
Premise Selection and External Provers for HOL4

Thibault Gauthier Cezary Kaliszyk
University of Innsbruck

{thibault.gauthier,cezary.kaliszyk}@uibk.ac.at

Abstract
Learning-assisted automated reasoning has recently gained
popularity among the users of Isabelle/HOL, HOL Light, and
Mizar. In this paper, we present an add-on to the HOL4 proof
assistant and an adaptation of the HOL(y)Hammer system
that provides machine learning-based premise selection and
automated reasoning also for HOL4. We efficiently record
the HOL4 dependencies and extract features from the the-
orem statements, which form a basis for premise selection.
HOL(y)Hammer transforms the HOL4 statements in the var-
ious TPTP-ATP proof formats, which are then processed by
the ATPs.

We discuss the different evaluation settings: ATPs, acces-
sible lemmas, and premise numbers. We measure the perfor-
mance of HOL(y)Hammer on the HOL4 standard library. The
results are combined accordingly and compared with the
HOL Light experiments, showing a comparably high qual-
ity of predictions. The system directly benefits HOL4 users
by automatically finding proofs dependencies that can be
reconstructed by Metis.

Categories and Subject Descriptors I.2.3 [Artificial in-
telligence]: Inference engines

Keywords HOL4; higher-order logic; automated reason-
ing; premise selection

1. Introduction
The HOL4 proof assistant [24] provides its users with a full
ML programming environment in the LCF tradition. Its sim-
ple logical kernel and interactive interface allow safe and
fast developments, while the built-in decision procedures
can automatically establish many simple theorems, leaving
only the harder goals to its users. However, manually prov-
ing theorems based on its simple rules is a tedious task.
Therefore, general purpose automation has been developed
internally, based on model elimination (MESON [9]), tableau
(blast [19]), or resolution (Metis [11]). Although essential to
HOL4 developers, the methods are so far not able to com-
pete with the external ATPs [16, 22] optimized for fast proof
search with many axioms present and continuously evalu-

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CPP’15, January 12–14 2015, Mumbai, India..
Copyright is held by the owner/author(s).
ACM 978-1-4503-3296-5/15/01.
http://dx.doi.org/10.1145/2676724.2693173

ated on the TPTP library [25] and updated with the most
successful techniques. The TPTP (Thousands of Problems
for Theorem Provers) is a library of test problems for auto-
mated theorem proving (ATP) systems. This standard en-
ables convenient communication between different systems
and researchers.

On the other hand, the HOL4 system provides a func-
tionality to search the database for theorems that match a
user chosen pattern. The search is semi-automatic and the
resulting lemmas are not necessarily helpful in proving the
conjecture. An approach that combines the two: searching
for relevant theorems and using automated reasoning meth-
ods to (pseudo-)minimize the set of premises necessary to
solve the goal, forms the basis of “hammer” systems such as
Sledgehammer [20] for Isabelle/HOL, HOL(y)Hammer [15] for
HOL Light or MizAR for Mizar [12]. Furthermore, apart from
syntactic similarity of a goal to known facts, the relevance of
a fact can be learned by analyzing dependencies in previous
proofs using machine learning techniques [28], which leads
to a significant increase in the power of such systems [17].

In this paper, we adapt the HOL(y)Hammer system to the
HOL4 system and test its performance on the HOL4 standard
library. The libraries of HOL4 and HOL Light are exported
together with proof dependencies and theorem statement
features; the predictors learn from the dependencies and
the features to be able to produce lemmas relevant to a
conjecture. Each problem is translated to the TPTP FOF
format. When an ATP finds a proof, the necessary premises
are extracted. They are read back to HOL4 as proof advice
and given to Metis for reconstruction.

An adapted version of the resulting software is made
available to the users of HOL4 in interactive session, which
can be used in newly developed theories. Given a conjecture,
the SML function computes every step of the interaction loop
and, if successful, returns the conjecture as a theorem:

Example 1. (HOL(y)Hammer interactive call)

load "holyHammer";
val it = (): unit

holyhammer ‘‘1+1=2‘‘;
Relevant theorems: ALT ZERO ONE TWO ADD1
metis: r[+0+6]#
val it = |- 1 + 1 = 2: thm

The HOL4 prover already benefits from export to SMT
solvers such as Yices [31], Z3 [4] and Beagle [8]. These meth-
ods perform best when solving problems from the supported
theories of the SMT solver. Comparatively, HOL(y)Hammer
is a general purpose tool as it relies on ATPs without theory

reasoning and it can provide easily1 re-provable problem to
Metis.

The HOL4 standard distribution has since long been
equipped with proof recording kernels [18, 32]. We first con-
sidered adapting these kernels for our aim. But as machine
learning only needs the proof dependencies and the approach
based on full proof recording is not efficient, we perform min-
imal modifications to the original kernel.
Contributions We provide learning assisted automated
reasoning for HOL4 and evaluate its performance in com-
parison to that in HOL Light. In order to do so, we :

• Export the HOL4 data
Theorems, dependencies, and features are exported by a
patched version of the HOL4 kernel. It can record depen-
dencies between theorems and keep track on how their
conjunctions are handled along the proof. We export the
HOL4 standard libraries (58 types, 2305 constants, 11972
theorems) with respect to a strict name-space rule so that
each object is uniquely identifiable, preserving if possible
its original name.

• Reprove
We test the ability of a selection of external provers to
reprove theorems from their dependencies.

• Define accessibility relations
We define and simulate different development environ-
ments, with different sets of accessible facts to prove a
theorem.

• Experiment with predictors
Given a theorem and a accessibility relation, we use
machine learning techniques to find relevant lemmas from
the accessible sets. Next, we measure the quality of the
predictions by running ATPs on the translated problems.

