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Abstract

We study the properties of the agnostic learning
framework of Haussler [Hau92] and Kearns, Schapire
and Sellie [KSS94]. In particular, we address the
question: is there any situation in which member-
ship queries are useful in agnostic learning?

Our results show that the answer is negative for
distribution-independent agnostic learning and pos-
itive for agnostic learning with respect to a specific
marginal distribution. Namely, we give a simple
proof that any concept class learnable agnostically
by a distribution-independent algorithm with ac-
cess to membership queries is also learnable ag-
nostically without membership queries. This re-
solves an open problem posed by Kearns et al.
[KSS94]. For agnostic learning with respect to
the uniform distribution over {0,1}" we show a
concept class that is learnable with membership
queries but computationally hard to learn from ran-
dom examples alone (assuming that one-way func-
tions exist).

1 Introduction

The agnostic framework [Hau92, KSS94] is a natural gen-
eralization of Valiant’s PAC learning model [Val84]. In this
model no assumptions are made on the labels of the exam-
ples given to the learning algorithm, in other words, the learn-
ing algorithm has no prior beliefs about the target concept
(and hence the name of the model). The goal of the agnos-
tic learning algorithm for a concept class C is to produce a
hypothesis i whose error on the target concept is close to
the best possible by a concept from C. This model reflects
a common empirical approach to learning, where few or no
assumptions are made on the process that generates the ex-
amples and a limited space of candidate hypothesis functions
is searched in an attempt to find the best approximation to the
given data.

Designing algorithms that learn efficiently in this model
is notoriously hard and very few positive results are known
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[KSS94, LBW95, GKS01, KKMS05, GKKO08, KMVO0S]. Fur-
thermore, strong computational hardness results are known
for agnostic learning of even the simplest classes of functions
such as parities, monomials and halfspaces [Has01, Fel06,
FGKPO06, GRO6] (albeit only for proper learning). Reduc-
tions from long-standing open problems for PAC learning to
agnostic learning of simple classes of functions provide an-
other indication of the hardness of agnostic learning [KSS94,
KKMSO05, FGKP06].

A membership oracle allows a learning algorithm to ob-
tain the value of the unknown target function f on any point
in the domain. It can be thought of as modeling the access
to an expert or ability to conduct experiments. Learning
with membership queries in both PAC and Angluin’s exact
models [Ang88] was studied in numerous works. For ex-
ample monotone DNF formulas, finite automata and deci-
sion trees are only known to be learnable with membership
queries [Val84, Ang88, Bsh95]. It is well-known and easy to
prove that the PAC model with membership queries is strictly
stronger than the PAC model without membership queries (if
one-way functions exist).

Membership queries are also used in several agnostic learn-
ing algorithms. The first one is the famous algorithm of Gol-
dreich and Levin introduced in a cryptographic context (even
before the definition of the agnostic learning model) [GL89].
Their algorithm learns parities agnostically with respect to
the uniform distribution using membership queries. Kushile-
vitz and Mansour used this algorithm to PAC learn decision
trees [KM93] and it has since found numerous other signif-
icant applications. More efficient versions of this algorithm
were also given by Levin [Lev93], Bshouty, Jackson and
Tamon [BJT99] and Feldman [Fel07]. Recently, Gopalan,
Kalai and Klivans gave an elegant algorithm that learns deci-
sion trees agnostically over the uniform distribution and uses
membership queries [GKKOS].

1.1 Our Contribution

In this work we study the power of membership queries in
the agnostic learning model. This question was posed by
Kearns et al. [KSS94] and, to the best of our knowledge,
has not been addressed prior to our work. In this work we
present two results on this question. In the first result we
prove that every concept class learnable agnostically with
membership queries is also learnable agnostically without
membership queries (see Theorem 6 for a formal statement).
This proves the conjecture of Kearns et al. [KSS94]. The



reduction we give modifies the distribution of examples and
therefore is only valid for distribution-independent learning,
that is, when a single learning algorithm is used for every dis-
tribution over the examples. The simple proof of this result
explains why the known distribution-independent agnostic
learning algorithm do not use membership queries [KSS94,
KKMSO05, KMVO08].

The proof of this result also shows equivalence of two
standard agnostic models: the one in which examples are
labeled by an unrestricted function and the one in which ex-
amples come from a joint distribution over the domain and
the labels.

Our second result is a proof that there exists a concept
class that is agnostically learnable with membership queries
over the uniform distribution on {0, 1}™ but hard to learn in
the same setting without membership queries. This result is
based on the most basic cryptographic assumption, namely
the existence of one-way functions. Note that an uncondi-
tional separation of these two models would imply NP # P.
Cryptographic assumptions are essential for numerous other
hardness results in learning theory (cf. [KV94, Kha95]). Our
construction is based on the use of pseudorandom function
families, list-decodable codes and a variant of an idea from
the work of Elbaz, Lee, Servedio and Wan [ELSWO07]. Sec-
tions 4.1 and 4.2 describe the technique and its relation to
prior work in more detail.

This results is, perhaps, unsurprising since agnostic learn-
ing of parities with respect to the uniform distribution from
random examples only is commonly considered hard and is
known to be equivalent to decoding of random linear codes,
a long-standing open problem in coding theory. The best
known algorithm for this problem runs in time O(2"/1°87)
[FGKPO6]. It is therefore natural to expect that membership
queries are provably helpful for uniform distribution agnos-
tic learning. The proof of this result however is substan-
tially less straightforward than one might expect (and than
the analogous separation for PAC learning). Here the main
obstacle is the same as in proving positive results for agnos-
tic learning: the requirements of the model impose severe
limits on concept classes for which the agnostic guarantees
can be provably satisfied.

