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Abstract. FEMaLeCoP is a connection tableau theorem prover based
on leanCoP which uses efficient implementation of internal learning-
based guidance for extension steps. Despite the fact that exhaustive use
of such internal guidance can incur a significant slowdown of the raw
inferencing process, FEMaLeCoP trained on related proofs can prove
many problems that cannot be solved by leanCoP. In particular on the
MPTP2078 benchmark, FEMaLeCoP adds 90 (15.7%) more problems to
the 574 problems that are provable by leanCoP. FEMaLeCoP is thus the
first AI/ATP system convincingly demonstrating that guiding the inter-
nal inference algorithms of theorem provers by knowledge learned from
previous proofs can significantly improve the performance of the provers.
This paper describes the system, discusses the technology developed, and
evaluates the system.

1 Introduction: Guiding Search By Learned Relevance

Intelligent guidance of the proof search is crucial for automated theorem prov-
ing (ATP). While complete ATP calculi such as resolution, superposition, and
tableau can in principle find a proof of arbitrary length and complexity, the prac-
tical strength of state-of-the-art ATP systems is nowhere near the performance
of expert mathematicians in most of mathematical domains.

In particular, experiments over large formal mathematical libraries [15,2]
show that current ATP calculi have practically no chance to find a more compli-
cated proof in large-theory mathematics unless they are equipped with external
axiom-selecting AI methods. Such AI methods are based on various ideas es-
timating the relevance of the axioms to the conjecture based on sufficiently
descriptive features [9] of the axioms and conjectures. The strongest methods
are based on learning such relevance from the large libraries of previous related
proofs. This is not surprising for two reasons. First, mathematicians also grad-
ually learn their problem-solving expertise. Second, the chances of completely
manually specifying the most efficient proof-search algorithm for all mathemat-
ical domains and problems seem very low.
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Despite the ability of the AI/learning methods to focus the proof search
towards the most relevant axioms, the power of today’s ATPs in most of math-
ematics is still very limited. The automatically found proofs typically do not go
over 20 lines of formal proof-assistant code [8], and are usually easy for trained
mathematicians. This limited power is due to fast blow-up of the internal ATP
search, which is reminiscent of the blow-up incurred by off-the-shelf ATPs when
left to struggle alone with a very large number of axioms.

The success of the axiom-selection AI/learning methods in curbing such
search space motivates research in automated learning of smarter guidance of
the internal search. In the MaLeCoP (Machine Learning Connection Prover) ex-
periment [16] we have shown that in principle it is possible to significantly prune
the internal search space of leanCoP (lean Connection Prover) [13] when guiding
each extension step by an off-the-shelf machine learner trained on related lean-
CoP proofs. However, the speed of the guiding machine learner in MaLeCoP was
impractically (about 1000 times) slower [16] than the raw leanCoP inferencing
process, resulting in MaLeCoP’s low real-time performance.

2 Contributions

In this work, we devise much stronger learning-based guidance for connection
tableau by developing an AI/ATP system where the learning-based guidance is
an optimized and tightly integrated part of the core inferencing algorithm and
data structures. This in particular involves (i) developing very fast (online in
the machine-learning terminology) methods for characterizing the current proof
state on which the trained learner gives advice to the inferencing process, (ii)
suitable modification and integration of a machine learner whose advising speed
is comparable to the core deductive inference mechanisms, (iii) designing mech-
anisms that suitably combine the learning-based guidance with semantic/deduc-
tive pruning methods such as discrimination-tree indexing. The main nontrivial
concern is to provide strong proof-state characterization and AI/learning meth-
ods for guiding the inference steps, while keeping the speed of such methods
sufficiently high.

The rest of the paper is organized as follows. Section 3 briefly summarizes
leanCoP, its recent OCaml implementation, and the MaLeCoP prototype, which
are the basis for the current system. Then we describe the main techniques
developed and used in FEMaLeCoP (Section 4). In Section 5 we show that
the raw inference speed of the resulting AI/ATP system is reasonably high in
comparison to unguided leanCoP, and that the system indeed adds 15.7% more
MPTP2078 problems to the 574 problems provable by unguided leanCoP.

