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ABSTRACT

Audio captioning aims at generating a natural sentence to describe
the content in an audio clip. This paper proposes the use of a pow-
erful CRNN encoder combined with a GRU decoder to tackle this
multi-modal task. In addition to standard cross-entropy, reinforce-
ment learning is also investigated for generating richer and more
accurate captions. Our approach significantly improves against the
baseline model on all shown metrics achieving a relative improve-
ment of at least 34%. Results indicate that our proposed CRNN-
GRU model with reinforcement learning achieves a SPIDEr of
0.190 on the Clotho evaluation set'. With data augmentation, the
performance is further boosted to 0.223. In the DCASE challenge
Task 6 we ranked fourth based on SPIDEr, second on 5 metrics in-
cluding BLEU, ROUGE-L and METEOR, without ensemble or data
augmentation while maintaining a small model size (only 5 Million
parameters).

Index Terms— audio captioning, reinforcement learning, con-
volutional recurrent neural networks

1. INTRODUCTION

Automatic captioning is a challenging task that involves joint learn-
ing of different modalities. For example, image captioning requires
extracting features from an image and combining them with a lan-
guage model to generate reasonable sentences to describe the im-
age. Similarly, video captioning learns features from a temporal
sequence of images as well as audio to generate captions. How-
ever, audio captioning does not attract much attention [1], unlike
in the image and video fields. By its nature, captioning is a novel
multi-modal task that captures the fine details within an auditory
scene with natural language (text). Unlike other tasks such as sound
or acoustic event detection, which only focuses on narrow single-
label estimation of an event, audio captioning is concerned with
producing rich sentences appropriately and precisely describing an
audio. Audio captioning has great potential in real-world applica-
tions, such as audio surveillance, automatic content description and
content-oriented machine-to-machine interaction.

Initial work in audio captioning has been done in [1], which
utilized the commercial ProSound Effects [2] audio corpus as a
proof of concept. The paper utilized an encoder-decoder archi-
tecture containing a three-layer bidirectional gated recurrent unit
(BiGRU) encoder and a two-layer BIGRU decoder. An attention

IThe code and trained models are available at https://github.
com/wsntxxn/DCASE2020T6
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pooling is added to summarize the encoder sentence. Subsequent
work in [3] investigated audio captioning within the scope of Chi-
nese captioning, firstly proposing a public captioning corpus, focus-
ing on dialogues within a hospital setting. Their results showed that
within a limited domain, audio captions can indeed be generated
by a single layer encoder-decoder GRU network successfully, but
also questioned if commonly utilized metrics for machine transla-
tion can well evaluate the final performance. The main discussion
is that even though their approach achieves measurably near-human
performance via objective metrics, the generated sentences are of-
ten less useful according to human evaluation.

Similar to other text generation tasks like machine translation
and image captioning, exposure bias also exists in audio caption-
ing. Neural network-based models are typically trained in “teacher
forcing” fashion, meaning they aim to maximize the likelihood of
a future ground-truth word given the current ground-truth word.
However, ground-truth annotations are only available during train-
ing, while during inference, the model can solely rely on its own
predicted current word to infer the next word. This leads to an error
accumulation during test-time. Another problem in text generation
tasks is a mismatch between the training objective and evaluation
metric. Generative models are typically evaluated by discrete met-
rics such as BLEU [4], ROUGE-L [5], CIDEr [6] or METEOR [7].
However, these non-differentiable metrics cannot be directly opti-
mized using the standard back-propagation approach.

