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Abstract

Pierce, in his book “Types and Programming Languages” (MIT Press, 2002), presents an efficient
algorithm for computing membership in the greatest fixpoint of invertible operators in a goal-directed
way. In this paper, we provide a new proof of correctness for it based on coinduction. Moreover,
we extend the algorithm for computing membership in the gfp of arbitrary monotone operators and
prove this extension correct in a very similar way. Finally, we instantiate the general algorithm to
gain a subtyping algorithm for RAJA programs.

1 Introduction

We are interested in computing membership in the greatest fixpoint of a monotone operator on the pow-
erset of some given set. Rather than computing the entire fixpoint by Knaster-Tarski iteration we want
to depart from a given goal. This may be advantageous if the size of the underlying set or of the great-
est fixpoint is large compared to the portion relevant for determining membership of a particular ele-
ment. For a concrete example consider the operator F(X) = {x | x + 1 mod 5 ∈ X} on the powerset of
G = {0, . . . ,2100}. Obviously, the largest fixpoint consists of G itself; determining this by Knaster-Tarski
iteration is infeasible though. If we only want to check whether a particular element, say 23 is in the gfp
we can commence with the goal 23 ∈ gfp?. This leads to the sequence of subgoals 4 ∈ gfp?, 0 ∈ gfp?,
1 ∈ gfp?, 2 ∈ gfp?, 3 ∈ gfp?, 4 ∈ gfp? at which point we are done because we have discovered a loop in
the sequence of subgoals that have arisen.

We are specially interested in deciding subtyping for RAJA types. The RAJA system is a refinement
of an extension of Featherweight Java (FJ) [6] with attribute update (FJEU), with the goal of statically
analysing the heap space consumption of object-oriented programs. The system has been first described
by Hofmann and Jost in [4]. Recently, the current authors analysed algorithmic typing of RAJA programs
[5]. Briefly, RAJA types are FJEU classes refined with a possibly infinite set of views. Subtyping for
RAJA types is defined as the greatest fixpoint of a monotone operator, similarly to the definitions of
subtyping for other recursive types like tree types or µ-types [7, Chapter 21].

Subtyping algorithms for recursive types have been widely studied in the past. Amadio and Cardelli
gave the first subtyping algorithm for recursive types [1]. Brandt and Henglein’s [2] showed the underly-
ing coinductive nature of Amadio and Cardelli’s algorithm. In [7, Chapter 21] Pierce gives an overview
of many algorithms for membership checking for greatest fixed points and how they can be used to decide
subtyping for recursive types.

RAJA subtyping, however, is a bit more complicated than most of the other definitions of subtyping
for recursive types because in RAJA methods can have many different types. Therefore, in order to check
that a RAJA type Cr is a subtype of a RAJA type Ds we need to check that for a given method m for all
its method types in Ds there is a method type in Cr with some properties. This causes that the support of
a given goal is not a set of subgoals as usual but a boolean combination of subgoals.

In this paper we will extend the efficient algorithm for membership checking for greatest fixed points
described in [7, Chapter 21.6] to a more general version where the support of a given goal is a positive
boolean expression. Moreover, we provide a new proof of correctness for both algorithms. We found
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the proof in [7, Chapter 21.6] difficult to extend and provide therefore a more abstract coinductive proof
which can be easily adapted to the new algorithm.

Contents. In Section 2 we describe and prove correct an algorithm for membership checking in great-
est fixed points of monotone operators closed under intersection. In Section 3 we extend the algorithm
to arbitrary monotone operators. In Section 4 we instantiate the second algorithm in order to decide
subtyping for the RAJA system.

2 Invertible Operators

Let G be a set. We let P(G) denote the powerset of G and PF(G) denote the set of finite subsets of
G. If F : P(G) → P(G) is a monotone operator we write gfp(F) for its greatest fixpoint. We have
gfp(F) = F(gfp(F)) and whenever X ⊆F(X) then X ⊆ gfp(F). The latter principle is called coinduction.
We may also use the notation νX .F(X) for gfp(F).