3 Background: leanCoP, MaLeCoP and OCAML-leanCoP

leanCoP [13] is an automated theorem prover implementing connected tableau
search with iterative deepening, written very economically in Prolog by Otten.
The reduction rule of the connection calculus is applied before the extension rule,
and open branches are selected in a depth-first way. Additional inference rules



and strategies include regularity, lemmata, and restricted backtracking (cut) [12].
Given the very compact implementation, leanCoP’s performance is surprisingly
high, regularly outperforming much larger ATPs such as Metis and even Prover9
in the CASC competition and in particular on problems coming from large for-
mal libraries [10]. Its size/performance ratio makes leanCoP suitable for various
experiments and integration with other systems. Two such offsprings of leanCoP
relevant here are:

1. Its OCaml implementation (OCaml-leanCoP), which has been linked to the
HOL Light LCF-style kernel, resulting in the currently strongest internal
automation tactic for interactive theorem provers [10].

2. The MaLeCoP prototype [16], providing the original Prolog-based leanCoP
with a communication link to an external learning system (the SNoW system
[3]) which is trained on previous leanCoP proofs and guides the choice of the
extension steps. A large cache and a number of meta-strategies (e.g., advising
only when a large branching factor is encountered) were used to combine
the (very) slow external advice with the (much) faster raw inference process.
Large speed-ups in terms of the abstract time (number of inferences) were
measured, however the system was still too slow to be usable in practice.

4 FEMaLeCoP

4.1 Consistent Clausification, Indexing, and Basic Calculus

The basis of FEMaLeCoP is the OCaml version of leanCoP. As in MaLeCoP,
FEMaLeCoP starts by a consistent clausification (with relation to the sym-
bols used) of the FOL problem. This is done by using content-based names for
Skolem functions and for the names of the clauses (or rather for the contraposi-
tives created from the clauses - see below). For example, formula ?[X]: p(X)
thus becomes p(’skolem(?[A]:p(A),1)’) (involving also variable normal-
ization), and the name of this clause (contrapositive) is just its MD5 hash. Such
consistent naming is essential for good recall of similar proof situations and their
solutions from the previous problems.

As in leanCoP, the initial clauses and their literals are put into an indexing
datastructure – the lit matrix. The lit matrix keeps all literals L from all input
clauses C, remembering the rest of the clause (C − L). We call the entries in
the lit matrix (i.e., the pairs L, C − L) contrapositives. Contrapositives are the
main object of leanCoP’s search. The lit indexing is used for fast Prolog-style
unification of literals during the tableau search. While in leanCoP, the indexing
of lit is done automatically by Prolog, FEMaLeCoP uses indexing by the toplevel
predicate and optional discrimination-tree indexing of the literals.

The core theorem-proving function of leanCoP written in Prolog is shown
below, with Cla being the open subgoal and Path being the active path. For
simplicity, we omit here the code implementing regularity, lemmata, iterative
deepening and restrictive backtracking. The main source of nondeterminism is
obviously the tableau extension rule, and this is where we will apply the learning-
based guidance.



1 % prove(Cla,Path)
2 prove([Lit|Cla],Path) :-
3 (-NegLit=Lit;-Lit=NegLit) ->
4 (
5 member(NegL,Path),
6 unify_with_occurs_check(NegL,NegLit)
7 ; % extension step
8 lit(NegLit,NegL,Cla1,Grnd1),
9 unify_with_occurs_check(NegL,NegLit),
10 prove(Cla1,[Lit|Path])
11 ),
12 prove(Cla,Path).
13 prove([],_,).

4.2 Overview of the Learning-Based Guidance

We combine the above basic leanCoP algorithm with a learning-based system
that advises the inference process. The interesting choices in such AI setup are
what exactly should be advised, how should the advising algorithm work, and in
particular which features (properties, characteristics) of the proof state are best
for recalling similar past proof states that led (typically after some nontrivial
search effort) to successfully solved problems and their solutions are thus more
likely to lead to successful proof for the current proof state. All these questions
open interesting research topics: for example one could advise selection of high-
level problem-solving strategies rather than low-level reasoning steps, and the
advising algorithm could be interleaved with a gradual computation of more
and more advanced features. While such sophisticated designs will certainly be
built in the future, our goal here is to develop good-enough first solutions that
will show that learning-based guidance leads to significant improvement of the
unguided leanCoP. The summary of the choices that we make is as follows:

What is advised: We advise the selection of clause for every tableau ex-
tension step. This means that each time there are multiple clauses (or rather
contrapositives) that unify with the current goal, the advise system is called to
estimate the candidates’ chances (relevance) for leading to a proof. The candi-
dates are then tried (backtracked over) in the order of their relevance. Advising
every extension step in this way is quite extreme and ambitious. It requires that
the advising system is comparably fast to the standard inference speed, because
we cannot assume that there will always be enough previous proof information
to completely avoid mistakes and subsequent backtracking.

