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Abstract. In this work we improve ATP performance in large theories
by the reuse of lemmas derived in previous related problems. Given a
large set of related problems to solve, we run automated theorem provers
on them, extract a large number of lemmas from the proofs found and
post-process the lemmas to make them usable in the remaining prob-
lems. Then we filter the lemmas by several tools and extract their proof
dependencies, and use machine learning on such proof dependencies to
add the most promising generated lemmas to the remaining problems.
On such enriched problems we run the automated provers again, solv-
ing more problems. We describe this method and the techniques we used,
and measure the improvement obtained. On the MPTP2078 large-theory
benchmark the method yields 6.6% and 6.2% more problems proved in
two different evaluation modes.

1 Introduction

When solving many problems in a certain theory, mathematicians usually re-
member and re-use the important lemmas found in related problems. Lemma
usually denotes a statement that was useful or crucial for proving a (important)
theorem, often an important technical step. For example commutativity or dis-
tributivity of some algebraic operations under certain assumptions might greatly
simplify proofs in algebra.

This paper describes several experiments that attempt to improve the effi-
ciency of automated theorem proving (ATP) over a larger theory by designing
automated methods for re-using lemmas from related problems. We are interested
in proving theorems (and re-using lemmas) in general large-theory mathemat-
ics represented in the first-order TPTP format and giving rise to thousands of
related problems, containing many formulas. We assume that there are many
symbols in such problems and that they are named consistently across all the
problems. Such problems are typically neither purely equational nor Horn nor
EPR, and the strongest existing tools for them are refutational first-order ATPs
such as Vampire [10] and E [I8]. Hence our task revolves around the refutational
proofs obtained from such ATPs. The important topics that need to be addressed
are:

— How do we generate re-usable lemmas automatically from such ATP proofs?



— How do we automatically choose a set of good lemmas from related problems?
What are good lemmas for a particular new ATP problem?

How do we evaluate the usefulness of re-using lemmas in ATP?

— How much ATP performance can we gain by re-using lemmas?

There have been several lines of work in ATP related to these questions,
we briefly mention those that are most relevant to our work. So far the most
successful technique for re-using lemmas from ATP proofs has been Veroft’s hints
method [26]. It extracts lemmas from the (manually selected and semi-manually
re-oriented) proofs produced by Prover9 and uses them for internally directing
Prover9’s given-clause loop on related problems. The main application have so
far been problems in equational algebra [15]. A recent example where very long
proofs of open conjectures are found thanks to this technique is the project AIM-
ed at characterizing loops with Abelian Inner Mappings groups [9]. A similar
technique that extracts and generalizes lemmas from previous proofs and uses
them for proof guidance was implemented by Schulz in E prover as a part of his
PhD thesis [17].

We have tried to experiment with this E technique on large-theory problems,
so far without successﬁ Our very initial experiments (done with Veroff) with
hints on large-theory problems have shown that unlike the equational proofs, the
proofs of large-theory problems contain many (incompatible) skolem constants
and steps depending on the negated conjecture, and thus are harder to re-orient
into the strictly-forward proofs [9] from which lemmas derived only from the
axioms and containing only known symbols can be extracted. A related issue
is that the large-theory proofs seem to be much more heterogeneous than e.g.
the AIM problems, likely requiring targeted selection of hints for a particular
problem rather than unrestricted use of all available lemmas as hints. To address
such issues, we instead proceed here as follows:

1. We extract all the direct (axiom-derived) skolem-free lemmas used in the
proofs. These lemmas can be immediately re-used in other proofs.

2. To make other lemmas re-usable, we first attempt to heuristically redi-
rect general refutational ATP proofs into Jaskowski-style natural deduction
proofs using the recent tools developed for Sledgehammer by Blanchette and
Smolka [2/19], so that the proof steps (later translated into lemmas) only de-
pend on axioms.

3. Then we extract and heuristically deskolemize lemmas from the redirected
natural-deduction proofs, so that the lemmas only speak about symbols that
are known in the original large-theory problems (and thus are re-usable).

4. We verify and optionally interreduce the lemmas.

5. Given a new conjecture C, we use several Al methods to estimate which of
the previously extracted lemmas might be most useful for proving C. Various
numbers of the best lemmas are then added to the axioms with which we
try to prove C.