In the following we review a goal-directed algorithm for membership checking for greatest fixed
points described in [7, Chapter 21.6]. This algorithm works only for a special kind of operators, invertible
operators, which we now characterize.

A given element g ∈ G can be generated by a monotone operator F in many ways, which means that
there can be more than one set X ⊆ G such that g ∈ F(X). We call any such set a generating set for g.
We focus here on the class of invertible operators, where each g has at most one minimal generating set.

Definition 2.1. A monotone operator F is said to be invertible if, for all g ∈ G, the collection of sets

Gg = {X ⊆ G | g ∈ F(X)}
is either empty or contains a unique finite member that is a subset of all the others.

When F is invertible, the partial function supportF : G→ PF(G) is defined like this:

supportF(g) =
{

X if X ∈ Gg and ∀X ′ ∈ Gg .X ⊆ X ′

↑ if Gg = /0

That is, the support of a goal g is the least generating set X for g, or undefined if g is not supported in F.

Definition 2.2. Let G be a set, A⊆ G, f :G→ PF(G). A monotone operator F f ,A is defined by

F f ,A : P(G)→ P(G)
F f ,A(X) = {g | g ∈ A∧ f (g)⊆ X}

Then, the support of a goal is given by the function f and it is only defined for elements g ∈ A:

supportFf,A
(g) =

{
f (g) if g ∈ A
↑ otherwise

The following result seems to be folklore, well-known e.g. in the field of predicate transformers. The
operators F f ,A are equivalent to invertible operators and to monotone operators closed under intersection
where every goal has a finite support.

Theorem 2.3. Let F :P(G)→ P(G) be a monotone operator. The following are equivalent:

1. There exists f ,A such that F = F f ,A.

2. For each g ∈ F(G) there exists a finite support set S ∈ PF(G) such that g ∈ F(S) and for all
X1,X2 ∈ PF(G) one has F(X1∩X2) = F(X1)∩F(X2).

3. F is invertible.
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Algorithm 1.
test : G×P(G)→ P(G)⊥

test(g,U) = if g ∈U then U

else if g /∈ A then fail

else

let {h1, . . . ,hn}= f (g) in

let V1 = test(h1,U ∪{g}) in

let V2 = test(h2,V1) in

. . .

let Vn = test(hn,Vn−1) in

Vn

Figure 1: Algorithm for membership checking of greatest fixed points.

Membership checking

Figure 1 shows an algorithm for membership checking in the greatest fixed point of F f ,A. The idea of
this membership algorithm is to run F backwards: to check membership for an element g, we need to
ask how g could have been generated by F. The advantage of an invertible F is that there is at most one
way to generate a given g. We have to be careful though, a goal g might be supported e.g. by the same
goal g. If we do not detect these kind of loops, the algorithm will not terminate. Therefore we keep
a set of assumptions U that is empty at the beginning and that will be incremented with every goal we
handle. This way we are able to detect a loop if we check whether the current goal is a member of the set
of assumptions, in which case we finish with a positive answer. The following algorithm takes a set of
assumptions U as an argument and returns another set of assumptions as a result. This allows it to record
the subtyping assumptions that have been generated during completed recursive calls and reuse them in
later calls. For failure we use the convention: if an expression B fails, then let A = B in C also fails.

This algorithm has been described and proved correct in [7, Chapter 21.6]. In [3], Costa Seco and
Caires have used it as well for defining subtyping for a class-based object oriented language where
classes are first class polymorphic values. We provide here a more abstract correctness proof based on
coinduction.

Theorem 2.4.

1. if G is a finite set the test(g,U) terminates.

2. test(g, /0) = V ⇐⇒ g ∈ νX .F f ,A(X).

Proof.

1. Termination of the algorithm follows using |G\U | as a ranking function.

2. Let N(U) := νX .{h | h ∈U ∨ (h ∈ A∧ f (h) ⊆ X)}. Note that N(U) = νX .U ∪ FF,A(X). Conse-
quently, N( /0) = νX .F f ,A(X). The goal follows then from the more general results:

(a) test(g,U) = V ⇒ g ∈N(U) and U ⊆V ⊆N(U).

