
Chapter 6

ANALYSIS OF TOOLS FOR DETECTING
ROOTKITS AND HIDDEN PROCESSES

A. Todd, J. Benson, G. Peterson, T. Franz, M. Stevens and R. Raines

Abstract Rootkits pose a dilemma in forensic investigations because hackers use
them surreptitiously to mislead investigators. This paper analyzes the
effectiveness of online and offline information analysis techniques in de-
tecting rootkits and determining the processes and/or files hidden by
rootkits. Five common rootkits were investigated using a live analysis
tool, five rootkit detection tools (RDTs) and four offline analysis tools.
The experimental results indicate that, while live analysis techniques
provide a surprising amount of information and offline analysis provides
accurate information, RDTs are the best approach for detecting rootkits
and hidden processes.

Keywords: Rootkits, rootkit detection, live analysis, offline analysis

1. Introduction

A rootkit is a program that provides the means to create an unde-
tectable presence on a computer [14]. It is an executable that hides
processes, files and registry values from users and other programs. The
presence of a rootkit can have an adverse effect on the outcome of an
investigation. In legal proceedings, several individuals have claimed ig-
norance of their crimes, instead laying the blame on an unknown hacker
who left a rootkit on their machines [1].

Forensic investigators may detect rootkits using live analysis tech-
niques, rootkit detection tools (RDTs) or by forensically imaging the
drive and performing an offline analysis. Live analysis provides valu-
able, volatile information that may not be available during an offline
analysis of a hard drive, e.g., dynamic data such as running processes
and open ports, which are only available during system operation. How-
ever, when one of the processes on a machine includes a rootkit, the



90 ADVANCES IN DIGITAL FORENSICS III

investigator must question if the results of a live analysis are tainted.
When rootkits are running, the data and processes they have modified
are still in use by the operating system, but this fact is not visible to the
user. In fact, our experiments demonstrate that even if a live response
cannot detect what is hidden, it can still provide an investigator with
details about what was available to the user. This information can also
help the investigator determine what the rootkit was hiding.

RDTs, which detect rootkits and/or files hidden by rootkits, may be
employed as part of a live analysis. However, there are limitations asso-
ciated with any program that attempts to detect rootkits while a rootkit
is running. The fundamental problem is the lack of trust in the operat-
ing system (and system files and functions). Most RDTs cross-compare
information provided by corrupted system calls with system information
gathered by the RDT, identifying anomalies as possible rootkits.

A rootkit hides information by manipulating operating system func-
tion calls. This information cannot be hidden from an offline scan that
does not use the corrupted system calls and searches the entire hard
drive for rootkit signatures. However, using offline analysis to determine
what a rootkit was attempting to hide is much more difficult.

This paper examines the efficacy of live response, RDTs and offline
analysis in detecting rootkits and determining what they conceal. Exper-
iments were conducted on five rootkits: AFXRootkit [22], Vanquish [22],
Hacker Defender [15], FU [22] and FUTo [22], which use both user-
level and kernel-level hiding techniques [9, 14]. The experimental results
demonstrate that live analysis techniques perform better than expected
in rootkit-tainted environments, but rootkits obscure the data enough
to make investigation difficult. Offline analysis can identify all the data
from a hard drive, but finding a rootkit and what it is hiding is nearly im-
possible. Finally, rootkit detectors provide the most information about
a system when a rootkit is running, but the investigator must be willing
to accept some loss of forensic integrity of the hard drive.

2. Related Work

Relatively few experiments have been conducted to measure the ef-
fectiveness of rootkit detection tools (RDTs). Two exceptions are the
studies conducted by Claycomb [6] and CMS Consulting [7].

Claycomb [6] analyzed five publicly-available RDTs (IceSword, Ghost-
Buster, BlackLight, RootkitRevealer, Vice) and one custom RDT (Blue-
stone). These RDTs were tested against three user-level rootkits (Hacker
Defender, AFXRootkit2005, Vanquish) and three kernel-level rootkits
(SonyBMG, FU, FUTo) running on Windows XP and Windows Server



Todd, et al. 91

2003 machines. The study determined that IceSword (v1.12) and Ghost-
Buster had the best detection capabilities; BlackLight and RootkitRe-
vealer had above average but lesser reliability; and Vice and Bluestone
were the least reliable of the RDTs investigated.