1.2 Organization

Following the preliminaries, our first result is described in
Section 3. The second result appears in Section 4.

2 Preliminaries

Let X denote the domain or the input space of a learning
problem. The domain of the problems that we study is {0, 1}™,
or the n-dimensional Boolean hypercube. A concept over X
isa {—1, 1} function over the domain and a concept class C
is a set of concepts over X. The unknown function f € C
that a learning algorithm is trying to learn is referred to as
the target concept.

A parity function is a function equal to the XOR of some
subset of variables. For a Boolean vector a € {0,1}" we
define the parity function x,(x) as xq(z) = (-1)** =
(—1)®isnai®i  We denote the concept class of parity func-
tions {x, | @ € {0,1}"} by PAR. A k-junta is a function
that depends only on k variables.

A representation class is a concept class defined by pro-
viding a specific way to represent each function in the con-
cept class. All of the above concept classes are in fact rep-
resentation classes. For a representation class F we say that
an algorithm outputs f € F if the algorithm outputs f in the
representation associated with F.

2.1 PAC Learning Model

The learning models discussed in this work are based on
Valiant’s well-known PAC model [Val84]. In this model, for
a concept f and distribution D over X, an example oracle
EX(D, f) is the oracle that, upon request, returns an exam-
ple (x, f(x)) where x is chosen randomly with respect to D.
For € > 0 we say that function g e-approximates a function f
with respect to distribution D if Prp[f(z) = g(x)] > 1 —e.
In the PAC learning model the learner is given access to
EX(D, f) where f is assumed to belong to a fixed concept
class C.

Definition 1 For a concept class C, we say that an algorithm
Alg PAC learns C, if for every e > 0,0 > 0, f € C, and
distribution D over X, Alg, given access to EX(D, f), out-
puts, with probability at least 1 — §, a hypothesis h that e-
approximates f.

The learning algorithm is efficient if its running time and the
time to compute h are polynomial in 1/e,1/§ and the size
o of the learning problem. Here by the size we refer to the
maximum description length of an element in X (e.g. n when
X = {0,1}™) plus a bound on the length of the description
of a concept in C in the representation associated with C.

An algorithm is said to weakly learn C if it produces a

hypothesis h that (2 — —<)-approximates f for some poly-
nomial p.
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2.2 Agnostic Learning Model

The agnostic learning model was introduced by Haussler
[Hau92] and Kearns et al. [KSS94] in order to model sit-
uations in which the assumption that examples are labeled
by some f € C does not hold. In its least restricted ver-
sion the examples are generated from some unknown distri-
bution A over X x {—1,1}. The goal of an agnostic learn-
ing algorithm for a concept class C is to produce a hypoth-
esis whose error on examples generated from A is close to
the best possible by a concept from C. Class C is referred
to as the touchstone class in this setting. More generally,
the model allows specification of the assumptions made by a
learning algorithm by describing a set A of distributions over
X x {—1, 1} that restricts the distributions over X x {—1,1}
seen by a learning algorithm. Such A is referred to as the as-
sumption class. Any distribution A over X x {—1,1} can
be described uniquely by its marginal distribution D over
X and the expectation of b given z. That is, we refer to a
distribution A over X x {—1,1} by a pair (D4, ¢4) where
Da(z) = Prpy~alz = 2] and

¢a(z) = Egpy~alb] z = 2]

Formally, for a Boolean function h and a distribution
A= (D, ¢)over X x {—1, 1}, we define

A(A;h) = iy (@) # 8] = Epllg(z) — h(z)[/2] .

)



Similarly, for a concept class C, define

A(A,€) = inf {A(4, )}

Kearns et al. define agnostic learning as follows [KSS94].

Definition 2 An algorithm Alg agnostically learns a con-
cept class C by a representation class H assuming A if for
everye > 0,0 > 0, A € A, Alg given access to examples
drawn randomly from A, outputs, with probability at least
1—46, a hypothesis h € H such that A(A,h) < A(A,C) +e.

The learning algorithm is efficient if it runs in time poly-
nomial 1/€,1og (1/6) and o (the size of the learning prob-
lem). If H = C then, by analogy with the PAC model, the
learning is referred to as proper. We drop the reference to H
to indicate that C is learnable for some H.

A number of versions of the agnostic model are com-
monly considered (and often referred to as the agnostic learn-
ing model). In fully agnostic learning A is the set of all
distributions over X x {—1,1}. Another version assumes
that examples are labeled by an unrestricted function. That
is, the set A contains distribution A = (D, f) for every
Boolean function f and distribution D. Note that access to
random examples from A = (D, f) is equivalent to access
to EX(D, f). Following Kearns et al. , we refer to this ver-
sion as agnostic PAC learning [KSS94] (they also require
that H = C but this constraint is unrelated and is now gener-
ally referred to as properness). Theorem 6 implies that these
versions are essentially equivalent. In distribution-specific
versions of this model for every (D, ¢) € A, D equals to
some fixed distribution known in advance.