The rest of this paper is organized as follows. In Section 2
we describe the export of the HOL4 and HOL Light data
into a common format and the recording of dependencies
in HOL4. In Section 3, we present the different parameters:
ATPs, proving environments, accessible sets, features, and
predictions. We select some of them for our experiments and
justify our choice. In Section 4 we present the results of the
HOL4 experiments, relate them to previous HOL(y)Hammer
experiments and explain how this affects the users. Finally in
Section 5 we conclude and present an outlook on the future
work.

2. Sharing HOL data between HOL4, HOL
Light and HOL(y)Hammer

In order to process HOL Light and HOL4 data in a uniform
way in HOL(y)Hammer, we export objects from their respec-
tive theories, as well as dependencies between theorems into
a common format. The export is available for any HOL4
and HOL Light development. We shortly describe the com-
mon format used for exporting both libraries and present
in more detail our methods for efficiently recording objects
(types, constants and theorems) and precise dependencies
in HOL4. We will refer to HOL(y)Hammer [15] for the de-
tails on recording objects and dependencies for HOL Light
formalizations.

HOL Light and HOL4 share a common logic (higher-order
logic with implicit shallow polymorphism), however their

1 reconstruction rate is typically above 90%

implementations differ both in terms of the programming
language used (OCaml and SML respectively), data struc-
tures used to represent the terms and theorems (higher-
order abstract syntax and de Bruijn indices respectively),
and the exact inference rules provided by the kernel. As
HOL(y)Hammer has been initially implemented in OCaml as
an extension of HOL Light, we need to export all the HOL4
data and read it back into HOL(y)Hammer, replacing its type
and constant tables. The format that we chose is based on
the TPTP THF0 format [27] used by higher-order ATPs.
Since formulas contains polymorphic constants which is not
supported by the THF0 format, we will present an experi-
mental extension of this format where the type arguments
of polymorphic constants are given explicitly.
Example 2. (experimental template)

tt(name, role, formula)

The field name is the object’s name. The field role is ”ty”
if the object is a constant or a type, and ”ax” if the object
is a theorem. The field formula is an experimental THF0
formula.
Example 3. (Object export from HOL4 to an experimental
format)

• Type

(list,1) → tt(list, ty, $t > $t).

• Constant

(HD,‘‘:’a list -> :’a‘‘) →
tt(HD, ty, ![A:$t]: (list A > A).

(CONS,‘‘:’a -> :’a list -> :’a list‘‘) →
tt(CONS ,ty, ![A:$t]: (A > list A > list A).

• Theorem

(HD,‘‘∀ n:int t:list[int]. HD (CONS n t) = n‘‘) →
tt(HD0, ax, (![n:int, t:(list int)]:

((HD int) ((CONS int) n t) = n).

In this example, $t is the type of all basic types.
All names of objects are prefixed by a namespace identi-

fier, that allow identifying the prover and theory they have
been defined in. For readability, the namespace prefixes have
been omitted in all examples in this paper.

2.1 Creation of a HOL4 theory
In HOL4, types and constants can be created and deleted
during the development of a theory. These objects are named
at the moment they are created. A theorem is a SML value
of type thm and can be derived from a set of basic rules,
which is an instance of a typed higher-order classical logic.
To distinguish between important lemmas and theorems
created by each small steps, the user can name and delete
theorems (erase the name). Each named object still present
at the end of the development is saved and thus can be called
in future theories.

There are two ways in which an object can be lost in a
theory: either it is deleted or overwritten. As proof depen-
dencies for machine learning get more accurate when more
intermediate steps are available, we decided to record all cre-
ated objects, which results in the creation of slightly bigger
theories. As the originally saved objects can be called from

other theories, their names are preserved by our transforma-
tion. Each lost object whose given name conflicts with the
name of a saved object of the same type is renamed.

Deleted objects The possibility of deleting an object or
even a theory is mainly here to hide internal steps or to make
the theory look nicer. We chose to remove this possibility
by canceling the effects of the deleting functions. This is
the only user-visible feature that behaves differently in our
dependency recording kernel.

Overwritten objects An object may be overwritten in the
development. As we prevent objects from being deleted, the
likelihood of this happening is increased. This typically hap-
pens when a generalized version of a theorem is proved and
is given the same name as the initial theorem. In the case of
types and constants, the internal HOL4 mechanism already
renames overwritten objects. Conversely, theorems are really
erased. To avoid dependencies to theorems that have been
overwritten, we automatically rename the theorems that are
about to be overwritten.

2.2 Recording dependencies
Dependencies are an essential part of machine learning for
theorem proving, as they provide the examples on which pre-
dictors can be trained. We focus on recording dependencies
between named theorems, since they are directly accessible
to a user. The time mark of our method slows down the
application of any rules by a negligible amount.

Since the statements of 951 HOL4 theorems are conjunc-
tions, sometimes consisting of many toplevel conjuncts, we
have refined our method to record dependencies between the
toplevel conjuncts of named theorems.
Example 4. (Dependencies between conjunctions)
ADD CLAUSES: 0 + m = m ∧ m + 0 = m ∧
SUC m + n = SUC (m + n) ∧ m + SUC n = SUC (m + n)

ADD_ASSOC depends on:
ADD_CLAUSES_c1: 0 + m = m
ADD_CLAUSES_c3: SUC m + n = SUC (m + n)
...

The conjunct identifiers of a named theorem T are noted
T c1, . . ., T cN.

In certain theorems, a toplevel universal quantifier shares
a number of conjuncts. We will also split the conjunctions in
such cases recursively. This type of theorem is less frequent
in the standard library (203 theorems).
Example 5. (Conjunctions under quantifier)
MIN_0: ∀ n. (MIN n 0 = 0) ∧ (MIN 0 n = 0)

By splitting conjunctions we expect to make the depen-
dencies used as training examples for machine learning more
precise in two directions. First, even if a theorem is too hard
to prove for the ATPs, some of its conjuncts might be prov-
able. Second, if a theorem depends on a big conjunction, it
typically depends only on some of its conjuncts. Even if the
precise conjuncts are not clear from the human-proof, the
reproving methods can often minimize the used conjuncts.
Furthermore, reducing the number of conjuncts should ease
the reconstruction.

