also binary
and sparse with |E| rows and n columns, whose nonzero
entries are as follows:

Fij =

{
1.0 if si = j

0 otherwise.
(16)

This matrix T maps the ordered messages to the variables
that send the messages.

3.1.1 The logsumexp operation

A common operation that occurs in various steps of com-
puting log-space belief propagation is the logsumexp
operation, which is defined as follows:

logsumexp(A) = log (exp (A) · 1) , (17)

where the log and exp operations are performed element-
wise, and we use the matrix-vector product with the ones

vector (1) as a compact notation for summing across the
rows of the exponentiated input matrix.1 The resulting
output is a column vector with the same number of rows
as the input matrix A.

3.1.2 Slice Indexing

To describe the message updates in a compact notation,
we use slice indexing, which is common in matrix and
tensor software because it can be implemented efficiently
in linear time and easy to parallelize. We borrow syn-
tax from numpy that is also reminiscent of the famous
MATLAB syntax, where

A[:, i] = [A[:, i1],A[:, i2], . . .] . (18)

This slice indexing allows the reordering, selection, or
repetition of the rows or columns of matrices or tensors.

3.2 BELIEF PROPAGATION AS TENSOR
OPERATIONS

Using these constructed matrices, the belief matrix is
updated with the operations

B̃← Φ + M>T

B← B̃− 1 logsumexp
(
B̃
)
,

(19)

where the last operation uses the logsumexp operation to
compute the normalizing constants of each belief column
vector and multiplies by the ones vector (1) to broadcast
it across all rows.2

The message matrix M is updated with the following
formula:

M← logsumexp(Γ + B[:, s]−M[:, r]). (20)

This expression uses two forms of shorthand that require
further explanation. First, the addition of the tensor Γ
and the matrix (B[:, s] − M[:, r]) requires broadcast-
ing. The tensor Γ is of size c × c × |E|, and the matrix
(B[:, s] −M[:, r]) is of size c × |E|. The broadcasting
copies the matrix c times and stacks them as rows to form
the same shape as Γ. Second, the logsumexp operation
sums across the columns of the summed tensor, outputting

1It is especially useful to form this abstraction because this
operation is notoriously unstable in real floating-point arithmetic.
Numerically stable implementations that adjust the exponent by
subtracting a constant and adding the constant back to the output
of the logarithm are possible. These stable implementations add
a linear-time overhead to the otherwise linear-time operation, so
they maintain the same asymptotic running time of the original
logsumexp operation.

2In numpy, this broadcasting is automatically inferred from
the size of the matrices being subtracted.



a tensor of shape c× 1× |E|, which is then squeezed into
a matrix of size c× |E|.

The message matrix can equivalently be updated with this
formula:

M← logsumexp(Γ + BF> −MR). (21)

Here BF> −MR is once again c× |E|, and it is equiva-
lent to the slice-notation form above.

Belief propagation is then implemented by iteratively
running Eq. (19) and then either of the equivalent Eqs. (20)
and (21).

3.3 VARIATIONS OF BELIEF PROPAGATION

Many variations of belief propagation can similarly be
converted into a sparse-matrix format. We describe some
of these variations here.

3.3.1 Tree-Reweighted Belief Propagation

The tree-reweighted variation of belief propagation
(TRBP) computes messages corresponding to a convex
combination of spanning trees over the input graph. The
result is a procedure that optimizes a convex inference ob-
jective (Wainwright et al., 2003; Wainwright et al., 2008).
The belief and message updates for TRBP are adjusted
according to edge-appearance probabilities in a distribu-
tion of spanning trees over the MRF graph. These updates
can be implemented in matrix form by using a length |E|
vector ρ containing the appearance probabilities ordered
according to edge set E. The matrix-form updates for the
beliefs and messages are then

B̃← Φ + (ρ ◦M)>T

B← B̃− 1 logsumexp
(
B̃
)
,

M← logsumexp(Γ/ρ+ BF> −MR),

(22)

where element-wise product ◦ and element-wise division
/ are applied with appropriate broadcasting.

3.3.2 Convexified Belief Propagation

Another important variation of loopy belief propagation
uses counting numbers to adjust the weighting of terms
in the factorized entropy approximation. The resulting
message update formulas weight each marginal by these
counting numbers. Under certain conditions, such as
when all counting numbers are non-negative, the infer-
ence objective can be shown to be concave, so this method
is often referred to as convexified Bethe belief propagation
(Meshi et al., 2009). We can exactly mimic the message
and belief update formulas for convexified belief propa-
gation by instantiating a vector c containing the counting

numbers of each edge factor, resulting in the updates

B̃← Φ + M>T

B← B̃− 1 logsumexp
(
B̃
)
,

M← logsumexp(Γ + (BF> −MR)/c) ◦ c.

