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Calcium is a versatile and dynamic 2nd messenger that is essential for the survival of all
higher organisms. In cells that undergo activation or excitation, calcium is released from
the endoplasmic/sarcoplasmic reticulum to activate calcium-dependent kinases and phos-
phatases, thereby regulating numerous cellular processes; for example, apoptosis and
autophagy. In the case of apoptosis, endogenous ligands or pharmacological agents induce
prolonged cytosolic calcium elevation, which in turn leads to cell death. In contrast, there is
now evidence that calcium regulates autophagy by several mechanisms, and these may be
important for maintaining cell survival. Here we summarize what is known about how
calcium regulates these life and death decisions. We pay particular attention to pathways
that have been described in lymphocytes and cardiomyocytes, as these systems provide
optimal models for understanding calcium signaling in the context of normal cell physiology.

Apoptosis is a process of programmed cell
death or suicide that occurs when cells

have undergone irreversible stress or damage.
It is required to maintain normal cell homeosta-
sis or to eliminate a population of cells that may
be harmful to the organism or unnecessary dur-
ing organ development (Green 2003). For
example, it is the primary mechanism by which
potentially autoreactive T cells are eliminated
from the immune system. There are two con-
ventional apoptosis pathways: the extrinsic
pathway, which is typically initiated by death
receptors (e.g., Fas) on the plasma membrane

and the intrinsic (mitochondrial) pathway,
which involves permeabilization of the outer
mitochondrial membrane followed by the re-
lease of cytochrome c. In this review, we primar-
ily focus our attention on the intrinsic pathway
due to the importance of intracellular calcium
in the regulation of this process.

In brief, cytochrome c release stimulates
apoptosis via its interaction with the protein
Apaf-1, which in turn activates the initiator
caspase-9 and the executioner caspase-3 (Green
2005). Caspases comprise a family of cysteine
proteases that are essential for the classically
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observed cellular and biochemical characteris-
tics of apoptosis, which include (but are not
limited to) membrane blebbing, chromatin con-
densation, and DNA fragmentation. Another
class of cysteine proteases, calpains, require cal-
cium for their activation and are important
mediators of apoptosis following ER stress.
As discussed later in this review, calpains are
reported to directly activate caspases, thus pro-
moting apoptotic cell death independent of
mitochondrial cytochrome c release. The fol-
lowing sections provide a more detailed explan-
ation of the varied ways in which calcium signals
induce cell death and are themselves regulated.

APOPTOSIS REGULATION BY ANTIGEN
RECEPTORS: A MODEL FOR
PROGRAMMED CELL DEATH

Much that is known about calcium signaling
came from immunological studies using acti-
vated lymphocytes (Berridge 1997). Immature
T cells are an ideal model for investigating
apoptosis because they are programmed to die
during development. This is evident by the
fact that 95% of double positive (i.e., CD4/
CD8) thymocytes undergo apoptosis as a
consequence of negative selection (Starr et al.
2003). Apoptosis of thymocytes occurs when
self antigen presented on thymic epithelial cells
binds to T-cell receptors with strong avidity
(Hogquist 2001). As depicted in Figure 1, liga-
tion of the T-cell receptor activates a signaling
pathway that results in autophosphorylation
of Src family kinases Lck and Fyn, which are
recruited to the plasma membrane to phos-
phorylate the zeta chain of the T-cell receptor
(Latour and Veillette 2001; Mustelin and Tasken
2003; Palacios and Weiss 2004). Activation of
these kinases facilitates the hydrolysis of phos-
phatidylinositol 4,5-bisphosphate by phospho-
lipase Cg, thereby generating diacylglycerol and
inositol 1,4,5-trisphosphate (IP3) (Lewis 2001).
IP3 mediates ER calcium release through the
opening of IP3 receptors (IP3Rs), which in
turn stimulates calcineurin-mediated activation
of the nuclear factor for the activation of T
cells (NFAT) (Gallo et al. 2006; Winslow and
Crabtree 2005; Winslow et al. 2003). Cytosolic

calcium release is also mediated by ryanodine
receptors, which are calcium channels expressed
in lymphocytes, cardiomyocytes, and neurons.
It has been suggested that ryanodine receptors
facilitate calcium flux in response to nicotinic
acid adenine dinucleotide phosphate (NAADP)
and cyclic adenosine dinucleotide phosphate ri-
bose, both of which are produced during T-cell
activation (Berg et al. 2000; Dammermann et al.
2009; Guse et al. 1999). However, unlike ADP
ribose, the notion that NAADP is a direct activa-
tor of ryanodine receptors is not yet certain and
may be context- or cell-type specific (Galione
and Petersen 2005). Nevertheless, the genera-
tion of these 2nd messengers, along with IP3,
may be required for robust calcium elevation
in response to antigen receptor stimulation.

In general, lymphocyte activation encodes
distinct patterns of calcium signaling, which
ultimately regulate cell proliferation, survival,
and apoptosis (Berridge 1997; Lewis 2001)
(Fig. 1). It has been proposed that strong ago-
nist stimulation of T-cell receptors generates
calcium transients that trigger apoptosis,
whereas weak stimulation produces calcium
oscillations that are needed for cell survival
(Randriamampita and Trautmann 2003). The
patterns of calcium elevation following strong
and weak agonist stimulation are vastly differ-
ent. For example, calcium transients can be
detected in cells 1–2 minutes following activa-
tion of the T-cell receptor. They are generally
synchronized and characterized by a broad
peak that is high in amplitude. On the other
hand, calcium oscillations consist of asynchro-
nous and repetitious spikes that persist for as
long as one hour following activation. Using
fluorescence-activated cell sorting, we have
shown that T cells with a high level of cytosolic
calcium more readily undergo apoptosis com-
pared to those that have lower levels (Zhong
et al. 2006). Further, in those cells that undergo
calcium oscillations in response to weak agonist
stimulation, NFAT is rapidly de-phosphory-
lated, and this is associated with increased levels
of IL-2 mRNA (Harr et al. 2009; Zhong et al.
2006). These observations are consistent with
the strength of signal theory, which states that
T cells undergo positive or negative selection
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according to the avidity of T-cell receptor activa-
tion(Hogquist2001;Mariathasanetal.1998).This
provides one example in which the amplitude
and frequency of calcium signals encodes infor-
mation that regulates apoptosis or cell survival.

