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The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell
fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt
pathway components play a role in microtubule-dependent dorsoventral axis specification.
Later in embryogenesis, another conserved function of the pathway is to specify the an-
teroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is
regulated at different developmental stages by distinct sets of Wnt target genes. This
review highlights recent progress in the discrimination of different signaling branches and
the identification of specific pathway targets during vertebrate axial development.

Wnt pathways play major roles in cell-fate
specification, proliferation and differenti-

ation, cell polarity, and morphogenesis (Clevers
2006; van Amerongen and Nusse 2009). Signal-
ing is initiated in the responding cell by the in-
teraction of Wnt ligands with different receptors
and coreceptors, including Frizzled, LRP5/6,
ROR1/2, RYK, PTK7, and proteoglycans (An-
gers and Moon 2009; Kikuchi et al. 2009; Mac-
Donald et al. 2009). Receptor activation is ac-
companied by the phosphorylation of Dishev-
elled (Yanagawa et al. 1995), which appears to
transduce the signal to both the cell membrane
and the nucleus (Cliffe et al. 2003; Itoh et al.
2005; Bilic et al. 2007). Another common path-
way component isb-catenin, an abundant com-
ponent of adherens junctions (Nelson and
Nusse 2004; Grigoryan et al. 2008). In response
to signaling,b-catenin associates with T-cell fac-
tors (TCFs) and translocates to the nucleus to

stimulate Wnt target gene expression (Behrens
et al. 1996; Huber et al. 1996; Molenaar et al.
1996).

Thisb-catenin-dependent activation of spe-
cific genes is often referred to as the “canonical”
pathway. In the absence of Wnt signaling,b-cat-
enin is destroyed by the protein complex that
includes Axin, GSK3, and the tumor suppres-
sor APC (Clevers 2006; MacDonald et al. 2009).
Wnt proteins, such as Wnt1, Wnt3, and Wnt8,
stimulate Frizzled and LRP5/6 receptors to in-
activate this b-catenin destruction complex,
and, at the same time, trigger the phosphoryla-
tion of TCF proteins by homeodomain-interact-
ing protein kinase 2 (HIPK2) (Hikasa et al. 2010;
Hikasa and Sokol 2011). Both b-catenin stabili-
zation and the regulation of TCF protein func-
tion by phosphorylation appear to represent
general strategies that are conserved in multi-
ple systems (Sokol 2011). Thus, the signaling
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pathway consists of two branches that together
regulate target gene expression (Fig. 1).

Other Wnt proteins, such as Wnt5a or
Wnt11, strongly affect the cytoskeletal organi-
zation and morphogenesis without stabilizing
b-catenin (Torres et al. 1996; Angers and
Moon 2009; Wu and Mlodzik 2009). These
“noncanonical” ligands do not influence TCF3
phosphorylation (Hikasa and Sokol 2011), but
may use distinct receptors such as ROR1/2 and
RYK instead of or in addition to Frizzled (Hi-
kasa et al. 2002; Lu et al. 2004; Mikels and Nusse
2006; Nishita et al. 2006, 2010; Schambony and
Wedlich 2007; Grumolato et al. 2010; Lin et al.
2010; Gao et al. 2011). In such cases, signaling

mechanisms are likely to include planar cell po-
larity (PCP) components, such as Vangl2, Fla-
mingo, Prickle, Diversin, Rho GTPases, and c-
Jun amino-terminal kinases (JNKs), which do
not directly affect b-catenin stability (Fig. 1)
(Sokol 2000; Schwarz-Romond et al. 2002;
Schambony and Wedlich 2007; Komiya and Ha-
bas 2008; Axelrod 2009; Itoh et al. 2009; Tada
and Kai 2009; Sato et al. 2010; Gao et al. 2011).
This simplistic dichotomy of the Wnt pathway
does not preclude some Wnt ligands from using
both b-catenin-dependent and -independent
routes in a context-specific manner.

Despite the existence of many pathway
branches, only theb-catenin-dependent branch
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Figure 1. Conserved Wnt pathway branches and components. In the absence of Wnt signals, glycogen synthase
kinase 3 (GSK3) binds Axin and APC to form the b-catenin destruction complex. Some Wnt proteins, such as
Wnt8 and Wnt3a, stimulate Frizzled and LRP5/6 receptors to inhibit GSK3 activity and stabilize b-catenin (b-
cat). Stabilized b-cat forms a complex with T-cell factors (e.g., TCF1/LEF1) to activate target genes. Moreover,
GSK3 inhibition leads to target gene derepression by promoting TCF3 phosphorylation by homeodomain-
interacting protein kinase 2 (HIPK2) through an unknown mechanism, for which b-catenin is required as a
scaffold. This phosphorylation results in TCF3 removal from target promoters and gene activation. Other Wnt
proteins, such as Wnt5a and Wnt11, use distinct receptors such as ROR2 and RYK, in addition to Frizzled, to
control the the cytoskeletal organization through core planar cell polarity (PCP) proteins, small GTPases (Rho/
Rac/Cdc42), and c-Jun amino-terminal kinase (JNK).
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has been implicated in body-axis specification.
Recent experiments in lower vertebrates have
identified additional pathway components and
targets and provided new insights into the un-
derlying mechanisms.