4 Schulz confirms that the code has not been maintained and might need various
updates.



The evaluation is done on the large-theory MPTP2078 benchmark [I], con-
taining 2078 related problems in general topology (and related fields) extracted
from Mizar. Note that large-theory techniques developed on one large-theory
benchmark or corpus typically transfer well to other large-theory corpora [22//3].
In the following sections, we first describe in more detail the scenario and the
techniques involved, and then we run ATPs on the benchmark with and without
using such lemmatization methods, and evaluate their performance.

2 Lemmatization Scenario and Initial Statistics

Our goal is to prove as many problems over a large theory as possible. Concretely
on the MPTP2078 benchmark, E prover (version 1.8) can prove in 60 seconds 569
of the 2078 large problems containing all previous premises (theorems, definitions
and axioms). E can prove 1208 of the small versions of these problems, obtained
by only giving E the premises that were needed for the (human-assisted) Mizar
proofs.

The problems are chronologically ordered by their appearance in the Mizar
library. We can assume that for a given problem P in the benchmark, all the
lemmas found in all the previous proofs can be used for proving P. We can use
both the lemmas from the large problems and from the small (human-assisted)
problems, assuming that the mathematician needs to write the human-assisted
formal proof regardless, even when the automation fails him, and that such
human-assisted proofs can then be given to an ATP, which then may produce
useful lemmas when running on such small problems.

The initial statistics of unmodified lemmas extracted from the 1208 proofs
of the small problems is shown in Table [T} There are 75044 total lemmas when
counting the same lemma multiple times (if it was created in multiple proofs).
Only about half of them (38058) do not depend on the negated conjecture. About
60% (43995) of all lemmas contain a skolem symbol. Practically all those (96%)
which depend on the negated conjecture contain a skolem symbol, but that is
also the case for 22% of those that do not depend on the negated conjecture. This
leaves only about 40% (29554) lemmas (with repetition) that are derived without
the use of the negated conjecture and that do not contain any skolem symbol.

lemmas neg.-conj.-dependent neg.-conj.-independent

all 75044 36986 38058

all skolem 43995 35671 8324

all no skolem 31049 1315 29554
unique 23764 13660 10104
unique skolem 18189 13616 4573
unique no skolem 5575 44 5531

Table 1: Initial statistics of lemmas from the small problems.



After approximate merging of the same lemmas from different problemsﬂ these
numbers are even smaller: the ratio of usable lemmas that are independent of
the negated conjecture and do not contain skolem symbols drops to 23% of all
lemmas, while 77% do contain skolem symbols and 57% depend on the negated
conjecture.

This is a good motivation for trying methods that make the lemmas inde-
pendent of the negated conjecture and remove the skolem symbols, thus making
many more lemmas generally applicable in the next problems.

3 Extracting Reusable Lemmas from Refutational Proofs

The task of making proof steps independent of the negated conjecture is closely
related to the task of human-level presentation of ATP proofs. There have been
several tools attempting such human-level presentation, for example Tramp [13]
and P.rex [4]. The most recent one that has been tested on a large number of
problems is Blanchette and Smolka’s ATP proof presentation toolchain made for
the Isabelle/Sledgehammer framework [I9]. This toolchain relies on Blanchette’s
proof redirector [2], which tries to reverse proofs by contradiction into direct
proofs.

In more detail, Blanchette’s tool takes a refutational TPTP proof and creates
a natural deduction (Isabelle/Isar) proof which has as many forward steps as
possible, i.e., as many steps derived from the axioms as possible. This is roughly
done by reversing the part of the derivation graph that depends the negated
conjecture. For example, a final step that derives | from two lemmas ¢; and ¢o
depending on the negated conjecture:

¢1, P2 - L (1)

is redirected into:
[ qf)l A ¢2 — 1 (2)

Assuming further that ¢, was derived using ¢y which is also dependent on
the negated conjecture and using some other lemmas that are not conjecture-
dependent, we further get:
FdoNp2 — L (3)

The inference step on the redirected lemmas is then justified by referring
to the exact same conjecture-independent lemmas that were used in the original
proof to derive ¢; from ¢g. This mechanism propagates through the lemmas
dependent on the negated conjecture, ultimately deriving that the negated con-
jecture implies L, i.e., deriving the unnegated conjecture in a forward style.

