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Abstract—The placement of multiple controllers over a dis-
tributed software defined network is challenging, to minimize
maximum latency between controllers and switches. One way
to solve this problem is to use the K-means algorithm to
partition the original network into K subnets and position one
controller at the center of every subnet. However, the value of
K must be known in advance and this information may not
be available to network administrators. On the other hand,
latency between SDN controllers and network nodes can be
known on account of agreements to QoS (Quality of Service)
guarantees. Thus, in this work, we propose LAIP (Latency-
Aware Incremental Partitioning), a K-means-based algorithm for
placement of multiple controllers that takes into account Latency
requirements to decide the number of partitions and controllers
to be inserted in the network. Experiments show that LAIP
has considerable performance compared to other methods. Also,
results are presented on several network topologies to identify
the number of controllers to be positioned to meet maximum
latency constraints.

Index Terms—SDN, K-means, Controller Placement, Latency

I. INTRODUCTION

Internet-based services have become increasingly complex.
Billions of communicating devices and the increasing adoption
of video streaming services are often accompanied by chal-
lenges for computer networks. The traditional network can be
considered inflexible for the adoption of innovation [1] since
it is composed of specialized hardware (routers) that needs
to be configured independently. With this in mind, network
technologies are being proposed to accelerate innovation.
One emerging technology is Software Defined Networking
(SDN) [2].

SDN is expected to improve network performance by en-
abling intelligent management of its services. A fundamental
concept of SDN is to decouple the data plane from the network
control plane. In SDN networks, specialized switches only deal
with forwarding packets and routing decision is made by a
special network element called Controller. So switches can
focus on performing packet forwarding at maximum speed,
while the controller is in charge of defining the behavior of the
switches. SDN can accelerate innovation by enabling network
management in a flexible and programmable way [2].

In initial SDN proposals, the management of switches
was done by only one controller. Using a single centralizing
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element may not be feasible on large-scale SDN networks [3].
Unlike allocating a single controller, having multiple con-
trollers for the network is beneficial for network reliability,
scalability and performance. Therefore, most SDN imple-
mentations currently focus on allowing multiple controllers
in different locations to control the entire network. As an
example, the prevalent SDN protocol, OpenFlow [4] allows
for definition of multiple controllers.

Wide Area SDN Networks present a challenging scenario
for allocating SDN controllers. Because of the large geo-
graphic distances between nodes, they contain links with
significant delays. An initial proposal would be to allocate
a controller for each node of the network. However, in this
context, it is important to note that the allocation of controllers
must be optimized, since the number of controllers used in
the network directly impacts the operational expenses. So in
these networks, it is interesting that an SDN controller can be
allocated on a node to supply its network (i.e. within its area)
and that it can also serve neighboring nodes.

In Wide Area SDN Networks, the distance between a node
and the controller generates considerable latency and this
strongly impacts network performance [3]. Thus, in SDN
network planning, a central question is: where should con-
trollers be positioned to ensure SDN network performance?
This problem is known as the controller placement problem
and was raised by Heller et al. [3]. This problem is NP-
Difficult and to be solved for networks with large numbers
of nodes, it requires an approximate algorithm. This problem
can be modeled as a clustering problem called K-center and a
known implementation that solves the K-center is the K-means
algorithm [5].

The controller placement problem is similar to a clustering
problem. Given this, versions of K-means can be used to
solve it. In [6] an adaptation of K-means is presented to
solve the controller placement problem. The authors propose
an algorithm in which the user can provide a quantity of K
controllers to partition the network. Afterward, the algorithm
proceeds to incrementally partition the network into K-subnets
and to position controllers on each new partition.

Proposals in this area focus on partitioning the network
into K subnets and placing a controller in the center of each



subnet [7], [6]. However, predetermining the number of con-
trollers to be placed in the network is not a trivial task. Often
the network hardware provisioning decision is related to QoS
(Quality of Service). Applications such as video streaming or
high-performance cloud computing are particularly sensitive
to network delays [8]. For such applications, the maximum
latency threshold for a controller may be defined by QoS
agreements between provider and client.