ROLE OF CYTOPLASMIC DETERMINANTS
AND WNT SIGNALING IN DORSOVENTRAL
AXIS SPECIFICATION

The specification of the dorsoventral axis coin-
cides with the formation of an essential embry-
onic signaling center known as the Spemann
organizer in amphibians, the shield in zebrafish,
and the node in the mouse (Harland and Ger-
hart 1997; Schier and Talbot 2005; Marlow
2010). During egg fertilization, sperm entry
triggers microtubule-dependent rearrangement
of the cortical cytoplasm from the vegetal pole
toward the future dorsal side, a process known
as the cortical rotation (Houliston and Elinson
1992). Experiments with cytoplasm microinjec-
tions or removal revealed vegetally localized
dorsalizing activity that moves to the dorsal re-
gion before the first cleavage in Xenopus or ze-
brafish eggs (Fujisue et al. 1993; Holowacz and
Elinson 1993; Mizuno et al. 1999; Ober and
Schulte-Merker 1999). Treatment of fertilized
Xenopus or zebrafish eggs with microtubule-
depolymerizing agents, such as UV irradiation
or nocodazole, causes embryo ventralization
(Chung and Malacinski 1980; Scharf and Ger-
hart 1980; Jesuthasan and Stahle 1997). These
observations indicated that the movement of
the dorsalizing activity is essential for the estab-
lishment of the primary dorsoventral axis in
both Xenopus and zebrafish.

One of the important outcomes of the cor-
tical rotation is the accumulation of b-catenin
in dorsal nuclei of early blastulae, whereas b-
catenin remains largely cytoplasmic and corti-
cal in ventral cells (Schneider et al. 1996; Schohl
and Fagotto 2002). This difference in b-catenin
localization can be detected as early as the 2- to
4-cell stage (Larabell et al. 1997). Supporting
the critical role of this localization for dorsal
development, several maternal effect mutants
in zebrafish such as hecate, ichabod, and tokkaebi
result in the reduction of b-catenin dorsal ac-

cumulation and defects in dorsal development
(Kelly et al. 2000; Nojima et al. 2004; Lyman
Gingerich et al. 2005; Bellipanni et al. 2006).
The ichabod mutation has been mapped to the
proximity of the gene encoding b-catenin-2, a
second zebrafish b-catenin that is essential for
maternal Wnt signaling (Bellipanni et al. 2006).
Consistent with the ventralized phenotype of
the ichabod embryos, maternal b-catenin-2
RNA is down-regulated. Hecate is another ze-
brafish mutation that is manifested by deficient
dorsal development and enhanced intracellular
calcium release; however, the mutated gene has
not yet been identified (Lyman Gingerich et al.
2005). Positional cloning revealed that the tok-
kaebi gene encodes syntabulin, a microtubule-
binding protein connecting kinesin I to syn-
taxin-containing cargo vesicles (Nojima et al.
2010). This finding further implicates microtu-
bule-dependent trafficking in dorsoventral axis
specification. Reminiscent of the key function
of b-catenin in Xenopus and zebrafish, mouse
embryos lacking b-catenin reveal abnormal vis-
ceral endoderm patterning before gastrulation
and do not form the primitive streak (Haegel
et al. 1995; Huelsken et al. 2000).

An essential role for Wnt/b-catenin signal-
ing in dorsoventral axis determination has been
initially suggested in gain-of-function experi-
ments, in which Wnt and Dishevelled messen-
ger RNAs (mRNAs) triggered ectopic organizer
formation (McMahon and Moon 1989; Smith
and Harland 1991; Sokol et al. 1991, 1995;
Rothbacher et al. 1995). The requirement for
b-catenin has been established by antisense ol-
igonucleotide-mediated depletion of b-catenin
in Xenopus and zebrafish embryos (Heasman
et al. 1994; Bellipanni et al. 2006). b-catenin
activates several major targets in Xenopus em-
bryos that are responsible for Spemann organiz-
er formation. Activation of many organizer-
specific genes depends on functional TCF sites
in their promoters (Brannon et al. 1997; Lau-
rent et al. 1997; McKendry et al. 1997; Fan et al.
1998; Ryu et al. 2001; Leung et al. 2003). These
early b-catenin targets include Nodal group
genes that are essential for dorsal mesoderm
formation in frogs, zebrafish, and mammals
(Conlon et al. 1994; Feldman et al. 1998; Osada
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and Wright 1999; Takahashi et al. 2000; Yang
et al. 2002; Hilton et al. 2003; Zhang et al.
2003). Besides Nodals, other direct targets of
b-catenin are Siamois and Twin in Xenopus
(Lemaire et al. 1995; Brannon et al. 1997; Lau-
rent et al. 1997; Fan et al. 1998), and Bozozok/
Dharma/Nieuwkoid in zebrafish (Ryu et al.
2001), which are required for organizer forma-
tion (Fig. 2; Table 1) (Fan and Sokol 1997; Kessler
1997; Koos and Ho 1998; Yamanaka et al. 1998;
Fekany et al. 1999). Taken together, available
data establish a key role for Wnt signaling and
its early targets in early dorsoventral axis speci-
fication (Moon and Kimelman 1998; Schroeder
et al. 1999; Sokol 1999; Tao et al. 2005).

