Scalable LCF-style proof translation

Cezary Kaliszyk' and Alexander Krauss?

! University of Innsbruck
cezary.kaliszyk@uibk.ac.at
2 QAware GmbH
krauss@in. tum.de

Abstract. All existing translations between proof assistants have been notori-
ously sluggy, resource-demanding, and do not scale to large developments, which
has lead to the general perception that the whole approach is probably not practi-
cal. We aim to show that the observed inefficiencies are not inherent, but merely a
deficiency of the existing implementations. We do so by providing a new imple-
mentation of a theory import from HOL Light to Isabelle/HOL, which achieves
decent performance and scalability mostly by avoiding the mistakes of the past.
After some preprocessing, our tool can import large HOL Light developments
faster than HOL Light processes them. Our main target and motivation is the
Flyspeck development, which can be imported in a few hours on commodity
hardware. We also provide mappings for most basic types present in the devel-
opments including lists, integers and real numbers. This papers outlines some
design considerations and presents a few of our extensive measurements, which
reveal interesting insights in the low-level structure of larger proof developments.

1 Introduction

The ability to exchange formal developments between different proof assistants has
been on the wishlist of users for as long as these systems exist.

Most systems are designed in such a way that their proofs can, in principle, be ex-
ported into a form that could be checked or imported by some other system. Implemen-
tations of such proof translations exist between various pairs of systems. However, they
all have in common that they are very expensive in terms of both runtime and memory
requirements, which makes their use impractical for anything but toy examples.

For instance, Obua and Skalberg [[12] describe a translation from HOL Light and
HOLA4 to Isabelle/HOL. Their tool is capable of replaying the HOL Light standard li-
brary, but this takes several hours (on 2010 hardware). Similarly, Keller and Werner [[10]
import HOL Light proofs in Coq and report that the standard library requires ten hours
to load in Coq. Note that the standard library takes less than two minutes to load in plain
HOL Light, so there is roughly a factor 300 of overhead involved. Other descriptions of
similar translations report comparable overhead [14J11]].

So should we conclude that this sort of blowup is inherent in the approach and
that proof translations must necessarily require lots of memory and patience? This pa-
per aims to refute this common belief and show that the bad performance is merely a
deficiency of the existing implementations. More specifically, we make the following
contributions:

2 Cezary Kaliszyk and Alexander Krauss

— We describe a new implementation of a proof translation from HOL Light into
Isabelle/HOL, which performs much better than previous tools: After some prepro-
cessing, the HOL Light standard library can be imported into Isabelle/HOL in 30
seconds, which reduces the overhead factor from 300 down to about 0.4.

— Large developments are routinely handled by our tool, such that we can import
major parts of the formalized proof of the Kepler Conjecture, developed in the
Flyspeck [3]] project on normal hardware. Here, the overhead factor is a bit larger
(with optimizations a factor of roughly 1.2).

— By providing better mappings of HOL Light concepts to Isabelle concepts, we ob-
tain more natural results; in particular little effort is needed to map compatible but
differently defined structures like integers and real numbers.

— We present various results obtained during our measurements, which yield some
empirical insights about the low-level structure of larger formal developments.

Our work shares some visions with Hurd’s OpenTheory project [6] but has a slightly
different focus:

— Our translation is able to work directly on the sources of any HOL Light develop-
ment, without requiring any modification, such as adding special proof recording
commands. This is crucial when dealing with large developments, where such mod-
ifications would create significant work and versioning problems.

In contrast, the OpenTheory setup still needs manual arrangements to the sources,
which hinders its use out of the box. Therefore, it is also hard to assess its scalability
to developments of Flyspeck’s size.

— We do not focus on creating small, independent, reusable packages. Instead, our
approach assumes a large development, which is treated as a whole. By default, all
definitions and top-level theorems are converted, but filtering to a subset is easy.

This paper is structured as follows. In Section[2] we give an overview of the architecture
of our translation. In Section [3| we discuss memoization strategies that allow reducing
the time and memory requirements of the translation processes. In Section[d] we present
the statistics of inference steps involved in the translation and interesting statistics about
HOL Light and Flyspeck discovered using our experiments and finally we conclude in
Section [5|and present some outlook on the future work.