Previous studies have shown that the application of Reinforce-
ment Learning (RL) can partially circumvent exposure bias while
optimizing the discrete evaluation metrics at the same time. RL is
first proposed to train natural language generation models in [8]. It
takes a generative model as an agent and treats words and context
as an external environment. The model parameters define a pol-
icy, and the choice of the current generated word corresponds to
its action. The reward comes from evaluation scores (BLEU, ME-
TEOR, CIDEr etc.) of the sampled sentence. Policy-gradient [9]
is used to estimate the gradient of the agent parameters using the
reward. Work in [10] improves this method by using rewards from
greedy-sampled sentences as the baseline to reduce the high vari-
ance of rewards. Subsequent work in [11] also adopts actor-critic
methods [12] to estimate the value of generated words instead of
sampling from the action space. In this paper, we explore the use
of the self-critical sequence training (SCST) approach (proposed
in [10]) for audio captioning.

This paper is structured as follows, in Section 2 we put forth our
CRNN-based encoder-decoder approach to audio captioning. Then
in Section 3, the experimental setup, including front-end features
and model parameters, are shown. Our results and analysis are dis-
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Figure 1: Our proposed encoder-decoder architecture. The encoder is a CRNN model which outputs a fixed-sized 256 dimensional embedding
v after a global average pooling layer (GAP). A convolution block refers to an initial batch normalization, then a convolution, and lastly, a
LeakyReLU (slope —0.1) activation. The numbers in each block represent the output channel size and the kernel size. For example, 732, 3 x
3” means the convolution layer has 32 output channels with a kernel size of 3 x 3. All convolutions use padding in order to preserve the input

size. Then a GRU decoder utilizes this audio embedding v or embedding of the word S; at each time-step, to predict the next word S;H.

played in Section 4. Lastly, in Section 5 we provide summarization
and potential insights from the current work.

2. APPROACH

Similar to previous audio captioning frameworks [3], our approach
follows a standard encoder-decoder model (see Equation (1)).

v = Enc(X)

1
., S7] = Dec(v) )

[Sia N

The encoder (Enc) is fed an audio-spectrogram (X) and pro-
duces a fixed-sized vector representation v, which the decoder
(Dec) uses to predict the caption sentence. Specifically, the decoder
generates a single word-token S; for each time-step ¢ up until an
end of sentence (KEOS>) token is seen (see Figure 1).

In audio captioning, decoding differs between training and eval-
uation stages:

T
txe(0; S, v) = =y log p(S¢[6;v)

t=1

@

During training, where transcriptions are available, Dec gen-
erates word-tokens given the embedding v and human-annotated
data S, supervised by a cross-entropy (XE) loss (see Equation (2)).
During evaluation and testing, no transcriptions are available; thus
word-tokens are sampled from the decoder given the audio embed-
ding v. From this description, it is evident that the quality of v
directly affects the generated sentence quality. Thus, our approach
mainly diverges from previous approaches in two ways: the encoder
architecture and the loss function.

Previous encoder models (GRU) might be insufficient to pro-
duce a robust vector representation, thus we replace the standard
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GRU encoder with a robust convolutional recurrent neural network
(CRNN). Our framework can be seen in Figure 1.

Moreover, standard XE training has its potential downsides. For
one, the criterion only compares single word-tokens and neglects
context information. Second, since each word is treated individu-
ally, syntactically incorrect sentences can be generated. Third, op-
timizing XE inevitably leads to monotonous sentences, because the
model is required to precisely imitate a sentence word by word,
instead of allowing semantically similar, but different worded sen-
tences.

We employ reinforcement learning for audio captioning. Re-
inforcement learning allows us to directly back-propagate a metric
(e.g., BLEU or CIDEr) in the form of a reward. Formally we train
the model to minimize the negative reward of a single sampled sen-
tence S’

Lr(0;v) = —7(S"), 8" ~ p(S|6; V) 3)

where §” = [S1, S5, ..., .S7]. By incorporating the policy gradient
method with baseline normalization, the parameter gradients can be
estimated as follows:

Vol(0;v) = —(r(S') = b)Vologp(S'|0; v), " ~ p(S'|6;v)
(C))
here b is a pre-defined baseline normalization constant to reduce the
high variance brought by sampling [12]. We set b as the greedy de-
coding reward because of its effectiveness in image captioning [10].