Although lack of effect of a dominant–neg-
ative form of Dishevelled (Dvl) on axis specifi-
cation does not eliminate Dvl participation; it
suggests that b-catenin is stabilized by a down-
stream Wnt pathway component that is trans-
located dorsally during the cortical rotation
(Sokol 1996; Harland and Gerhart 1997). One
of the key factors is GSK3-binding protein or
Frat, which inhibits GSK3 and is essential for

dorsal development in Xenopus embryos (Yost
et al. 1998). However, the triple knockout of the
existing Frat homologs in the mouse does not
produce a morphological phenotype, suggest-
ing that this mechanism is not conserved in
mammals (van Amerongen et al. 2005). More
recently, antisense oligonucleotide-mediated
depletion of maternal Wnt5a, Wnt11, and Fz7
indicated their roles in dorsoventral axis speci-
fication (Sumanas et al. 2000; Tao et al. 2005;
Cha et al. 2008). These observations suggest a
different model, in which Wnt5a and Wnt11
influence b-catenin levels in the oocyte, rais-
ing the question how b-catenin becomes local-
ized to the dorsal side of the embryo. Because
maternal Wnt11 RNA is vegetally localized (Ku
and Melton 1993), one possibility is that Wnt11
is delivered to its future site of action by the
cortical rotation (Tao et al. 2005). So far, dor-
soventral patterning defects have not been de-
scribed in embryos with genetically reduced
Wnt5a or Wnt11 function (Rauch et al. 1997;
Yamaguchi et al. 1999; Heisenberg et al. 2000;
Kilian et al. 2003; Majumdar et al. 2003; Ulrich
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Figure 2. Axis specification by early and late Wnt signaling involves distinct targets. After cortical rotation
(black dotted arrow), early b-catenin accumulation in the dorsal equatorial region activates gene targets to
generate the Spemann organizer. b-Catenin up-regulates several Wnt and bone morphogenetic protein
(BMP) antagonists, including Dkk1, Cerberus, Shisa, Noggin, and Chordin. The pathway is inhibited by
Wnt antagonists in the anterior tissues, but the zygotic activation of Wnt8 causes ventral and posterior
accumulation of b-catenin during gastrulation. The target genes of this late Wnt signaling, including Cdx,
Vent, Meis, Gbx, and Msx, are critical for the specification of ventroposterior mesodermal fates and lead to tail
formation.
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et al. 2003; Fossat et al. 2011). Potentially, these
observations could be explained by functional
redundancy or by the presence of maternally
encoded proteins. On the other hand, overex-
pression of Wnt5a or Wnt11 does not lead tob-
catenin stabilization (Torres et al. 1996; Mikels
and Nusse 2006). Owing to these contradictory
observations, the final conclusion regarding the
involvement of these Wnt proteins in b-catenin

stabilization and body-axis formation awaits
additional experimental insights. Despite the
variability in the existing models of vertebrate
axis specification, there is a common outcome:
the establishment of a signaling center that
dorsalizes all three germ layers and mediates
anteroposterior patterning.

ZYGOTIC WNT SIGNALING DURING
ANTEROPOSTERIOR AXIS SPECIFICATION

Early studies revealed that the effect of Wnt pro-
teins on embryogenesis is stage specific. When
injected as mRNA, Wnt8 triggers secondary axis
formation (Smith and Harland 1991; Sokol et
al. 1991). However, when supplied as a plasmid,
Wnt8 expression is initiated only at midblastula
transition and the delayed stimulation leads to
posteriorization, characterized by lack of head
structures (Christian and Moon 1993). These
observations correlated well with the time-sen-
sitive effect of lithium chloride, a GSK3 inhibi-
tor (Klein and Melton 1996), on anteroposte-
rior patterning (Yamaguchi and Shinagawa
1989). Of note, Dkk1 RNA does not interfere
with the early dorsal signaling, although being
fully capable of inhibiting ectopic Wnt expres-
sion (Glinka et al. 1998; Brott and Sokol 2002),
consistent with the idea that Wnt ligands are
not accessible to Dkk-dependent inhibition at
this early stage. These observations indicate that
Wnt signaling plays different roles in axis spec-
ification at different developmental stages.

Several Wnt ligands, including Wnt3a,
Wnt5a, Wnt8, and Wnt11, are expressed in the
ventral or posterior region of the embryo (Chris-
tian et al. 1991a; Krauss et al. 1992; Moon et al.
1993; Kelly et al. 1995; Hong et al. 2008). On the
other hand, multiple Wnt antagonists, such as
Frzb/Sfrp3, Crescent, Shisa, and Dkk1, are ex-
pressed in the head region (Leyns et al. 1997;
Wang et al. 1997; Glinka et al. 1998; Shibata
et al. 2005; Yamamoto et al. 2005). This com-
plementary expression pattern indicates a func-
tion for the Wnt pathway in anteroposterior
axis specification. The involvement of Wnt sig-
naling in anteroposterior patterning was first re-
vealed in studies with overexpressed Wnt path-
way modulators. Twofold titration of Xenopus

Table 1. Putative Wnt targets during anteroposterior
axis specification

Genes

activated

by Wnt3a

Genes

inhibited by

Dickkopf-1 References

Axin1/2 Axin1/2 Zeng et al. 1997; Jho
et al. 2002

Kremen2 Kremen2 Mao et al. 2002
Cdx2, 4 Cdx2, 4 Isaacs et al. 1998
Gbx2 Gbx2 von Bubnoff et al.

1996
HoxA1/D1 HoxA1/D1 Kolm and Sive 1995
Esr9/10 Esr9/10 Li et al. 2003
Fz10 Fz10 Wheeler and Hoppler

1999; Garcia-
Morales et al. 2009

Foxi1 Suri et al. 2005; Mir
et al. 2007

Meis3 Meis-like Elkouby et al. 2010
Msx1/2 Msx1/2 Maeda et al. 1997;

Marazzi et al. 1997;
Mathers et al. 1997;
Suzuki et al. 1997;
Willert et al. 2002

Nzl1 Nzl1 Andreazzoli et al.
2001; Nakamura
et al. 2008

Nrh1 Bromley et al. 2004;
Sasai et al. 2004

Riddle2 Shibata et al. 2008
Spr2 Weidinger et al. 2005
Vent/PV1 Vent/PV1 Onichtchouk et al.