The CMS Consulting study [7] analyzed the effectiveness of eight
publicly-available RDTs (IceSword, GhostBuster, BlackLight, Rootk-
itRevealer, Flister, Keensense, Process Guard, GMER) against three
user-level rootkits (Hacker Defender, AFXRootkit2005, Vanquish) and
one kernel-level rootkit (FU). IceSword (v1.18), BlackLight, Keensense,
ProcessGuard and GMER were determined to be 100% effective in de-
tecting the rootkits. Flister, RootkitRevealer and Ghostbuster demon-
strated above average but lesser reliability.

2.1 Rootkits

With the exception of the Claycomb and CMS Consulting studies,
information about rootkit detection is mainly gleaned from chat rooms
and online forums rather than from published articles. Most of the claims
are largely unproven or anecdotal in nature, but the discussions about
rootkit detection and evasion techniques are very valuable. Some of the
prominent contributors are Hoglund [14], Butler [3, 4], BPSparks [3, 4,
28], Rutkowska [23], Rutkowski [24, 25], Levine [17, 18], and individuals
from Microsoft [29] and Symantec [10].

2.1.1 Traditional Rootkit Techniques. Rootkits are cat-
egorized by the techniques they use to hide themselves and their pro-
tected files and applications. Traditional (user-level) rootkits operate
at the same privilege level as user programs; they intercept API calls
and change the outputs of functions by removing references to the files
and processes hidden by the rootkit. This is done by either hooking
the API call, which redirects the function call to a compromised ver-
sion of the function, or by patching the correct function with malicious
code that modifies the correct output before returning the output to the
calling process. Kernel-level rootkits operate in kernel memory space
and are, therefore, protected from user-level programs such as certain
anti-virus scanners and rootkit detectors. Kernel-level rootkits can also
hook API calls, but at the higher privilege level of the kernel. Addition-
ally, a kernel-level rootkit may utilize direct kernel object manipulation
(DKOM) and affect the data structures that track system processes [14].

2.1.2 Modern Rootkit Techniques. Kernel data manipu-
lation, which originated in 2003, is generally considered to be the first
“modern” rootkit technique. Instead of changing kernel code, a mod-



92 ADVANCES IN DIGITAL FORENSICS III

ern rootkit unlinks its process from the PsActiveProcessLinkHead list.
This list is not used by the scheduler, so the hidden process still gets
CPU time. The technique can be detected by comparing the PsActive-
ProcessLinkHead list to a scheduler list (e.g., KiDispatcherReadyList-
Head) [24]. A more sophisticated technique called “Innocent Threads”
evades detection by unlinking from the PsActiveProcessLinkHead list
and having the malicious thread masquerade as one belonging to a le-
gitimate system process (e.g., winlogon.exe) [23].

2.1.3 Advanced Rootkit Techniques. Some of the newest
rootkit techniques have been implemented during the past year. These
include using polymorphic code, using covert channels and subverting
virtual memory. Rootkits with polymorphic code generators allow the
creation of a different binary image for every system on which they are
installed [23]. Covert channel communications permit rootkits to com-
municate with their hidden applications without being detected [27]. Fi-
nally, although rootkits are becoming more proficient at controlling their
execution, they still find it difficult to conceal their code and memory-
based modifications within operating system components. This leaves
them vulnerable to detection by even the most primitive in-memory sig-
nature scans. Virtual memory subversion enables rootkits to control
memory reads by the operating system and other processes, allowing
them to see only what the rootkit wants them to see [3].

2.2 Rootkit Detection

Rootkit detectors are typically categorized into five classes [4]:

Signature-Based Detectors: These detectors scan system files
for byte sequences representing rootkit “fingerprints.”

Heuristic/Behavior-Based Detectors: These detectors iden-
tify deviations from “normal” system patterns or behavior.