We also note that the agnostic PAC learning model can
also be thought of as a model of adversarial classification
noise. By definition, a Boolean function g differs from some
function f € C on A(g, C) fraction of the domain. Therefore
¢ can be thought of as f corrupted by noise of rate Ap (f, C).
Unlike in the random classification noise model the points
on which a concept can be corrupted are unrestricted and
therefore we refer to it as adversarial noise.

Uniform Convergence

A natural approach to agnostic learning is to first draw a sam-
ple of fixed size and then choose a hypothesis that best fits
the observed labels. The conditions in which this approach
is successful were studied in works of Dudley [Dud78], Pol-
lard [Pol84], Haussler [Hau92], Vapnik [Vap98] and others.
They give a number of conditions on the hypothesis class H
that guarantee uniform convergence of empirical error to the
true error. That is, existence of a function m4 (¢, 0) such that
for every distribution A over examples, every b € H, € > 0,
d > 0, the empirical error of h on sample of my (e, d) ex-
amples randomly chosen from A is, with probability at least
1 — 4, within € of A(A, h). We denote the empirical error of
h on sample S by A(S, k). In the Boolean case, the follow-
ing result of Vapnik and Chervonenkis will be sufficient for
our purposes [VC71].

Theorem 3 Let H be a concept class over X of VC dimen-
sion d. Then for every distribution A over X x {—1,1},

every h € H, ¢ > 0, § > 0, and sample S of size m =
O(d/€% -log (1/6)) randomly drawn with respect to A,

Pr[|A(A,h) — A(S,h)| > €] <.

In fact a simple uniform convergence result based on the car-
dinality of the function class follows easily from Chernoff
bounds (cf. [Hau92]). That is Theorem 3 holds for m =
O(log |H|/e?-log (1/4)). This result would also be sufficient
for our purposes but might give somewhat weaker bounds.

2.3 Membership Queries

A membership oracle for a function f is the oracle that,
given any point z € {0, 1}", returns the value f(z) [Val84].
We denote it by MEM( f). We refer to agnostic PAC learn-
ing with access to MEM( f) where f is the unknown func-
tion that labels the examples as agnostic PAC+MQ learning.
Similarly, one can extend the definition of a membership or-
acle to fully agnostic learning. For a distribution A over
X x {-1,1}, let MEM(A) be the oracle that, upon query
z, returns b € {—1, 1} with probability Pr[(x,b) | z = z].
We say that MEM(A) is persistent if given the same query
the oracle responds with the same label.

2.4 Fourier Transform

Our separation result uses Fourier-analytic techniques intro-

duced to learning theory by Linial, Mansour and Nisan [LMN93].

It is used primarily in the context of learning with respect to
the uniform distribution and therefore in the discussion be-
low all probabilities and expectations are taken with respect
to the uniform distribution U unless specifically stated oth-
erwise.

Define an inner product of two real-valued functions over
{0,1}" tobe (f,g9) = E.[f(x)g(x)]. The technique is based
on the fact that the set of all parity functions { x4 (%) }ac 0,1}~
forms an orthonormal basis of the linear space of real-valued
functions over {0,1}™ with the above inner product. This
fact implies that any real-valued function f over {0, 1}" can
be uniquely represented as a linear combination of parities,

thatis f(z) = 3> ci013n f(a)xa(z). The coefficient f(a)

is called Fourier coefficient of f on a and equals E[f(z)x.(2)];

a is called the index of f(a). We say that a Fourier coefficient
f(a) is 0-heavy if |f(a)| > 0. Let Lo(f) = E.[(f(z))?]"/2.
Parseval’s identity states that

(L2(f))* = Bu[(f(2))°] = D fP(a) -

Let A = (U, ¢) be a distribution over {0,1}" x {-1,1}
with uniform marginal distribution over {0, 1}". Fourier co-

efficient ¢(a) can be easily related to the error of x, () on
A. That is,

Prafb # xa(2)] = (1 - ¢(a))/2. ()
Therefore, agnostic learning of parities amounts to finding
the largest (within €) Fourier coefficient of ¢(x). The first
algorithm for this task was given by Goldreich and Levin
[GL89]. Given access to membership oracle, for every € > 0
their algorithm can efficiently find all e-heavy Fourier coef-
ficients.



Theorem 4 ([GL89]) There exists an algorithm GL that for
every distribution A = (U, ¢) and every €,0 > 0, given ac-
cess to MEM(A), GL(¢, 0) returns, with probability at least
1 — 0, a set of indices T C {0, 1}" that contains all a such
that |$(a)| > € and for all a € T, |¢(a)| > €/2. Further-

more, the algorithm runs in time polynomial in n,1/e and
log (1/96).

Note that by Parseval’s identity, the condition |¢(a)| > €/2
implies that there are at most 4 /¢ elements in 7.

2.5 Pseudo-random Function Families

A key part of our construction in Section 4 will be based
on the use of pseudorandom functions families defined by
Goldreich, Goldwasser and Micali [GGMS86].

Definition 5 A function family F = {F}32, where F,, =
{m.}.e50,1}» is a pseudorandom function family if

e Foreverynand z € {0,1}™, 7, is an efficiently evalu-
atable Boolean function on {0,1}".

e Any adversary M whose resources are bounded by a
polynomial in n can distinguish between a function 7,
(wWhere z € {0,1}" is chosen randomly and kept secret)
and a totally random function from {0,1}™ to {—1,1}
only with negligible probability. That is, for every prob-
abilistic polynomial time M with an oracle access to a
Sunction from {0, 1}" to {—1,1} and a negligible func-
tion v(n),

[Pr(3=(17) = 1] = Pe(M(1") = 1]| < v(k),
where T, is a function randomly and uniformly cho-
sen from F,, and p is a randomly chosen function from
{0,1}"™ to {—1,1}. The probability is taken over the
random choice of 7, or p and the coin flips of M.