(23)

The counting numbers for unary factors can be used to
compute the inference objective, but they do not appear
in the message-passing updates.

3.3.3 Max-Product Belief Propagation

Finally, we illustrate that sparse tensor operations can
be used to conduct approximate maximum a posteriori
(MAP) inference. The max-product belief propagation
algorithm (Wainwright et al., 2008) is one method for
approximating MAP inference, and it can be implemented
with the following updates:

B← onehotmax(Φ + M>T)

M← logsumexp(Γ + BF> −MR),
(24)

where onehotmax is a function that returns an indica-
tor vector with 1 for entries that are the maximum of
each column and zeros everywhere else, e.g., the “one-
hot” encoding. Similar conversions are also possible for
variations of max-product, such as max-product linear
programming (Globerson and Jaakkola, 2008).

3.4 TIME-COMPLEXITY ANALYSIS

To analyze our sparse-matrix formulation of loopy belief
propagation, and to show that it requires an asymptotically
equivalent running time to normal loopy belief propaga-
tion, we first revisit the sizes of all matrices involved in
the update equations. The first step is the belief update
operation, Eq. (19), which updates the c by n belief ma-
trix B. The potential matrix Φ is also c by n; the message
matrix M> is c by |E|; and the sparse message-recipient
indexing matrix T is |E| by n.

The second step in Eq. (19) normalizes the beliefs. It
subtracts from B the product of 1, which is a c by 1

vector, and logsumexp
(
B̃
)

, which is 1 by n. Explicitly
writing the numerically stable logsumexp operation, the
right side of this line can be expanded to

B̃− 1 log (sum (exp (B−max (B))) + max (B)) .
(25)

We next examine the message update Eq. (21), which
updates M. The three-dimensional tensor Γ is of size
c× c× |E|; the sparse message-sender indexing matrix
F> is c by |E|; and the sparse reversal permutation matrix
R is |E|×|E|. The message matrix M is c by |E|.



CPU computation These three update steps are the en-
tirety of each belief propagation iteration. From the first
line of Eq. (19), the main operation to analyze is the dense-
sparse matrix multiplication M>T. Considering an n×m
dense matrix A and a sparse matrix B of size m× p with
s nonzero entries (i.e., ‖B‖0 = s), the sparse dot product
has time complexityO(ms) in sequential computation, as
on a CPU. The time complexity of the sparse dot product
depends upon the number of rows m and the number of
sparse elements in the sparse matrix B. Every other com-
putation in Eq. (19) involves element-wise operations on
c by n matrices. Thus, Eq. (19) requires O(nc+ ‖T‖0c)
time. Since the sparse indexing matrix T is defined to
have a single nonzero entry per column, corresponding to
edges, the time complexity of this step is O(nc+ |E|c).

In the message-update step, Eq. (21), the outer
logsumexp operation and the additions involve element-
wise operations over c × c × |E| tensors. The matrix
multiplications are all dense-sparse dot products, so the
total cost of Eq. (21) isO(|E|c2+‖F‖0c+‖R‖c) (Gilbert
et al., 1992). Since both indexing matrices F and R have
one entry per edge, the total time complexity of the mes-
sage update is O(|E|c2 + |E|c).

The combined computational cost of both steps is
O(nc + |E|c + |E|c2). This iteration cost is the same
as traditional belief propagation.

GPU computation Since the matrix operations in our
method are simple, they are easily parallelized on GPUs.
Ignoring the overhead of transferring data to GPU mem-
ory, we focus on the time complexity of the message pass-
ing. First consider the dense-sparse matrix multiplication
mentioned previously, with a dense n by m matrix A and
sparse m by p matrix B with s nonzero entries. GPU
algorithms for sparse dot products use all available cores
to run threads of matrix operations (Bell and Garland,
2008). In this case, each thread can run the multiplication
operation of a single column in the sparse matrix B.

Given k cores/threads, we assume that there will be
two cases: (1) when the number of sparse columns
m is less than or equal to the number of cores k and
(2) when the number of sparse columns m is more
than the number of cores k. For either case, let si
be the number of nonzero entries in column i. The time
complexity of case (1) is O(max

i
si), which is the

time needed to process whichever column requires the
most multiplications. For case (2), the complexity is
O(
⌈
m
k

⌉
max

i
si), which is the time for each set of cores

to process k columns. In case (2), we are limited by our
largest columns, as the rest of our smaller columns will be
processed much sooner. Overall, the GPU time complex-

ity of this operation is O
(

max
(

max
i
si,
⌈
m
k

⌉
max

i
si

))
.