2.3 Implementation of the recording
The HOL4 type of theorems thm includes a tag field in order
to remember which oracles and axioms were necessary to

prove a theorem. Each call to an oracle or axiom creates
a theorem with the associated tag. When applying a rule,
all oracles and axioms from the tag of the parents are
respectively merged, and given to the conclusion of the
rule. To record the dependencies, we added a third field to
the tag, which consists of a dependency identifier and its
dependencies.
Example 6. (Modified tag type)

type tag = ((dependency_id, dependencies),
oracles, axioms)

type thm = (tag, hypotheses, conclusion)

Since the name of a theorem may change when it is
overwritten, we create unmodifiable unique identifiers at the
moment a theorem is named.

It consists of the name of the current theory and the
number of previously named theorems in this theory. As
a side effect, this enables us to know the order in which
theorems are named which is compatible by construction
with the pre-order given by the dependencies. Every variable
of type thm which is not named is given the identifier
unnamed. Only identifiers of named theorems will appear
in the dependencies.

We have implemented two versions of the dependency
recording algorithm, one that tracks the dependencies be-
tween named theorems, other one tracking dependencies
between their conjuncts. For the named theorems, the de-
pendencies are a set of identified theorems used to prove
the theorem. The recording is done by specifying how each
rule creates the tag of the conclusion from the tag of its
premises. The dependencies of the conclusion are the union
of the dependencies of the unnamed premises with its named
premises.

This is achieved by a simple modification of the Tag.merge
function already applied to the tags of the premises in each
rule.

When a theorem ` A ∧ B is derived from the theorems
` A and ` B, the previously described algorithm would
make the dependencies of this theorem the union of the
dependencies of the two. If later other theorems refer to it,
they will get the union as their dependencies, even if only
one conjunct contributes to the proof. In this subsection we
define some heuristics that allow more precise tracking of
dependencies of the conjuncts of the theorems.

In order to record the dependencies between the con-
juncts, we do not record the conjuncts of named theorems,
but only store their dependencies in the tags. The dependen-
cies are represented as a tree, in which each leaf is a set of
conjunct identifiers (identifier and the conjunct’s address).
Each leaf of the tree represents the respective conjunct ci in
the theorem tree and each conjunct identifier represents a
conjunct of a named goal to prove ci.
Example 7. (An example of a theorem and its dependencies)

Th0 (named theorem): A ∧ B
Th1: C ∧ (D ∧ E)

with dependency tree Tree([Th0],[Th0_c2])

This encodes the fact that:
C depends on Th0.
D ∧ E depends Th0_c2 which is B.

Dependencies are combined at each inference rule appli-
cation and dependencies will contain only conjunct identi-
fiers. If not specified, a premise will pass on its identifier if
it is a named conjunct (conjunct of a named theorem) and
its dependency tree otherwise. We call such trees passed de-
pendencies. The idea is that the dependencies of a named
conjunct should not transmit its dependencies to its children
but itself. Indeed, we want to record the direct dependencies
and not the transitive ones.

For rules that do not preserve the structure of conjunc-
tions, we flatten the dependencies, i.e. we return a root
tree containing the set of all (conjunct) identifiers in the
passed dependencies. We additionally treat specially the
rules used for the top level organization of conjunctions:
CONJ, CONJUNCT1, CONJUNCT2, GEN, SPEC, and SUBST.

• CONJ: It returns a tree with two branches, consisting of
the passed dependencies of its first and second premise.

• CONJUNCT1 (CONJUNCT2): If its premise is named, then
the conjunct is given a conjunct identifier. Otherwise,
the first (second) branch of the dependency tree of its
premise become the dependencies of its conclusion.

• GEN and SPEC: The tags are unchanged by the application
of those rules as they do not change the structure of
conjunctions. Although we have to be careful when using
SPEC on named theorems as it may create unwanted
conjunctions. These virtual conjunctions are not harmful
as the right level of splitting is restored during the next
phase.
Example 8. (Creation of a virtual conjunction from a
named theorem)

∀ x.x ` ∀ x.x
SPEC [A ∧ B]

∀ x.x ` A ∧ B
CONJUNCT1

∀ x.x ` A

• SUBST: Its premises consist of a theorem, a list of substitu-
tion theorems of the form (A = B) and a template that
tells where each substitution should be applied. When
SUBST preserves the structure of conjuncts, the set of all
identifiers in the passed dependencies of the substitution
theorems is distributed over each leaf of the tree given
by the passed dependencies of the substituted theorems.
When it is not the case the dependency should be flat-
tened. Since the substitution of sub-terms below the top
formula level does not affect the structure of conjunc-
tions, it is sufficient (although not necessary) to check
that no variables in the template is a predicate (is a
boolean or returns a boolean).

The heuristics presented above try to preserve the depen-
dencies associated with single conjuncts whenever possible.
It is of course possible to find more advanced heuristics, that
would give more precise human-proof dependencies. How-
ever, performing more advanced operations (even pattern
matching) may slow down the proof system too much; so we
decided to restrict to the above heuristics.

Before exporting the theorems, we split them by recur-
sively distributing quantifiers and splitting conjunctions.
This gives rise to conflicting degree of splitting, as for in-
stance, a theorem with many conjunctions may have been
used as a whole during a proof. Given a theorem and its
dependency tree, each of its conjunctions is given the set of

Prover Version Premises
Vampire 2.6 96
E-prover 1.8 128
z3 4.32 32
CVC4 1.3 128
Spass 3.5 32
IProver 1.0 128
Metis 2.3 32

Table 1. ATP provers, their versions and arguments

identifiers of its closest parent in this tree. Then, each of
these identifiers is also split maximally. In case of a virtual
conjunction (see the SPEC rule above), the corresponding
node does not exist in the theorem tree, so we take the con-
junct corresponding to its closest parent. Finally, for each
conjunct, we obtain a set of dependencies by taking the
union of the split identifiers.
Example 9. (Recovering dependencies from the named the-
orem Th1)
Th0 (named theorem): A ∧ B
Th1 (named theorem): C ∧ (D ∧ E)

with dependency tree Tree([Th0],[Th0_c1])

Recovering dependencies of each conjunct
Th1_c0: Th0
Th1_c1: Th0_c1
Th1_c2: Th0_c1

Splitting the dependencies
Th1_c0: Th0_c1 Th0_c2
Th1_c1: Th0_c1
Th1_c2: Th0_c1

3. Evaluation
In this section we describe the setting used in the experi-
ments: the ATPs, the transformation from HOL to the for-
mats of the ATPs, the dependencies accessible in the differ-
ent experiments, and the features used for machine learning.