(b) test(g,U) = fail⇒ g /∈N(U).
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which we prove simultaneously by induction on the runtime of the computation of test(g,U).

Case g ∈U . Then test(g,U) = U by definition and g ∈N(U) since U ⊆N(U).

Case g /∈U and g /∈ A. Then test(g,U) = fail and g /∈N(U) since N(U)⊆U ∪A.

Case g /∈U and g ∈ A. We consider the representative case f (g) = {h1,h2}.

Case test(h1,U ∪{g}) = V1 and test(h2,V1) = V2.
Then by induction hypothesis we get h1 ∈N(U ∪{g}) and U ∪{g} ⊆V1 ⊆N(U ∪{g})
and h2 ∈N(V1) and V1 ⊆V2 ⊆N(V1). From monotonicity of N(.) then follows N(V1)⊆
N(N(U ∪{g})) = N(U ∪{g}) easily 1, hence, we get f (g)⊆N(U ∪{g}) (*).
Next we claim that N(U) = N(U ∪ {g}). One direction is clear by monotonicity of
N(.). For the other direction we use coinduction with X0 = N(U ∪{g}). To conclude
X0 ⊆N(U) we thus have to prove X0 ⊆U ∪{h | h ∈ A∧ f (g)⊆ X0} which we now do.
Pick h ∈ X0 = N(U ∪{g}).
From the definition of N(.) we get that h ∈U or h = g or f (g)⊆ X0. The first and third
case immediately yield the desired result. In the second case (g = h) we get f (g) ⊆ X0
from (*). So we proved N(U) = N(U ∪{g}). Then we have f (g) ⊆ N(U) and g ∈ A,
thus, we get the desired g ∈ N(U). Moreover, we get U ⊆ U ∪{g} ⊆ N(U ∪{g}) ⊆
N(U).

Case test(h1,U∪{g}) = fail. Then test(g,U) = fail and by I.H. h1 /∈N(U∪{g}), thus, f (g) *
N(U) and g /∈N(U).

Case test(h1,U ∪{g}) = V1 and test(h2,V1) = fail. Then by induction hypothesis U ∪{g} ⊆
V1 ⊆N(U ∪{g}) and h2 /∈N(V1). Moreover we have by monotonicity of N(.) that N(U)⊆
N(U ∪{g})⊆N(V1), thus h2 /∈N(U) and consequently g /∈N(U) as desired.

2

3 Arbitrary Monotone Operators

In this section we extend the previous algorithm to an algorithm for membership checking in the greatest
fixpoint of not necessarily invertible monotone operators, where the support of a given goal is the mean-
ing of some positive boolean expression. As mentioned in the introduction, this extension is motivated
by the subtyping relation of the RAJA system. In the following we describe formally positive boolean
expressions and their meaning.

Definition 3.1. Positive boolean expressions over G are defined by the grammar

e ::= tt | ff | g | e1∧ e2 | e1∨ e2

where g ranges over elements of G. Let PBool(G) be the set of positive boolean expressions over G.

Positive boolean expressions denote predicates on P(G). In particular, g denotes {X | g ∈ X}. Formally,
if X ⊆ G we define the meaning JeKX :bool as follows:

JttKX = tt
JffKX = ff
JgKX = g ∈ X
Je1∧ e2KX = Je1KX ∧ Je2KX

Je1∨ e2KX = Je1KX ∨ Je2KX

1N(N(U)) = N(U) follows by monotonicity of N(.) and coinduction.
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Example 3.2. Let G = {a,b,c,d} and e = a∧ (b∨ c), then JeK{a,b} = tt and JeK{b,c} = ff.

Note that X ⊆ Y implies JeKX ⇒ JeKY .

Definition 3.3. Let f : G → PBool(G) be a boolean operator. Then we obtain a monotone operator F f

as follows:
F f : P(G)→ P(G)
X 7→ {g | J f (g)KX = tt}

Next we prove constructively that, whenever a set G is finite, we can provide a boolean operator for any
monotone operator over G. We notice though that the so constructed boolean operator might be very big,
hence, applying the algorithm we are about to describe would be very inefficient.