How we advise: We use a fast custom OCaml implementation [8] of the
naive Bayes algorithm that learns the association of the features of the proof
states (see below) with the contrapositives that were used for the successful
tableau extension steps in previous proofs. During each extension step the ad-
vising system computes the features of the active proof state, and orders the
contrapositives by their estimated relevance for these proof-state features based



on the contrapositive’s performance on previous similar proof states. The ex-
act computation of the relevance and feature-based similarity depends on the
machine-learning algorithm used. The implementation details of our advising
system and the related infrastructure are described below 4.3.

Features used: We characterize the proof state as a weighted vector of
symbols and/or (possibly generalized) terms extracted from all the literals on
the active path. We use frequency-based weighting of such features (the inverse
document frequency – IDF scheme [6]) which has turned out to work very well in
the related large-theory axiom-selection task [7], and we additionally experiment
with a simple decay factor (using maximum) for the features depending on the
distance of the path literals from the tip of the path. For example, given decay
factor of 0.8 and a term feature “1 + 2” extracted independently from two path
literals L1 : 1 + 2 = 3 and L2 : 1 + 2 = 2 + 1 with L1 being the active goal and
L2 being its grandparent on the active path, the (non-IDF) weight of the feature
“1 + 2” is w(“1 + 2”) = max(0.80, 0.82) = 1.

4.3 Learning-Based Advising System and Related Infrastructure

Collecting training data: First, the advising system needs to collect the train-
ing data. To achieve this, FEMaLeCoP stores the complete information about
the proof by adding the prf argument to the prove function and returning
and printing it when a proof is found. prf is a list of tuples (examples), each
consisting of the current literal, the path, and the contrapositive used.
Data indexing: The printed prf format is very general and verbose, allowing ex-
periments with different features and learning algorithms without re-running the
ATP. When extracted from many proofs, the number of printed tuples can easily
go over one million. For the naive-Bayes learning and advising we first turn this
data by a special program (hasher) into an efficient datastructures optimized for
the particular choice of features (constants and/or (generalized) subterms – both
are used by default). For the particular choice of features hasher extracts the
proof-state features from each example and maintains a hashtable cn_pf_no
keeping for each contrapositive a map of its aggregated (weighted) proof-state
feature frequencies. Additionally the following auxiliary data are maintained for
fast IDF and naive-Bayes processing: te_num – the total number of training ex-
amples so far, pf_no – a hashtable from features to floats storing the (weighted)
sum of occurrences of every feature in all the processed training examples, and
cn_no – a hashtable storing the total number of occurrences for each contrapos-
itives in all training examples. This data extraction is fast, taking about 30 s for
10000 FEMaLeCoP proofs. Additionally, this also works incrementally, i.e. when
a new proof is found, this aggregated information can be very quickly updated
by the new training examples.
Problem-specific data preparation: Upon start, FEMaLeCoP reads the problem
to solve and the aggregated training data. The first task is to select only the
parts of these data that are relevant for the current problem. For this, after the
(consistent – Section 4.1) clausification the contrapositives and their features are



extracted and used for filtering out unnecessary parts of the aggregated training
data, resulting in the localized version of the aggregated data structures. The
cn_pf_no and cn_no hashtables are then combined with the lit indexing (based
on the toplevel predicate or using a discrimination tree) of contrapositives. This
makes the aggregated previous proof-use information for each contrapositive
accessible right when the contrapositive is accessed in the main prove function
through the lit indexing. This typically allows reasonably fast computation of the
naive-Bayes score of the contrapositives that are considered by the lit indexing.

An optional problem-specific data-filtering step is to use the k-nearest neigh-
bor (k-NN) algorithm for further restriction of the relevant training data. If this
is used, we first find the k solved problems whose conjectures are (in the feature
metric) closest to the current conjecture, and extract the training examples only
from such problems. Such filtering introduces further parameters to optimize
and is not yet used in the Evaluation (Section 5).
Efficient approximate feature and relevance computation : To avoid costly recom-
putation of the features of the path for each extension step, the prove function
passes the proof-state features computed so far as an additional argument, and
the feature vector is only updated incrementally when an extension step is to
be performed. This means that the features may occasionally be approximate,
because the substitutions performed with the literals of the path (line 6 of the
simplified leanCoP algoprithm in Section 4.1) might not be taken into account.
This optimization may lose some constant features (e.g., if induced by a unifi-
cation at a reduce step), however it very significantly speeds up the advising.
Given that the features of the current path are f , the relevance of the eligible
contrapositives (pre-selected by the lit indexing) is then computed according to
the following modified naive-Bayes score (used by us for axiom selection in [11]):

r(t, s) = σ1 ln t+
∑

f∈(f∩s)

i(f) ln
σ2s(f)

t
+σ3

∑
f∈(f−s)

i(f)+σ4
∑

f∈(s−f)

i(f) ln(1−s(f)
t

)