3.1 ATPs and problem transformation
HOL(y)Hammer supports the translation to the formats of
various TPTP ATPs: FOF, TFF1, THF0, and two exper-
imental TPTP extensions. In this paper we restrict our-
selves to the first order monomorphic logic, as these ATPs
have been the most powerful so far and integrating them
in HOL4 already poses an interesting challenge. The trans-
formation that HOL(y)Hammer uses is heavily influenced by
previous work by Paulson [21] and Harrison [9]. It is de-
scribed in detail in [15], here we remind only the crucial
points. Abstractions are removed by β-reduction followed by
λ-lifting, predicates as arguments are removed by introduc-
ing existentially quantified variables and the apply functor
is used to reduce all applications to first-order. By default
HOL(y)Hammer uses the tagged polymorphic encoding [3]: a
special tag taking two arguments is introduced, and applied
to all variable instances and certain applications. The first
argument is the first-order flattened representation of the
type, with variables functioning as type variables and the
second argument is the value itself.

The initially used provers, their versions and default num-
bers of premises are presented in Table 1. The HOL Light ex-
periments [15] showed, that different provers perform best

with different given numbers of premises. This is particu-
larly visible for the ATP provers that already include the
relevance filter SInE [10], therefore we preselect a number of
predictions used with each prover. Similarly, the strategies
that the ATP provers implement are often tailored for best
performance on the TPTP library, for the annual CASC
competition [26]. For ITP originating problems, especially
for E-prover different strategies are often better, so we run
it under the alternate scheduler Epar [29].

3.2 Accessible facts
As HOL(y)Hammer has initially been designed for HOL Light,
it treats accessible facts in the same way as the accessibility
relation defined there: any fact that is present in a theory
loaded chronologically before the current one is available. In
HOL4 there are explicit theory dependencies, and as such
a different accessibility relation is more natural. The facts
present in the same theory before the current one, and all
the facts in the theories that the current one depends on
(possibly in a transitive way) are accessible. In this subsec-
tion we discuss the four different accessible sets of lemmas,
which we will use to test the performance of HOL(y)Hammer
on.

Exact dependencies (reproving) They are the closest
named ancestors of a theorem in the proof tree. It tests
how much HOL(y)Hammer could reprove if it had perfect
predictions. In this settings no relevance filtering is done, as
the number of dependencies is small.

Transitive dependencies They are all the named ances-
tors of a theorem in the proof tree. It simulates proving a
theorem in a perfect environment, where all recorded the-
orems are a necessary step to prove the conjecture. This
corresponds to a proof assistant library that has been refac-
tored into little theories [6].

Loaded theorems All theorems present in the loaded the-
ories are provided together with all the theorems previously
built in the current theory. This is the setting used when
proving theorems in HOL4, so it is the one we use in our
interactive version presented and evaluated in Section 4.5.

Linear order For this experiment, we additionally recorded
the order in which the HOL4 theories were built, so that we
could order all the theorems of the standard library in a sim-
ilar way as HOL Light theorems are ordered. All previously
derived theorems are provided.

3.3 Features
Machine learning algorithms typically use features to define
the similarity of objects. In the large theory automated rea-
soning setting features need to be assigned to each theorem,
based on the syntactic and semantic properties of the state-
ment of the theorem and its attributes.

HOL(y)Hammer represents features by strings and char-
acterizes theorems using lists of strings. Features originate
from the names of the type constructors, type variables,
names of constants and printed subterms present in the con-
clusion. An important notion is the normalization of the fea-
tures: for subterms, their variables and type variables need
to be normalized. Various scenarios for this can be consid-
ered:

• All variables are replaced by one common variable.
• Variables are replaced by their de Bruijn index num-

bers [30].

• Variables are replaced by their (variable-normalized)
types [15].

The union of the features coming from the three above
normalizations has been the most successful in the HOL
Light experiments, and it is used here as well.

3.4 Predictors
In all our experiments we have used the modified k-NN algo-
rithm [13]. This algorithm produces the most precise results
in the HOL(y)Hammer experiments for HOL Light [15]. Given
a fixed number (k), the k-nearest neighbours learning algo-
rithm finds k premises that are closest to the conjecture,
and uses their weighted dependencies to find the predicted
relevance of all available facts. All the facts and the conjec-
ture are interpreted as vectors in the n-dimensional feature
space, where n is the number of all features. The distance
between a fact and the conjecture is computed using the
Euclidean distance. In order to find the neighbours of the
conjecture efficiently, we store an association list mapping
features to theorems that have those features. This allows
skipping the theorems that have no features in common with
the conjecture completely.

Having found the neighbours, the relevance of each avail-
able fact is computed by summing the weights of the neigh-
bours that use the fact as a dependency, counting each neigh-
bour also as its own dependency

4. Experiments
In this section, we present the results of several experiments
and discuss the quality of the advice system based on these
results. The hardware used during the reproving and acces-
sibility experiments is a 48-core server (AMD Opteron 6174
2.2 GHz. CPUs, 320 GB RAM, and 0.5 MB L2 cache per
CPU). In these experiments, each ATPs is run on a single
core for each problem with a time limit of 30 seconds. The
reconstruction and interactive experiments were run on a
laptop with a Intel Core processor (i5-3230M 4 x 2.60GHz
with 3.6 GB RAM).