2.1. Models

Encoder Our proposed encoder is a CRNN model, which has
seen success in localizing sound events [13, 14]. The architec-
ture consists of a five-layer CNN (utilizing 3 x 3 convolutions),
summarized into three blocks, with L4-Norm pooling after each
block. The CNN blocks subsample the temporal dimension by a
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factor of 4. A BiGRU is attached after the last CNN output, en-
hancing our model’s ability to localize sounds accurately. At last,
we use a global average pooling (GAP) layer in order to remove
any time-variability to a single, time-independent representation
v € R*5. The encoder has 679k parameters, making it compa-
rably light-weight while only using 2.7 MB on disk.

Decoder In the context of audio captioning, a decoder takes a
fixed-sized embedding and aims to produce a sentence. We use a
single-layer GRU with 512 hidden units as our decoder model.

3. EXPERIMENTS

3.1. Dataset

The challenge provides Clotho [2, 15] for the audio captioning task.
It contains a total of 4981 audio samples, where the duration is uni-
formly distributed between 15 to 30 seconds. All audio samples are
collected from the Freesound platform. Five native English speak-
ers annotate each sample; thus, 24905 captions are available in total.
Captions are post-processed to ensure each caption has eight to 20
words, and the caption does not contain unique words, named enti-
ties or speech transcription. The dataset is officially split into three
sets, termed as development, evaluation, and testing, with a ratio
of 60%-20%-20%. In the challenge, the development and evalua-
tion sets are used for training our audio captioning model while the
testing set is for evaluating the model.

3.2. Data pre-processing

We extract 64-dimensional log-Mel spectrogram (LMS) as our de-
fault input feature. Here a single frame is extracted via a 2048 point
Fourier transform every 20 ms with a Hann window size of 40 ms.
This results in a X € R7*” log-mel spectrogram feature for each
input audio, where D = 64 and T is the number of frames. More-
over, the input feature is normalized by the mean and standard de-
viation of the development set. For each caption in the dataset, we
remove punctuation and convert all letters to lowercase to reduce the
vocabulary size. To mark the beginning and the end of sentences,
we add special tokens “<BOS>" and “<EOS>" to captions. The
available training data is split into a model training part, consisting
of 90% of available data and a held-out 10% validation set.

3.3. Evaluation metrics

A total of eight objective metrics are utilized to evaluate our model-
generated captions: BLEU@1-4 grams [4], METEOR [7], Rouge-
L [5], CIDEr [6] and SPICE [16]. A further SPIDEr metric is cal-
culated as the mean of CIDEr and SPICE.

3.4. Training details
We submit predictions from four models to the challenge:

e CRNN-B (Base). This is our baseline CRNN-GRU encoder-
decoder model.

e CRNN-W (Word). Here, the decoder word-embeddings are
initialized from Word2Vec word-embeddings trained on the de-
velopment set captions.

o CRNN-E (Ensemble). Here we fuse CRNN-B and CRNN-W
results on output level.

e CRNN-R (Reinforcement). Here we finetune CRNN-W using
reinforcement learning.
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The details for each submission are elaborated in the following.

XE training For XE training, teacher forcing is used to accelerate
the training process. We evaluate the model on the validation set
at each epoch and select the best model according to the highest
BLEUY score. We train the model for 20 epochs and use Adam [17]
optimizer with an initial learning rate of 5 x 10~*. The batch size
is 32. According to whether Word2Vec is used for word embedding
initialization, we get CRNN-B and CRNN-W respectively.

Ensemble In order to further enhance performance we merge the
outputs of CRNN-B and CRNN-W on word-level. The encoded
audio representation v is fed to both CRNN-B and CRNN-W to
obtain two-word probabilities p; and p2. We ensemble the two
models, which means the current word is decoded according to the
mean of p; and p2. Then the current word embedding is fed to
CRNN-B and CRNN-W to obtain the next word until <EOS> is
generated.