Cross-View-Based Detectors: These detectors enumerate sys-
tem parameters in at least two different ways and compare the
results. Typically, this means invoking APIs for information and
using an algorithm specific to the RDT to obtain the same infor-
mation without going through the APIs.

Integrity-Based Detectors: These detectors compare a current
snapshot of the filesystem or memory with a trusted baseline.

Hardware-Based Detectors: These detectors are independent
of the potentially subverted operating system. They typically have



Todd, et al. 93

their own CPU and use Direct Memory Access (DMA) to scan
physical memory for rootkit signatures such as hooks in the System
Service Descriptor Table (SSDT), alterations to kernel functions,
and modifications to key data structures.

3. Experimental Methodology

To determine which of the three analysis techniques (live analysis,
RDTs or offline analysis) provides the most information about rootkit
behavior, three sets of experiments were conducted against six target
hosts. The first set of experiments (live response) involved one system
under test (SUT), the second set (RDTs) involved five SUTs, and the
third (offline analysis) involved four SUTs. A full-factorial design con-
sisting of sixty total experiments was conducted. Five different metrics
were employed. The metrics were designed to capture forensic infor-
mation about rootkits, i.e., what they were concealing from the user in
terms of processes, services, drivers, ports and files.

Table 1. Target host configurations.

Configuration Operating Rootkit Hiding
System Installed Technique

A Windows XP SP2 None n/a
B Windows XP SP2 AFXRootkit (2005) User-level
C Windows XP SP2 Vanquish (0.2.1) User-level
D Windows XP SP2 Hacker Defender (1.0.0r) User-level
E Windows XP SP2 FU (2004) Kernel-level
F Windows XP SP2 FUTo (2006) Kernel-level

3.1 Target Host Configurations

The baseline target host (Configuration A in Table 1) was a clean
installation of Microsoft Windows XP Professional with Service Pack 2
running on a virtual machine using VMWare 5.5. Five publicly avail-
able rootkits were used as the workload to the SUTs, consisting of three
user-level rootkits (AFXRootkit, Vanquish, Hacker Defender) and two
kernel-level rootkits (FU, FUTo). AFXRootkit uses API patching to
hide the resident directory of the executable, as well as files in the direc-
tory, registry keys with the same name as the directory, and processes
owned by programs running from the directory [2]. Hacker Defender
uses API hooking to hide files, processes, registry settings and ports,
as long as they are in the hxdef.ini file. Additionally, it creates a



94 ADVANCES IN DIGITAL FORENSICS III

password-protected backdoor on the host and redirects packets to help
mask the source of traffic for an attack against a third machine [15].
Vanquish uses DLL injection for API hooking to hide all files, services
and registry settings containing the magic string “vanquish.” It also has
a password logging function bundled into the executable [31]. Both FU
and FUTo use DKOM to manipulate the handle table to hide processes;
they may also raise the privileges of processes by manipulating the table.
FUTo, the successor to FU, was created to address certain weaknesses
in IceSword and BlackLight. It evades detection by manipulating the
process handle table without using function calls [26].

Table 2. Experiment Set I.

Experiment Set Live Response SUTs

I-1 Windows Forensic Toolchest [19]

3.2 Experiment Set I (Live Response)

Experiment Set I involved performing a live response on each workload
configuration using one SUT in order to determine the SUT’s effective-
ness in detecting the workload rootkits (Table 2). The SUT used was the
Windows Forensic Toolchest (WFT) [19]. WFT is specifically designed
for detecting processes, services, drivers, ports and files. WFT functions
that may be used for rootkit detection are listed in Table 3.

3.3 Experiment Set II (Rootkit Detectors)

Experiment Set II involved the execution of five rootkit detectors
(Table 4) on each workload configuration (Table 1) to determine the
effectiveness of each SUT in detecting the workload rootkits. Rootk-
itRevealer provides user-level and kernel-level detection by comparing
information returned by the Windows API and raw FAT/NTFS struc-
tures [8]. RKDetector [20] uses its own NTFS/FAT32 filesystem driver
to provide a filesystem browser, rootkit detector, ADS scanner, registry
browser and hidden registry key scanner [21]. BlackLight loops through
all possible process IDs attempting to open each process, and compares
the information it gathers with that returned by the Windows API [12].
IceSword [30] detects hidden process, services, drivers, files, ports and
registry settings, and identifies hooked system calls and open TCP/UDP
ports [26].