1996
XARP XARP Itoh et al. 2000
Xmc Frazzetto et al. 2002
Xpo Xpo Sato and Sargent 1991;

Amaya et al. 1993;
Hoppler et al. 1996

Only some of these genes have been shown to contain

TCF/LEF sites in their promoters.
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Dishevelled RNA caused graded appearance of
region-specific positional markers, indicating a
morphogenlike dose response with the highest
point at the posterior of the embryo (Itoh and
Sokol 1997). Wnt pathway antagonists, such as
GSK3, Dkk1, and Shisa, cause anteriorization, in
agreement with the proposed posteriorizing ac-
tivity of Wnt ligands (Itoh et al. 1995; Glinka
et al. 1998; Yamamoto et al. 2005). Further sup-
porting this hypothesis, TCF-dependent report-
er activity and the nuclear localization of endog-
enous b-catenin are elevated in the anterior-to-
posterior gradient (Kiecker and Niehrs 2001;
Dorsky et al. 2002).

The critical role of Wnt signaling in antero-
posterior axis specification has been corrobo-
rated by depletion experiments for pathway
components (Heasman et al. 2000; Erter et al.
2001; Lekven et al. 2001; Shimizu et al. 2005;
Bellipanni et al. 2006; Hikasa et al. 2010) and
the analysis of the corresponding zebrafish mu-
tations. Headless (hdl) was identified as a point
mutation in a tcf3 gene homolog, which re-
presses Wnt target genes in zebrafish embryos
(Kim et al. 2000). Loss of forebrain and eyes and
the modest expansion of ventral mesoderm
in hdl embryos are consistent with up-regulated
Wnt signaling. When both Headless and a
closely related protein Tcf3b are down-regulat-
ed, this posteriorization is more severe (Dorsky
et al. 2003). Similarly, mastermind zebrafish
embryos with a mutation in Axin1 are posteri-
orized with telencephalon and eyes trans-
formed to diencephalon (Heisenberg et al.
2001). Thus, interference with Wnt pathway
antagonists mimics Wnt protein overexpres-
sion and results in posteriorization. Phenotypes
of mice lacking the genes for Dkk1, APC, TCF3,
Wnt3, ICAT, and b-catenin also support the
role of the Wnt pathway in posterior develop-
ment (Takada et al. 1994; Liu et al. 1999b;
Mukhopadhyay et al. 2001; Ishikawa et al.
2003; Merrill et al. 2004; Satoh et al. 2004).
Combined with more recent studies of Cnidaria
and Planaria (Holstein 2008; Martin and Ki-
melman 2009; Petersen and Reddien 2009),
these findings establish a conserved key role
for Wnt signaling in anteroposterior axis spec-
ification (Fig. 2).

PUTATIVE TRANSCRIPTIONAL TARGETS
OF THE WNT PATHWAY IN AXIS
SPECIFICATION

Molecular screens have identified transcription-
al Wnt targets in early embryos and embryonic
stem cells (Willert et al. 2002; Li et al. 2004;
Hufton et al. 2006). A major obstacle to identi-
fying Wnt gene targets is the stage and context
dependence of cellular responses to Wnt li-
gands. Therefore, a special effort is needed to
elucidate the Wnt targets that are relevant to
anteroposterior axis specification.