2 Architecture overview

In this section we explain the four basic steps in our proof translation: the collection of
theorems that need to be exported; the instrumented kernel used to export the inference
steps performed in HOL Light; the offline proof processor, and the importer itself. The
four components are presented schematically in Figure

2.1 Collecting Theorems to Export

The first issue in implementing a proof translation mechanism is to choose which theo-
rems are relevant and what are their canonical names. While many other proof assistants

Scalable LCF-style proof translation 3

Source Processing Step Intermediate Result

Collect Export List

[Export List J
|

{ Theory Sources

nin T

Export Proofs 4{ Inference Trace J
|
[Concept Mappings Offline GC Reduced Trace J
I
[Documentation]
Import

—

Isabelle Image]

Fig. 1. The architecture of the translation mechanism.

manage a list of named lemmas explicitly in some form of table, HOL Light simply rep-
resents lemmas as OCaml values of a certain type, bound on the interactive toplevel.

We first tried to follow a strategy similar to Obua and Skalberg [[12], where state-
ments to export are collected heuristically, by detecting certain idioms in the theory
sources, such as the use of the function prove in the context of a toplevel binding. How-
ever, this rather superficial analysis is quite incomplete and fails to detect non-standard
means of producing lemmas occur frequently in larger developments. It also produces
false positives for bindings local to a function or module.

Instead of such guesses based on surface syntax, it is more practical to rely on the
existing update_database [5] functionality, which can produce a list of name-theorem
pairs accessible from the toplevel by analyzing OCaml’s internal data structures. The
result can be saved to a file and loaded into a table that maps statements to names, before
starting the actual export. Whenever a new theorem object is created, we can then look
up the corresponding name, if any, in the table.

2.2 Exporting the inference trace

To export the performed proofs, we use a patched version of the HOL Light kernel,
which is modified to record all inference steps. Our recorded HOL Light session is
a sequence of steps according to the grammar in Fig. 2] Each step constructs a new
type, term or theorem, and the new object is implicitly assigned an integer id from an
increasing sequence (separately for each kind of object), by which it can be referenced
later. The arguments of proof steps are either identifiers (such as names of variables
or constants), or references to previous proof steps, with an optional tag denoting the
deletion of the referenced object.

The trace is generated on the fly and piped to a gzip process, which compresses it
and writes it to disk.

4 Cezary Kaliszyk and Alexander Krauss

(Step) = A step is either:
(Typ) a type construction step
| (Trm) a term construction step
| {Thm) a theorem construction step
(Typy = A type step is either:
TyVar (id) a named type variable
| TyApp (id) (ref)* a type application with a list of subtypes
(Trm) == A term step is either:
Var (id) a named variable
| Const (id) (ref) a named constant with a type, the type is necessary for
polymorphic constants
| App (ref) (ref) an application
| Abs (ref) (ref) an abstraction; in valid HOL Light abstractions the first

subterm is always a term that is a variable

(Thm) = A term step is either:
| Refl (ref) Reflexivity of a term
| Trans (ref) (ref) Transitivity of two theorems
| Comb (ref) (ref) Application of two theorems
| Abs (ref) (ref) Abstraction of a term and a theorem
| Beta (ref) B-reduction of a term
| Assum (ref) Assumption of a term
| Egmp (ref) (ref) Equality modus-ponens of two theorems
| Deduct (ref) (ref) Anti-symmetric deduction of two theorems
| Inst (ref) (ref)* Type substitution with a theorem and a list of types
| Subst (ref) (ref)* Term substitution with a theorem and a list of terms
| Axiom (ref) Axiom with a term
| Defn (id) (ref) Definition of an identifier to a term
| TyDef (id) (id) (id) Type definition with three identifiers, two terms and a
(ref) (ref) (ref) proof of existence
| Save (id) (ref) Assign a name to a theorem

Fig. 2. The grammar of our export format. Identifiers (id) are strings with the same characters
allowed as in the input system and references (ref) are integers.

Since the type thm of theorems is an abstract datatype, we can achieve the number-
ing simply by adding an integer tag, which is filled from a global proof step counter
when the theorem is constructed.