Todd, et al. 95

Table 3. Functions packaged in WFT.

WFT Function Target

PSLIST Processes
PS Processes
LISTDLLS Processes
PSTAT Processes
TLIST Processes
CMDLINE Processes
HANDLE Processes
PSSERVICE Services
SC Services
NET START Services
SERVICELIST Services
DRIVERS Drivers
NET STAT Ports
FPORT Ports
OPENPORTS Ports
TREE Files

Table 4. Experiment Set II.

Experiment Set Rootkit Detector SUTs

II-1 RootkitRevealer (1.7) [8]
II-2 RKDetector (Beta 2.0) [20]
II-3 BlackLight (Beta 2.2.1046) [12]
II-4 IceSword (1.12) [30]
II-5 IceSword (1.18) [30]

Table 5. Experiment Set III.

Experiment Set Offline Analysis SUTs Tool Type

III-1 Clam-AV [16] Signature-Based AV
III-2 F-Prot [11] Signature-Based AV
III-3 EnCase [13] Forensic Investigation
III-4 Autopsy [5] Forensic Investigation

3.4 Experiment Set III (Offline Analysis)

Experiment Set III involved performing an offline analysis on each of
the workload configurations using four different SUTs (Table 5) to deter-



96 ADVANCES IN DIGITAL FORENSICS III

mine the effectiveness of each SUT in detecting the workload rootkits.
Two SUTs are signature-based anti-virus tools and the other two are
forensic tools that were used to visually inspect the target workloads.
Rootkit information cannot be hidden from an offline analysis. There-
fore, the study focused on determining what was hidden and when it
was hidden (if the rootkit was operating when the machine was seized).

4. Experimental Results and Observations

This section presents the results and observations from the three sets
of experiments that covered ten SUTs and six target configurations.

4.1 Workload Capabilities and Limitations

Each of the five rootkit workloads hides different processes, services,
drivers, ports and/or files.

AFXRootkit: This user-level rootkit hides two running processes
(rootkit root.exe and backdoor bo2k.exe), one running service
(treasure), one port (54320), and several files including its cur-
rent directory (c:\treasure). No drivers are used to root the
system.

Vanquish: This user-level rootkit is not a constantly running
process. It starts, hides its payload using patching, and then stops.
Vanquish hides the rootkit service (vanquish), port (54320), and
all files and directories with “vanquish” in their names.

Hacker Defender: This user-level rootkit hides two running pro-
cesses (rootkit hxdef100.exe and backdoor bo2k.exe), one run-
ning service (Hacker Defender100), one port (54320), and the
files specified in the rootkit’s initialization file (hxdef100.ini).
Hacker Defender also hides a driver (hxdefdrv.sys), which it uses
to gain system access.

FU: This kernel-level rootkit only hides processes. FU is not a
constantly running process, so it only hides the one process it is
directed to hide (backdoor bo2k.exe). FU does not hide ports or
files, and it does not create a system service. FU uses a driver
(msdirectx.sys) to gain system access, but it does not hide this
driver.

FUTo: This kernel-level rootkit only hides processes. Like its pre-
decessor FU, FUTo is not a constantly running process, so it only
hides one running process (backdoor bo2k.exe in our tests). FUTo



Todd, et al. 97

does not hide ports or files, and it does not create a system service.
FUTo uses a driver (msdirectx.sys) to gain system access, but it
does not hide it.

Table 6. Experiment Set I results.

Rootkit Processes Services Drivers Ports Files

AFXRootkit Y Y n/a N N
Vanquish Y2 N n/a Y2 N
Hacker Defender Y1 N Y N N
FU Y1 n/a Y1 Y2 Y2

FUTo N n/a Y1 Y2 Y2

1 WFT detected the rootkit, but provided limited information.
2 Rootkit did not attempt to hide this information.

4.2 Experiment Set I Results

The first set of experiments performed a live analysis using WFT on
each of the five rootkits. The results are summarized in Table 6.

