Supplementary Materials

The proofs use the following two results, i.e., Lemma 1
and Lemma 2, of subsampled randomized Hadamard
transform (SRHT).

Lemma 1 ((Tropp, 2011)). Suppose that V is ann X k
matrix with orthonormal columns and 11 is an n x n
SRHT matrix, it satisfies that
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Lemma 2 ((Tropp, 2011)). Let V' be an nx k matrix with
orthonormal columns, and denote the maximum squared
row norm by v = max; He;'—VHQ. Sample uniformly
without replacement m rows of V' to obtain a reduced
matrix V'. For any t > 0, the extreme singular values
satisfy
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with failure probability at most
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The following theorem is a consequence of Lemma 1 and
Lemma 2. The theorem basically states that kernel ap-
proximation in Algorithm 1 is close to the true kernel up
to some scaling factor 1 £ e.
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Theorem 3 (Approximate matrix multiplication). Let A
be an n x p matrix with rank r. Let I1 be an m x p SRHT
matrix with
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Suppose that p > m and compute A = AIL", then the
inequality
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Proof. Note that the failure probability in Lemma 2 is no
more than
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To make the failure probability no more than 2k~!, it
suffices to set
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Incorporating the scaling factors of the SRHT, the ex-
treme singular values of the transformed V' satisfy
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From Lemma 1, with failure probability at most k~! that
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Combined with the singular value bounds, this result es-
tablishes the connection between m and the desired sin-
gular value bounds. One may choose m = tnylog k, for
some t > 4.

The rest of the proof is now straightforward. We con-
sider the singular value decomposition A = UV T,
where V' is p x 7 orthonormal V' and has orthonormal
columns. Let IT be the SRHT, we have that AAT =
U (V'II'IIV) U . The desired result follows by
invoking Lemma 2 to bound the extreme singular values
of V'II'TIV. O

Proof of Theorem 1. The idea is to simplify the analy-
sis by dealing with the equivalent primal form of (16),
involving only one IT term. We then perform a pertur-
bation analysis of the inverse component. In addition,
Weyl’s inequalities as well the exponentiated version of
Horn’s inequalities are used for eigenvalue manipula-
tions.

First, (16) can be equivalently expressed in the primal
form (3):
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LetT = & ! + XV ~'X, the idea is to bound the
error norm using the perturbation of the singular val-
ues of I, Denote by ® = ®II'IIV® and A =



&'~! — &1, abasic result from matrix perturbation the-
ory (Stewart and Sun, 1990) gives
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From Wey!’s inequalities, one further obtains
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We now provide a bound for ||All,. Observe that
A=Ve ' (Mm)™ — 1) V& " in which the ex-
treme singular values of the parenthesized difference are
bounded via Theorem 3. Thus, we have
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It remains to give a lower bound for Ay (®'~1). From
Theorem 3 and Horn’s inequalities, one has
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Finally, the desired estimation bound satisfies
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worst-case bound
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Proof of Theorem 2. Let P = ZZT, then I — P is idem-
potent. Thus, the noise AVC Gy in (12) can be ex-
pressed as
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The SRHT version 53, using Algorithm 1 satisfies
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where A is given in Algorithm 1. One then invokes The-
orem 3 to bound the singular values of X®X " — AAT:
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fails with probability at most 3/n. The second line fol-
lows from the exponentiated Horn’s inequalities and the
fact that I — P is an idempotent projection matrix of
rank n — ¢. The sum in the fraction equals to the Ky Fan
(n — q)-norm of X®X ".

To show the bound for A ave, it follows from (15) that
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where we used Theorem 3 and the earlier bound on Gay.
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