Theorem 3.4. If G is a finite set and F : P(G) → P(G) then there exists f : G → PBool(G) such that
F = F f .

Proof. For each (finite) subset X = {g1, . . . ,gk} ⊆ G define
∧

X := g1 ∧ . . .∧ gk. We have J
∧

XKY =
tt ⇐⇒ X ⊆ Y . Given g let X1 . . .Xk be an enumeration of the subsets X such that g ∈ F(X). We then
put f (g) =

∧
X1 ∨ . . .∨

∧
Xn. Now g ∈ F(X)⇒ X = Xi for some i ⇒ J

∧
XiKX = tt⇒ J f (g)KX = tt.

Conversely J f (g)KX = tt⇒ Xi ⊆ X for some i ⇒ g ∈ F(Xi)⇒ g ∈ F(X) by monotonicity. 2

For invertible operators we can provide a boolean operator directly. Given f : G → P(G) as in the last
section and A⊆ G, define f̃ as follows:

f̃ (g) =
{

ff if g /∈ A∧
f (g) if g ∈ A

Then J f̃ (g)KX = tt ⇐⇒ g ∈ A∧ f (g)⊆ X , hence, F f̃ (X) = F f ,A(X).

Membership checking

Figure 2 shows a new algorithm for membership in the gfp of arbitrary monotone operators whenever a
boolean operator f : G → PBool(G) is given. Algorithm 2 takes a set of assumptions U as an argument
and returns another set of assumptions and a boolean as a result. The difference to the first algorithm
is that if the meaning of the support of a goal is tt, then the new computed set of assumptions will be
returned; otherwise it will be dropped. Moreover, ff branches do not lead immediately to rejection. They
can lead to a positive answer if combined by “or” with a tt branch. In the following we prove correctness
and termination of the algorithm. If the basic set is finite the algorithm will terminate and the result will
be correct. Otherwise, even if the basic set is infinite, if the computation of the support of a goal do not
lead to an infinite chain of new goals, then the algorithm will terminate as well with a correct answer.

Theorem 3.5. Let f :G→ PBool(G) and test defined as above. Let N(U) = ν X .U ∪ F f (X).

1. If test(e,U) = (b,V ) then JeKN(U) = b and U ⊆V ⊆N(U).

2. If for each g there exists a finite set S such that f (S) ⊆ PBool(S) and g ∈ S then test(g, /0) termi-
nates.

Proof. 2. follows using |S\U | as a ranking function. For 1. we induct on the runtime of test(e,U) and –
subordinately – on the structure of e. We note that for all U ⊆G we have U ⊆N(U), N(U) = N(N(U)).
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Algorithm 2. Let ∗ ∈ {∧,∨}:

test : PBool(G)×P(G)→ bool×P(G)

test(e1 ∗ e2,U) = let (b1,V1) = test(e1,U) in

let (b2,V2) = test(e2,V1) in

(b1 ∗b2,V2)

test(g,U) = if g ∈U then (tt,U)

else let (b,V ) = test( f (g), U ∪{g}) in

if b then (tt,V ) else (ff,U)

Figure 2: Algorithm for membership checking in the gfp of arbitrary monotone operators.

Case e = e1 ∗ e2. Write (b1,V1) = test(e1,U) and (b2,V2) = test(e2,V1).

Inductively, we have b1 = Je1KN(U) and U ⊆V1 ⊆N(U). Therefore, N(U)⊆N(V1)⊆N(N(U)) =
N(U), and thus N(V1) = N(U). It follows that b2 = Je2KN(U) and U ⊆V1 ⊆V2 ⊆N(U). The claim
then follows.

Case e = g.

Case g ∈U . Then test(g,U) = (tt,U) and obviously JgKN(U) = tt and U ⊆N(U).