Hastad et al. give a construction of pseudorandom func-
tion families based on the existence of one-way functions
[HILL99].

3 Distribution-Independent Agnostic
Learning

In this section we show that in distribution-independent ag-
nostic learning membership queries do not help. In addi-
tion, we prove that fully agnostic learning is equivalent to
agnostic PAC learning. Our proof is based on two simple
observations about agnostic learning via empirical error min-
imization. Values of the unknown function on points outside
of the sample can be set to any value without changing the
best fit by a function from the touchstone class. Therefore
membership queries do not make empirical error minimiza-
tion easier. In addition, points with contradicting labels do
not influence the complexity of empirical error minimization
since any function has the same error on pairs of contradict-
ing labels. We will now provide the formal statement of this
result.

Theorem 6 Let Alg be an algorithm that agnostically PAC+MQ

learns a concept class C by a representation class H in time
T(o,€,0) and outputs a hypothesis from a class H of VC di-
mension d(o,€). Then C is (fully) agnostically learnable by
H in time T'(0,¢/2,5/2) + O(d(o,€/2) - e ?log (1/6)).

Proof: Let A = (D, ¢) be a distribution over X x {—1,1}.
Our reduction works as follows. Start by drawing m exam-
ples from A for m to be defined later. Denote this sample by
S. Let S’ be S with all contradicting pairs of examples re-
moved, that is for each example (x, 1) we remove it together
with one example (x, —1). Every function has the same er-
ror rate of 1/2 with examples in S\ S’. Therefore for every
function A,

/ ! !
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Let f(x) denote the function equal to b if (z,b) € S’
and equal to 1 otherwise. Let Dgs denote the uniform dis-
tribution over S’. Given the sample S’ we can easily simu-
late the example oracle EX(Dg/, f) and MEM( f). We run
Alg(e/2,6/2) with theses oracles and denote its output by h.
Note, that this simulates 4 in the agnostic PAC+MQ setting
over distribution (Dg, f).

By the definition of Dg, for any Boolean function g(x),

Prp, [f(z) # g(2)] :ﬁ {z e8| f(z) # g()}|

=A(S, 9).
That is, the error of any function g on Dg: is exactly the
empirical error of g on sample S’. Thus A((Dg:, f),h) =
A(S’,h) and A((Dg/, f),C) = A(S’,C). By the correct-
ness of Alg, with probability at least 1 — 6/2, A(S’,h) <
A(S’,C) + ¢/2. By equations (2) and (3) we thus obtain
that

Coanrar IS m =Y
m&m_Awmh;+—Eﬁf

S’ om—|Y e 9|

< / E |7 1 = —_ 1
_(A(S,C)+2)m + o A(S,C)+2 -

Therefore A(S, h) < A(S,C) + €/2. We can apply the VC
dimension-based uniform convergence results for H [VC71]
(Theorem 3) to conclude that for

m(e/4,6/4) = O ( d(o,¢/2) log <1/6>> |

2
with probability at least 1—6/2, A(A, h) < A(S,h)+§ and
A(S,C)+ ¢ < A(A,C) (we can always assume that C C H.
Finally, we obtain that with probability at least 1 — 6,

3€
4
It easy to verify that the running time and hypothesis space
of this algorithm are as claimed. |

Note that if Alg is efficient then d(o, €/2) is polynomial
in o and 1/€ and, in particular, the obtained algorithm is ef-
ficient. In addition, in place of VC-dim one can the uniform
convergence result based on the cardinality of the hypothesis
space. The description length of a hypothesis output by Alg
is polynomial in o and 1/e and hence in this case a polyno-
mial number of samples will be required to simulate Alg.

MAmgA@m+§gm&@+ < A(A,C) +e



Remark 7 We note that while this proof is given for the

strongest version of agnostic learning in which the error of
an agnostic algorithm is bounded by A(A,C) + ¢, it can be

easily extended to weaker forms of agnostic learning, such as

algorithms that only guarantee error bounded by a-A(A, C)+
B+€forsome a > 1 and 3 > 0. This is true since the reduc-

tion adds at most €/2 to the error of the original algorithm

(and the additional time required is polynomial in 1/e).

4 Learning with Respect to the Uniform
Distribution

In this section we show that when learning with respect to
the uniform distribution over {0, 1}", membership queries
are helpful. Specifically, we show that if one-way functions
exist, then there exists a concept class C that is not agnosti-
cally PAC learnable (even weakly) with respect to the uni-
form distribution but is agnostically learnable over the uni-
form distribution given membership queries. Our agnostic
learning algorithm is successful only when € > 1/p(n) for
a polynomial p fixed in advance (the definition of C depends
on p). While this is slightly weaker than required by the
definition of the model it still exhibits the gap between ag-
nostic learning with and without membership queries. We
remark that a number of known PAC and agnostic learning
algorithms are efficient only for restricted values of € (cf.
[KKMS05, 0S06, GKKO08]).