Since rootkits subvert the system functions that list active process,
open ports and other files, it was surprising that WFT’s incident re-
sponse tools were able to detect so much information hidden by the
rootkits. WFT provided considerable information associated with run-
ning processes and system drivers. FUTo was the only rootkit that could
completely hide information about the backdoor’s process. However, al-
though the results indicate a high rootkit detection rate, WFT was un-
able to provide reliable information about system files, open ports and
system services. Nevertheless, WFT provided useful information and,
when it could not detect a rootkit, still gave an accurate depiction of
what the user would normally see.

Note that an investigator must look closely at the PSTAT and PRO-
CESS HANDLES utilities when using WFT to detect rootkit processes.
PSTAT provides generic process information, which helps detect simple
rootkits, e.g., AFXRootkit. PROCESS HANDLES provides more de-
tailed system information that was scrubbed clean only by FUTo. The
information listed here may only identify a “<Non-existent Process>,”
but this indicates to the investigator that a covert process is running.

When using WFT to detect items (e.g., drivers, ports and files) that a
rootkit may be hiding, the investigator should use the NET START util-
ity to identify services and DRIVERS to identify drivers. NET START
only works against basic rootkits (e.g., AFXRootkit). DRIVERS lists



98 ADVANCES IN DIGITAL FORENSICS III

system drivers, but it was able to detect all the rootkit drivers in our
experiment. Rootkits also hide ports and files; however, WFT did not
reveal any information about ports and files that were actively hidden.

Table 7. Experiment Set II results.

RDTs AFXRootkit Vanquish Hacker Defender FU FUTo

RootkitRevealer Y N Y N1 N1

RKDetector Y Y Y N1 N1

BlackLight Y Y Y Y3 Y23

IceSword 1.12 Y Y Y Y3 N
IceSword 1.18 Y Y Y Y3 Y23

1 RDT did not look for hidden processes, services, drivers and ports.
2 RDT detected a discrepancy, but could not provide all the process information.
3 RDT did not detect the actual rootkit, just the hidden processes.

4.3 Experiment Set II Results

Table 7 summarizes the results of using rootkit detection tools (RDTs)
in a live analysis and their success in detecting rootkits.

The results show that the four RDTs fall into two groups: one group
(RootkitRevealer and RKDetector) only detects hidden files and is not
effective against all rootkits, while the second group (BlackLight and
IceSword) is highly effective against all rootkits. BlackLight detects the
same rootkits as IceSword. However, IceSword is a more robust tool
that identifies hooked system calls, hidden drivers and open TCP/UDP
ports. This information enables an investigator to classify the anomalous
behavior identified by the detector as an actual rootkit. The following
subsections summarize the four RDTs used in our study.

4.3.1 RootkitRevealer. RootkitRevealer primarily identifies
hidden files and registry settings; it does not look for hidden processes,
ports, services and drivers. It can detect rootkits that hide executables,
images and other illegal content, but not those that can hide running
processes. Specifically, RootkitRevealer detected all the hidden files in
the current directory of AFXRootkit and all the files and registry settings
listed in the Hacker Defender initialization file (hxdef100.ini), but it
was unable to detect the files hidden by Vanquish. RootkitRevealer
listed no discrepancies when executed against FU and FUTo because
they only hide processes, but this is misleading because the rootkits were
hiding information from the user. RootkitRevealer had mixed results for



Todd, et al. 99

the five rootkits that were tested, and it provided the least amount of
information.

4.3.2 RKDetector. RKDetector primarily identifies hidden
files; it does not look for hidden processes, ports, services and drivers.
Like RootkitRevealer, it can detect rootkits that hide executables, im-
ages and other illegal content, but not those that can hide running pro-
cesses. It had good results when executed against the five rootkits,
detecting the three that hide files. RKDetector detected all the hidden
files in the same directory as AFXRootkit, all the hidden files containing
the keyword “vanquish,” and all the hidden files and registry settings
listed in the Hacker Defender initialization file (hxdef100.ini). How-
ever, it was ineffective against FU and FUTo because they do not hide
files. RKDetector presents its findings in an easy-to-understand file tree
that marks directories containing hidden files and directories, and high-
lights the actual hidden files and directories. In addition to standard
rootkit detection, it allows the investigator to explore the registry and
alternate data streams on the hard drive.