APOPTOSIS REGULATION BY HORMONES
AND OTHER SIGNALING MOLECULES

Corticosteroids

Knowledge of calcium-dependent apoptosis
evolved from studies examining the effects of
glucocorticoids on immature T cells. Gluco-
corticoids, such as cortisol, are physiological

immunomodulatory hormones that regulate im-
mune cell development. Pharmacologically, syn-
thetic glucocorticoids, such as prednisone and
dexamethasone, are widely used to treat autoim-
mune disease and cancer (e.g., leukemia and
lymphoma) because of their ability to suppress
the immune system and selectively kill immature
lymphocytes, respectively. Glucocorticoid hor-
mones are secreted from thymic epithelial cells
to antagonize self-antigen recognition in imma-
ture thymocytes (Ashwell et al. 2000). Thus, glu-
cocorticoids negatively regulate T-cell activation
by attenuating T-cell receptor signaling (Baus
et al. 1996; Lowenberg et al. 2005; Van Laethem
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Figure 1. Calcium signaling mediated by T-cell activation. In a CD4 positive T cell, activation is induced by anti-
gen binding to the T-cell receptor (TCR) and a co-stimulatory signal mediated by ligation of CD28. Src family
kinases Fyn and Lck are activated by autophosphorylation and recruited to the plasma membrane to associate
with CD3 (TCR) and CD4, respectively. This in turn leads to the phosphorylation of ZAP-70 and the adaptor
protein LAT in order to activate phospholipase C and generate 2nd messengers IP3 and diacylglycerol (DAG). IP3

binds to the IP3R, resulting in ER calcium release. Calcium is released into the cytosol by way of a single calcium
transient (left), which is associated with cell death by apoptosis. On the other hand, calcium oscillations activate
calcineurin, which dephosphorylates NFAT, thereby sending it to the nucleus to activate transcription of IL-2.
The Sarcoplasmic/Endoplasmic Reticulum Calcium ATPase (SERCA) is responsible for maintaining the appro-
priate concentration of luminal calcium by actively transporting calcium across the ER membrane.
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et al. 2001). Conversely, T-cell receptor signaling
can also inhibit glucocorticoid-induced apo-
ptosis, a concept known as mutual antagonism
(Ashwell et al. 2000; Jamieson and Yamamoto
2000; Tolosa and Ashwell 1999).

While studying these inhibitory effects on
T-cell activation, our laboratory discovered
that short-term treatment with glucocorticoids
modulates T-cell receptor-mediated calcium
elevation by converting calcium transients to
oscillatory signals (Harr et al. 2009). However,
prolonged glucocorticoid treatment with phar-
macological concentrations of prednisone or
dexamethasone results in thymocyte apoptosis
by a mechanism that is dependent, in part, on
de novo transcription (Herold et al. 2006). Im-
portantly, glucocorticoid-induced apoptosis in
thymocytes is consistently associated with a sus-
tained rise in cytosolic calcium (Bian et al. 1997;
Cohen and Duke 1984; Kaiser and Edelman
1977; Lam et al. 1993; McConkey et al. 1989;
Orrenius et al. 1991). This increase in cytosolic
calcium is associated with the classically ob-
served biochemical characteristics of apoptosis,
including DNA fragmentation and endonu-
clease activity. While there is evidence that cy-
tosolic calcium elevation contributes to the
induction of apoptosis, this mechanism has
not been firmly established. Marks and col-
leagues found that anti-sense mediated knock-
down of IP3R1 protected cells from apoptosis
induced by dexamethasone (Jayaraman and
Marks 1997). However, we observed that dexa-
methasone-mediated up-regulation of IP3Rs
did not contribute to cytosolic calcium ele-
vation or apoptosis following glucocorticoid
treatment (Davis et al. 2008). An alternative
theory is that dexamethasone down-regulates
the sarcoplasmic endoplasmic reticulum ATPase
(SERCA) that pumps calcium into the ER
(Chai et al. 2009), thereby decreasing ER luminal
calcium and inducing apoptosis.

Angiotensins

Angiotensins are a second class of hormone that
induce calcium-dependent apoptosis, specifi-
cally Angiotensin II (Cigola et al. 1997; Kajstura
et al. 1997; Palomeque et al. 2009; Yamada et al.

1996). Angiotensins are oligomeric peptides
released in response to steroid hormones, such
as glucocorticoids and estrogen. They are pow-
erful vasoconstrictors, and consequently, angio-
tensin receptors are targets for antihypertensive
medications (Gradman 2009). In a cardiomyo-
cyte, muscle contraction is stimulated by the
opening of an L-type calcium channel that ena-
bles calcium release via ryanodine receptors
(Fig. 2). Angiotensins bind to their receptors
(AT1 and AT2) resulting in the generation of
IP3 followed by transient calcium elevations
(Mattiazzi 1997). While ryanodine receptors
are more abundant than IP3Rs in cardiomyo-
cytes, both calcium and IP3 are required for
IP3R channel opening. While still not univer-
sally accepted, it is likely that calcium release
via neighboring ryanodine receptors facilitates
IP3R-opening, enabling both channels to func-
tion cooperatively in response to angiotensin
ligands (Kockskamper et al. 2008).