In our sparse indexing matrices, each column has at most
one element.

For the element-wise dense matrix operations, which have
time complexity O(nm) on the CPU, we can again multi-
thread each entry over the number of cores k in our GPU
such that the time complexity is O

(⌈
nm
k

⌉)
.

The running time of the belief propagation steps is then
O
(⌈

n
k

⌉
c+

⌈
|E|
k

⌉
c+

⌈
|E|c2

k

⌉)
.

Based on our parallelism analysis, we expect significantly
faster running times when running on the GPU, especially
in cases where we have a large number of cores k. While
we expect some time loss due to data-transfer overhead
to the GPU, this overhead may be negligible when con-
sidering the overall time cost for every iteration of the
message-passing matrix operations.

Finally, this analysis also applies to other shared-memory,
multi-core, multithreaded environments (e.g., on CPUs),
since in both CPU and GPU settings, matrix rows can be
independently processed.

4 EMPIRICAL EVALUATION

In this section, we describe our empirical evaluation of
sparse-matrix belief propagation. We measure the run-
ning time for belief propagation on a variety of MRFs
using different software implementations and hardware,
including optimized and compiled code for CPU-based
computation and sparse-matrix belief propagation in a
high-level language for both CPU- and GPU-based com-
putation.

4.1 EXPERIMENTAL SETUP

We generate grid MRFs of varying sizes. We randomly
generate potential functions for each MRF such that the
log potentials are independently normally distributed with
variance 1.0. We use MRFs with different variable cardi-
nalities c from the set {8, 16, 32, 64}. We run experiments
with MRFs structured as square, two-dimensional grids,
where the number of rows and columns in the grids are
{8, 16, 32, 64, 128, 256, 512}. In other words, the num-
ber of variables in models with these grid sizes are, respec-
tively, 64, 256, 1024, 4,096, 16,384, 64,536, and 262,144.
We run all implementations of belief propagation until the
total absolute change in the messages is less than 10−8.

We run our experiments on different hardware setups. We
use two different multi-core CPUs: a 2.4 Ghz Intel i7 with
4 cores and a 4 Ghz Intel i7 with 4 cores.

We also run sparse-matrix belief propagation on various
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Figure 1: Log-log plots of belief propagation running times for four different implementations on the CPU. Each plot
shows the results for different variable cardinalities c. OpenGM refers to the compiled C++ library, Loopy refers to the
direct Python implementation. Sparse uses implements sparse-matrix belief propagation with scipy.sparse. And
PyTorch implements it with the PyTorch library. We also plot the running time using PyTorch on the least powerful
GPU we tested (Nvidia GTX780M) for comparison. The CPU runs plotted here use a 2.4 Ghz Intel i7.

GPUs. We run on an Nvidia GTX 780M (1,536 cores,
4 GB memory), an Nvidia GTX 1080 (2,560 cores, 8
GB), an Nvidia GTX 1080Ti (3,584 cores, 11 GB), and
an Nvidia Tesla P40 (3840 cores, 24 GB).

Additional experiments will be available in this paper’s
supplemental material.

4.2 IMPLEMENTATION DETAILS

We compare four different implementations of belief prop-
agation. First, we use the compiled and optimized C++ im-
plementation of belief propagation in the OpenGM library
(Andres et al., 2012). This software represents the low-
level implementation. Second, we use a direct implemen-
tation of simplified belief propagation (see Section 2.2)
in Python and numpy using Python loops and dictionar-
ies (hash maps) to manage indexing over graph structure.

Third, we use an implementation of sparse-matrix belief
propagation in Python using scipy.sparse. Fourth,
we use an implementation of sparse-matrix belief propa-
gation in Python using the deep learning library PyTorch,
which enables easily switching between CPU and GPU
computation.

4.3 RESULTS AND DISCUSSION

Considering the results for CPU-based belief propagation
in Fig. 1, the sparse-matrix belief propagation is faster
than any other CPU-based belief propagation for all MRF
sizes and all variable cardinalities. Similarly, the curves
show a clear linearity, with a slope suggesting that all
the CPU-based belief propagation algorithms increase
in time complexity at a linear rate. It is also evident
that the PyTorch implementation is consistently slower
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Figure 2: Log-log plots of PyTorch-GPU belief propagation running times for four different GPUs (780M, 1080, Tesla
P40, 1080Ti) and the fastest CPU method (Sparse-CPU) with different variable cardinalities c. The CPU is the 4Ghz
Intel i7.

than the scipy.sparse implementation, which is to be
expected because PyTorch operations incur an additional
overhead for their ability to integrate with deep learning
procedures (e.g., back-propagation and related tasks).