4.3.3 BlackLight. BlackLight scans a system for hidden items,
providing a list of hidden items and options to remove or clean them.
However, the list of hidden items does not include services, drivers, ports
and registry settings. BlackLight identified all the files hidden by AFX-
Rootkit, Vanquish and Hacker Defender, but it did not list the folder
containing these files which was, in fact, hidden. It detected FU’s hid-
den process (bo2k.exe). However, when executed against FUTo, Black-
Light detected the hidden process, but was unable to provide its name.
Against both FU and FUTo, BlackLight detected the process hidden
by the rootkit, but was unable to identify the rootkit. Nevertheless,
BlackLight performed extremely well in our experiments, detecting all
five rootkits.

4.3.4 IceSword. IceSword identifies hidden processes and
services, and attempts to provide a clean list of all files, registry set-
tings, ports, items set to start up automatically, browser helper objects
and message hooks. IceSword detected all the files, directories, services,
ports and processes hidden by AFXRootkit, Vanquish and Hacker De-
fender. IceSword v1.12 and v1.18 both detected FU’s hidden process
(bo2k.exe). IceSword v1.12 could not detect FUTo’s hidden process;
on the other hand, IceSword v1.18 detected the process and provided its
name. However, when executed against both FU and FUTo, IceSword
could not identify the rootkit that was responsible for hiding the process.



100 ADVANCES IN DIGITAL FORENSICS III

Nevertheless, IceSword performed extremely well in our experiments, de-
tecting all five rootkits (v1.18).

Table 8. Anti-virus scan results.

AV Scanner AFXRootkit Vanquish Hacker Defender FU FUTo

Clam-AV N N Y Y N
F-Prot Y N Y Y N

4.4 Experiment Set III Results

Table 8 presents the results produced by anti-virus scans during the
offline analysis. The results are surprising, since the tools are specifically
designed for UNIX and Linux environments, not Windows. Visual anal-
ysis of the images using EnCase [13] and Autopsy [5] could not determine
when the rootkit was running and what it was hiding. However, some in-
formation was obtained during offline analysis. In particular, identifying
the rootkit can help determine what is hidden, e.g., knowing that the
Vanquish rootkit was present could lead an investigator to search for
items using the keyword “vanquish.” AFXRootkit and Vanquish also
provide some relative time information. They update the last access
date and time stamp of their DLL files (hook.dll and vanquish.dll,
respectively) upon startup. These findings indicate that it may be dif-
ficult to detect when a rootkit was running via offline analysis; this is
discernable from DLL time stamps only in some instances. This is a
concern with the FU and FUTo rootkits, as they must be started by
a user on the machine and there is no mechanism to determine if they
were running.

5. Case Study

The investigative techniques and tools identified in this paper were
used in the 2006 Cyber Defense Exercise (CDX), an annual network
defense competition between student teams from the five U.S. service
academies and the Air Force Institute of Technology. The competition
teams designed, implemented and defended a realistic network that pro-
vided services based on an overall architectural concept of operations.
As part of the initial network setup, each team received preconfigured
systems of unknown security state. This required each system to be
analyzed to determine vulnerabilities.



Todd, et al. 101

Table 9. Preconfigured systems.

Configuration Operating System System Role Installed Rootkit

A Windows Server Exchange Server Hacker Defender
2003 SP1

B Windows Server Domain Controller Hacker Defender
2003 SP1

C Fedora Core 2 Web Server F-ck’it Rootkit
D Fedora Core 2 SMB Server F-ck’it Rootkit
E Windows XP SP2 Workstation 1 Vanquish
F Windows XP SP2 Workstation 2 None
G Windows XP SP2 Workstation 3 AFXRootkit
H Windows XP SP2 Workstation 4 None

5.1 Preconfigured Systems

Each competition team was given eight preconfigured systems (Table
9). The systems were virtual machines operating on a Windows XP
Service Pack 2 host system using VMWare 5.5. Most of the precon-
figured systems contained malicious software, e.g., rootkits, backdoors,
keyloggers, as shown in Table 9.