Much like glucocorticoids, treatment with
higher concentrations of angiotensin II results
in apoptosis that can be blocked by receptor
antagonists (Andreka et al. 2004). As depicted
in Figure 2, stimulation of cardiomyocytes with
angiotensin II causes an acute release of cyto-
solic calcium, and several reports suggest that
calcium elevation contributes to apoptosis
(Kajstura et al. 1997). For instance, verapamil,
an L-type calcium channel blocker, inhibits an-
giotensin-induced apoptosis (Goldenberg et al.
2001). Further, ectopic expression of angioten-
sin receptors (AT1 and AT2) results in apoptosis
by a calcium-dependent mechanism (Aranguiz-
Urroz et al. 2009).

Testosterone

Testosterone is a steroid hormone that has rapid
effects on cardiomyocytes. In one study, it was
shown that testosterone increased cytoplasmic
calcium concentrations in 1–7 minutes by an
IP3R-dependent fashion (Vicencio et al. 2006).
A second study reported that testosterone sig-
nals activate the extracellular signal-regulated
kinase (ERK), and this activation could be in-
hibited by 2-aminoethyldiphenyl borate and the
phospholipase C inhibitor U-73122, suggesting
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that testosterone generates IP3 in cardiomyo-
cytes (Altamirano et al. 2009). Similar rapid
non-genomic effects of testosterone have been
observed in T cells, where calcium influx was
observed within seconds (Benten et al. 1997).
However, it remains to be determined whether
these calcium signals would eventually lead
to apoptosis. Interestingly, in neuronal cells,
low concentrations of testosterone result in cal-
cium oscillations, whereas higher concentra-
tions induce apoptosis, also by a mechanism
that is IP3R dependent (Estrada et al. 2006).
Thus, steroid hormones can have direct apop-
totic effects on multiple cells types, as is the

case for glucocorticoids and androgens, and
perhaps indirectly via glucocorticoid regulation
of angiotensin.

Nitric Oxide

Nitric oxide is an endogenous signaling mole-
cule that regulates muscle contraction, oxygen
consumption, and mitochondrial metabolism
in the heart (Massion et al. 2003). It is produced
by a family of calcium-dependent enzymes
called nitric oxide synthases (NOS). NOS en-
zymes have been found to localize to the sarco-
plasmic reticulum and can inhibit L-type channel

PLC
SERCA

Apoptosis

DAG IP3

S
R

S
R

IP3R

Ca2+ Ca2+

Ca2+

Ca2+

L
T
C
C

AT-1R

Angiotensin II

Ca2+

RYR

Figure 2. Calcium signaling mediated by angiotensin II hormone in a cardiomyocyte. In a cardiomyocyte,
calcium signaling is mediated by the influx of calcium through L-type calcium channels (LTCC). The Sarcoplas-
mic/Endoplasmic Reticulum Calcium ATPase (SERCA) is responsible for maintaining the appropriate concen-
tration of luminal calcium by actively transporting calcium ion across the SR membrane, while ryanodine
receptors and IP3Rs promote its release into the cytosol. Angiotensin, a peptide hormone, binds to the AT-1
receptor (AT-1R), a G-protein coupled receptor that activates phospholipase C (PLC) following GTP hydrolysis,
thereby generating IP3 and diacylglycerol (DAG). It should be noted that ryanodine receptors are 50- to 100-fold
more abundant than IP3Rs in cardiomyocytes. Therefore, calcium release via ryanodine receptors have shown to
be much more robust compared to calcium responses that are mediated by IP3Rs (Kockskamper et al. 2008).
Nevertheless, there is unequivocal evidence for the contribution of IP3Rs during SR-calcium release, which is
likely due to synergy between the two calcium channels in mediating calcium-induced calcium release.
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and ryanodine-receptor activity (Barouch et al.
2002; Sears et al. 2003; Xu et al. 1999). Further,
there is evidence that NOS enzymes can inhibit
calcium channel activity by S-nitrosylation of
thiol residues (Davidson and Duchen 2006;
Razavi et al. 2005), which in turn decreases mi-
tochondrial calcium uptake, thereby preventing
cytochrome c release and mitochondrial me-
tabolism (Brooks et al. 2000; Dedkova and Blat-
ter 2005; Khan and Hare 2003). In addition,
nitric oxide can also attenuate apoptosis by
nitrosylation of caspases on cysteine residues
(Dimmeler et al. 1997). The ability of nitric
oxide to prevent apoptosis in a calcium-depend-
ent manner may be important for understand-
ing certain pathophysiologies such as ischemia
or reperfusion injury.

APOPTOSIS REGULATION BY
PHARMACOLOGICAL AGENTS

Although calcium-mediated apoptosis can oc-
cur by physiological signals, there are multiple
cytotoxic agents that function to disrupt calci-
um homeostasis leading to apoptotic cell death.
Among these are thapsigargin, staurosporine,
and cisplatin.