Reinforcement The CRNN-R approach is first initialized by
training a CRNN-W model using the standard XE criterion. This
model is then finetuned using reinforcement learning, as seen in
Section 2, by optimizing the CIDEr score using policy gradient with
baseline normalization. Although [21] optimized SPIDEr by pol-
icy gradient in image captioning, we choose CIDEr as the train-
ing objective because CIDEr optimized model trained by SCST
achieved better performance [10]. CIDEr measures sentence sim-
ilarity through representation by n-gram TF-IDFs while BLEU fo-
cuses on “hard” n-gram overlaps. Such a ”soft” similarity (CIDEr)
may be a better optimization objective compared with BLEU under
the condition that one audio corresponds to several semantic simi-
lar sentences, possibly composed of different n-grams. The model
is trained for 25 epochs using Adam optimizer with a learning rate
of 5 x 107", Similar to the practice in XE training, we report the
best model based on the CIDEr score on the validation set.

4. RESULTS

4.1. Results

Our results on the Clotho evaluation set are displayed in Table 1
and compared with the DCASE challenge baseline, which consists
of a three-layer BIGRU encoder and two-layer BIGRU decoder. As
it can be seen, our initial CRNN-B model largely outperforms the
baseline, indicating that a potent encoder is indeed beneficial to-
wards captioning performance. By initializing word embeddings
with Word2Vec trained on the development set captions, CRNN-W
gets a slight performance improvement in most metrics compared
with CRNN-B, except CIDEr and METEOR. CRNN-E improves
performance against both CRNN-B and CRNN-W. Our best per-
forming model is CRNN-R. Interestingly, although CRNN-R is op-
timized towards CIDEr score, the relative improvement in BLEU3
and BLEU4 are more significant than CIDEr. The improvement in
ROUGE., and METEOR is not as significant as other metrics. How-
ever, CRNN-R does achieve the best performance in terms of all
evaluation metrics, which validates the effectiveness of reinforce-
ment learning for audio captioning.

With regards to the official challenge evaluation, our CRNN-
R achieves the fourth place in DCASE2020 task 6 on the Clotho
testing set. However, there is only a slight difference between our
submission and the submission ranking the third (0.194 / 0.196).
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Method Model ‘ ‘ BLEU; BLEU, BLEUs; BLEUs ROUGE; CIDEr METEOR SPICE SPIDEr
Baseline GRU 0.389 0.136 0.055 0.015 0262 0.074 0.084  0.033 0.054
1 CRNN-B 0.457 0.248 0.143 0.083 0.306 0.203 0.135 0.081 0.142
2 CRNN-W 0.459 0.253 0.151 0.086 0314  0.192 0.133  0.083 0.138
3 CRNN-E 0.479 0.274 0.167 0.099 0.328  0.232 0.143  0.088 0.160
4 CRNN-R 0.529 0.335 0.226 0.146 0352  0.280 0.149  0.099 0.194
Post-challenge ~ CRNN-R-SpecAug 0.561 0.341 0.244 0.156 0.368  0.338 0.162  0.108 0.223
Runner-up [18] CNN-Transformer 0.532 0.341 0.227 0.149 0.354  0.340 0.157 0.108 0.224
Third [19] CNN-LSTM 0.439 0.285 0.177 0.107 0325 0.252 0.148  0.091 0.172

Table 1: Performance on the evaluation set of several submissions. (1) CRNN-GRU basline (2) with Word2Vec embedding intialization
(3) ensemble of (1) and (2) (4) finetuning via reinforcement learning (CIDEr Loss). Post-challenge result: training of (4) with added data
augmentation. Best performance is highlighted in bold. Winner results are not included since we only compare single model performance but

the winner ensembles 20 models to get the result [20].