Table 10. Investigation tools.

Investigation Tool Tool Type

Clam-AV Signature-Based AV
F-Prot Signature-Based AV
IceSword v1.12 RDT (Windows)
RootkitRevealer v1.7 RDT (Windows)
BlackLight (Beta 2.2.1046) RDT (Windows)
Rootkit Hunter v1.2.8 RDT (Linux)
Chkrootkit RDT (Linux)

5.2 Investigation Methodology

Each preconfigured system was analyzed for malicious software includ-
ing rootkits. A combination of offline and live response tools, including
RDTs, was used (Table 10).



102 ADVANCES IN DIGITAL FORENSICS III

Table 11. Investigation results.

Tool Exchange Domain Web SMB Client Client
Server Controller Server Server

Clam-AV Y Y N N N N
F-Prot Y N N N N Y
IceSword v1.12 Y Y n/a n/a N2 Y
RootkitRevealer Y Y n/a n/a N Y
v1.7
BlackLight Y Y n/a n/a N Y
(Beta 2.2.1046)
Rootkit Hunter n/a n/a Y Y n/a n/a
v1.2.8
Chkrootkit n/a n/a Y1 Y1 n/a n/a

1 Information was discovered, but the rootkit was not identified.
2 The presence of the rootkit was not revealed, but the hidden files could be viewed.

5.3 Analysis Results

The results of using the various tools for offline and live analysis and
their success at detecting hidden process and rootkits on the six pre-
configured systems are shown in Table 11. Note that all the systems
contained a rootkit, but the specific rootkit varied between machines.

The results indicate that RDTs are effective even in unconstrained
environments and without prior knowledge of the rootkits involved. All
three Windows RDTs appeared to be equally effective. However, in
practice, IceSword is preferred as it provides additional information that
permits the viewing of all hidden files. Rootkit Hunter was the most
effective and robust tool of the two Linux RDTs tested. Clearly, RDTs
are the best tools for conducting forensic investigations of rootkits.

6. Conclusions

Rootkits hide processes, files and other system information from users
and often obscure malicious activity in digital forensic investigations.
However, forensic investigators may apply three techniques to detect
rootkits and hidden processes: live response, rootkit detection tools
(RDTs) and offline analysis.

Our experiments indicate that using a rootkit detection tool during a
live response generates the largest amount of data and the most useful
information. It is still possible to detect rootkits using a non-invasive
live response, but live response procedures are subject to the effects of
the rootkits and it can very time consuming to sift through the resulting



Todd, et al. 103

data. Offline analysis has the advantage of being able to examine all the
data from the hard drive, but finding a rootkit, what it was hiding, and
when it was hiding are nearly impossible. RDTs are very effective at
determining the presence of rootkits and identifying their targets, but
the investigator should be willing to pay the penalty of lower forensic
integrity of the evidentiary hard drive.

Our future research will attempt to determine the exact effects of
RDTs and how they might compromise the overall forensic integrity of
digital evidence. This may make it possible to create an offline RDT,
with the benefit that the rootkit would not be able to run and, therefore,
not be able to hide any information. An alternative would be to perform
anomaly detection on the generated live response data to identify data
items associated with the rootkit, thereby speeding up live response
analysis.

Acknowledgements

This research was sponsored by the Anti-Tamper Software Protec-
tion Initiative Technology Office, Sensors Directorate, U.S. Air Force
Research Laboratory. The views expressed in this paper are those of the
authors and do not reflect the official policy or position of the U.S. Air
Force, U.S. Department of Defense or the U.S. Government.

References

[1] E. Abreu, Hackers get novel defense; the computer did it (www.fo
rbes.com/markets/newswire/2003/10/27/rtr1124430.html), 2003.

[2] Aphex, ReadMe.txt (www.iamaphex.net), 2006.

[3] J. Butler and S. Sparks, Windows rootkits of 2005: Part two (www
.securityfocus.com/infocus/1851), 2005.