Hence, the proof steps are recorded in the order in which they occur. This instru-
mentation is local to the kernel (module fusion.ml), which encapsulates all theorem
construction and destruction operations. No changes are required in other files.

For terms and types this is not so easy, as in OCaml even for abstract objects match-
ing is possible. This means that we cannot add tags without breaking client code. How-
ever, just writing out terms naively would destroy all sharing and lead to significant
blowup. To make the process manageable, we need to preserve at least some of the

Scalable LCF-style proof translation 5

sharing present in memory. Thus we employ memoization techniques that partly re-
cover the sharing of types and terms. Section [3] describes these techniques; all of them
produce traces in the format described above.

There is also a choice of the basic proof steps that get written. We have decided to
export the minimal set of inference rules that covers HOL Light. This is in opposition
to Obua and Skalberg’s export where some of the proof rules get exported as multiple
steps (Deduct gets exported as three rules that are easier to import) whereas other rules
get optimized proofs. We found out that such ad-hoc optimizations yield only very
small improvements in efficiency (below 2%), but unnecessarily complicate the code
and make it more prone to errors.

2.3 Offline garbage collection

While our trace records the creation of all relevant objects, it does not contain infor-
mation about their deletion. However, this information is equally important if we do
not want to create a memory leak in the Isabelle import, which would have to keep all
objects, even though they have long been garbage-collected in the HOL Light process.

While the information about object deletion is not directly present in the trace, it
can easily be recovered by marking the last reference to each object specially as an
indication that the importer should drop the reference to the object after using it.

We do this in a separate processing step, which in addition performs an offline
garbage collection on the whole graph and throws away all objects that do not con-
tribute to the proofs of a named theorem.

The offline processor takes two inputs: the inference trace and a list of theorems
that should be replaced by Isabelle theorems during import. The program first removes
all the steps that are not needed when importing. This includes theorems that were cre-
ated but never used (for example by proof search procedures that operate on theorems),
theorems that are mapped to their Isabelle counterparts, and their transitive dependen-
cies. Next, the last occurrences of a reference to any type, term or theorem is marked,
so that the importer can (after using the object as a dependency) immediately forget it.
Currently, our offline processor reads the whole dependency graph into memory. This
is feasible even for developments of the size of Flyspeck. Hypothetical, for larger de-
velopments this could be replaced by an algorithm that does several passes on the input
and requires less memory.

The output of this step has the same format as the raw trace. We call it the reduced
trace.

2.4 Import

The actual import into Isabelle now amounts to replaying the reduced trace generated
in the previous step. In addition, the import is configured with the mappings of types,
constants and theorems to the respective Isabelle concepts.

Replaying the trace is conceptually straightforward: we simply replay step by step,
keeping integer-indexed maps to look up the required objects needed for each proof
step.

6 Cezary Kaliszyk and Alexander Krauss

We use Isabelle’s cterm type (an abstract type representing type-checked terms) to
store terms, and similarly for types. This avoids repeated type-checking of terms and
reduces import runtime by a factor of two, with a slight increase in memory use.

We do not attempt to generate theory source text, which was a major bottleneck
and source of problems in Obua and Skalberg’s approach, since re-parsing the gener-
ated theories is time-consuming, and the additional layer of build artifacts only makes
the setup unnecessarily complex with little benefit. The only advantage of the gener-
ated theories were that users could use them to inspect the imported material. For this
purpose, we instead generate a documentation file (in LaTeX and HTML), which lists
lemma names and statements. Excerpts from the documentation can be seen in Fig-
ures |3|and |4 We also provide the complete rendered documentation for the Flyspeck
import at jhttp://cl-informatik.uibk.ac.at/~cek/import/.

thm RIGHT_OR_DISTRIB:
V(p:bool) (q:bool) rzbool. (p Vg Ar)=(pP ATV gAT)
thm FORALL_SIMP:
Vt:bool (Vx:'a. t) =t
thm EXISTS_SIMP:
Vt:bool. (Ixa. t) =t
thm EQ_CLAUSES:
Vt:bool. (True =t) =t A (t= True) =t A (False =t) = (= t) A (t = False) = (- 1)

Fig. 3. Cropped printout of the HTML documentation of the imported HOL Light library.