4.1 Reproving
We first try to reprove all the 9434 theorems in the HOL4
libraries with the dependencies extracted from the proofs.
This number is lower than the number of exported theo-
rems because definitions are discarded. Table 2 presents the
success rates for reproving using the dependencies recorded
without splitting. In this experiment we also compare many
provers and their versions. For E-prover [23], we also compare
its different scheduling strategies [29]. The results are used
to choose the best versions or strategies for the selected few
provers. Apart from the success rates, the unique number of
problems is presented (proofs found by this ATP only), and
CVC4 [1] seems to perform best in this respect. The trans-
lation used by default by HOL(y)Hammer is an incomplete
one (it gives significantly better results than complete ones),
so some of the problems are counter-satisfiable.

From this point on, experiments will be performed only
with the best versions of three provers: E-prover, Vam-
pire [16], and z3 [5]. They have a high success rate combined
with an easy way of retrieving the unsatisfiable core. The
same ones have been used in the HOL(y)Hammer experi-
ments for HOL Light.

In Table 3, we try to reprove conjuncts of these theo-
rems with the different recording methods described in Sec-
tion 2.3. First, we notice that only z3 benefits from the track-

ing of more accurate dependencies. More, removing the un-
necessary conjuncts worsen the results of E-prover and Vam-
pire. One reason is that E-prover and Vampire do well with
large number of lemmas and although a conjunct was not
used in the original proof it may well be useful to these
provers.Suprisingly, the percentage of reproved facts did not
increase compared to Table 2, as this was the case for HOL
Light experiments. By looking closely at the data, we notice
the presence of the quantHeuristics theory, where 85 the-
orems are divided into 1538 conjuncts. As the percentage of
reproving in this theory is lower than the average (16%), the
overall percentage gets smaller given the increased weight of
this theory. Therefore, we have removed the quantHeuris-
tic theory in the Basic* and Optimized* experiments for a
fairer comparison with the previous experiments. Finally, if
we compare the Optimized experiment with the similar HOL
Light reproving experiment on 14185 Flyspeck problems [15],
we notice that we can reprove three percent more theorems
in HOL4. This is mostly due to a 10 percent increase in the
performance of z3 on HOL4 problems.

In Table 4 we have compared the success rates of reprov-
ing in different theories, as this may represent a relative
difficulty of each theory and also the relative performance
of each prover. We observe that z3 performs best on the
theories measure and probability, list and finite map,
whereas E-prover and Vampire have a higher success rate on
the theories arithmetic, real, complex and sort. Overall,
the high success rate in the arithmetic and real theories
confirms that HOL(y)Hammer can already tackle this type of
theorems. Nonetheless, it would still benefit from integrat-
ing more SMT-solvers’ functionalities on advanced theories
based on real and arithmetic.

4.2 With different accessible sets
In Table 5 we compare the quality of the predictions in differ-
ent proving environments. We recall that only the transitive
dependencies, loaded theories and linear order settings are
using predictions and that the number of these predictions
is adapted to the ability of each provers. The exact depen-
dencies setting (reproving), is copied from Table 3 for easier
comparison.

Prover Version Theorem(%) Unique CounterSat
E-prover Epar 3 44.45 3 0
E-prover Epar 1 44.15 9 0
E-prover Epar 2 43.95 9 0
E-prover Epar 0 43.52 2 0

CVC4 1.3 42.71 44 0
z3 4.32 41.96 8 5
z3 4.40 41.65 1 6

E-prover 1.8 41.37 14 0
Vampire 2.6 41.10 14 0
Vampire 1.8 38.34 6 0

z3 4.40q 35.19 11 5
Vampire 3.0 34.82 0 0

Spass 3.5 31.67 0 0
Metis 2.3 29.98 0 0

IProver 1.0 25.52 2 35
total 50.96 38

Table 2. Reproving experiment on the 9434 unsplit theo-
rems of the standard libary

Basic Optimized Basic* Optimized*
E-prover 42.43 42.41 46.23 45.91
Vampire 39.79 39.32 43.24 42.41

z3 39.59 40.63 43.78 44.18
total 46.74 46.76 50.97 50.55

Table 3. Success rates of reproving (%) on the 13910 con-
juncts of the standard library with different dependency
tracking mechanism.

We first notice the lower success rate in the transitive
dependencies setting. There may be two justifications. First,
the transitive dependencies provide a poor training set for
the predictors; the set of samples is quite small and the
available lemmas are all related to the conjecture. Second,
it is very unlikely that a lemma in this set will be better
than a lemma in the exact dependencies, so we cannot hope
to perform better than in the reproving experiment.

We now focus on the loaded theories and linear order
settings, which are the two scenarios that correspond to the
regular usage of a “hammer” system in a development: given
all the previously known facts try to prove the conjecture.
The results are surprisingly better than in the reproving ex-
periment. First, this indicates that the training data coming
from a larger sample is better. Second, this shows that the
HOL4 library is dense and that closer dependencies than the
exact one may be found by the predictors. It is quite com-
mon that large-theory automated reasoning techniques find
alternate proofs. Third, if we look at each ATP separately,
we see a one percent increase for E-prover, a one percent
decrease for Vampire, and 9 percent decrease for z3. This
correlates with the number of selected premises. Indeed, it
is easy to see that if a prover performs well with a large
number of selected premises, it has more chance to find the
relevant lemmas. Finally, we see that each of the provers
enhanced the results by solving different problems.

We can summarize the results by inferring that predictors
combined with ATPs are most effective in large and dense
developments.