Therefore, in this work, we propose an algorithm for
controller placement in SDN networks that does not need
prior information on the number of controllers to be allocated.
In essence, the algorithm begins partitioning the network
and placing controllers incrementally until an upper latency
threshold is reached. Thus, the algorithm is expected to help
network administrators obtain, in addition to the placement of
their networked controllers, the number of controllers to meet
a latency requirement.

The rest of the paper is organized as follows. In Section II,
we introduce the problem of controller placement in SDN
and we present related works in this area. In Section III,
the algorithm is presented in its conceptual form. Section IV
presents the implementation of the algorithm and its execution
in network topologies. Section V presents results from experi-
ments for evaluation. Finally, Section VI concludes the article
listing contributions and future work.

II. RELATED WORKS

Heller et al. [3] pioneered the research on controller place-
ment and highlighted the importance of minimizing latency
between switches and controller. The main goal is to position
the ideal number of controllers in the best locations of the
SDN network infrastructure to achieve better performance.
For this, the authors formulated the problem, which is similar
to the problem of facility location [9] and proposed forms
of minimization. One way is to minimize the worst-case
latency, which is to position the controller so that the highest
latency between this controller and a node in your network is
minimized. This problem is solved by methods that solve the
K-median and K-center problems. The authors propose a brute
force algorithm to reach optimal controller locations, where all
potential locations were evaluated.

A mathematical model for optimal controller placement is
proposed in [10]. In this model, the authors take into account
the ideal number of controllers, where the controllers should
be placed, and the type of controller. The authors assemble
simulations and try to optimize several problems in a time
range of 30 hours. As the authors try to minimize an NP-
difficult problem, their simulations show that only a few
problems can be computed on time.

The work in [11] proposed the problem of capacitated
controller placement. That is, in addition to trying to minimize
latency, they also considered limited server capacity and load-
ing dynamic traffic from switches to be served by controllers.
The authors propose a greedy K-center algorithm to solve the
problem.

Due to the high computational cost, heuristic strategies can
be employed to solve the controller placement problem. In
[12], POCO (Pareto-based Optimal COntroller placement) is
presented, a framework to find optimal controller placement
such that the connectivity between switches and controller is
maximized by also taking into account the capacity of the
controller. First, the authors propose a brute-force algorithm,
but it is only valid for small networks. Then the authors
propose heuristics to solve the problem of controller placement
in large networks. For that, they use an algorithm based on the
Pareto Simulated Annealing [13]. In this work, the authors
focus on maximizing the resilience of the network. Where
they considered the placement of controllers in a dynamic
SDN network, in which there are variations of latency between
controllers and their switches.

In [1] the problem of placing multiple controllers in SDN is
addressed using an algorithm based on the Louvain heuristic
method for detecting communities. The proposed placement
method can adjust the number of nodes within communities
to meet controller capability requirements. The authors focus
on minimizing the cost of deploying within communities and
maximizing network resilience across communities.

The work in [14] addresses the placement of controllers
dynamically, depending on the current number of flows. The
authors propose an Integer Linear Program formulation and
two heuristic algorithms to solve the problem. The algorithms
need to run on OpenFlow switches to obtain metrics that are
used to decide where to place controllers. In order to begin
the algorithm, the authors assume that the network operator
has to deploy or has already deployed servers that can act as
controllers at particular locations throughout the network. In
this work, the authors seek to minimize flow setup time and
the sum of path costs from that controller to the unassigned
switches. Other metrics, such as maximum latency between
node and controllers are not addressed by their work.

To reduce the problem size, in [15], a controller placement
strategy is proposed, where a large SDN network is partitioned
into small networks. In that paper, the authors also consider the
problem of controller placement based on their capacity. The
algorithm proposed by the authors provides a better result for
the controller placement compared to [12]. However, in that
work, the user must know in advance the number and capacity
of controllers that he wants to place.