Thapsigargin

Thapsigargin decreases the ER calcium pool by
inhibiting SERCA pumps, which results in ER
stress and apoptosis (Lam et al. 1993). Apopto-
sis induced by thapsigargin occurs by a mecha-
nism that is dependent on the activation of
caspase-12, a mammalian protease that local-
izes to the ER and is important for mediating
apoptosis in response to ER stress (Szegezdi
et al. 2003). This is exemplified by experiments
performed in mice in which caspase-12 had
been deleted (Nakagawa et al. 2000). In vitro
studies have demonstrated that a calpain ac-
tivates caspase-12 leading to the subsequent
activation of caspase-9 (Morishima et al.
2002; Nakagawa and Yuan 2000; Rao et al.
2002). These data suggest the possibility that
apoptosis induced by thapsigargin can occur
independently of cytochrome c release and is

thus directly induced by calcium via calpain
activation.

Staurosporine

Staurosporine is a natural apoptosis-inducing
alkaloid originally isolated from Streptomyces
staurosporeus. It directly provokes calcium leak
from the ER by activating caspase-3 mediated
cleavage of IP3R1 (Hirota et al. 1999). Addition-
ally, it was shown that cleavage of IP3R1 contrib-
uted, in part, to the induction of apoptosis by
accelerating calcium leak (Assefa et al. 2004;
Verbert et al. 2008). In these experiments, trans-
fection of a mutant IP3R resistant to caspase-
mediated cleavage partially inhibited apoptosis
induction by staurosporine in B cells lacking
wild type IP3Rs. A recent study by Mikoshiba
and colleagues further identified IP3Rs as being
important mediators of apoptosis induction by
staurosporine. They determined that G protein-
coupled receptor kinase interacting proteins
(GITs) bind to IP3Rs to inhibit their function
and suppress apoptosis in the presence of stau-
rosporine (Zhang et al. 2009b). Finally, stau-
rosporine also promotes the activation of a
mitochondrial calpain that positively regulates
apoptosis (Norberg et al. 2008), thus illustrating
similarities with ER stress-driven pathways.

Cisplatin

A third example is cisplatin, a platinum-based
chemotherapeutic agent used to treat several
types of cancer. Cisplatin also causes an IP3-

R-dependent increase in cytosolic calcium and
subsequent activation of a calpain prior to the
induction of apoptosis (Mandic et al. 2003;
Schrodl et al. 2009; Splettstoesser et al. 2007).
Further, cisplatin treatment results in ER stress
as suggested by increased expression of Grp78
and activation of caspase-12 (Mandic et al.
2003). Interestingly, IP3R1 contributes to cis-
platin sensitivity in bladder cancer, as knocking
down its expression in cell lines mediates resist-
ance to apoptosis (Tsunoda et al. 2005). These
results collectively indicate that cisplatin indu-
ces apoptosis, in part, by disrupting calcium
homeostasis in a variety of cell types.
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APOPTOSIS REGULATION BY
ANTI-APOPTOTIC Bcl-2 FAMILY PROTEINS

In each of the previous examples in which apop-
tosis is regulated by calcium, cell death can be
readily inhibited by anti-apoptotic proteins
such as B cell leukemia/lymphoma-2 (Bcl-2)
and other Bcl-2 family members. As its name
implies, Bcl-2 was first identified because it
was overexpressed in B cell follicular lymphoma
(Tsujimoto et al. 1985). Membership in the
Bcl-2 family is defined by the presence of
Bcl-2 homology domains (BH domains) (Chi-
puk et al. 2010). Bcl-2 has four BH domains.
BH1, BH2, and BH3 are located within the C-
terminal half, where they participate in forming
a hydrophobic groove that binds and thereby
inhibits proapoptotic family members. The
BH4 domain is located near the N-terminus
and connected to the C-terminal half of Bcl-2
by an unstructured loop, facilitating intra- and
intermolecular interactions. It is now known
that Bcl-2 is overexpressed in a number of can-
cers because of its ability to inhibit cell death
and promote survival of malignant cells (Cory
and Adams 2002). In fact, Bcl-2 localizes not
only to the outer mitochondrial membrane but
also to the ER, where it regulates IP3-mediated
calcium release. The observation that Bcl-2 reg-
ulates calcium release from the ER was initially
made more than 15 years ago (Baffy et al. 1993;
Lam et al. 1994) and the overall importance of
Bcl-2 on the ER is exemplified in studies in
which ER-targeted Bcl-2 inhibited apoptosis
in response to agents that depolarize the mito-
chondrial membrane (Annis et al. 2001).

The Bcl-2-IP3 Receptor Interaction

Our laboratory was the first to show that Bcl-2
directly interacts with IP3Rs to inhibit IP3-
dependent calcium flux (Fig. 3) (Chen et al.
2004). This interaction, as well as an interaction
of the Bcl-2 homologue Bcl-xL with the IP3R,
has subsequently been detected by a number
of laboratories (Rong and Distelhorst 2007).
Bcl-2 directly inhibits IP3R channel opening
in vitro in lipid bilayer experiments and also
inhibits IP3-induced calcium release in T cells
(Chen et al. 2004; Zhong et al. 2006). We have

now further elucidated the mechanism of the
Bcl-2-IP3R interaction by demonstrating that
the BH4 domain of Bcl-2 associates with the
regulatory and coupling domain of IP3R1, spe-
cifically an 80 amino acid sequence within
domain 3 (Rong et al. 2008). Further analysis
indicated that the BH4 domain was both neces-
sary and sufficient to inhibit IP3-mediated
calcium signals and subsequently apoptosis in
T cells (Rong et al. 2009). This is particularly
interesting given that the BH4 domain of Bcl-
2 and Bcl-xL seem to be involved in preventing
apoptosis. Although our work has emphasized
the interaction of Bcl-2 with the regulatory
and coupling domain of the IP3R, there is also
evidence that Bcl-2 and/or Bcl-xL may interact
with the C-terminus of the IP3R, and through
this interaction, enhance IP3-mediated calcium
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Figure 3. The Bcl-2-IP3R interaction inhibits ER-cal-
cium release. Bcl-2 localizes to the ER where it binds
IP3Rs to inhibit calcium transients. In T cells, calcium
transients are activated in response to strong T-cell
receptor ligation, which results in apoptosis that
can be inhibited by Bcl-2. In contrast, calcium os-
cillations that are associated with cell survival are
promoted by Bcl-2 and Bcl-xL. In addition, Bcl-2
regulates the level of ER luminal calcium by increas-
ing membrane permeability or by interacting with
the Sarcoplasmic/Endoplasmic Reticulum Calcium
ATPase (SERCA). Bcl-2 also interacts with calci-
neurin, thereby forming a complex with both calci-
neurin and IP3Rs on the ER membrane.