Hybridization of RNA probes prepared
from the control and Wnt3a-stimulated ecto-
derm cells with Xenopus copy DNA (cDNA)
microarrays (Affymetrix) has identified a num-
ber of candidate Wnt targets (Table 1) (H Hi-
kasa and SY Sokol, unpubl.). Among these are
Wnt pathway components and modulators,
such as Fz9, Fz10, Kremen 2, and the Axin fam-
ily, highlighting the need for feedback regula-
tion at this developmental stage. A second class
contains many of the previously identified Wnt
targets that are expressed ventrally or posterior-
ly. These genes are Gbx2 (von Bubnoff et al.
1996), the Cdx group (Epstein et al. 1997; Ha-
remaki et al. 2003; Shimizu et al. 2005; Keenan
et al. 2006; Pilon et al. 2006), the Vent/Vox/Ved/
Xom group (Gawantka et al. 1995; Ladher et al.
1996; Onichtchouk et al. 1996; Schmidt et al.
1996; Imai et al. 2001; Ramel and Lekven 2004;
Thorpe and Moon 2004), and the Meis group
(Meis3) (Choe et al. 2009; Elkouby et al. 2010).
The remaining genes include some known bone
morphogenetic protein (BMP)- and fibroblast
growth factor (FGF)-inducible genes, reiterating
the importance of the cross talk between these
pathways, and novel putative Wnt targets (Table
1). Whereas some of these genes may be activat-
ed indirectly, Meis3, Gbx2, Cdx4, and Vent1/2
are known to contain functional TCF-binding
sites in their promoters that are required for Wnt
responsiveness (Haremaki et al. 2003; Li et al.
2009; Elkouby et al. 2010; Hikasa et al. 2010).
Supporting these findings, a complementary
analysis revealed a similar list of genes that are
inhibited in ventral mesoderm by Dkk1 (Table
1) (Hufton et al. 2006).
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The Cdx genes, a group of four conserved
vertebrate homologes of Drosophila caudal,
have been widely implicated in posterior devel-
opment (Northrop and Kimelman 1994; Isaacs
et al. 1998; Pillemer et al. 1998; van den Akker
et al. 2002; Shimizu et al. 2005, 2006; Faas and
Isaacs 2009; Young and Deschamps 2009; Young
et al. 2009; Beck and Stringer 2010). Loss of the
Cdx4 gene function in the zebrafish mutant ku-
gelig shows its essential role in posterior develop-
ment (Davidsonetal.2003).Thepromoterofthe
Xenopus and mammalian Cdx4 gene is Wnt in-
ducible and contains multiple TCF/LEF binding
sites (Haremaki et al. 2003; Shimizu et al. 2005;
Pilon et al. 2006). Up-regulation of Cdx genes
causes the anterior shift of posterior markers in
Xenopus and zebrafish (Isaacs et al. 1998; Shimi-
zu et al. 2005; Faas and Isaacs 2009). Similar to
Cdx genes, Vent family proteins (Vent/Vox/Ved/
Xom) in Xenopus and zebrafish are homeodo-
main-containing transcriptional repressors that
promote ventroposterior fates by suppressing
organizer genes such as bozozok (in zebrafish),
chordin, and goosecoid (Schmidt et al. 1996;
Melby et al. 1999, 2000; Imai et al. 2001; Ramel
and Lekven 2004; Sander et al. 2007). Inactiva-
tion of Vent genes results in a severe loss of ven-
troposterior structures and enhanced dorsoan-
terior fate, similar to the Wnt8 knockdown
(Ramel and Lekven 2004; Sander et al. 2007).
Together, these findings show that the Wnt path-
way controls posterior development through
multiple gene targets.

Putative Wnt target genesthat are involved in
anteroposterior patterning differ from the early
b-catenin targets that mark the Spemann orga-
nizer region. These organizer-specific genes in-
cludeXenopusSiamois(Lemaireetal.1995;Bran-
nonetal.1997;Fanetal.1998)andTwin(Laurent
et al. 1997), zebrafish Bozozok/dharma/nieuw-
koid (Koos and Ho 1998; Yamanaka et al. 1998;
Fekany et al. 1999), Xnr3 (Smith et al. 1995),
Xnr5/6 (Takahashi et al. 2000; Yang et al. 2002)
and several Wnt antagonists: Frzb/Sfrp3 (Leyns
et al. 1997), Dkk1 (Glinka et al. 1998), Crescent
(Shibata et al. 2000), Cerberus (Bouwmeester
et al. 1996), Shisa (Yamamoto et al. 2005), as
well as other genes listed in Table 2. The dif-
ference between the early and late targets for

the Wnt pathway corresponds to the switch
between stage-specific Wnt signaling mecha-
nisms that are critical for vertebrate axis speci-
fication. For additional information about Wnt
targets in different experimental systems, the
reader is referred to Roel Nusse’s Wnt Win-
dow (http://www.stanford.edu/group/nusse
lab/cgi-bin/wnt/target_genes).

REGULATION OF TCF PROTEIN FUNCTION
DURING AXIS SPECIFICATION

How does Wnt signaling lead to target gene ac-
tivation during anteroposterior patterning? A
critical event seems to be TCF3 phosphorylation
by HIPK2 allowing one to derepress the target
genes (Hikasa et al. 2010; Sokol 2011), although

Table 2. Putative Wnt targets during dorsoventral axis
specification

Genes activated by

maternal b-catenin References

Siamois Lemaire et al. 1995; Brannon
et al. 1997; Fan et al. 1998

Twin Laurent et al. 1997
Xnr3 Smith et al. 1995
Goosecoid Blumberg et al. 1991; Cho

et al. 1991
Cerberus Bouwmeester et al. 1996
Chordin Sasai et al. 1994
Crescent Shibata et al. 2000; Shibata

et al. 2001
Noggin Smith and Harland 1992
Xlim-1 Taira et al. 1994
Xnr5/6 Takahashi et al. 2000; Yang

et al. 2002
Xnot1 von Dassow et al. 1993
Shisa Yamamoto et al. 2005
Dkk1 Glinka et al. 1998
Frzb Leyns et al. 1997
Frizzled 8 Deardorff et al. 1998; Itoh

et al. 1998a
Bozozok Koos and Ho 1998; Yamanaka

et al. 1998; Fekany et al.
1999 (zebrafish-specific,
also known as Dharma and
Nieuwkoid)

Known antagonists of Wnt and BMP signaling are shown

in bold.
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in some cases TCF3 is likely to function in a
Wnt-independent manner (Cole et al. 2008;
Gribble et al. 2009). Homeodomain-interacting
protein kinases (HIPKs) have been shown to
function in a context-dependent manner in re-
sponse to Wnt signaling (Wei et al. 2007; Lee
et al. 2009; Louie et al. 2009; Kim et al. 2010).
Loss-of-function studies reveal that HIPK2 is
required in vivo for Wnt8-dependent ventro-
posterior development and antagonizes the
function of TCF3 in axis specification (Hikasa
et al. 2010). Besides HIPK2, TCF3 phosphory-
lation requiresb-catenin. TCF3 with a mutation
that disrupts b-catenin binding is not phos-
phorylated (Hikasa et al. 2010). Thus, b-cate-
nin appears to act by providing a scaffold
for TCF3 phosphorylation by HIPK2. This is a
novel function of b-catenin that differs from its
commonly proposed role as transcriptional co-
activator (Behrens et al. 1996; van de Wetering
et al. 1997; Cavallo et al. 1998; Daniels and
Weis 2005). Although TCF3 phosphorylation
has been shown to require LRP6 activity and
GSK3 inhibition (Hikasa and Sokol 2011), the
mechanistic role of GSK3 in HIPK2 activation
remains a mystery.