While Blanchette’s redirection tool works on propositional level, the whole
framework (due to Blanchette and Smolka) also translates the ATP skolemiza-
tion steps into natural deduction steps that fix universally or existentially quan-
tified variables as local constants for parts of the proof. In general, the redirected
Jaskowski-style natural deduction proofs may also introduce assumptions.

5 This merging is only approximate because for the purpose of this initial statistics
we do not try to detect if the (serial) skolem names used in the different problems
come from the same first-order formula or not.



3.1 Extracting Lemmas from the Natural Deduction Proofs

The above framework assumes that the first-order TPTP problems are a result
of translating higher-order facts and conjectures written in Isabelle/HOL, and
it ultimately tries to create a legal higher-order natural-deduction proof from
the first-order TPTP proof that justifies the higher-order conjecture. In order to
instead process an arbitrary first-order TPTP proof and to generate standard
first-order lemmas, we do the following:

— We modify the tool to be able to start with arbitrary first-order TPTP
proofs that have no Isabelle origin, by using empty internal Isabelle transla-
tion tables, not typechecking the terms and formulas in the resulting natural
deduction proof, and writing a separate TPTP printer that prints such un-
typed proofs.

— We add flattening of the assumption and local-constant block structure of
the natural deduction proofs, producing globally valid TPTP lemmas. This
step is in principal similar to the earlier translation of the Jaskowski-style
Mizar proofs into TPTP derivations [23], however there are several differ-
ences discussed below.

— The modified functionality is then compiled into a standalone toolﬁ which
can be used as an initial lemma extractor for any TPTP proof.

The flattening of the natural-deduction proofs proceeds by tracking the as-
sumption and quantification structure leading to a particular statement in the
natural-deduction proof, and performing universal quantification for each local
constant introduced by Isar’s “fix” step, implication for each supposition (“as-
sume”) step, and existential quantification for each local constant introduced
by Isar’s “obtain” step, changing the corresponding Isar local constants to the
quantified variables.

This procedure is correct, i.e., it cannot generate a lemma that would not
be provable from the initial axioms, and it has the desired property that the
generated lemma will not contain new skolem symbols, thus making the lemma
usable for proving the next conjectures. In order to achieve this, we however
sacrifice completeness in some casesm For example, when in the natural deduc-
tion proof a local constant ¢ such that ¢(c) is obtained from 3X : ¢(X), and
in its scope statements p(c) and r(c) are proved, the extracted lemmas will be
3X : p(X) and 3X : r(X) instead of the stronger version 3X : (p(X) A r(X)).
In the Mizar proof export this is handled via additional Henkin axioms about
the local constants, however that means proliferation of such new constants in
the lemmas, which we want to avoid here. A related completeness issue comes
from the fact that proper TPTP skolem functions (not constants) are translated
into higher-order constants by the proof presentation framework. During the

S http://cl-informatik.uibk.ac.at/users/cek/frocosi5/redirector/

" We obviously do not lose completeness in general, because all the lemmas can be
derived from the axioms, however we weaken or lose some of the lemmas during the
translation process.


http://cl-informatik.uibk.ac.at/users/cek/frocos15/redirector/

flattening we currently just skip generating all such lemmas instead of trying
more advanced transformations. Figures [[J2l3] show a side-by-side example of
the transformations done on a simple propositional proof. Figure [I] shows the
TPTP proof starting with the conjecture g and eight axioms. The conjecture is
negated, and the contradiction (final line) is derived in eight inference steps. In
the corresponding Isar proof (Figure 2) we use a compressed notation: the num-
bers in brackets refer to the serially numbered assumptions (corresponding to
the TPTP axioms), that are used to justify a particular step. There are various
imperfections (acknowledged by Blanchette), for example f = ¢ is proved (and
then extracted by us as a lemma in Figure [3) despite being an axiom. Note that
many of the extracted lemmas in Figure |3| are implications whose antecedents
correspond to the Isar assumptions (Isar keyword assume).