4.1 Background

We first show why some of the known separation results will
not work in the agnostic setting. It is well-known that the
PAC model with membership queries is strictly stronger than
the PAC model without membership queries (under the same
cryptographic assumption). The separation result is obtained
by using a concept class C that is not PAC learnable and
augmenting each concept f € C with the encoding of f in
a fixed part of the domain. This encoding is readable us-
ing membership queries and therefore an MQ algorithm can
“learn” the augmented C by querying the points that contain
the encoding. On the other hand, with overwhelming proba-
bility this encoding will not be observed in random examples
and therefore does not help learning from random examples.
This simple approach would fail in the agnostic setting. The
unknown function might be random on the part of the do-
main that contains the encoding and equal to a concept from
C elsewhere. The agreement of the unknown function with
a concept from C is almost 1 but membership queries on the
points of encoding will not yield any useful information.

A similar problem arises with encoding schemes used in
the separation results of Elbaz et al. [ELSWO07] and Feldman,
Shah and Wadhwa [FSWO07]. There too the secret encoding
can be rendered unusable by a function that agrees with a
concept in C on a significant fraction of the domain.

4.2 Outline

We start by presenting some of the intuition behind our con-
struction. As in most other separation results our goal is to
create a concept class that is not learnable from uniform ex-
amples but includes an encoding of the unknown function
that is readable using membership queries. We first note that

in order for this approach to work in the agnostic setting the
secret encoding has to be “spread” over at least 1 —2e¢ fraction
of {0, 1}". To see this let f be a concept and let S C {0,1}"
be the subset of the domain where the encoding of f is con-
tained. Assume, for simplicity, that without the encoding the
learning algorithm cannot predict f on .S = {0,1}"™\ S with
any significant advantage over random guessing. Let f’ be a
function equal to f on S and truly random on S. Then

5]

Pr(f = f1=(ISI+151/2)/2" =1/2+ 5555 -

On the other hand, f’ does not contain any information about
the encoding of f and therefore, by our assumption, no ef-
ficient algorithm can produce a hypothesis with advantage
significantly higher than 1/2 on both S and S. This means
that the error of any efficient algorithm will be higher by at
least |S]/2"*! than the best possible. To ensure that this
difference is at most €, we need |.S| > (1 — 2¢)2™.

Another requirement that the construction has to satisfy
is that the encoding of the secret has to be resilient to almost
any amount of noise. In particular, since the encoding is a
part of the function, we also need to be able to reconstruct
an encoding that is close to the best possible. An encod-
ing with this property is in essence a list-decodable binary
code. In order to achieve the strongest separation result we
will use the code of Guruswami and Sudan that is the con-
catenation of Reed-Solomon code with the binary Hadamard
code [GS00]. However, to simplify the presentation, we will
use the more familiar binary Hadamard code in our construc-
tion. In Section 4.6 we provide the details on the use of the
Guruswami-Sudan code in place of the Hadamard code.

The Hadamard code is equivalent to encoding a vector
a € {0,1}" as the values of the parity function x, on all
points in {0, 1}™. That is, n bit vector a is encoded into 2"
bits given by x, () forevery x € {0, 1}™. This might appear
quite inefficient since a learning algorithm will not be able
to read all the bits of the encoding. However the Goldreich-
Levin algorithm provides an efficient way to recover the in-
dices of all the parities that agree with a given function with
probability significantly higher than 1/2 [GL89]. Therefore
the Hadamard code can be decoded by reading the code in
only a polynomial number of (randomly-chosen) locations.

The next problem that arises is that the encoding should
not be readable from random examples. As we have ob-
served earlier, we cannot simply “hide” it on a negligible
fraction of the domain. Specifically, we need to make sure
that our Hadamard encoding is not recoverable from ran-
dom examples. While it is not known how to learn parities
with noise from random examples alone and this problem
is conjectured to be very hard, for all we know, it is possi-
ble that one-way functions exist whereas learning of parities
with noise is tractable. It is known however that if learn-
ing of parities with noise is hard then one-way functions
exist [BFKL93]. Our solution to this problem is to use a
pseudo-random function to make values on random exam-
ples indistinguishable from random coin flips. Specifically,
let a € {0,1}"™ be the vector we want to encode and let
b:{0,1}" — {—1,1} be a pseudo-random function. We
define a function g : {0,1}" x {0,1}" — {—1,1} as

9(2,2) = b(2) ® Xa(@) -



(¢ is simply the product in {—1, 1}). The label of a random
example (z,x) € {0,1}?" is a XOR of a pseudorandom bit
with an independent bit and therefore is pseudorandom. Val-
ues of a pseudorandom function b on any polynomial set of
distinct points are pseudorandom and therefore random ex-
amples will have pseudorandom labels as long as their z parts
are distinct. In a sample of polynomial in n size of random
and uniform points from {0, 1}?" this happens with over-
whelming probability and therefore g(z, ) is not learnable
from random examples. On the other hand, for a fixed z,
b(z) ® xq(x) gives a Hadamard encoding of @ or its nega-
tion. Hence it is possible to find a using membership queries
with the same prefix. A construction based on a similar idea
was used by Elbaz et al. in their separation result [ELSWO07].