thm opposite_hypermap_plain:
YV H. plain_hypermap H — plain_hypermap (opposite_hypermap H)
thm opposite_components:

V H z. dart (opposite_hypermap H) = dart H N\ node (opposite_hypermap H)
z = node H z A face (opposite_hypermap H) z = face H x

thm opposite_hypermap_simple:
YV H. simple_hypermap H — simple_hypermap (opposite_hypermap H)

thm hypermap_eq_lemma:

YV H. tuple_hypermap H = (dart H, edge_map H, node_map H, face_map H)

Fig.4. Cropped printout of the IXTEX generated PDF documentation of Flyspeck imported to
Isabelle. The documentation can be generated with or without type annotations, and we chose to
present the type annotations in Fig.[3]and no types here.

http://cl-informatik.uibk.ac.at/~cek/import/

Scalable LCF-style proof translation 7

After replaying the trace in Isabelle, it can be used interactively or saved to an image
(using Isabelle’s standard mechanisms) for later use.

Concept Mappings In general it is desirable to map HOL Light concepts to existing
Isabelle concepts whenever they exist instead of redefining them during the import.
This makes it easier to use the imported results and combine them with existing ones.
This is a form of theory interpretation.

There are two scenarios: First, if the definition of the constant or type (typedef)
from the original system can be derived in the target system, it is enough to replace the
definition with the derived theorem. Second, if a definition or type is not defined in the
same way and the original definition cannot be derived, the procedure is more involved.
This is the common common case for more complex definitions.

Consider the function HD which represents returns the first element of a fiven non-
empty list. It’s result on the empty list is some arbitrary unknown value, but while HOL
Light makes use of the Hilbert operator €, Isabelle/HOL uses list_rec undefined, which
is an artifact of the tools used. Both these terms represent “arbitrary” values, but they
are not provably equal. However, since there are no theorems in HOL Light that talk
about the head of an empty list, we can get away with it.

In general, we can replace any set of characteristic properties from which all trans-
lated results are derived and which is provable in the target system. This need not be
the actual definition of the constant. This also means that some lemmas that are merely
used to derive the characteristic properties will not be translated. This requires some de-
pendency analysis which is hard to do during the actual export or import, which merely
write and read a stream. It is therefore done in the offline processor.

Obua and Skalberg’s import attempted to resolve mappings during import, which
would make mapping non-trivial concepts like the real numbers a tedious trial-and-
error experience.

Mapping of constants can be provided simply by giving a theorem attribute in Is-
abelle, for example to map the HOL Light constant FST to the Isabelle/HOL constant
fst it is enough to prove the following:

lemma [import_const FST]:
"fst = (Ap:P’A x’B. SOME x:”’A. 3y:’B. p = (X, y))”
by auto

and similarly to map a type:

lemma [import_type prod ABS_prod REP _prod]:
"type_definition Rep_prod Abs_prod (Collect
(Ax:’A = '’B = bool. Ja b. x = Pair_Rep a b))”
using type_definition_prod[unfolded Product_Type.prod_def] by simp

There is one more issue that we need to address. Even if the the natural numbers of
HOL Light are mapped to the natural numbers of Isabelle, the binary representation of
nat in Isabelle is different from that of num in HOL Light. To make them identical, a
set of rewrite rules is applied that rewrites the constant NUMERAL applied to bits, to
the Isabelle version thereof.

8 Cezary Kaliszyk and Alexander Krauss

3 Time and Memory comparison of Flyspeck vs Import

In this Section we discuss the memoization techniques used to reduce the import time
and memory footprint of the processing steps as well as the import time and give some
comparisons of the processes involved in Import with the original ones of HOL Light.

As we have noticed in Section 2] when writing the trace the sharing between terms
(and types) is lost. The number and size of types in a typical HOL Light development
is insignificant in comparison with the number and size of terms; which is why we will
focus on optimizing the terms; however the same principles are used for types.

There are many ways in which the problem can be addressed; the simplest is to sim-
ply write out all the terms. This is equivalent to not doing any sharing; and came out to
be infeasible in practice. Even when writing a compressed trace after 3 weeks runtime,
the compressed trace was SO0GB, without having got past HOL Light’s Multivariate
library (a prerequisite of Flyspeck).