[4] J. Butler and S. Sparks, Windows rootkits of 2005: Part three (www
.securityfocus.com/infocus/1854), 2006.

[5] B. Carrier, File System Forensic Analysis, Addison-Wesley, Boston,
Massachusetts, 2005.

[6] C. Claycomb, Analysis of Windows Rootkits, M.S. Thesis, Depart-
ment of Electrical and Computer Engineering, Air Force Institute
of Technology, Wright-Patterson Air Force Base, Ohio, 2006.

[7] CMS Consulting, Hidden rootkits in Windows (www.task.to/events
/presentations/TASK Hidden Rootkits in Windows.pdf), 2005.

[8] B. Cogswell and M. Russinovich, RootkitRevealer v1.71 (www.sys
internals.com/Utilities/RootkitRevealer.html).



104 ADVANCES IN DIGITAL FORENSICS III

[9] K. Dillard, What are user-mode vs. kernel-mode rootkits? (search
windowssecurity.techtarget.com/originalContent/0,289142,sid45 gc
i1086469,00.html), 2005.

[10] E. Florio, When malware meets rootkits, Virus Bulletin, 2005.

[11] Frisk Software International, F-Prot Antivirus Scanner (www.f-prot
.com/products/home use/linux).

[12] F-Secure Corporation, Blacklight (www.f-secure.com/blacklight/bl
acklight.html).

[13] Guidance Software, EnCase (v.4) (www.guidancesoftware.com).

[14] G. Hoglund and J. Butler, Rootkits: Subverting the Windows Kernel,
Addison-Wesley, Boston, Massachusetts, 2005.

[15] Holy Father, Hacker Defender (hxdef.org/download.php).

[16] T. Kojm, Clam AntiVirus (www.clamav.net).

[17] J. Levine, B. Culver and H. Owen, A methodology for detecting
new binary rootkit exploits, Proceedings of the IEEE SouthEastCon,
2003.

[18] J. Levine, J. Grizzard, P. Hutto and H. Owen, A methodology to
characterize kernel level rootkit exploits that overwrite the system
call table, Proceedings of the IEEE SoutheastCon, pp. 25–31, 2004.

[19] M. McDougal, Windows Forensic Toolchest (WFT) (www.foolmoon
.net/security/wft), 2005.

[20] RKDetector.com, RKDetector v2.0 (www.rkdetector.com).

[21] RKDetector.com, RKDetector v2.0 Engine (www.rkdetector.com).

[22] Rootkit.com (www.rootkit.com/download.php).

[23] J. Rutkowska, Concepts for the Stealth Windows Rootkit (The
Chameleon Project) (invisiblethings.org/papers/chameleon concep
ts.pdf), 2003.

[24] J. Rutkowski, Advanced Windows 2000 rootkit detection (hxdef.org
/knowhow/rutkowski.pdf), 2003.

[25] J. Rutkowski, Execution path analysis: Finding kernel rootkits (doc
.bughunter.net/rootkit-backdoor/execution-path.html), 2004.

[26] P. Silberman, FUTo (uninformed.org/?v=3&a=7), 2006.

[27] Simple Nomad, Covering your tracks: Ncrypt and Ncovert, pre-
sented at Black Hat USA 2003 (www.blackhat.com/html/bh-media-
archives/bh-archives-2003.html), 2003.

[28] S. Sparks, Shadow Walker: Raising the bar for rootkit detec-
tion, presented at Black Hat USA 2005 (www.blackhat.com/pre
sentations/bh-jp-05/bh-jp-05-sparks-butler.pdf), 2005.



Todd, et al. 105

[29] Y. Wang, B. Vo, R. Roussev, C. Verbowski and A. Johnson, Strider
Ghostbuster: Why it’s a bad idea for stealth software to hide files,
Microsoft Research Technical Report, MSR-TR-2004-71, Microsoft
Corporation, Redmond, Washington, 2004.

[30] XFocus.net, IceSword (v1.12 and v1.18) (www.xfocus.net).

[31] XShadow, Vanquish v0.2.1 (www.rootkit.com/vault/xshadoe/read
me.txt), 2005.