Finally, the problem with the construction we have so
far is that while a membership query learning algorithm can
find the secret, it cannot predict the encoding of the secret
g(z, x) without knowing b(z). This means that we also need
to provide a description of b(z) to the learning algorithm. It
is tempting to use the Hadamard code to encode the descrip-
tion of b(z) together with a. However, a bit of the encoding
of b is no longer independent of b(z), and therefore the pre-
vious argument does not hold. We refer to the vector that de-
scribes b(z) by d(b). We are unaware of any constructions of
pseudorandom functions that would remain pseudorandom
when the value of the function is “mixed” with the descrip-
tion of the function. An identical problem also arises in the
construction of Elbaz et al. [ELSWO07]. They used another
pseudorandom function b; to encode d(b), then used another
pseudorandom function by to encode d(b;) and so on. The
fraction of the domain used up for the encoding of d(b;) is
becoming progressively smaller as ¢ grows. In their construc-
tion a PAC learning algorithm can recover as many of the
encodings as is required to reach accuracy €. This method
would not be effective in our case. First, in the agnostic set-
ting all the encodings but the one using the largest fraction of
the domain can be corrupted. This makes the largest encod-
ing unrecoverable and implies that the best € achievable is at
most half of the fraction of the domain used by the largest
encoding. In addition, in the agnostic setting the encoding of
d(b;) for every odd ¢ can be completely corrupted making all
the other encodings unrecoverable. To solve this problem in
our construction we use a pseudorandom function b; to en-
code d(b;) for all j < i. We also use encodings of the same
size. In this construction at most one of the encodings that
are not completely corrupted cannot be recovered. It is the
encoding with b;(z) such that the encodings with b;(z) are
completely corrupted for all j > ¢ (since those are the ones
that contain the encoding of d(b;)). Therefore by making the
number of encodings larger than 1 /¢, we can make sure that
there exists an efficient algorithm that finds a hypothesis with
the error within € of the optimum.

4.3 The Construction

We will now describe the construction formally and give a
brief proof of its correctness. Let p = p(n) be a polynomial,
let £ = logp(n) (we assume for simplicity that p(n) is a
power of 2) and let m = ¢ + n - p. We refer to an element of
{0,1}™ by triple (k, z, Z) where k € [p], z € {0,1}", and

= (zt,2?,. .. P71 e {0,1}x (D),

Here k indexes the encodings, z is the input to the k-th pseu-
dorandom function and Z is the input to a parity function on
n(p — 1) variables that encodes the secret keys for all pseu-
dorandom functions used for encodings 1 through k£ — 1. For-
mally, let

d=(d',d?, ... .d"""

be a vector in {0, 1}"*®~1) (where each d* € {0,1}") and
for k € [p] let

d(k) = (d*,d?,...,d"710",...,0").

Let F = {my}ye{0,1}- be a pseudorandom function family
(Definition 5). We define gz : {0,1}™ — {—1,1} as fol-
lows:

gJ(ka Z7j) = Mgk (Z) D Xj(k)(«f) “)
Denote ~
cn ={galde {010}

4.4 Hardness of Learning C? From Random Examples

We start by showing that C? is not agnostically learnable
from random and uniform examples only. In fact, we will
show that it is not even weakly PAC learnable. Our proof
is analogous to the proof by Elbaz et al. who show that the
same holds for the concept class they define [ELSWO07].

Theorem 8 There exists no efficient algorithm that weakly
PAC learns CE with respect to the uniform distribution over

{0,1}™.

Proof: In order to prove the claim we show that a weak PAC
learning algorithm for C? can be used to distinguish a pseu-
dorandom function family from a truly random function. A
weak learning algorithm for C? implies that every function
in C? can be distinguished from a truly random function
on {0,1}™. If, on the other hand, in the computation of
93(k, z,T) we used a truly random function in place of each
mqr (2) then the resulting labels would be truly random and,
in particular, unpredictable.

Formally, let A1g be a weak learning algorithm for C?
that, with probability at least 1/2, produces a hypothesis with
error of at most 1/2 — 1/¢g(m) and runs in time polynomial
in t(m) for some polynomials ¢ and ¢. Our concept class C?
uses numerous pseudorandom functions from F,, and there-
fore we use a so-called “hybrid” argument to show that one
can replace a single w4 (z) with a truly random function to
cause Alg to fail.

For 0 < i < p, let O(:) denote an oracle randomly
chosen according to the following procedure. First choose
randomly and uniformly g1, 742, ..., 7q € Fj, and then
choose randomly and uniformly p;41, pit2, - - ., px from the
set of all Boolean functions over {0, 1}™. Upon request such
an oracle returns an example ((k, z, Z), b) where (k, z, Z) is
chosen randomly and uniformly from {0, 1}™ and

b— mar(2) © Xy (T) Kk <i
pr(2) k>i

We note that in order to simulate such an oracle it is not
needed to explicitly choose p;41, pit2,- - ., px. Instead their
values can be generated upon request by flipping a fair coin.



This means that for every 7, Q(7) can be chosen and then sim-
ulated in time polynomial in m and the number of examples
requested. We denote by J; the probability of the follow-
ing event: Alg with oracle O(%) outputs a hypothesis that
has error of at most 1/2 — 2/(3q(m)) relative to O(3). We
refer to this condition as success. The error is obtained by
estimating it on new random examples from O(%) to within
1/(3g(m)) and with probability at least 7/8. The probability
is taken over the random choice and simulation of O(¢) and
the coin flips of Alg. The bounds on the running time of Alg
and Chernoff bounds imply that this test can be performed in
time polynomial in m.

Claim 9 6, — & > 1/4.