Nemolike kinase (Nlk) has been previously
reported to phosphorylate TCF proteins (Ishitani
et al. 1999; Meneghini et al. 1999) and is a positive
regulator of Wnt8 signaling in anteroposterior
patterning in zebrafish embryos (Thorpe and
Moon 2004). In mammalian cells, Nlk and
HIPK2 have been shown to regulate the stability
of Myb oncoprotein in response to Wnt1 (Kanei-
Ishii et al. 2004), indicating that these kinases
might also function together during axis specifi-
cation. The pathway leading to TCF regulation in
vertebrates is reminiscent of Wnt signaling in
C. elegans, because LIT-1, a homolog of Nlk,
and WRM-1, a b-catenin paralog, phosphory-
lates POP-1/TCF to enhance its nuclear export,
leading to transcriptional derepression (Roche-
leau et al. 1997, 1999; Meneghini et al. 1999; Lo
et al. 2004). Because POP-1 plays a dual role in
gene target regulation, the reader is referred to
other reviewsforadditional information (Phillips
and Kimble 2009; Sokol 2011).

Chromatin precipitation analysis has shown
that phosphorylated TCF3 is removed from

target promoters, resulting in gene activation
(Hikasa et al. 2010). Subsequent experiments
showed that Vent2 gene activation is accompa-
nied by the removal of TCF3 from the promoter
and its replacement by TCF1, an activator form
of TCF that is resistant to HIPK2-mediated
phosphorylation (Hikasa and Sokol 2011).
This finding strongly supports the view that
the four vertebrate homologs of TCF, expressed
in a tissue-specific manner (Molenaar et al.
1998; Dorsky et al. 1999, 2003; Konig et al.
2000; Roel et al. 2003; Veien et al. 2005), play
diverse roles in Wnt signaling and axis specifi-
cation (Hamilton et al. 2001; Houston et al.
2002; Roel et al. 2002; Liu et al. 2005; Standley
et al. 2006). Although both TCF3 and TCF1 can
bind b-catenin and Groucho corepressors
(Roose et al. 1998; Brantjes et al. 2001), the
two proteins appear to function very differently.
TCF3 serves exclusively as a transcriptional re-
pressor, whereas TCF1 is a transcriptional acti-
vator (Kim et al. 2000; Gradl et al. 2002; Hous-
ton et al. 2002; Merrill et al. 2004; Liu et al. 2005;
Nguyen et al. 2006; Gribble et al. 2009; Hikasa
and Sokol 2011). Additional studies are needed
to explain the difference in the activity of TCF1
and TCF3, which is likely caused by a distinct set
of interacting partners.

PATHWAY SWITCH MECHANISMS

Whereas the early dorsal accumulation ofb-cat-
enin is essential for the activation of organizer
genes, it is later followed by the stabilization of
b-catenin ventrally (Kiecker and Niehrs 2001;
Schohl and Fagotto 2002; Hikasa et al. 2010).
This reversed distribution of b-catenin corre-
lates with the ventroposterior expression of
Wnt8 (Christian et al. 1991a,b; Kelly et al.
1995; Lekven et al. 2001) and dorsoanterior ex-
pression of several Wnt antagonists in both Xen-
opus and zebrafish (Fig. 2). Thus, a likely expla-
nation for this change is that dorsal b-catenin
stimulates the transcription of pathway antago-
nists, such as Dkk1, Shisa, FrzB, and, likely, Axin
family proteins (Leyns et al. 1997; Glinka et al.
1998; Yamamoto et al. 2005). The negative feed-
back from Wnt antagonists decreases b-
catenin in the dorsoanterior region, whereas
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ventroposterior activity of Wnt8 up-regulates
b-cateninventrally. In agreement with this mod-
el, the increased level of b-catenin in ventropos-
terior tissues relies mostlyon Wnt8 activity, rath-
er than dorsally derived signals (Hikasa et al.
2010).

Although the molecular cause for the switch
from early dorsal Wnt signaling to late ventro-
posterior Wnt signaling has not yet been iden-
tified, the gene targets for each round of signal-
ing appear to be very different. A number of
questions remain to be answered. (1) What pre-
vents late Wnt targets from being activated early
at the dorsal side? (2) Why are the early targets
silent ventrally at gastrulation whenb-catenin is
stabilized in response to Wnt8 signals at later
stages? A possible explanation of this context
dependence is related to epigenetic changes in
chromatin that underlie the developmental
control of transcription (Li 2002; Kouzarides
2007; Ng and Gurdon 2008; Akkers et al. 2009;
Xu et al. 2010). A plasmid reporter for the Sia-
mois gene failed to respond to a constitutive TCF
activator after gastrulation (Darken and Wilson
2001), suggesting that the stage-dependent reg-
ulation of target genes depends on some down-
stream components of the pathway. Moreover,
b-catenin can modulate histone methylation of
poised genes, indicating local epigenetic chang-
es in chromatin (Blythe et al. 2010). Thus, ven-
troposterior Wnt targets, such as Vent or Cdx,
may be poised for activation at a later time, pre-
dicting the existence of epigenetic differences in
the chromatin state that are critical for axis spec-
ification.