So is sharing always good? Then the ultimate goal would be to achieve complete
sharing, where the export process keeps all the terms that have been written so far, and
whenever a new term is to be written it is checked against the present ones. However,
keeping all terms in memory obviously does not scale, as the memory requirements
would grow linearly with the size of the development. (In fact, this was true in Obua
and Skalberg’s implementation, where recorded proofs were kept in-memory eternally.)
Moreover, the import stage becomes equally wasteful, since terms are held in memory
between any two uses, where it would be much cheaper to rebuild them when needed.
Running Flyspeck with this strategy requires 70GB RAM for the export and 120GB for
the import stage.

Instead, we employ a least-recently-used strategy, which keeps only a fixed num-
ber of N entries in a cache and discards those that were not referenced for the longest
time. While this does not necessarily reflect the actual lifecycle of terms in the origi-
nal process, it seems to be a good enough approximation to be useful. In particular, it
avoids wasting memory by keeping unused objects around for a long time. Our data
structures are built on top of OCaml’s standard maps in a straightforward manner, and
all operations are O(log N).

We show the impact of the size of the term cache on the export time and memory
footprint in Figure [5] The graph shows two datasets: the core of HOL Light and the
VOLUME_OF_CLOSED_TETRAHEDRON lemma from Flyspeck. We chose the for-
mer, as it represents a typical HOL Light development, consisting of a big number of
regular size lemmas, and we chose the latter, as it creates a big proof trace. The big trace
is created using the REAL_ARITH decision procedure which implements the Grobner
bases procedure [4]].

As we can see the size of the term cache has very little impact on the time and size
of HOL Light standard library. However for a proof which constructs a big number of
bigger terms using a very small cache increases the export time and trace size exponen-
tially. This means that the size needs to be adjusted to the size of the terms produced by
the decision procedures and if this is not known a biggest possible term cache size is
advisable.

We performed a similar experiment for caching proofs. The first idea is to reuse
the proof number if a theorem with same statement has already been derived. This can

Scalable LCF-style proof translation 9

10° |
~)
= 110 S
E 2
= g
6]
102 1 - v A

—— HOL export time

—e— VOL export time
! I I ! ! ! | 1107

103.2 1034 103.6 1038 104 104,2 104.4 1044() 104.8
Cached Terms

Fig. 5. Time required to write the proof trace and the size of the resulting trace as a function
of the term cache size. We compare the time of the HOL Light standard library (HOL) and the
VOLUME_OF_CLOSED_TETRAHEDRON theorem (VOL).

however cause problems if there are some mappings performed between the two theo-
rems. A constant or type mapping is performed together with some theorem mappings,
and the new type or constant will be used from the point of this theorem. This means
that unnamed theorems used before a mapping cannot be reused after the mapping. To
overcome this difficulty we chose to clear the theorem cache at every named theorem.
This may lose a small amount of sharing but prevents issues with adding constant and
type maps. We have computed the impact that the size of the proof cache has on the
resulting trace and the export time in Figure[6]

160 T I T T T TITrry T T T TTITr] T T T TITrry T T T TTITr] T L 400
A
140 +
_ + 300 2
< 2
g 120 + 3
= =
1200 @
100 + -
—— HOL export time
—e— VOL export time —x— Total size
80 LT L LT L Lol Lol L ' L Ll 100
10° 10! 102 10° 104
Cached Proofs

Fig. 6. Time required to write the proof trace and the size of the resulting trace as a function
of the proof cache size. We compare the time of the HOL Light standard library (HOL) and the
VOLUME_OF_CLOSED_TETRAHEDRON theorem (VOL).

10 Cezary Kaliszyk and Alexander Krauss

As we can see for typical proof steps (HOL Light standard library) with more shar-
ing the export time increases however not significantly. This is not the case for a proof
which constructs big intermediate results. In such a case there is an optimal number of
proofs to cache and with a bigger number the complexity of comparing the proofs with
the cache increases the time. Since in a typical HOL Light development the optima for
the different proofs may differ, we instead choose to use a small proof cache. In Sec-
tion 4| we will see that the decrease in the space does not lead to a significant decrease
in the Import time. We have compared the memory usage of the OCaml process writ-
ing the trace with the memory of the PolyML process doing the Import (Fig.[7|and the
two are roughly comparable, with two exceptions. PolyML is much less conservative
when allocating memory, and quickly uses all available memory, however most of it is
reclaimed by major collections. Also due to the garbage collection running in a separate
thread in PolyML major collections happen more often than in OCaml.