lemma assumes
"a V —h" "a —> —b"

fof (0, conjecture, (g)). "ab = ¢" "¢ = 4"

cnf (25,axiom, (hilg)). "d — e" "e — f"

cnf (26, ,neg_conj, ("g), [01). "f = g" "-h =— g"

cnf (32,axiom, (al~h)). shows "g"

cnf (33,neg_conj, (h), [25,26]1). proof -

cnf (39,axiom, ("al~b)) . have "d — f" (5,6) fof (53___55_0,plain, (d=>f)).
cnf (40,neg_conj, (a), [32,33]). moreover

cnf (45,axiom, (c|b)). { assume f

cnf (46, ,neg_conj, (“b), [39,401). hence g (7) } fof (9_0,plain, (f=>g)).

cnf (48,axiom, (g| ~£)). moreover

cnf (50,axiom, (d]~c)). { assume "— 4"

cnf (51,neg_conj, (c), [45,46]). hence "— c" (4) fof (51_0,plain, ("(d)=>"(c))).
cnf (52,axiom, (f|7e)). hence b (3) fof (46_0,plain, (" (d)=>b)).
cnf (53,neg_conj, ("f), [48,26]). hence "— a" (2) fof (40_0,plain, (*(d)=>"(a))).
cnf (54,axiom, (e|~d)). hence "= h" (1) fof (33_0,plain, (“(d)=>"(h))).
cnf (55,neg_conj, (d), [50,51]). hence g (8) } fof (9_0,plain, (“(d)=>g)).

cnf (56 ,neg_conj, (“e), [62,53]). ultimately show g £of(0_0,plain,g) .

cnf (57 ,neg_conj, (), [64,55,56]) . qed

Fig. 1: Original proof Fig. 2: Isabelle proof Fig. 3: Lemmas

4 Filtering Lemmas

We run the lemma extractor on all TPTP proofs obtained from all the small
MPTP2078 problems, taking 260 s in total. For five proofs the redirection phase
runs out of memory, and from the rest we extract altogether 3394 plain (derived
from axioms only) lemmas and 6328 negated (originally depending on negated
conjecture) lemmas. The plain lemmas are in general much smaller (178 bytes
on average) than the negated ones (526 bytes), typically because the redirection
process adds assumptions to such lemmas.

Note that the number of plain lemmas produced by the redirector is much
less than the 29554 plain skolem-free lemmas obtained by the direct extraction in
Section 2. This is mainly due to de-duplication (not) applied at different stages
and other small differences.



Re-proving and tautology removal: The first filter that we apply is fast (1 sec-
ond) proving of each lemma from its problem’s axioms, removing those that do
not need any axiom (tautologies), and ending up with 5183 unique directly ex-
tracted provable lemmas (pla), 961 unique plain redirected lemmas (plr), 3538
unique negated lemmas (neg) of which 1617 are unique negated lemmas that
do not contain conjunctions (nmu). In total there are 4377 unique redirected
lemmas (red), and combined with pla there are 9057 lemmas in total (all). 768
of these lemmas are (after a-normalization) identical to some of the 4564 original
MPTP2078 formulas.

The re-proving is done to be sure that we do not introduce unsoundness
(which could then prove all the remaining problems) in the extraction phase.
In Isabelle, an occasional error in the proof translation would not be an issue,
because the translated proofs are ultimately checked by Isabelle’s LCF kernel.
Another reason for the re-proving is that we want to determine the exact proof
dependencies of each lemma. This is an important information for learning how
to use the lemmas and other formulas for future proofs.

Making lemmas usable for future problems: Each lemma is inserted into the
chronological sequence of all premises, right after the theorem in which it proved
for the first time (and possibly other lemmas generated in its proof). Even though
the lemmas were proved before their theorem, inserting them before it would
often result in very simple new proofs of the lemma-enriched large problems,
because some of the new lemmas are very close to their theorems. In general,
the lemma only becomes known after the proof is found, so we only allow to use
the lemma for the theorems that follow the problem from which the lemma was
first extracted.