The linear order experiments was also designed to make
a valid comparison with a similar experiment where 39% of
Flyspeck theorems were proved by combining 14 methods
This number was later raised to 47% by improving the
machine learning algorithm. Comparatively, the current 3

arith real compl meas

E-prover 61.29 72.97 91.22 27.01
Vampire 59.74 69.57 77.19 20.85

z3 51.42 64.46 86.84 31.27
total 63.63 75.31 92.10 32.70

proba list sort f map

E-prover 42.16 23.56 34.54 33.07
Vampire 37.34 21.96 32.72 27.16

z3 54.21 25.62 25.45 43.70
total 55.42 26.77 40.00 45.27

Table 4. Percentage (%) of reproved theorems in the the-
ories arithmetic, real, complex, measure, probability,
list, sorting and finte map.

ED TD LT LO
E-prover 42.41 33.10 43.58 43.64
Vampire 39.32 29.56 38.46 38.54

z3 40.63 24.66 31.22 31.20
total 46.76 37.54 50.54 50.68

Table 5. Percentage (%) of proofs found using different ac-
cessible sets: exact dependencies (ED), transitive dependen-
cies (TD), loaded theories (LT), and linear order (LO)

methods can prove 50% of the HOL4 theorems. This may
be since the machine learning methods have improved, since
the ATPs are stronger now or even because the Flyspeck
theories contain a more linear (less dense) development than
the HOL4 libraries, which makes it harder for automated
reasoning techniques.

4.3 Reconstruction
Until now all the ATP proved theorems could only be used
as oracles inside HOL4. This defeats the main aim of the
ITP which is to guarantee the soundness of the proofs. The
provers that we use in the experiments can return the unsat-
isfiable core: a small set of premises used during the proof.
The HOL representation of these facts can be given to Metis
in order to reprove the theorem with soundness guaranteed
by its construction. We investigate reconstructing proofs
found by Vampire on the loaded theories experiments (used
in our interactive version of HOL(y)Hammer). We found that
Metis could reprove, with a one second time limit, 95.6% of
these theorems. This result is encouraging for two reasons:
First, we have not shown the soundness of our transforma-
tions, and this shows that the found premises indeed lead to
a valid proof in HOL. Second, the high reconstruction rate
suggest that the system can be useful in practice.

4.4 Case study
Finally, we present two sets of lemmas found by E-prover
advised on the loaded libraries. We discuss the difference
with the lemmas used in the original proof.

The theorem EULER FORMULE states that any complex
number can be represented as a combination of its norm
and argument. In the human-written proof script ten theo-
rems are provided to a rewriting tactic. The user is mostly
hindered by the fact that she could not use the commuta-
tivity of multiplication as the tactic would not terminate.
Free of these constraints, the advice system returns only
three lemmas: the commutativity of multiplication, the polar
representation COMPLEX TRIANGLE, and the Euler’s formula
EXP IMAGINARY.
Example 10. (In theory complex)
Original proof:
val EULER_FORMULE = store_thm("EULER_FORMULE",

‘‘!z:complex. modu z * exp (i * arg z) = z‘‘,
REWRITE_TAC[complex_exp, i, complex_scalar_rmul,
RE, IM, REAL_MUL_LZERO, REAL_MUL_LID, EXP_0,
COMPLEX_SCALAR_LMUL_ONE, COMPLEX_TRIANGLE]);

Discovered lemmas:
COMPLEX_SCALAR_MUL_COMM COMPLEX_TRIANGLE
EXP_IMAGINARY

The theorem LCM LEAST states that any number below the
least common multiple is not a common multiple. This seems

trivial but actually the least common multiple (lcm) of two
natural numbers is defined as their product divided by their
greatest common divisor. The user has proved the contrapo-
sition which requires two Metis calls. The discovered lemmas
seem to indicate a similar proof, but it requires more lem-
mas, namely FALSITY and IMP F EQ F as the false constant is
considered as any other constant in HOL(y)Hammer and uses
the combination of LCM COMM and NOT LT DIVIDES instead of
DIVIDES LE.
Example 11. (In theory gcd)

Original proof:
val LCM_LEAST = store_thm("LCM_LEAST",

‘‘0 < m ∧ 0 < n ==> !p. 0 < p ∧ p < lcm m n
==> ˜(divides m p) ∨ ˜(divides n p)‘‘,
REPEAT STRIP_TAC THEN SPOSE_NOT_THEN
STRIP_ASSUME_TAC THEN ‘divides (lcm m n) p‘
by METIS_TAC [LCM_IS_LEAST_COMMON_MULTIPLE]
THEN ‘lcm m n <= p‘ by METIS_TAC [DIVIDES_LE]
THEN DECIDE_TAC);

Discovered lemmas:
LCM_IS_LEAST_COMMON_MULTIPLE LCM_COMM
NOT_LT_DIVIDES FALSITY IMP_F_EQ_F

4.5 Interactive version
In our previous experiments, all the different steps (export,
learning/predictions, translation, ATPs) were performed
separately, and simultaneously for all the theorems. Here, we
compose all this steps to produce one HOL4 step, that given
a conjecture proves it, usable in any HOL4 development in
an interactive advice loop. It proceeds as follows: The con-
jecture is exported along with the currently loaded theories.
Features for the theorems and the conjecture are computed,
and dependencies are used for learning and selecting the
theorems relevant to the conjecture. HOL(y)Hammer trans-
lates the problem to the formats of the ATPs and uses them
to prove the resulting problems. If successful, the discovered
unsatisfiable core, consisting of the HOL4 theorems used in
the ATP proof, is then read back to HOL4, returned as a
proof advice, and replayed by Metis.

In the last experiment, we evaluate the time taken
by each steps on two conjectures, which are not already
proved in the HOL4 libraries. The first tested goal C1 is
gcd (gcd a a) (b + a) = (gcd b a), where gcd n m is the
greatest common divisor of n and m. It can be automati-
cally proved from three lemmas about gcd. The second goal
is C2 is Im(i ∗ i) = 0, where Im the imaginary part of a
complex number. It can be automatically proved from 12
lemmas in the theories real, transc and complex.

In Table 6, the time taken by the export and import
phase linearly depends on the number of theorems in the
loaded libraries (given in parenthesis), as expected by the
knowledge of our data and the complexity analysis of our
code.