In [6], the optimized K-means algorithm for network parti-
tioning and controller placement is presented. The algorithm
seeks to minimize latency between switches and controllers.
The authors adapt K-means to perform incremental network
partitioning, from 1 to K. An advantage of this implementation
is that it does not have the random-choice component. Since
for each network partitioning, the algorithm will run the K-
means until it converges and will always reach the center of
this subnet. The authors perform experiments that show that
the optimized K-means algorithm provides the best result in
comparison to the normal algorithm based on K-means. In this
work, the value of K must also be supplied by the user before
the start of the algorithm.



The controller placement problem in SDN is a well re-
searched topic. As it can be observed by most works found, the
strategies vary from finding optimal solutions or using heuris-
tics. Recently, works that aim to partition the network, espe-
cially using K-means, are of growing interest since it provides
a fast response for the controller placement problem. However
in works such as [15] and [6], a known number of controllers
is required to position them on the network. However, it may
not be easy to determine the number of controllers. Since the
amount and capacity of the hardware in the network often
depends on service provider agreements with users. Therefore,
in this work, we propose an algorithm that partitions the
network incrementally and positions controllers without prior
knowledge of the number of controllers. This work extends
the works on K-means based controller placement, especially
the proposal in [6], to allow for incremental partitioning of
the network until the desired latency requirement is reached.

III. ALGORITHM PROPOSAL

The maximum latency offered, i.e., the highest latency
between a node and a controller, directly impacts network per-
formance [3]. Thus, a network administrator must gauge how
many controllers are required to achieve a given maximum
latency requirement. To achieve this, the network administrator
can choose to run the Optimized K-means algorithm of [6]
several times, and after the completion of each round, test
the maximum latency obtained on the network. However, this
makes the controller placement process more costly since
the algorithm presented in [6] needs a known value of K
for each iteration. Therefore, to find the desired maximum
latency, one approach would be to perform a linear search
with n attempts, requiring 22:1 executions of the algorithm
to obtain the network with K controllers. Thus, increasing the
computational cost of the process. In this context, an algorithm
to position SDN controllers taking into account the maximum
latency is essential to avoid unnecessary rework to measure
the number of controllers to be positioned in the network.

Based on this proposal, in this paper we present the
LAIP algorithm (Latency-aWare Incremental Partitioning).
The algorithm performs network partitioning and controller
placement incrementally until the desired maximum latency is
reached. LAIP consists of the following operations applied in
a network topology G to meet a maximum latency requirement
X:

Input: G with latency information between nodes.
X, such that X > 0.
Select-centers
Position-centroids
Compute LatMax
Repeat steps 1,2 and 3 while LatMax > X
Algorithm 1: LAIP(G)

Rl > e

To start the algorithm, an existing network topology with
latency information between nodes is required. This process
will be described in Section IV. Note that in this work we call

center a given node that is chosen to initiate an iteration of
the K-means. We call centroid a node that is chosen as the
center of the subnet after each K-means iteration. That is, at
the end of the algorithm, the centroids are the controllers of
each subnet.

The Select-centers operation is similar to the algorithm pre-
sented by [6]. In the operation, a node is found to be the center
of a new destination subnet in which G will be partitioned. The
destination subnet is found firstly by computing the node that
has the maximum distance to its centroid. This node is selected
as the center of this new subnet. The nodes which are closer
to this new centroid, than any other centroid on the network,
will be assigned to him. At the first iteration of the algorithm,
the network does not have any centroids. Thus, a node will be
randomly selected to perform K-means until convergence and
find the initial centroid of network G. It is important to notice
that, although the initial node chosen is random, K-means will
always obtain the same initial centroid of G.

The Position-centroids operation consists of finding cen-
troids for each subnet. At the start of the operation, the centers
will be initialized by a list of previous centroid nodes plus the
new node chosen in the select-centers operation. After that, the
K-means algorithm is run until convergence and at the end,
we get the centroids of all the subnets of G.