Updating the dependencies: One of the main factors when selecting the most
suitable lemmas for a problem is the information about how each lemma was
previously used, and also how it was proved. This dependency information is
added to the set of proof dependencies that we already have for the main the-
orems and lemmas. After this addition, we have three sets of dependencies for
further experiments:

old: We add the new lemmas (if any) into the chronological sequence as de-
scribed above, but do not add any information about their dependencies
neither about dependencies on them.

all: For each new lemma, we also add the dependency on the axioms from which
it was proved. So far we do not use dependencies between the lemmas.

fut: For each original proved theorem, we also add its dependency on all the
lemmas that were extracted from its proof. We call these future dependencies,
because as mentioned above, we allow these lemmas to be used only after
the theorem is proved.

4.1 Additional Filters

On the set of all (possibly redirected) reproved lemmas (all) combined with
the original MPTP2078 formulas we further apply the three additional filters



explained below. We do not filter the other sets (pla, plr, red, neg, nmu) here
because they are already sufficiently small.

Forward subsumption: We use the MoMM [21] subsumption tool derived from E’s
perfect discrimination trees on the lemmas in their order, disallowing backward
subsumption, so that future stronger lemmas cannot remove earlier weaker ver-
sions. Such weaker version might be useful before the stronger lemma is proved
later. This optional filter can remove 6956 of the new lemmas which are sub-
sumed by another (older) lemma or by an existing axiom/theorem. 2101 of the
all lemmas are left after this optional phase (mom). The disadvantage of such
interreduction is that suitable frequently derived instances disappear in this way,
and that such instances may contain symbols that make them more eligible for
selection when using further similarity-based filters.

PageRank: One of the graph-based filters we experiment with is PageRank [14]
used on the three graphs of direct proof dependencies (each lemma/theorem
points to those used in its proof). It takes 0.574 s to compute the ranks of all the
(about 13k) nodes. We then choose only the best 2048 new lemmas according to
their PageRanks (pgr), which are then handed over to the final problem-specific
premise selectors.

AGIntRater [16] is a tool that tries to compute important characteristics of
the lemmas in ATP proofs, producing an aggregated interestingness rating for
each lemma. AGIntRater fails to rate the complete set of new lemmas with
dependencies (fut), likely because of the size of the dependency graph. Instead,
we run AGIntRater on all the small proofs. We have considered computing the
sums, averages and maximums of the lemma ratings across all the proofs for
each unique lemma, however it turns out that many of the positive ratings are
for the CNF transformations that do not give rise to new lemmas. Only 3564
of the new lemmas ever have nonnegative rating (ag0). We have also created
an even more strict selection (ag5), where only the 1150 lemmas with average
interestingness rating at least 0.5 were added.

5 Problem-specific Premise Selection

Each of the above dependency sequences (old, all, fut) restricted to the prese-
lected lemmas (all, pla, plr, red, neg, nmu, mom, pgr, ag0, ag5) provides
information about how theorems and lemmas were proved. This information,
together with suitable characterization (features) of the theorems and lemmas
is incrementally learned from and used for each MPTP2078 theorem T to rank
the preceding theorems and lemmas according to their estimated relevance for
proving T'.

For this we run two fast and scalable learning-based premise selectors: our
currently strongest version of distance-weighted k-nearest-neighbor (k-NN) learner
and our implementation of the naive Bayes learner [3]. Both methods use an



IDF-weighted combination of symbol and term features for formula characteri-
zations [5]. For each original MPTP2078 theorem we thus obtain (by training the
learners on the previous proof dependencies) a ranking of the set of previously
available MPTP2078 formulas and the added lemmas. Table 2 shows how often
the k-NN predicts the new lemmas among the first n predictions when using
the all proof dependencies (only several interesting sequences are shown). For

Lemma selection first 10-first 100-first 1000-first

pla 0.57  3.46 16.64 32.56
red 0.48 4.06 22.44 40.61
ag0 0.68  4.94 20.89 36.09
mom 0.72  3.61 15.32 28.91
pgr 0.34 5.18 20.43 32.78

Table 2: Ratio (in %) of the new lemmas in the first n k-NN predictions for several
lemma-selection methods and the all sequence.

comparison we also add to the evaluation the normal non-lemmatizing premise
selection method (non).