The time shown in the fourth column (“Predict”) includes
the time to extract features, to learn from the dependencies
and to find 96 relevant theorems. The time needed for
machine learning is relatively short. The time taken by
Vampire shows that the second conjecture is harder. This
is backed by the fact that we could not tell in advance what
would be the necessary lemmas to prove this conjecture. The
overall column presents the time between the interactive call
and the display of advised lemmas. The low running times

support the fact that our tool is fast enough for interactive
use.

Export Import Predict Vampire Total

C1 (2224) 0.38 0.20 0.29 0.01 0.97
C2 (4056) 0.67 0.43 0.59 1.58 3.42

Table 6. Time (in seconds) taken by each step of the advice
loop

5. Conclusion
In this paper we present an adaptation of the HOL(y)Hammer
system for HOL4, which allows for general purpose learning-
assisted automated reasoning. As HOL(y)Hammer uses ma-
chine learning for relevance filtering, we need to compute
the dependencies, define the accessibility relation for theo-
rems and adapt the feature extraction mechanism to HOL4.
Further, as we export all the proof assistant data (types,
constants, named theorems) to a common format, we define
the namespaces to cover both HOL Light and HOL4.

We have evaluated the resulting system on the HOL4
standard library toplevel goals: for about 50% of them a
sufficient set of dependencies can be found automatically.
We compare the success rates depending on the accessibil-
ity relation and on the treatment of theorems whose state-
ments are conjunctions. We provide a HOL4 command that
translates the current goal, runs premise selection and the
ATP, and if a proof has been found, it returns a Metis call
needed to solve the goal. The resulting system is available
at https://github.com/barakeel/HOL.

5.1 Future Work
The libraries of HOL Light and HOL4 are currently processed
completely independently. We have however made sure that
all data is exported in the same format, so that same con-
cepts and theorems about them can be discovered automat-
ically [7]. By combining the data, one might get goals in
one system solved with the help of theorems from the other,
which can then be turned into lemmas in the new system.
A first challenge might be to define a combined accessibility
relation in order to evaluate such a combined proof assistant
library.

The format that we use for the interchange of HOL4 and
HOL Light data is heavily influenced by the TPTP formats
for monomorphic higher-order logic [27] and polymorphic
first-order logic [2]. It is however slightly different from that
used by Sledgehammer’s fullthf. By completely standard-
izing the format, it would be possible to interchange prob-
lems between Sledgehammer and HOL(y)Hammer.

In HOL4, theorems include the information about the
theory they originate from and other attributes. It would
be interesting to evaluate the impact of such additional
attributes used as features for machine learning on the
success rate of the proofs. Finally, most HOL(y)Hammer
users call its web interface [14], rather than locally install
the necessary prover modifications, proof translation and
the ATP provers. It would be natural to extend the web
interface to support HOL4.

Acknowledgments
We would like to thank Josef Urban and Michael Färber
for their comments on the previous version of this paper.

This work has been supported by the Austrian Science Fund
(FWF): P26201.

References
[1] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jo-

vanović, T. King, A. Reynolds, and C. Tinelli. CVC4. In Pro-
ceedings of the 23rd International Conference on Computer
Aided Verification, CAV’11, pages 171–177, Berlin, Heidel-
berg, 2011. Springer-Verlag. ISBN 978-3-642-22109-5. URL
http://dl.acm.org/citation.cfm?id=2032305.2032319.

[2] J. C. Blanchette and A. Paskevich. TFF1: The TPTP
typed first-order form with rank-1 polymorphism. In M. P.
Bonacina, editor, CADE, volume 7898 of Lecture Notes in
Computer Science, pages 414–420. Springer, 2013. ISBN
978-3-642-38573-5. . URL http://dx.doi.org/10.1007/
978-3-642-38574-2.

[3] J. C. Blanchette, S. Böhme, A. Popescu, and N. Smallbone.
Encoding monomorphic and polymorphic types. In N. Piter-
man and S. A. Smolka, editors, TACAS, Lecture Notes in
Computer Science, pages 493–507. Springer, 2013.

[4] S. Böhme and T. Weber. Fast LCF-style proof reconstruction
for Z3. In M. Kaufmann and L. Paulson, editors, Interactive
Theorem Proving, volume 6172 of Lecture Notes in Computer
Science, pages 179–194. Springer, 2010. .

[5] L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In
Proceedings of the Theory and Practice of Software, 14th In-
ternational Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’08/ETAPS’08,
pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.
ISBN 3-540-78799-2, 978-3-540-78799-0. URL http://dl.
acm.org/citation.cfm?id=1792734.1792766.

[6] W. M. Farmer, J. D. Guttman, and F. J. Thayer. Lit-
tle theories. In Automated Deduction—CADE-11, volume
607 of Lecture Notes in Computer Science, pages 567–581.
Springer-Verlag, 1992.

[7] T. Gauthier and C. Kaliszyk. Matching concepts across HOL
libraries. In S. Watt, J. Davenport, A. Sexton, P. Sojka, and
J. Urban, editors, Proc. of the 7th Conference on Intelligent
Computer Mathematics (CICM’14), volume 8543 of LNCS,
pages 267–281. Springer Verlag, 2014. .

[8] T. Gauthier, C. Kaliszyk, C. Keller, and M. Norrish. Beagle
as a HOL4 external ATP method. In L. D. Moura, B. Konev,
and S. Schulz, editors, Proc. of the 4th Workshop on Practical
Aspects of Automated Reasoning (PAAR’14), EPiC, 2014. to
appear.

[9] J. Harrison. Optimizing proof search in model elimination. In
M. McRobbie and J. Slaney, editors, Proceedings of the 13th
International Conference on Automated Deduction, number
1104 in LNAI, pages 313–327. Springer-Verlag, 1996.