Notably, we can see that the direct Python loop-based
implementation is by far the slowest of these options.
However, when the variable cardinality increases to large
values, the Python implementation nearly matches the
speed of sparse-matrix belief propagation with PyTorch
on the CPU. While OpenGM’s belief propagation does
offer some benefits compared to Python initially at a lower
values of c, it actually results in the slowest running times
at c ≥ 32. We can conclude that despite the compiled and
optimized C++ code, the number of variables and states
can eventually overshadow any speedups initially seen at
lower values.

In Fig. 1, we also include the running times for sparse-
matrix belief propagation with PyTorch on the GPU—

shown with the dotted gray line. A direct comparison is
not exactly fair, since we are comparing across different
computing hardware, though these curves were measured
on the same physical computer. The comparison makes
clear that the GPU offers significant speed increases over
any CPU-based belief propagation, even that of the faster
scipy.sparse implementation. Interestingly, there is
a trend with the GPU runtimes that are sub-linear in the
log-log plots, representing the cases where the number of
sparse columns is not yet more than the number of cores
of the GPU.

Examining the results for GPU-based belief propagation
in Fig. 2, a majority of the GPUs are fairly close in run-
ning time between the three powerful Nvidia units: the
1080, the 1080Ti, and the P40. The 780M understand-
ably lags behind. As seen previously, until the cores are
saturated with operations, there appears to be a pseudo-
constant time cost. And once the cores are saturated, the
running times grow linearly. This trend is best seen at



c = 16 for the first two or three points. We also include
the fastest CPU running time, using scipy.sparse
on an Intel 4 Ghz i7, to illustrate the drastic difference
in time between sparse-matrix belief propagation on the
CPU and GPU.

These results demonstrate that sparse-matrix belief propa-
gation enables the fastest running times for inference in
these grid MRFs on the CPU. And using different soft-
ware backends (scipy.sparse or PyTorch) for the
sparse-matrix operations leads to different behavior, with
PyTorch incurring some overhead resulting in slower com-
putation. Once ported to the GPU, the speedups are even
more drastic, resulting in running times that are many
factors faster than those seen on the CPU, easily out-
weighing the overhead cost of using software backends
like PyTorch that support seamless switching from CPU
to GPU computation.

5 CONCLUSION

We presented sparse-matrix belief propagation, which
exactly reformulates loopy belief propagation (and its
variants) as a series of matrix and tensor operations. This
reformulation creates an abstract interface between be-
lief propagation and a variety of highly optimized li-
braries for sparse-matrix and tensor operations. We
demonstrated how sparse-matrix belief propagation scales
as efficiently as low-level, compiled and optimized im-
plementations, yet it can be implemented in high-level
mathematical programming languages. We also demon-
strated how the abstraction layer allows easy portabil-
ity to advanced computing hardware by running sparse-
matrix belief propagation on GPUs. The immediately
resulting parallelization benefits required little effort once
the sparse-matrix abstraction was in place. Our soft-
ware library with these implementations is available at
https://bitbucket.org/berthuang/mrftools/.

Open Questions and Next Steps There are still a num-
ber of research directions that we would like to pursue.
We mainly focused on analyzing the benefits of sparse-
matrix belief propagation on grid-based MRFs, but there
are many different structures of MRFs used in important
applications (chain models, random graphs, graphs based
on structures of real networks). Similarly, applying our
approach to real-world examples would help confirm the
utility of it in current problems within machine learning.
Likewise, we focused on fairly sparse graphs that did
not have many non-zero entries per column. It would be
interesting to explore the difference between how sparse-
matrix belief propagation behaves on the dense and sparse
matrices on different hardware and whether fully dense
matrices would still result in notable speed improvements,

or if overhead from the sparse-matrix format would be-
come a bottleneck.

Our sparse-matrix formulation of belief propagation is
derived for pairwise MRFs, so it remains an open ques-
tion what modifications are necessary for higher-order
MRFs which may have arbitrarily large factors. Benefits
similar to those we measured on GPUs can arise from the
sparse-matrix abstraction for other computing backends,
such as the use of compute-cluster parallelism through li-
braries such as Apache Spark, or the computation of belief
propagation on FPGAs. Finally, the integration of belief
propagation into deep learning models is straightforward
with the matrix abstraction. Though many popular frame-
works do not yet support back-propagation through sparse
dot products, such support is forthcoming according to
their respective developer communities.
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