Proof: To see this we first observe that Q(0) is a truly ran-
dom oracle and therefore the error of the hypothesis pro-
duced by Alg is at least 1/2 — v(m) for some negligible
v. This means that the error estimate can be lower than
1/2 — 2/(3¢q(m)) only if the estimation fails. By the defini-
tion of our error estimation procedure this implies that §; <
1/8. On the other hand, O(p) is equivalent to EX(U, g4) for
a randomly chosen d. This implies that with probability at
least 1/2, Alg outputs a hypothesis with error of at most
1/2 — 1/q(m). With probability at least 7/8 the estimate of
the error is correct and therefore 6, > 3/8. H(CL9)

We now describe our distinguisher M. Let 7(x) denote
the function given to M as an oracle. Our distinguisher
chooses a random 7 € p and a random oracle O(¢) as de-
scribed above but using the oracle 7 in place of 74:. That is
it generates examples ((k, z, Z), b) where (k, z, T) is chosen
randomly and uniformly from {0, 1}™ and

Tk (2) ® X (T) k<1

Pr(2) k>
Denote this oracle by O™ (7). The distinguisher simulates
Alg with examples from O7 (%) and outputs 1 whenever the
test of the output of A1lg is successful.

We first observe that if 7 is chosen randomly from F),
then choosing and simulating a random Q7 () is equivalent
to choosing and simulating a random O(:). Therefore M
will output 1 with probability

1
— ) 4.
p(n)

On the other hand, if 7 is a truly random function then O™ (%)
is equivalent to Q(7 — 1) and hence the simulator will output

1 with probability
1
— 0i—1-
p(n) 2 8

i€[p]
Therefore, by Claim 9 this implies that M distinguishes F},
from a truly random function with probability at least

s | b | 2 o0 ) > 1),
i€[p)]
The efficiency of M follows readily from the efficiency of
the test we demonstrated above and gives us the contradic-
tion to the properties of F. B(Th.8)

4.5 Agnostic Learning of C2 with Membership Queries

We now describe a (fully) agnostic learning algorithm for
CP that uses membership queries and is successful for any

€= 1/p(n).

Theorem 10 There exists a randomized algorithm AgnLearn
that for every distribution A = (U, ¢) over {0,1}™ and ev-
erye > 1/p(n),d > 0, given access to MEM(A), with prob-
ability at least 1—46, finds h such that A(A, h) < A(A,CP)+

€. The probability is taken over the coin flips of MEM(A)
and AgnLearn. Agnlearn runs in time polynomial in m
and log (1/9).

Proof: Let g; for e = (e',e?,...,eP™ 1) € {0,1}(P~xn
be the function for which A(A4, gz) = A(A,CE). The goal
of our algorithm is to find the largest j such that on random
examples from the j-th encoding A agrees with the encoding
of e(j) = (el,e?,...,e71,0m,...,0") with probability at
least 1/2+¢/4. Such ] can be used to find €(j) and therefore
allows us to reconstruct gz on all points (k, z, %) for k < j.
For points with £ > j our hypothesis is either constant 1
or constant -1, whichever has the higher agreement with A.
This guarantees that the error on this part is at most 1/2. By
the definition of j, gz has error of at least

1/2—¢/4—-1/(2p) > 1/2—¢

on this part of the domain and therefore the hypothesis has
error close to that of gs.

We now describe AgnLearn formally. For every ¢ €
[p], AgnLearn chooses y € {0,1}" randomly and uni-
formly. Then AgnLearn runs Goldreich-Levin algorithm
over {0, 1}(P=1)>" using MEM(4, ,,). When queried on a
point 7 € {0,1}P~1)xn MEM(4;,, ) returns the value of
MEM(A) on query (i, y, Z). That is MEM(A y) is a restric-
tion of A to points in {0, 1} with prefix %, y. Let T denote
the set of indices of heavy Fourier coefﬁcients returned by
GL(e/4,1/2). For each vector d € T and b € {—1,1}, let
hg; » be defined as

_ Tk (2) © Xq) () k<1
hJu,(ka):{ bdk() Xa(k) (T) b

(Here g« is an element of the pseudorandom function fam-
ily F used in the construction.) Next AgnLearn approx-
imates A(A, hg,; ;) to within accuracy ¢/8 with confidence
1 — ¢/t using random samples from A (for ¢ to be defined
later). We denote the estimate obtained by A 7 dip- AgnLearn
repeats this 7 times (generating new y each time) and returns
hg ; , for which Ad ;b 18 the smallest. For 7 = 1 and any d,

hd 156 =0 Therefore for i = 1 instead of the above proce-

dure AgnLearn tests two constant hypotheses i1 = 1 and
h_1 = -—1.

Claim 11 Fort = O(p-log (1/68)/€3) andr = O(log (1/8)/e),
with probability at least 1 — 0, AgnLearn returns h such
that A(A,h) < A(A,CE) + ¢

Proof: We show that among the hypotheses considered by
AgnLearn there will be a hypothesis A’ such that A(A, h') <
A(A, gs) + 3e/4 (with sufficiently high probability). The es-
timates of the error of each hypothesis are within ¢/8 of the



true error and therefore the hypothesis i with the smallest
estimated error will satisfy

A(A h) < A(AR) +e/4 < A(A, gs) +e.
For i € [p], denote

A; = Pr((k7z7j)7b)NA[b 7A gg(k’, 2, 1_7) ‘ k= ’L] .
By the definition,

1
i€lp]

Let j be the largest ¢ such that A;; < 1/2 — ¢/4 and for
all i/ > i, Ay > 1/2 — /4. If such j does not exist then
A(A, gs) > 1/2 —€/4. Either hy or h_; has error of at most
1/2 on A and therefore for ¢ = 1 AgnLearn will find a
hypothesis A’ such that A(A4, h') < A(A, gz) + 3¢/4.