Apoptosis and Autophagy

Cite this article as Cold Spring Harb Perspect Biol 2010;2:a005579 7

 on November 20, 2024 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


oscillations (White et al. 2005). In light of these
discoveries, there is now increased interest in
using small molecules to inhibit Bcl-2 and en-
hance proapoptotic calcium transients. One
example of this was the use of a Bcl-2 inhibitor
HA14-1 that induced cytochrome c release and
apoptosis by a calcium-dependent mechanism
in myeloid leukemia (An et al. 2004).

Bcl-2 and IP3R Phosphorylation

Other proteins within the Bcl-2-IP3R complex
may regulate ER calcium release by altering
phosphorylation of IP3Rs. As shown in Figure 3,
Bcl-2 binds the phosphatase calcineurin (Erin
et al. 2003; Shibasaki et al. 1997), and calci-
neurin also interacts with IP3Rs (Cameron
et al. 1995). Because IP3R channel activity is
positively regulated by phosphorylation (DeS-
ouza et al. 2002), it is reasonable to speculate
that Bcl-2 may facilitate the dephosphoryla-
tion of IP3R by interacting with calcineurin.
Although such a mechanism has not been defin-
itively established, we have observed that IP3R
phosphorylation is decreased in Bcl-2 overex-
pressing T cells (Chen et al. 2004). Furthermore,
Bcl-2 has been reported to regulate IP3R phos-
phorylation in Bax/Bak double knockout cells
(Oakes et al. 2005). Moreover, Xu et al. have
implicated protein phosphatase 1 in the regula-
tion of IP3R phosphorylation by Bcl-2 (Xu et al.
2007). Thus, much remains to be determined
regarding the specific kinases and phosphatases
that regulate IP3R channel opening, how these
are regulated by Bcl-2-IP3R interaction, and
how they contribute overall to the regulation of
calcium signals by Bcl-2 and its relatives.

Bcl-2 and Mitochondrial Cross Talk

Another important function of Bcl-2 and Bcl-
xL is to inhibit calcium-mediated cross talk
between ER and mitochondria (Kruman and
Mattson 1999; Pinton et al. 2008). Because
both organelles are in close proximity, calcium
is rapidly taken up by mitochondria via the cal-
cium uniporter on the outer mitochondrial
membrane (Hajnoczky et al. 2006; Hanson
et al. 2004; Rizzuto et al. 2003; Szalai et al.

1999; Szlufcik et al. 2006). Bcl-2 and Bcl-xL
inhibit calcium redistribution to the mitochon-
dria, thereby limiting calcium uptake (Hanson
et al. 2008; Pinton et al. 2008) (Fig. 3). In the
context of apoptosis, it was shown that Bcl-2
inhibited mitochondrial calcium uptake fol-
lowing IL-3 and serum withdrawal in hemato-
poietic cells and fibroblasts, respectively (Baffy
et al. 1993; Magnelli et al. 1994). Interestingly,
Bcl-2 inhibited apoptosis in cardiomyocytes
exposed to ceramide and staurosporine, which
caused depolarization of the mitochondrial
membrane and cytochrome c release (Pacher
and Hajnoczky 2001). A more recent study sug-
gests that Bcl-2 inhibits calcium release through
L-type channels, thereby preventing mitochon-
drial calcium uptake (Diaz-Prieto et al. 2008).
Finally, Mcl-1, an anti-apoptotic protein overex-
pressed in myeloid and lymphoid leukemia, also
blocks calcium redistribution following expo-
sure to staurosporine (Minagawa et al. 2005).

Bcl-2 Regulation of Luminal Calcium

In contrast to experiments reporting that Bcl-2
inhibits IP3R opening, there is also substantial
evidence that Bcl-2 and Bcl-xL directly regulate
the concentration of luminal calcium (Fig. 3).
Initial studies showed that Bcl-2 increased
membrane permeability, thereby resulting in
calcium leak and decreased signaling in re-
sponse to ATP (Foyouzi-Youssefi et al. 2000;
Pinton et al. 2000). Another study documented
that knocking down Bcl-2 prevented the loss of
ER luminal calcium (Oakes et al. 2005). While
these studies also cite the significance of the
Bcl-2-IP3R interaction in regulating the calcium
pool, others have found that Bcl-2 depletes
luminal calcium by interacting with SERCA
(Dremina et al. 2004; Dremina et al. 2006; Van-
den Abeele et al. 2002). In spite of these differ-
ences in experimental findings, it cannot be
refuted that Bcl-2 localizes to the ER to inhibit
calcium signaling. Thus, mechanistic differences
may be attributed to cell type in which the rela-
tive expression and localization of Bcl-2 family
members are considerably distinct. Accordingly,
the effect of luminal calcium is dependent upon
the predominant IP3R isoform expressed, yet not
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necessary for Bcl-2 or Bcl-xL mediated effects on
calcium signaling (Li et al. 2007).