Another explanation is that functionally di-
verse vertebrate TCF proteins are responsible for
the early to late transition in Wnt target specific-
ity. Besides the distinct roles of TCF proteins as
discussed above, the switch from early to late
Wnt signaling can be linked to the phosphory-
lation of TCF by Wnt8/HIPK2, attenuating tar-
get DNA binding. This takes place only after
the beginning of gastrulation, likely depending
on a factor that becomes available after the onset
of zygotic transcription. Notably, Wnt8/HIPK2
signal can trigger the phosphorylation of TCF3,
TCF4, and Lef1 (but not TCF1), owing to the
conservation of the HIPK2 phosphorylation

sites. Thus, context-dependent activation of ear-
ly and late Wnt target genes may be explained by
the opposing action of tissue-specific TCF pro-
teins and their distinct response to Wnt8-medi-
ated phosphorylation (Sokol 2011). Whether
this explanation is correct remains to be experi-
mentally tested.

CROSS TALK WITH OTHER PATHWAYS

Organizer-derived posteriorizing signals reach
neuroectoderm during gastrulation to specify
the anteroposterior axis (Nieuwkoop 1952; Do-
niach et al. 1992; Holowacz and Sokol 1999).
Besides Wnt signaling, this process requires ad-
ditional pathways, such as BMP and FGF signal-
ing. The region- and stage-specific integration
of distinct signals contributes to the differential
selection of pathway targets that is crucial for
the establishment of embryonic axes. The best
known examples are the cross talk between the
Wnt pathway and the BMP pathway in the ven-
troposterior region (Itasaki and Hoppler 2010)
or FGF/IGF (insulinlike growth factor) receptor
tyrosine kinase signaling dorsally and posteri-
orly (Schohl and Fagotto 2002; Pera et al. 2003;
Kudoh et al. 2004; Marchal et al. 2009).

Both BMP and Wnt signaling are involved
in setting up ventroposterior gene expression in
vertebrate embryos (Hoppler and Moon 1998;
De Robertis and Kuroda 2004; Schier and Talbot
2005). The synergistic function of Wnt8 and
BMP4 in ventral mesoderm patterning has
been first shown in Xenopus embryos (Hoppler
and Moon 1998) and confirmed by genetic
studies in zebrafish. Reduced Vent expression
in zebrafish embryos depleted of b-catenin or
containing a mutation in the Wnt8 gene (Ramel
and Lekven 2004; Bellipanni et al. 2006) indi-
cates a requirement for the Wnt pathway in Vent
activation. The Wnt8 and Swr (Bmp2) double
mutants display a progressive reduction of Vent
gene expression and a concomitant expansion
of the dorsal domain (Ramel and Lekven 2004;
Ramel et al. 2005). The synergy between BMP
and Wnt signaling has been documented in
many other developmental processes, including
bone, kidney, limb, and tooth development
(Perantoni 2003; Tucker and Sharpe 2004;

Wnt Signaling in Vertebrate Axis Specification

Cite this article as Cold Spring Harb Perspect Biol 2013;5:a007955 9

 on November 20, 2024 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


Hartmann 2006; Yokoyama 2008; Itasaki and
Hoppler 2010).

In contrast to the BMP pathway that is active
in the ventral region of the blastula embryo, FGF
signaling seems to be essential for dorsal poste-
rior patterning (Amaya et al. 1991; Cox and
Hemmati-Brivanlou 1995; Lamb and Harland
1995; Holowacz and Sokol 1999; Schohl and
Fagotto 2002; Kudoh et al. 2004; Marchal et al.
2009; Martin and Kimelman 2009). Many Wnt-
inducible genes, including Cdx4, Xpo, Meis, and
Marginal coil (Xmc), have been previously iden-
tified as FGF-responsive genes (Table 1) (Amaya
et al. 1993; Frazzetto et al. 2002; Aamar and
Frank 2004; Chung et al. 2004; Keenan et al.
2006). In studies using dominant–negative
FGF receptor constructs and specific morpho-
lino oligonucleotides, FGF signaling has been
reported to be essential for the Wnt pathway
to activate its targets during anteroposterior
axis development (McGrew et al. 1997; Mae-
gawa et al. 2006; Burks et al. 2009). The cross
talk between the Wnt and the FGF pathway has
been preserved in many other models, including
brain patterning, limb formation, tail regenera-
tion, and lung and kidney morphogenesis
(Martinez et al. 1999; Schedl and Hastie 2000;

Kawakami et al. 2001; Lupo et al. 2002; Villa-
nueva et al. 2002; Lin and Slack 2008).

The mechanisms underlying these exam-
ples of pathway cross talk are being revealed. In
some cases two pathways operate sequentially,
with one pathway inducing the other. For exam-
ple, FGF8a signaling transcriptionally activates
Wnt8 to promote neural crest development (Fig.
3A) (Hong et al. 2008). Alternatively, two path-
ways may function in parallel, when a target pro-
motercontains transcription factor binding sites
that are specific for each pathway (Fig. 3B). Both
Wnt and BMP signals promote ventral fate and
directly activate the expression of Vent genes.
The Vent2 promoter contains a unique Wnt-re-
sponsive TCF-binding site and the Smad and
OAZ sites needed for the BMP response (Candia
et al. 1997; Hata et al. 2000; Karaulanov et al.
2004; Hikasa et al. 2010). Mutagenesis of indi-
vidual promoterelements indicates that the Wnt
and the BMP pathways separately control the
Vent2 gene (Hikasa et al. 2010).