[10] K. Hoder and A. Voronkov. Sine qua non for large theory rea-
soning. In N. Bjørner and V. Sofronie-Stokkermans, editors,
Automated Deduction - CADE-23 - 23rd International Con-
ference on Automated Deduction, Wroc law, Poland, July 31
- August 5, 2011. Proceedings, volume 6803 of Lecture Notes
in Computer Science, pages 299–314. Springer, 2011. ISBN
978-3-642-22437-9.

[11] J. Hurd. First-order proof tactics in higher-order logic theo-
rem provers. In M. Archer, B. D. Vito, and C. Muñoz, editors,
Design and Application of Strategies/Tactics in Higher Or-
der Logics (STRATA 2003), number NASA/CP-2003-212448
in NASA Technical Reports, pages 56–68, Sept. 2003.

[12] C. Kaliszyk and J. Urban. Mizar 40 for Mizar 40. CoRR,
abs/1310.2805, 2013. URL http://arxiv.org/abs/1310.
2805.

[13] C. Kaliszyk and J. Urban. Stronger automation for Fly-
speck by feature weighting and strategy evolution. In J. C.
Blanchette and J. Urban, editors, PxTP 2013, volume 14 of
EPiC Series, pages 87–95. EasyChair, 2013.

[14] C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP
service for HOL Light. Mathematics in Computer Science,
2014. URL http://arxiv.org/abs/1309.4962. to appear.

[15] C. Kaliszyk and J. Urban. Learning-assisted automated
reasoning with Flyspeck. Journal of Automated Reasoning,
53(2):173–213, 2014.

[16] L. Kovács and A. Voronkov. First-order theorem proving and
Vampire. In N. Sharygina and H. Veith, editors, Proceedings
of the 25th International Conference on Computer Aided
Verification (CAV), volume 8044 of Lecture Notes in Com-
puter Science, pages 1–35. Springer, 2013. ISBN 978-3-642-
39798-1. . URL /pubpdf/First-Order_Theorem_Proving_
and_Vampire.pdf.

[17] D. Kühlwein, J. C. Blanchette, C. Kaliszyk, and J. Urban.
MaSh: Machine learning for Sledgehammer. In S. Blazy,
C. Paulin-Mohring, and D. Pichardie, editors, Proc. of the
4th International Conference on Interactive Theorem Prov-
ing (ITP’13), volume 7998 of LNCS, pages 35–50. Springer
Verlag, 2013.

[18] R. Kumar and J. Hurd. Standalone tactics using openthe-
ory. In L. Beringer and A. P. Felty, editors, Interactive
Theorem Proving - Third International Conference, ITP
2012, Princeton, NJ, USA, August 13-15, 2012. Proceed-
ings, volume 7406 of Lecture Notes in Computer Science,
pages 405–411. Springer, 2012. ISBN 978-3-642-32346-1. .
URL http://dx.doi.org/10.1007/978-3-642-32347-8_28.

[19] L. C. Paulson. A generic tableau prover and its integration
with Isabelle. J. UCS, 5(3):73–87, 1999.

[20] L. C. Paulson and J. Blanchette. Three years of experience
with Sledgehammer, a practical link between automated and
interactive theorem provers. In 8th IWIL, 2010. Invited talk.

[21] L. C. Paulson and K. W. Susanto. Source-level proof re-
construction for interactive theorem proving. In K. Schnei-
der and J. Brandt, editors, TPHOLs, volume 4732 of LNCS,
pages 232–245. Springer, 2007. ISBN 978-3-540-74590-7.

[22] S. Schulz. E - a brainiac theorem prover. AI Commun., 15
(2-3):111–126, 2002.

[23] S. Schulz. System Description: E 1.8. In K. McMillan,
A. Middeldorp, and A. Voronkov, editors, Proc. of the 19th
LPAR, Stellenbosch, volume 8312 of LNCS. Springer, 2013.

[24] K. Slind and M. Norrish. A brief overview of HOL4. In O. A.
Mohamed, C. A. Muñoz, and S. Tahar, editors, TPHOLs,
volume 5170 of Lecture Notes in Computer Science, pages
28–32. Springer, 2008. ISBN 978-3-540-71065-3.

[25] G. Sutcliffe. The TPTP problem library and associated
infrastructure. Journal of Automated Reasoning, 43(4):337–
362, 2009. ISSN 0168-7433. . URL http://dx.doi.org/10.
1007/s10817-009-9143-8.

[26] G. Sutcliffe. The CADE-24 automated theorem proving
system competition - CASC-24. AI Commun., 27(4):405–
416, 2014.

[27] G. Sutcliffe and C. Benzmüller. Automated reasoning in
higher-order logic using the TPTP THF infrastructure. J.
Formalized Reasoning, 3(1):1–27, 2010. . URL http://dx.
doi.org/10.6092/issn.1972-5787/1710.

[28] J. Urban. MaLARea: a metasystem for automated reasoning
in large theories. In G. Sutcliffe, J. Urban, and S. Schulz, edi-
tors, ESARLT, volume 257 of CEUR Workshop Proceedings.
CEUR-WS.org, 2007.

[29] J. Urban. Blistr: The blind strategymaker. CoRR,
abs/1301.2683, 2013. URL http://arxiv.org/abs/1301.
2683.

[30] J. Urban, G. Sutcliffe, P. Pudlák, and J. Vyskočil. MaLARea
SG1 - Machine Learner for Automated Reasoning with Se-
mantic Guidance. In A. Armando, P. Baumgartner, and
G. Dowek, editors, IJCAR, volume 5195 of LNCS, pages 441–
456. Springer, 2008. ISBN 978-3-540-71069-1.

[31] T. Weber. SMT solvers: new oracles for the HOL theorem
prover. International Journal on Software Tools for Technol-
ogy Transfer, 13(5):419–429, 2011. ISSN 1433-2779. . URL
http://dx.doi.org/10.1007/s10009-011-0188-8.

[32] W. Wong. Recording and checking HOL proofs. In Higher
Order Logic Theorem Proving and Its Applications. 8th In-
ternational Workshop, volume 971 of LNCS, pages 353–368.
Springer-Verlag, 1995.