Bcl-2 Regulation of Prosurvival
Calcium Signals

Although Bcl-2 inhibits calcium transients that
are associated with apoptosis, anti-apoptotic
Bcl-2 family members can also enhance calcium
oscillations that promote survival (Fig. 3). In
T cells, Bcl-2 enhances calcium oscillations
induced by weak T cell receptor stimulation
and thus increases NFAT activation (Zhong
et al. 2006). Similarly, Bcl-xL enhances prosur-
vival oscillations following weak ligand stimula-
tion (Distelhorst and Zhong, unpubl). In DT40
B lymphocytes, Bcl-2, Bcl-xL, and Mcl-1
enhance calcium oscillations by sensitizing cells
to lower concentrations of IP3 (Eckenrode et al.
2010; Li et al. 2007; White et al. 2005). This
in turn leads to accelerated mitochondrial me-
tabolism and cell survival. Additional studies
in other cell types support this hypothesis by
demonstrating that overexpression of Bcl-2
enhances calcium oscillations in epithelial cells
following stimulation with ATP and also in neu-
ronal cells to facilitate survival (Jiao et al. 2005;
Palmer et al. 2004).

APOPTOSIS REGULATION BY
PROAPOPTOTIC Bcl-2 FAMILY PROTEINS

In contrast to Bcl-2, proapoptotic Bcl-2 family
proteins are missing a classic BH4 domain,
although recent findings suggest the presence
of consensus BH4 sequence in proapoptotic
family members (Chipuk et al. 2010). Multido-
main BH proteins (i.e., BH1-3) include Bax and
Bak, both of which are essential for apoptosis
driven by the mitochondrial pathway. Multiple
studies using Bax/Bak knockout models have
demonstrated that the loss of these proteins
confers resistance to numerous apoptotic stim-
uli (Wei et al. 2001).

Calcium Regulation by Bax and Bak

Like Bcl-2 and Bcl-xL, Bax and Bak also localize
to the ER where they regulate calcium homeo-
stasis. In Bax/Bak knockout cells, ER luminal

calcium is decreased compared to wild type
cells, which compromises ER calcium release
as well as mitochondrial uptake (Oakes et al.
2005; Scorrano et al. 2003). Consistent with
these observations, the Bax Inhibitor-1 protein
facilitates ER calcium leak, depleting the avail-
able calcium pool (Chae et al. 2004; Kim et al.
2008). Although the mechanism by which Bax
and Bak decrease luminal calcium has not
been determined, it is generally inferred that
Bax/Bak ordinarily prevents Bcl-2-mediated
ER calcium leak, and thus their deficiency pro-
motes depletion of ER luminal calcium by
Bcl-2. Moreover, Bax alone is required for cal-
cium elevation in response to cytotoxic agents,
such as staurosporine (Nutt et al. 2002a). For
example, reconstitution of Bax in a prostate
cancer cell line augmented cytosolic calcium
elevation and restored mitochondrial uptake.
The same group also reported that Bax/Bak
overexpression induced calcium elevation fol-
lowed by cytochrome c release and apoptosis
(Nutt et al. 2002b). Interestingly, when Bak is
targeted to the ER, it facilitates cytosolic calcium
elevation and activates caspase-12; yet this does
not occur when Bak is specifically targeted to
mitochondria (Zong et al. 2003). In addition,
ER-targeted Bak requires calcium in conjunc-
tion with ER stress for apoptosis to occur (Klee
et al. 2009). This suggests that the localization
of Bax and/or Bak may determine which effec-
tor pathway is induced. It is possible that Bax/
Bak localization to the ER is favored when cells
undergo apoptosis induced by ER stress.

Calcium Regulation by BH3-only Proteins

Other proapoptotic Bcl-2 family members have
only the BH3 domain and therefore are desig-
nated as “BH3-only” proteins. These include
Bim, Bad, Bik, BNIP3, PUMA, and NOXA
(Cory and Adams 2002). Like their multi-
domain counterparts, these proteins also local-
ize to both ER and mitochondria. At the mito-
chondria, BH3-only proteins facilitate Bax/Bak
oligomerization by two potential mechanisms.
In brief, one model suggests they function to
directly activate Bax and Bak, whereas another
suggests they do so indirectly by sequestering
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anti-apoptotic Bcl-2 family members (Cheng
et al. 2001; Willis et al. 2007). Although the
mechanism remains controversial, it is now cer-
tain that BH3-only proteins are necessary for
Bax/Bak activation and the induction of
apoptosis.

While the role of these proteins at the mito-
chondria has been extensively studied, there are
sufficient data to conclude that they also regu-
late apoptosis at the ER. For example, Bim
translocates to the ER following ER stress and
may be required for the activation of caspase-12
(Morishima et al. 2004). Thus, ER localiza-
tion of Bim as well as Bak may be necessary
for apoptosis in response to ER stress-inducing
agents. Interestingly, dexamethasone induces
Bim transcript and protein levels in T cells (Lu
et al. 2006; Wang et al. 2003), a process that is
associated with the elevation of cytosolic calcium
and required for a robust apoptotic response.
Engagement of T-cell receptors also stimulates
de novo transcription of Bim by a calcium-de-
pendent mechanism (Cante-Barrett et al. 2006).
It has yet to be determined if this process contrib-
utes to apoptosis induced by T-cell receptor acti-
vation. Intriguingly, T cells deficient in Bim have
impaired calcium release following their stimula-
tion, and this is associated with increased binding
of Bcl-2 to IP3Rs (Ludwinski et al. 2009). Thus,
another role of Bim may be to enhance calcium
elevation by sequestering Bcl-2 away from IP3Rs
at the ER membrane.