Here t is the total number of times the contrapositive was used, s is its aggregated
feature vector, and i is the vector of IDF weights of all features. The score
function is parameterized by the following constants (chosen experimentally): σ1
– weight of the total number of uses (default = 2), σ2 – weight of the overlapping
features (default = 2), σ3 – weight of the path-only features (default = −6), σ4
– weight of the contrapositive-only features (default = −0.05).

5 Evaluation

The system’s main evaluation is done on the 2078 related problems coming from
the MPTP2078 large-theory benchmark [1] exported from Mizar. This bench-
mark has two categories: large (chainy) problems containing many redundant
axioms, and small (bushy) problems that contain only the axioms used explic-
itly in the Mizar proofs plus additional “background” formulas encoding the
(typically typing) reasoning steps done by Mizar implicitly.



As explained in Section 1, in FEMaLeCoP we are interested in the problem
of guiding the internal ATP search once the right axioms have been (approx-
imately) chosen by one of today’s reasonably good (external) AI systems used
for axiom selection. This is why we evaluate FEMaLeCoP on the bushy (small)
problems rather than on the chainy (large) ones. Because the external axiom-
selectors are not perfect, it makes sense to evaluate FEMaLeCoP on problems
that still contain some redundant axioms, rather than evaluating it on problems
where the set of axioms is minimized in some way (see [1] for some discussion
of the minimization techniques and issues). The MPTP2078 bushy problems fit
this evaluation scenario quite well, because the “background” formulas included
in the problems are typically quite redundant [1].

The results are show in Table 1. Unaided OCaml-leanCoP is first run on all
the 2078 bushy problems with a time limit of 60 s.3 This solves 574 problems.
From the proofs of these problems we collect the training data from the success-
ful path decisions and preprocess them as described above. This step is done
once for all proofs and takes seconds. In the second round we run FEMaLeCoP
with these training data loaded, again with a time limit of 60 s, again attack-
ing all the 2078 problems. While the inference speed drops to about 40% (for a
sample problem: 305098 inferences per second instead of 772208) of the unad-
vised OCaml-leanCoP, the advised system solves 635 problems, adding 90 (15.7%
more) problems to the original solutions. This is a considerable improvement of
the ATP performance. As the union gives 664 solved problems, a portfolio ap-
proach might also prove to be effective.
Table 1: OCaml-leanCoP and trained FEMaLeCoP on bushy problems in 60 s.

Prover Proved (%)

OCaml-leanCoP 574 (27.6%)
FEMaLeCoP 635 (30.6%)
together 664 (32.0%)

6 Conclusion and Future Work

To the best of our knowledge, FEMaLeCoP is the first ATP system with effi-
ciently integrated internal learning-based guidance that convincingly shows the
feasibility and benefits of such exhaustive knowledge re-use when compared to
the standard unguided ATP. While the MaLeCoP prototype has provided evi-
dence that large pruning of the ATP search space is possible in principle when
using such internal guidance, FEMaLeCoP shows that this is possible in prac-
tice, adding 15.7% solutions to unguided OCaml-leanCoP in a fair evaluation
scenario.

We believe that this is a rather important step towards producing smart inte-
grated AI/ATP systems that do not try to attack each problem in complete iso-
lation, but instead re-use the vast problem-solving knowledge accumulated in the
formal ITP libraries by human mathematicians and machines. The immediate
future work includes similar modification of more complicated state-of-the-art
3 The hardware used is Intel Xeon E7-4870 2.30GHz with 256GB RAM.



ATP systems based on resolution/superposition, developing better proof-state
features, more general learning setups, and combining with external axiom se-
lection. For example, while the current learning is done on the (MD5) names of
normalized contrapositives, better transfer of knowledge (and thus recall) will
likely be achieved by abstracting away the symbol names, and advising also the
resulting abstract clause patterns [14,4]. Integrated machine learning could also
be used to reorder subgoals [5]. Similarly, it seems straightforward to modify
FEMaLeCoP for learning and advising the choice of higher-level tactics in ITP
systems.
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