We can now assume that j as above exists. Denote

Diy =Pri .z 0)~alb # ge(k,2,7) | k=i, z=1y].
By the definition,
Eye{071}nAi7y - Ai.

This implies that for a randomly and uniformly chosen y,
with probability at least /4, A; , < 1/2 — ¢/8. This is true
since otherwise
e 1 € 1 €
A >(1—-)(z—= - — =
i20-9G-9>5-5,
contradicting the choice of 7. We now note that by the defi-
nition of 4; ,,
Ai,y = Pr(a’c,b)NAT;’y [b 7é gé(i7 Y, i')}
The function ge(7,y, T) equals 745 (y) © X&) (¥), and there-
fore if A; , < 1/2 — €/8 then by equation (1),

A e > ¢/4.
This implies that GL(e/4, 1/2) with MEM(A4, ,) will return
€(j) (possibly, among other vectors). Let
bj = Sign(E((k7z7f)7b)~A[b | k> ]])

be the constant with the lowest error on examples from A
for which k& > j. Clearly, this error is at most 1/2. The
hypothesis he(j) j.5, €quals gz on points for which & < j and
equals b; on the rest of the points. Therefore

1 p—73+1
A(A he(g)g0,) < — [ DA+ Y

1<J

On the other hand, by the properties of j, forall ¢ > j, A; >
1/2 — €/4 and thus

A(Aagé) :% Z A

i€[p]

By combining these equations we obtain that

1 € _ 3e

A(Aahé(j),j,bj) —A(A, ge) < % + 1 < E
All that is left to show now are the choices of r and ¢ for
which the desired h will be found with probability at least
1 — 4. As we have observed, for a randomly and uniformly
chosen y, with probability at least e/4, A; , < 1/2—¢/8 and
in this case GL(e/4,1/2) will find &(j) with probability at
least 1/2. By repeating this procedure O(log (1/6)/¢) times
we can ensure that €(j) is found with probability at least
1 — §/2. By Parseval’s identity there are O(1/€?) elements
in each set of vectors returned by GL. Hence the number of
error estimations performed by AgnLearn is O(p - r/€?).
This means that for t = O(p - log (1/48)/€?) all estimations
will be within /8 with probability 1 — §/2. HM(CL11)

Given Claim 11, we only need to check that the running
time of AgnLearn is polynomial in m and log (1/9). This
follows easily from the polynomial bound on the running
time of GL and computation of each m € F},, and polyno-
mial number of samples required to estimate the errors of
the candidate hypotheses. B(Th.10)

4.6 Boundson ¢

Theorem 10 shows that CZ is defined over {0, 1}™ for m =
n - p(n) + log p(n) and is learnable agnostically for any ¢ >
1/p(n). This means that this construction cannot achieve
dependence on € beyond 1/m. To improve this dependence
we can use a more efficient encoding scheme in place of
Hadamard code. Let C' : {0,1}* — {0,1}" be a binary
code of message length &k and block length v. The following
properties of the code are required by our construction:

e Efficient encoding algorithm. For any z € {0, 1}* and
j < v, C(z); (the j*" bit of C(z)) is computable in
time polynomial in %k and log v.

o Efficient local list decoding from (1/2 — «)wv errors in
time polynomial in k& and 1/~ for any v > €/8. That is,
an algorithm that given oracle access to the bits of string
y € {0, 1} produces the list of all messages z such that
Prjc,1[C(2); # y;] < 1/2—~ (in time polynomial in
kand 1/7).

Guruswami and Sudan gave a list decoding algorithm for
Reed-Solomon code concatenated with Hadamard code that
has the desired properties for v = O(k?/e*) [GSO0] (see
also [Tre05, Lecture 14] for a simplified presentation). Note
that this is exponentially more efficient than Hadamard code
for which v = 2*. In fact for this code we can afford to read
the whole codeword in polynomial time. This means that we
can assume that the output of the list-decoding algorithm is
exact (and not approximate as in the case of list decoding
using Goldreich-Levin algorithm).

In our construction k& = n(p(n) — 1). To apply the
above code we index a position in the code using logv =
O(log(n/e) bits. Further we can use pseudorandom func-
tions over {0,1}"/2 instead of {0,1}" in the definition of
CP. We would then obtain that the dimension of C is m =
n/2 4 logv + logp(n) < n for any polynomial p(n) and



€ > 1/p(n). This implies that our learning algorithm is suc-
cessful for every € > 1/p(n) > 1/p(m). It is easy to verify
that Theorems 8 and 10 still hold for this variant of the con-
struction.

5 Discussion

Our results clarify the role of membership queries in agnostic
learning. They imply that in order to extract any meaning-
ful information from membership queries the learner needs
to have significant prior knowledge about the distribution of
examples. Specifically, either the set of possible classifica-
tion functions has to be restricted (as in the PAC model) or
the set of possible marginal distributions (as in distribution-
specific agnostic learning).

A interesting result in this direction would be a demon-
stration that membership queries are useful for distribution-
specific agnostic learning of a natural concept class such as
halfspaces.
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