If we take a look at the overall metrics (excluding SPIDEr), our
submission ranks second on four metrics (BLEU,.3 and ROUGE.),
ranks third on three metrics (BLEU4, METEOR and SPICE). Only
for CIDEr, our submission ranks fourth. After the official challenge
ended, we further experimented with data augmentation, namely
spectrogram augmentation (SpecAug) [22]. Time masking and fre-
quency masking are set with 7' = 50, FF = 10. After adding
SpecAug to our training strategy and retraining our CRNN-R for
200 epochs, the SPIDEr score is further boosted to 0.223, which is
close to the submission ranking the second [18] (see Table 1).

It should be noted that our model is quite light-weight compared
with other well-performing systems. While achieving a competitive
result, our system only requires 5 Million parameters. By contrast,
many other systems are in need of as many as 32 Million parameters
( due to multiple models in ensemble) to achieve high performance.

4.2. Analysis

Generally, an encoder-decoder based architecture for audio caption-
ing requires an effective encoder to embed audio into a single vec-
tor, and a decoder to generate an accurate description from the audio
embedding. We incorporated CRNN which performs well in sound
event detection (SED) as our encoder. Explicit training methods are
explored in the top two submissions. [20] uses the multi-task learn-
ing mechanism, namely predicting caption and meta keywords, to
train an encoder. [18] uses keywords extracted from the provided
references to pretrain an encoder. To train a powerful decoder, we
use reinforcement learning to optimize the evaluation metrics di-
rectly. Other submissions such as [20] add a sentence length pre-
diction task to do multi-task training for the decoder, while [18]
incorporates the transformer model [23] as their decoder. It can
be concluded from the top submissions that information provided
by meta or caption keywords are useful for encoder training with
multi-task learning or explicit pretraining. In comparison, our pro-
posed CRNN-GRU model using reinforcement learning is easy to
train and does not require multiple label-types (e.g., keywords and
metadata).

The relatively low score on CIDEr of our model may stem from
CIDEr’s characteristics. Compared with other metrics which focus
on n-gram overlap, CIDEr calculates a sentence similarity based on
term frequency-inverse document frequency (TF-IDF). Therefore it
attaches more importance on low-frequency words. In our previ-
ous work, we find that our model tends to output general, repetitive
sentences [3]. Even with reinforcement learning, optimizing CIDEr
score in a mini-batch means that the estimated IDF can be inaccu-
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rate without access to the whole dataset reference captions. This
exposure bias leads to bad CIDEr performance.

Lastly, we present an example of reference captions and
our CRNN-R prediction. Even though our prediction accurately
describes the audio event, it is not as detailed as the human annota-
tions. The human annotations may contain specific descriptions like
“vibrating”“buzzing” while our model prediction only generates
“running”. Due to the limited information in audio as well as the
direct optimization towards CIDEr metric, the model chooses to
output a correct, yet general description of the audio events.

Example

Ref 1: a tractor or lawn mower runs its heavily vibrating engine

Ref 2: an engine or a machine of some sort running for the entirety
Ref 3: an engine or a machine runs along continuously

Ref 4: an engine with a heavy vibration coming from a tractor or lawn
mower

Ref 5: a machine is buzzing and people are speaking in the background
Prediction: a machine is running while people are talking in the
background

5. CONCLUSION

In this paper, we propose a novel audio captioning approach uti-
lizing a CRNN encoder front-end as well as a reinforcement learn-
ing framework. Audio captioning models are trained on the Clotho
dataset. The results on the Clotho evaluation set suggest that the
CRNN encoder is crucial to extract useful audio embeddings for
captioning while reinforcement learning further improves the per-
formance significantly in terms of all metrics. Our approach ranked
fourth in the DCASE2020 task 6 challenge testing set with a com-
petitive result on all metrics except CIDEr. Notably, our approach
is the best performing non-ensemble result without data augmen-
tation, with the least parameters (5 Million). By further utilizing
SpecAug data augmentation, we observe an additional boost in re-
gards to the SPIDEr score on the evaluation set from 0.190 to 0.223.
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