2ol] 6.000[]
60 - | 4,000{ 1
40 :
2,000 | .
20 - |
0 | | | | | 0 | | | |
0 100 200 300 400 500 0 200 400 600

Fig. 7. Comparing the export memory (left) with import memory (right) for the core HOL Light
together with the VOLUME_OF_CLOSED_TETRAHEDRON theorem. Export memory is com-
puted with OCaml garbage collection statistics in millions of life words. Import memory in bytes.

4 Statistics over Flyspeck

In this section we look at various statistics that can be discovered when analyzing the
proofrecorded Flyspeck.

4.1 Dependencies and steps statistics

We first look at the dependencies between theorems, terms and types. The following
table shows the total number of theorem steps, term steps and type steps in the proof
trace. The table includes four rows, first two are for full sharing, second two are for
term caching.

Scalable LCF-style proof translation 11

Strategy Types Terms Theorems
Full sharing 173,800 51,448,207 146,120,269
Full sharing processed 130,936 13,066,288 40,802,070
Term caching 173,800 101,846,215 420,253,109
Term caching processed 146,710 23,318,639 194,541,803

We first notice that the number of types is insignificant relative to the number of terms
or theorems, and the number of types that can be removed by processing is only 16—
25%. For terms, the number of terms with full sharing is 50% of that with caching,
which means that the overhead is still quite big; and the overhead reduces only to 45%
with the offline GC. Sharing has the biggest effect on theorems: the shared theorems

are 34% of the cached ones

. Finally, offline GC lets reduce the number of terms and

theorems roughly a quarter of the recorded ones, which is a huge improvement.

Next we will look at the

exact inference steps that were derived but not needed. We

have computed the numbers of inference steps of each kind and their percentages for

the steps that were derived b

ut the offline processor could remove them:

Egmp: 19

Deduct: 16.9%
(17784353)

.61%
(20657660)

Comb: 16.

ﬂ
(17132840)

Subst: 21.58%
(22734457)

Abs: 0.8% (860510)
Inst: 0.9% (1028510)

Assum: 2.9% (2952695)
Trans: 3.8% (4049761)

4

Beta: 6.4%
(6708576)

3

Refl: 10.8%

(11408827)

We compare the above to the needed steps (the steps left by the garbage collection):

Comb: 23.7
(9722270)

Eqmp: 17.1%
(6956780)

Subst: 24.6%
(10033736)

: Inst: 1.0% (426404)
§ Beta: 2.0% (822249)
Abs: 2.9% (1181706)

Refl: 4.2% (1698894)

Deduct: 11.3%
(4591953)

'

Trans: 12.7%

(5167568)

In both cases the methods that do complicated computation (Subst, Egmp, Comb)

dominate; however for the u
occur much more often.

nneeded diagram the very cheap methods Refl and Assum

12 Cezary Kaliszyk and Alexander Krauss

We next compare it to the steps that were derived multiple times. 2,515,531 theorem
steps have been derived multiple times with exactly same dependencies. It is quite in-
teresting, that many of these steps are the same ones repeated over and over again. This
suggests that the steps are performed repeatedly by decision procedures or even by the
simplifier. The unique repeated steps are only 187,164 which is just 7% of the repeated
steps! We have analyzed the kinds of steps that have been derived multiple times:

Refl: 54.4%
(191801)

‘ Deduct: 2.2% (4033)
Inst: 2.2% (4129)
Assum: 21.3%

(30806) Subst: 20.0% (37389)

Here we see a dominance of Refl and Assum which are the two cheapest steps.
However the third steps — Subst — is not a cheap one; and this is where the main
advantage of caching or sharing comes in.