Similarly, a combination of Wnt and FGF
signals leads to a robust expression of Cdx4 in
Xenopus and zebrafish (Shimizu et al. 2005;
Keenan et al. 2006). The regulatory region of
the Cdx4 gene contains multiple TCF and Ets
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Figure 3. Cross talk between Wnt, BMP, and FGF pathways during axis specification. (A) Sequential interaction
of two pathways. FGF8a induces the expression of Wnt8 transcripts to promote neural crest formation in
Xenopus neurulae. (B) Parallel interaction of two pathways at a target promoter (Vent2). Vent2 is up-regulated
by BMP proteins acting through Smad1 interacting with the Smad binding site (SBS), whereas Wnt proteins act
through TCF and the TCF-binding site (TBS). Both signals are responsible for the maximal activation of Vent2.
(C) The cytoplasmic integration of two pathways. GSK3 phosphorylates the activated form of Smad1, marking it
for degradation. Wnt proteins signal to inhibit or sequester GSK3, thereby promoting BMP target gene activation.
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DNA-binding elements that are located in close
proximity (Haremaki et al. 2003). This struc-
ture of the Cdx4 regulatory region explains the
observation that Cdx4 is a direct target of both
Wnt and FGF pathways, because Ets factors are
known to regulate gene expression downstream
from FGF (Nentwich et al. 2009; Znosko et al.
2010). This transcriptional cross talk does not
preclude a more close interaction, in which two
transcription factors interact physically, result-
ing in a synergistic response (Fig. 3B). The phys-
ical interaction of LEF1 with Smad3 and Smad4
may help explain the cross talk between Wnt
and TGFb signaling, relevant to the specifica-
tion of the primary dorsoventral axis by early
Wnt signaling (Sokol and Melton 1992; Sokol
1993; Labbe et al. 2000; Nishita et al. 2000).

A direct cytoplasmic mechanism has been
proposed for Wnt-BMP and FGF-BMP pathway
cross talk. Smad1 proteins are phosphorylated
by MAPK in response to FGF and IGF, targeting
Smad1 for degradation by the proteasome (Mas-
sague 2003; Pera et al. 2003; Sapkota et al. 2007).
Similarly, GSK3 phosphorylates Smad1 and this
phosphorylation can be inhibited by Wnt signal-
ing in tissue culture cells (Fig. 3C) (Fuentealba
et al. 2007; Sapkota et al. 2007). These phosphor-
ylation events may provide specific interfaces for
pathway cross talk. Nevertheless, this mode of
regulation may not be the main mechanism for
Wnt8-mediated anteroposterior axis determi-
nation, because no significant change in the
amount of active Smad1 (phosphorylated at
the carboxyl terminus) is observed in Xenopus
embryos with altered Wnt8 activity (Hikasa et al.
2010). On the contrary, the requirement for the
TCF-binding site in Vent2 reporter activation
and the regulation of TCF by Wnt signaling re-
iterates the importance of TCF regulation for
Wnt signaling (Hikasa et al. 2010).

Besides FGF and BMP signaling, there are
examples of Wnt pathway cross talk with other
signaling pathways, especially those linked to
proteasome-mediated protein degradation. The
b-transducin repeat-containing protein (bTrCP)
is an E3 ubiquitin ligase that represents a nodal
point for down-regulation ofb-catenin, Gli, and
NF-kB levels (Liu et al. 1999a; Maniatis 1999).
As Wnt signaling has been shown to up-regulate

bTrCP activity in a negative-feedback loop
(Spiegelman et al. 2000), the effect on the Hh
and NF-kB signaling may be expected. Also, the
Wnt pathway negatively regulates the activity of
GSK3 (Cook et al. 1996; Itoh et al. 1998b; Tael-
man et al. 2010), an enzyme that has been im-
plicated in the regulation (e.g., degradation) of a
large number of proteins, in addition to b-cat-
enin (Zhou et al. 2004; Xu et al. 2009). These
findings suggest the interaction of the Wnt path-
way with many signaling pathways, which is like-
ly to be better understood in the course of future
studies.

CONCLUDING REMARKS

Recent studies support the view that Wnt signal-
ing plays a dual role in vertebrate axis specifica-
tion. Initially, the maternally encoded compo-
nents of the pathway help to establish the
dorsoventral axis, whereas at a later stage the
zygotic Wnt pathway is involved in anteroposte-
rior axis specification. These two roles are medi-
ated by two distinct sets of specific targets, yet the
underlying mechanisms for target selection are
unclear. Further work is needed to understand
the role of maternally produced Wnt ligands in
early axis determination in the context of the
abundant evidence for the involvement
of microtubule-dependent trafficking in the
dorsal accumulation of b-catenin. Although
HIPK2-mediated phosphorylation of TCF3 is a
major route for anteroposterior target activa-
tion, this phosphorylation is undetectable be-
fore gastrulation, suggesting an alternative
mechanism forearly target derepression (Hikasa
et al. 2010). Other possibilities should also be
explored, given that b-catenin can use other co-
factors, besides TCFs, for transcriptional control
(Olson et al. 2006; Takao et al. 2007; Abu-Remai-
leh et al. 2010). Future research will be driven by
the need to better understand pathway target
selection and the contribution of Wnt5 and
Wnt11 signaling to body-axis specification.
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