6 Evaluation

All the data, tools, and statistics for this paper are available at our web pageﬂ
In particular, the full versions of the tables shown in this section are online[’]
There are several approaches to evaluating the improvement. First, we can
compare the ATP performance of the best methods with and without lemmas,
i.e., in both cases after choosing the best-performing combination of learning-
based selection with the underlying lemmatizing method. To find such best
combinations, we try to prove each theorem with the best-ranked selections
(segments) of 16, 32,64,...,2048 MPTP2078 formulas and lemmas, using a 30 s
time limit. As the underlying ATP we always use E 1.8 running in its auto-
mated mode. Note that E itself runs many ATP strategies for each problem in
its automated mode. These strategies are selected for each problem individually
by a machine-learning system developed by Schulz, based on suitable problem
characteristics and performance of the strategies on a large set of problems.
Table 3] compares the best results achieved with and without lemmas for each
number of the best-ranked premises tried, showing also the relative improvement
for each premise number. The complete table of the 336 combinations is available
onlinem The best lemma-based method (k-NN; fut, all lemmas, 128 best-ranked

8 http://cl-informatik.uibk.ac.at/users/cek/frocos15/

9 http://cl-informatik.uibk.ac.at/users/cek/frocosib/statistics/

0 http://cl-informatik.uibk.ac.at/users/cek/frocosi5/statistics/
all-single-statistics.html
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premises) proves 936 theorems, while the best non-lemmatizing method (k-NN;,
old, no lemmas, 128 best-ranked premises) proves 878 theorems, i.e., 6.6% less.
The improvement from lemmatization is relatively low — 3.5% — when using
only 16 best-ranked premises (618 by k-NN /all/ag0 versus 597 by k-NN /old /non).
This rises to 14.8% when using 256 premises and peaks at 20.9% when using 512
premises (851 by k-NN /fut /all versus 705 by NB/old /non), which is a very signif-
icant improvement. Figure [4] shows the success rates for these premise numbers

Premises 16 32 64 128 256 512 1024 2048

Lemmas 618 820 926 936 915 851 724 657
Old 597 797 877 878 797 705 627 551
Improvement (%) 3.5 2.9 5.6 6.6 14.8 20.7 15.5 19.2

Table 3: Comparison of the best methods for the 8 premise-selection sizes.

for the different lemmatizing strategies, each aggregated across the two premise
selectors and the various methods of constructing the dependencies.

There are several effects involved in these results. At the low premise selec-
tion numbers, the main challenge is to select premises that really justify the
conjecture, i.e., which do not leave any countermodels left (see e.g., SRASS [20]
and MaLARea-SG1 [24] for more detailed experiments). For this, the original
Mizar library theorems seem to be quite well designed, and only a few of the
strongest lemmas — in particular the ones chosen by AGIntRater and PageRank
— help to increase the performance by 3.5%. On the other hand, when allowing
many premises, insufficient logical power of the premises is usually no longer an
issue, and the main problem is to focus the proof search towards the conjecture.
Such focusing is the core of Veroff’s hints method, which is likely to some extent
being emulated at the higher premise numbers by adding some previously useful
conclusions of the main library theorems. A related effect that we have quite of-
ten observed, is that during the premise selection the more conjecture-related or
more instantiated lemmas replace some less related or more general library the-
orems, which in the no-lemma case more easily confuse the proof search. Lastly,
even if no new lemma is eventually used in a proof, it happens quite often that
the new proof dependencies created with the help of the added lemmas make
it easier for the machine learners to choose the right Mizar theorems for the
proof. The latter effects — useful instantiations, many conjecture-related lemmas
replacing other theorems, and more data for learning — likely also explain the
relatively low performance of the lemmas interreduced by forward subsumption
(MoMM) compared to only a-normalized lemmas (all).

Another way to compare the methods is to look at the aggregated results
(unions of problems solved) across the two machine learners and the eight premise
numbers. This is shown in Table 4] The best new method — k-NN/ag0 — solves in
total 1268 problems, compared to 1217 solved without lemmas, i.e., 4.2% more.
Note that just using all lemmas, relying only on learning-based premise selection



without any further filtering does not perform much worse (1262 problems). In
total, the union of all problems solved by the new and old methods is 1375 prob-
lems, compared to 1217 without lemmas, i.e., 13.0% more. Such comparison is
however unrealistic, because the total time spent on all the new combinations
together is much higher than the total time spent on the old ones.