Case g /∈U . Write (b,V ) = test( f (g),U ∪{g}). Inductively, we have U ∪{g} ⊆ V ⊆ N(U ∪
{g}) and b = J f (g)KN(U∪{g}).
We claim that N(U) = N(U ∪{g}). One direction is clear by monotonicity of N(.). For the
other direction we use coinduction with X = N(U ∪{g}). To conclude X ⊆ N(U) we have
to prove X ⊆U ∪{h | J f (h)KX = tt} which we now do.
Pick h ∈ X = N(U ∪{g}).
From the definition of N(.) we get that h ∈U or h = g or J f (h)KX = tt. The first and third
case immediately yield the desired result. In the second case (g = h) we get J f (h)KX = tt
from the induction hypothesis. So we proved N(U) = N(U ∪{g}). The result is now direct
from the definitions.

2

Corollary 3.6. test(e, /0) = (b, ) iff JeKgfp(F f ) = b.

4 Applications

In this section we consider a special application of the last algorithm. As we already mentioned we
are specially interested in computing subtyping for RAJA types. In the following we give a brief and
simplified introduction to the RAJA system and show how to instantiate the generic Algorithm 2 to gain
a RAJA subtyping algorithm.

RAJA programs are annotated FJEU programs, created with the goal of statically analysing their heap
space consumption. An FJEU program C is a partial finite map from class names to class definitions.
Classes contain attributes and methods. The RAJA type system is a refinement of the FJEU type system.
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A refined (class) type consists of a class C and a view r and is written Cr. The meaning of views is
given by three maps ♦(), defining potentials, A, defining views of attributes, and M, defining refined
method types. More precisely, ♦() : Class×View → Q+ assigns each class its potential according to
the employed view. Next, A : Class×View×Field → View determines the refined types of the fields.
Finally, M : Class×View×Method → P(Views of Arguments → View of Result) assigns refined types
to methods. We allow polymorphism in the sense that one method may have more than one (or no)
refined typing. For more details and concrete examples we refer to [4, 5, 8].

Now we describe a simplified version of subtyping for RAJA types. The simplification disregards
subclasses and potentials but shows the need for going beyond invertible operators. Let RT be the set of
RAJA types. We define a monotone operator F : P(RT×RT)→ P(RT×RT) as follows:

F(X) = {(Cr,Ds) | ∀ attributes a . A(Cr,a) = E p, A(Ds,a) = Eq .(E p, Eq) ∈ X
∀ methods m . ∀(Eβ1

1 , . . . ,Eβ j
j → Eβ0

0 ) ∈M(Ds,m) .

∃(Eα1
1 , . . . ,Eα j

j → Eα0
0 ) ∈M(Cr,m) .

(Eβ1
1 ,Eα1

1 ) ∈ X , . . . ,(Eβ j
j ,Eα j

j ) ∈ X ,(Eα0
0 ,Eβ0

0 ) ∈ X }

Then Cr <: Ds ⇐⇒ (Cr,Ds) ∈ νX .F(X). Now, in order to apply Algorithm 2, we define a function
f : RT×RT→ PBool(RT×RT) so that F(X) = F f (X):

f (Cr,Ds) =
∧

a(E p, Eq)∧∧
m

∧
Eβ1

1 ,...,E
β j
j →E

β0
0

∨
Eα1

1 ,...,E
α j
j →E

α0
0

(Eβ1
1 ,Eα1

1 )∧ . . .∧ (Eβ j
j ,Eα j

j )∧ (Eα0
0 ,Eβ0

0 )

5 Conclusions

In this paper we extended the algorithm for membership checking for greatest fixed points described
in [7, Chapter 21.6] to a more general version where the support of a given goal is a positive boolean
expression. For finite sets this generalization encompasses all monotone operators. Next, we provided a
new coinductive correctness proof for both algorithms. Finally, we instantiated the general membership
algorithm in order to compute subtyping for RAJA types in a goal-directed way.

We believe that our new algorithm can be useful for computing subtyping for other refinement sys-
tems that also provide multiple types to methods. As part of a prototype implementation of the RAJA
system the algorithm has been implemented in Ocaml and we work currently in a formalization of its
correctness proof in the theorem prover Coq.
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