Bik is a BH3-only protein that promotes ER
calcium depletion in a Bax/Bak dependent
manner (Mathai et al. 2005). Similarly, BNIP3
causes a leak of ER luminal calcium when selec-
tively targeted to the ER (Zhang et al. 2009a).
NOXA and PUMA are both p53 target genes
that are up-regulated in response to genotoxic
stress. A study by Shore and colleagues has
shown that NOXA may function cooperatively
with Bik to promote the activation of Bax and
Bak (Germain et al. 2005). A recent study indi-
cates that the mitochondrial targeting region
of NOXA functions to increase mitochondrial
permeability and release calcium. Interestingly,
a peptide corresponding to this region was
able to induce calcium-dependent cell death
by necrosis (Seo et al. 2009). This demonstrates

that BH3-only proteins are not only important
for regulating calcium flux and homeostasis,
but may also function to regulate other mecha-
nisms of cell death. Collectively, the Bcl-2 family
makes up a network of proteins and each
contributes to the regulation of normal calcium
homeostasis. It is clear that alterations in
expression or localization of these proteins can
have profound effects on cell viability by induc-
ing apoptosis.

AUTOPHAGY

Autophagy is a process of self-eating whereby
cellular organelles and proteins are phagocy-
tosed in order to produce energy during meta-
bolic stress (Levine and Klionsky 2004). It is an
evolutionarily conserved physiological process
that is thought to promote cell survival. Some
cellular contexts in which autophagy may be
induced include nutrient deprivation, hypoxia,
ER stress, abnormal cell growth, and microbial
infection (Mizushima et al. 2008). On the other
hand, autophagy has also been shown to pro-
mote cell death under certain conditions and
stimuli. In fact, autophagy is often referred to
as type II programmed cell death (distinct
from type I programmed cell death) because it
does not require caspase activation or DNA frag-
mentation, which are classical characteristics of
apoptosis (Levine and Yuan 2005). However, it
is likely that both processes occur simultane-
ously, and thus, it is important to understand
the signaling pathways that govern autophagy,
especially when considering that many of the
same mechanisms regulate apoptosis.

During autophagy, double membrane ves-
icles, or autophagosomes, fuse with the lyso-
some, leading to the degradation of cellular
proteins (Mizushima 2007). An example of an
autophagosome is illustrated by the electron
micrograph in Figure 4; shown are autophago-
somes from a WEHI 7.2 T cell stably expressing
Bcl-2 and cultured in normal growth media
containing dexamethasone. Glucocorticoids
promote autophagy (Laane et al. 2009; Swer-
dlow et al. 2008), and this process is most evi-
dent when apoptosis is inhibited by Bcl-2
(Swerdlow et al. 2008).
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Methods for the detection of autophagy
are very well described by Klionsky and col-
leagues (Klionsky et al. 2008). Briefly, the most
common method of analysis is the assessment of
microtubule-associated protein-1 light chain-3
(LC3) by immunoblotting. LC3 is considered a
marker for autophagy when it is proteolytically

processed and conjugated to phosphatidyletha-
nolamine (LC3II). GFP-tagged LC3 is commonly
transfected into cells to detect LC3 aggregates
or punctate GFP-LC3II, which is indicative of
autophagosome formation. A second marker of
autophagy is p62 degradation. The signaling
adaptor p62, which is implicated in the activa-
tion of the transcription factor NFkB, is rapidly
degraded by autolysosomes. Thus, p62 expres-
sion is inversely correlated with the conversion
of LC3I to LC3II. Finally, as previously stated
and shown in Figure 4, autophagosome forma-
tion can be readily visualized by electron micro-
scopy, although this method is less amenable
than others to quantitative interpretation.

Autophagy Induction by ER Stress Pathways

The link between calcium and autophagy was
initially discovered by several groups report-
ing that autophagy could be provoked by ER
stress (Bernales et al. 2006; Ogata et al. 2006;
Yorimitsu et al. 2006). For example, both thap-
sigargin and tunicamycin stimulate autophagy
(Ogata et al. 2006). ER stress affects Autoph-
agy-Related Genes (atg), which are evolutionar-
ily conserved and indispensable for autophagy
in many cell systems. In yeast, the transcription
factor Hac-1 (an ortholog of the ER-stress
mammalian XBP-1) transactivates atg8 during
the unfolded protein response (Bernales et al.
2006). Other studies have shown that mutations
in ER stress-related proteins such as PERK or
EIF2a can inhibit autophagy (Kouroku et al.
2007). Further, knockout of several atg genes
prevents autophagy-mediated survival in the
presence of tunicamycin (Ogata et al. 2006).
While these data indisputably demonstrate that
ER stress induces autophagy, a direct role for
calcium had not been implicated at this point
in time.