A fairer way how to do such total comparison is to give the new methods
only as much time as is needed to solve the 1217 problems by the old methods,
i.e., in our case allowing only 14 most complementary new methods, see Table
As common in such evaluations [6I8/12] the most complementary methods are
computed by a greedy algorithm, and the resulting greedy sequences are shown
from top to bottom in the table. The total improvement is in this case 6.2%, i.e.
a comparable result to the 6.6% improvement obtained by comparing only the
best single methods.

——all
——agint>o.0
pgrank
agintzo,s
no new

—— MoMM

Success rate (%)

| | | | |
16 32 64 128 256 512 1024 2048

Number of premises

Fig.4: ATP success rates over 8 premise-selection sizes for several strategies.

7 Examples of New Lemmas

While the statistics in the previous section gives an global overview of the
strength of the methods, it is also interesting to inspect several examples of
new proofs found thanks to the added lemmas.

1. The first Mizar theorem about basic set operations (in this case symmetric
difference), XBOOLE_O: 1[M] states that:
x in X \+\ Y iff ((x in X & not x in Y) or (x in Y & not x in X)).

The ATP proof of this fact includes a CNF statement that in the Mizar syn-
tax would read:

X1 in X3 implies not X1 in X2 \ X3.

"http://mizar.cs.ualberta.ca/ mptp/7.11.07_4.160.1126/html/xboole_0.
html#T1
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Strategy Dependencies Proved %  Unique

ag0 fut 1268 61.020 3
all fut 1262 60.731 1
all all 1253 60.298 1
ag0 all 1247 60.010 1
pla all 1247 60.010 0
pgr all 1242 59.769 5
per fut 1240 59.673 3
pla fut 1236 59.480 2
agb fut 1235 59.432 1
agh all 1233 59.336 0
red fut 1230 59.192 O
red all 1228 59.095 0
neg fut 1227 59.047 1
plr fut 1225 58.951 1

mom all 1222 58.807 1
plr all 1222 58.807 2
non old 1217 58.566 0O
all old 1216 58.518 3
neg all 1215 58.470 O
any 1375 66.169

Table 4: Aggregated ATP results across the premise-selection sizes.

With lemmas No lemmas
Strategy Predict Deps Prems Proved % Predict Prems Proved %
all knn fut 0128 936 45.043 knn 0128 878 42.252
all knn all 0032 1046 50.337 knn 0032 1031 49.615
pla knn all 0256 1141 54.909 nba 0256 1084 52.166
agh nba fut 0064 1175 56.545 nba 0064 1124 54.090
mom knn all 0128 1197 57.603 knn 0016 1145 55.101
ag0 knn fut 0016 1218 58.614 nba 0512 1164 56.015
all knn  fut 2048 1235 59.432 knn 0064 1176 56.593
pgr nba fut 0512 1248 60.058 nba 0016 1185 57.026
nmu nba fut 0064 1258 60.539 nba 0128 1193 57.411
pgr knn all 0064 1267 60.972 nba 0032 1200 57.748
nmu nba fut 0256 1274 61.309 knn 2048 1207 58.085
all knn old 0016 1280 61.598 knn 0256 1213 58.373
nmu knn fut 0064 1286 61.886 knn 0512 1215 58.470
pla knn all 0128 1292 62.175 nba 1024 1217 58.566

Table 5: Greedy sequence of aggregated ATP results with lemmas compared with the
numbers of lemmas proved by running the ATP without lemmas.

This lemma could be easily derived as a consequence of more general facts
already present in the Mizar library, however it does help in a number of fu-



ture ATP proofs. For examples it lets the ATPs prove XBOOLE_1 :4OJE| which
states:

E\NV/DANY=X\Y,
and to prove ZFMISC_1:72{"]
{x,y} \ X = {x,y} iff (not x in X & not y in X).

2. Another example is a new lemma derived by the ATP in the proof of XBOOLE_-

1:1{
X1\ (X2 \ X1) = X1,

which is useful in the proofs of four more theorems (three of them in XBOOLE_-
1, one in TOPS_1).
3. A more complicated new lemma is derived in WAYBEL_7: QE

with_infima(BoolePoset X).