We have also looked at the complexity of individual Subst steps; even if the maxi-
mum is 23, the average number of term pairs in a subsitution is 2.098, and the distribu-
tion is as follows:

106 -

104,

| IIII I |

100 | I .II--- I .
T T T T T T T

T T T T T 1
1 23 4 5 6 7 8 9 1011 1213 14 15 16 18 19 21 23

number of terms

We see that there are 229 substitutions with 21 simultaneously substituted terms;
however the time consumed by these substitutions is caused by the size of the terms
involved.

4.2 Theorem name statistics

There are 622 theorems that have been assigned more than one name. In certain cases
useful theorems from another module have been given a different name in a later one;
however in certain cases theorems have been rederived, sometimes in completely dif-
ferent ways. We have computed the statistics:

Scalable LCF-style proof translation 13

Unique Number Canonical name
statements of names
16656

567

46

Trigonometry. UNKNOWN

1
2
3
4
5
7
1 REAL_LE_POW

5
2 Trigonometryl.ups_x, Sphere.aff
1
1

1

In certain cases, theorems with meaningful names have been assigned also random
names; but there are a few cases where meaningful names have been assigned to the-
orems twice. There are multiple possible reasons for this and we present here a few
common cases, from the more trivial ones to more involved ones.

— REAL_LT_NEG2 and REAL_LT_NEG both derived using the real decision proce-
dure in the same file just 70 lines further.

— Topology.LEMMA_INJ and Hypermap.LEMMA_INJ the proof is an exact copy,
still both are processed.

— REAL_ABS_TRIANGLE and Real_ext. ABS_TRIANGLE first one derived using a
decision procedure, second one with a complete proof.

— INT_NEG_NEG and INT_NEGNEG both derived using the quotient package from
real number theorems called differently.

— CONVEX_CONNECTED_1_GEN and CONNECTED_CONVEX_1_GEN where

one is derived from the other.

4.3 Translation time and size statistics

Given the best cache sizes computed in Section [3] and the statistics over the steps we
have computed the times and sizes of the various stages of Import evaluated on the
whole Flyspeck development:

Phase Time Size
Collect Export List 4h 18MB
Export Proofs 10h 3692MB
Offline GC 48m 1089MB

Import without optimizations 54h

The created Isabelle image can be loaded in a few seconds and memory allocated by
the underlying PolyML system is 2.7GB which is almost same as the 2.7GB allocated
by HOL Light. The time required to create the image is by a factor of 13 longer than
the time required to run Flyspeck. This is still quite a lot, and is possible to do it once,
but not if such a development must be translated routinely. As we have discovered in
Section[d.T] this is caused by decision procedures; in fact REAL_ARITH (an implemen-
tation of Grobner bases) is what creates the huge terms and substitutions that constitute
a big part of the proof trace and import time.

14 Cezary Kaliszyk and Alexander Krauss

To further optimize the Import time we tried to map the two most expensive calls
to this decision procedure to a similar decision procedure in Isabelle. The algebra tac-
tic [2] can solve the goals in Isabelle in a similar time as that needed in HOL Light:

Phase Time Size
Offline GC 48m 964MB
Import with optimizations 4.5h

The reduced proof trace is 11% smaller, but the import time becomes roughly equal
to processing of the theories with HOL Light.

5 Conclusion

We have presented a new implementation of a theory import from HOL Light to Is-
abelle/HOL, designed to achieve a decent performance. The translation allows mapping
the concepts to their Isabelle counterparts obtaining natural results. By analyzing the
proof trace of Flyspeck we have also presented a number of statistics about a low-level
structure of a big formal development.

The code of our translation mechanism has been included in Isabelle together with
a component for loading the core HOL Light automatically and the documentation for
it. The formalization includes the mappings of all the basic types present in both devel-
opments including types that are not defined in the same way, such as lists, integers and
real numbers. In total, 97 constructors have been mapped with little effort. It is easy to
generate similar components for other HOL Light developments. The code is 5 times
smaller than the code of Obua and Skalberg’s Import.

In our development we defined a new format for proof exchange traces, despite
the existence of other exchange formats. We have tried writing the proof trace in the
OpenTheory format, and it was roughly 10 times bigger. For the proof traces whose
sizes are measured in gigabytes such an optimization does make sense; however is it
conceivable to share the Import code with other formats.