Autophagy Regulation by Calcium Signaling

Direct evidence that calcium signaling stimu-
lates autophagy was first reported by Jaattela
and colleagues (Hoyer-Hansen et al. 2007).
They demonstrated that ER calcium mobili-
zation induces autophagy when stimulated by

Figure 4. Electron micrograph of a malignant T cell
undergoing autophagy. T cells that ectopically ex-
press Bcl-2 readily undergo autophagy in the pres-
ence of glucocorticoid hormones. Here, WEHI7.2 T
cells stably expressing Bcl-2 (to inhibit apoptosis)
were treated with 1026 M dexamethasone for 72
hours and visualized by electron microscopy. (A)
An electron micrograph of a single cell or (B) a region
from within a cell. Examples of autophagosomes are
shown next to the arrows.
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agents such as vitamin D, ionomycin, and thap-
sigargin. Moreover, GFP-LC3 aggregates were
inhibited with BAPTA-AM, suggesting that
autophagosome formation was calcium dep-
endent. They provided further evidence that
autophagy occurred by the calcium-dependent
activation of AMP activated protein kinase,
which required upstream activation of the cal-
cium/calmodulin kinase kinase b. AMPK is
activated during nutrient deprivation to inhibit
activity of the target of rapamycin (mTOR), a
negative regulator of autophagy (Hoyer-Hansen
and Jaattela 2007). Further evidence supporting
a direct role for calcium in the induction of
autophagy was the finding that calcium phos-
phate precipitates could induce autophagy
when transfected into HEK293 cells (Gao
et al. 2008). Importantly, autophagy mediated
by calcium phosphate was also Beclin-depend-
ent. Beclin is a newly discovered BH3-only pro-
tein that mediates autophagy by forming a
complex between the class III PI3 kinase
Vps34 and p150, which facilitates assembly of
the autophagosome (Sinha and Levine 2008).

Autophagy in the Context of T-cell
Activation

As previously described, significant contribu-
tions in the calcium field have been made by
investigating signal transduction pathways in
activated lymphocytes. Accordingly, autophagy
may also be important for regulating lympho-
cyte activation. For example, T cells from atg5
knockout mice do not proliferate following liga-
tion of the T-cell receptor, nor do they survive in
the periphery (Pua et al. 2007), suggesting that
autophagy is required for T-cell activation.
Interestingly, it was shown that T-cell activation
increases autophagy by NFkB-dependent tran-
scription of Beclin-1 (Copetti et al. 2009a;
Copetti et al. 2009b). In this study, the authors
provide evidence that NFkB directly binds to
the Beclin-1 promoter following activation of
Jurkat T cells. Although a direct link has not
been observed, it is possible that calcium-
dependent activation of calcineurin stimulates
this process, thus implicating a role for calcium
in Beclin-1 transcription and autophagy.

In addition to producing IP3, T-cell activa-
tion also generates reactive oxygen species
(Devadas et al. 2002; Hildeman et al. 2003).
Thiol groups are found on IP3Rs and ryanodine
receptors, and oxidation of both calcium chan-
nels favors their opening (Bootman et al. 1992;
Bultynck et al. 2004; Joseph et al. 2006; Sun et al.
2001; Xia et al. 2000). Further, cyclic ADP ribose
and NAADP govern redox reactions and are also
endogenous ligands for ryanodine receptors
and natural 2nd messengers produced by
T-cell activation (Fliegert et al. 2007; Guse
2009). These studies have implicated a role for
reactive oxygen species in regulating calcium
signals. Not surprisingly, reactive oxygen spe-
cies also contribute to the induction of autoph-
agy. For example, hydrogen peroxide directly
facilitates formation of the autophagosome by
oxidizing Atg4 (Scherz-Shouval et al. 2007).
Another study demonstrated that neurons
undergo autophagy when mitochondrial fis-
sion is induced by nitric oxide (Barsoum et al.
2006). This observation is attractive in light of
the fact that nitric oxide protects cardiomyo-
cytes from apoptosis. Together, these data sug-
gest the possibility that oxidative metabolites
function as signaling molecules by activating
calcium and triggering autophagy in lympho-
cytes, although more definitive data is necessary
to support this important conclusion.

Autophagy Regulation by IP3Rs

There is now substantial evidence that autoph-
agy is directly regulated by IP3 as well as by
IP3Rs. For example, inhibition of inositol
monophosphate by agents such as lithium and
L-690,330 induced autophagy (Sarkar et al.
2005; Sarkar and Rubinsztein 2006). Kroemer
and colleagues first showed that IP3Rs act as
inhibitors of autophagy by demonstrating that
knocking down IP3Rs or inhibiting their chan-
nel activity was sufficient to induce conversion
of LC3I to LC3II. (Criollo et al. 2007). More-
over, Beclin-1 is in complex with IP3Rs along
with Bcl-2 and perturbation of the Beclin-IP3-

R-Bcl-2 interaction with Xestospongin B or
RNA interference is sufficient for autophagy
to occur (Vicencio et al. 2009). Additionally,
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phosphorylation of Beclin promotes its dissoci-
ation from Bcl-xL in order to induce autophagy
(Zalckvar et al. 2009). Interestingly, inhibition
of IP3Rs or siRNA knockdown of Beclin-1 did
not affect ER luminal calcium as measured in
aequorin-expressing cells (Criollo et al. 2007;
Vicencio et al. 2009). However, because Xesto-
spongin significantly inhibited calcium responses
following stimulation with histamine, it is possi-
ble that a lack of calcium release promotes
autophagy without altering steady state levels
under these conditions. Nevertheless, these find-
ings indicate a role for calcium channels and sig-
naling in the induction of autophagy.

CONCLUDING REMARKS

Calcium is a dynamic signal transducing ion
that is absolutely required for life. Slight altera-
tions in the frequency and/or amplitude of a
calcium signal can lead to apoptosis or auto-
phagy by numerous mechanisms. In addition,
abnormal signaling not only alters calcium
homeostasis in cells, but may contribute to sev-
eral pathogenic states such as cancer, heart fail-
ure, diabetes, and Alzheimer’s disease (Berridge
2003; Berridge 2010; Huang et al. 2010; Luciani
et al. 2009; Roderick and Cook 2008). It is there-
fore essential to understand the pathways by
which calcium regulates life and death deci-
sions, as they will not only provide insight
into normal cell physiology, but may also facil-
itate the development of novel targets and treat-
ments for chronic diseases.
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