This is a simple consequence of two facts already present in the Mizar library,
but it enables three new ATP proofs in the formalization of prime ideals and
filters in WAYBEL_7. This is likely because a large number of such simple facts
can be derived in this rich domain, and pointing out the relevant one makes
the three proofs achievable.

8 Related Work

Some relevant related work such as Veroff’s and Schulz’s work is already men-
tioned in the introduction. A more extensive summary of the related methods
is given in our paper on extracting and re-using the millions to billions lemmas
arising in Interactive Theorem Proving (ITP) [7]. Some issues discussed here
overlap to some extent with the ITP setting: for example the need for fast meth-
ods for filtering a large number of lemmas. The need for further fast filters is
however not so big here: we can easily handle all lemmas (thousands) by the
learning-based premise selectors and only use the additional filters to get bet-
ter predictions, whereas in ITP (millions to billions lemmas) fast pre-filtering is
crucial.

A number of further issues differ in the ATP setting: the lemmas need re-
orienting and deskolemizing, and the ATP proofs are short and suitable for ATP-
style tools like AGIntRater. It is also worth mentioning that even in the ITP

12 http://mizar.cs.ualberta.ca/ mptp/7.11.07_4.160.1126/html/xboole_1.
html#T40

*9 http://mizar.cs.ualberta.ca/“mptp/7.11.07_4.160.1126/html/zfmisc_1.
html#T72

** http://mizar.cs.ualberta.ca/ mptp/7.11.07_4.160.1126/html/xboole_1.
html#T1

> http://mizar.cs.ualberta.ca/ mptp/7.11.07_4.160.1126/html/waybel_7.
html#T9


http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T40
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T40
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/zfmisc_1.html#T72
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/zfmisc_1.html#T72
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T1
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/xboole_1.html#T1
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/waybel_7.html#T9
http://mizar.cs.ualberta.ca/~mptp/7.11.07_4.160.1126/html/waybel_7.html#T9

setting, ATP proofs are typically a valuable source of training data for learning
premise selection [I1J6]. This means that the ATP and ITP lemma extraction
could likely be fruitfully combined in the various strong [AI]TP “hammer” sys-
tems.

9 Conclusion and Future Work

We have introduced a toolchain for re-using lemmas across many related ATP
problems, and evaluated it on the MPTP2078 large-theory benchmark. The main
challenges are extraction of reusable context-independent lemmas from the ATP
proofs, their subsequent filtering, and extracting suitable proof dependencies for
learning premise selection. To make lemmas reusable, we first redirect them,
using a modified version of the Isabelle/Isar proof presentation tools, and then
we heuristically deskolemize them. The subsequent filtering is done by several
tools — AGIntRater, PageRank, MoMM — that make use of different aspects of
the proofs and lemmas. The filtered lemmas and their proofs result in modified
proof dependencies, from which we learn along with the old proof dependencies,
and use such learned knowledge to select premises for each MPTP2078 theorem.
The 30 s improvement over the best old method is 6.6% more problems proved,
and the improvement when using 14 most complementary methods is 6.2%. This
comparison is done against the strategy-scheduling E prover, which itself runs
a customized selection of strategies on each problem, choosing these strategies
from a large portfolio. This means that the lemmatizing strategies add nontrivial
performance to the E strategies. We have found that the new lemmas are par-
ticularly useful when using many premises, improving over the no-lemma case
by about 15% and 20% when using 256 and 512 premises, respectively.

In the future we would like to experiment with running the toolchain on
consistently pre-skolemized problems and on harder problems that miss some
of the original MPTP2078 theorems. Another direction is to combine the filters
and to use more of them, possibly on a larger dataset such as the whole MPTP-
translated MML, using also methods for selecting lemmas from the ITP (Mizar)
proofs [257]. We can also try more MaLARea-style iterations of the lemma-
enrichment, i.e., extracting lemmas from the newly found problems and trying
unsolved problems with such new lemmas added. And yet another direction is
to re-use the filtering methods for Veroff-style hints selection and for improving
given-clause guidance in ATPs by a large pool of previous lemmas.
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