The processed trace generated by this work is already used by machine learning
tools for HOL Light to provide proof advice [[78].

5.1 Future Work

The most obvious future work is testing our export on other HOL Light developments,
including the most interesting ones which are not formalized in Isabelle, for example
the developments from Wiedijk’s 100 theorems list [13] and Hilbert Axiom Geometry.
Similarly the work can be extended to work with different pairs of provers, in particular
not HOL-based ones, or the Common HOL Platform [1] intended as a minimal base for
sharing HOL proofs.

A different line of work could be to automate the mapping of results of decision pro-
cedures. We have tried to export the steps performed by REAL_RING, REAL_ARITH,
or REAL_FIELD as a single proof step. Unfortunately for each of these, there exists at
least one goal that it solved, but which could not be solved by algebra; this needs to be
investigated further.

Scalable LCF-style proof translation 15

The statistics performed on the repository allow for an easy discovery of duplicate

proofs and multiple names given to same theorems. This can be used to streamline the
original developments. Conversely, for imported libraries that match ones present in the
target system, analyzing the theorems that are not present may lead to the discovery of
interesting intermediate lemmas.

References

10.

11.

12.

13.
14.

. Mark Adams. Introducing HOL Zero - (extended abstract). In Komei Fukuda, Joris van der

Hoeven, Michael Joswig, and Nobuki Takayama, editors, ICMS, volume 6327 of Lecture
Notes in Computer Science, pages 142—143. Springer, 2010.

. Amine Chaieb and Tobias Nipkow. Proof synthesis and reflection for linear arithmetic. J.

Autom. Reasoning, 41(1):33-59, 2008.

. Thomas C. Hales, John Harrison, Sean McLaughlin, Tobias Nipkow, Steven Obua, and

Roland Zumkeller. A revision of the proof of the Kepler conjecture. Discrete & Compu-
tational Geometry, 44(1):1-34, 2010.

. John Harrison. Automating elementary number-theoretic proofs using Grobner bases. In

Frank Pfenning, editor, Automated Deduction (CADE 21), volume 4603 of Lecture Notes in
Computer Science, pages 51-66, Bremen, Germany, 2007. Springer.

. John Harrison and Roland Zumkeller. update_database module. Part of the HOL Light

distribution.

. Joe Hurd. The OpenTheory standard theory library. In Mihaela Gheorghiu Bobaru, Klaus

Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA Formal Methods, volume
6617 of Lecture Notes in Computer Science, pages 177-191. Springer, 2011.

. Cezary Kaliszyk and Josef Urban. Initial experiments with external provers and premise

selection on HOL Light corpora. In Pascal Fontaine, Renate Schmidt, and Stephan Schulz,
editors, PAAR. to appear, 2012.

. Cezary Kaliszyk and Josef Urban. Learning-assisted automated reasoning with Flyspeck.

CoRR, abs/1211.7012, 2012.

. Matt Kaufmann and Lawrence C. Paulson, editors. Interactive Theorem Proving, First In-

ternational Conference, ITP 2010, Edinburgh, UK, July 11-14, 2010. Proceedings, volume
6172 of Lecture Notes in Computer Science. Springer, 2010.

Chantal Keller and Benjamin Werner. Importing HOL Light into Coq. In Kaufmann and
Paulson [9]], pages 307-322.

Alexander Krauss and Andreas Schropp. A mechanized translation from higher-order logic
to set theory. In Kaufmann and Paulson [9]], pages 323-338.

Steven Obua and Sebastian Skalberg. Importing HOL into Isabelle/HOL. In Ulrich Furbach
and Natarajan Shankar, editors, I/JCAR, volume 4130 of Lecture Notes in Computer Science,
pages 298-302. Springer, 2006.

Freek Wiedijk. Formalizing 100 theorems. http://www.cs.ru.nl/~freek/100/.

Wai Wong. Recording and checking HOL proofs. In E. Thomas Schubert, Phillip J. Windley,
and Jim Alves-Foss, editors, TPHOLs, volume 971 of Lecture Notes in Computer Science,
pages 353-368. Springer, 1995.

http://www.cs.ru.nl/~freek/100/

	Scalable LCF-style proof translation