The Compute LatMax operation performs the maximum
node latency calculation for its centroids and stores the highest
latency found. The steps of the algorithm are repeated while
LatMaz is above an upper limit X which represents the
maximum latency to be obtained.

LAIP will execute partitions while the maximum network
latency is above an upper limit. Once this limit is reached the
algorithm ends and returns the number of controllers inserted,
their positions and their corresponding subnets. Hence, only
K executions of the algorithm will be necessary to obtain the
number of controllers needed to meet a latency requirement
defined in X.

IV. IMPLEMENTATION

The code that implements our proposal can be accessed in
GitHub !'. LAIP has as input a network topology file in gml
format. Topologies with latitude and longitude information
were used. With this it is possible to obtain the distance
between the nodes using the Haversine formula [16]. Then,
distance information was used to estimate latency using the
following formula:

distance(m)

L _ Gstancelm)
atency 2 x 108(m/s)

Finally, the latency is inserted in the topology as the weight
between nodes. With this information, the lowest latency
between nodes is computed using the Dijkstra [17] algorithm.
Having this information in the topology, LAIP can execute
and begin partitioning the network and placing controllers.

Uhttps://github.com/raphael-abreu/SDN-Kmeans-
partitioning/blob/master/nb.ipynb



Fig. 2: OS3E with 2 controllers. The highest latency is 10.83
ms

Figures 1 and 2 present algorithm partitioning steps in
the topology internet2 OS3E [18]. In the figures, the circles
represent node switches. White circles with colored borders
represent node switches that have become SDN controllers.
The color of the circles/borders represents a subnet. The
latency information is represented as weights between two
nodes. It is assumed that the latency of the controller node
for its network is 0. The longest (e.g., highest latency) path
between a controller node and a switch is marked in blue.

Figure 1 presents the first step of the algorithm in the
OS3E topology [18]. Firstly the K-means is executed for the
first time to obtain the network centroid. The highest latency
between a node and this centroid is computed (15.55ms) and
the node that has this higher latency is saved for the next
iteration of the algorithm. In Figure. 2, we can see that a new
subnet has been created, represented by the green color. The
algorithm used the controller node and the node found in the
previous step as initial points and executed the K-means until
the convergence, thus obtaining the centroids of both subnets.
A new maximum latency is found for the next iteration of
the algorithm. This incremental partitioning process will be
repeated until it reaches the upper limit of a maximum latency
defined by the user.

Figures 3 and 4 present LAIP steps in the chinanet topol-
ogy [19], in order to meet a maximum latency requirement
of 15ms. In Figure 3, it is possible to notice that initially
a centroid (controller) is positioned in a cluster of nodes
(cluster). In Figure 4, it can be seen that in addition to

ms

Fig. 4: Chinanet with 3 controllers. The highest latency is
11.75ms

controllers positioned in clusters, it was also necessary to
position a controller on a node away from the clusters to meet
the maximum latency requirement.

Figures 5, 6 and 7 present the algorithm partition steps in the
Brazilian National Research and Education Network (RNP)
topology [20]. To reach a maximum latency requirement of
6ms. It took 9 controllers to achieve this maximum latency
on the network. An important point to notice is that in this
topology there is a wide variety of latency values between
links. In this case, LAIP will partition and position controllers
to create subnets on nodes that have high latency links and take
advantage of low latency links to share the same controller
node between them.

V. EVALUATION AND RESULTS

Experiments were executed to evaluate and compare LAIP
against similar methods of controller placement. In the first,
we aim to compare LAIP with the standard K-means, to gauge
the incremental partitioning with various runs of K-means on
several topologies. In this experiment, we also identify the
number of controllers required to obtain latency requirements
on various topologies. Finally, another experiment is to com-
pare LAIP against the standard K-means of Wang et al. [6] to
compare the computational cost of both methods.



Fig. 7: RNP with 9 controllers. The highest latency is 5.59 ms

A. Comparison between LAIP and standard K-means

To evaluate the algorithm, we considered topologies in the
website Topology ZOO [21] 2. On the website, there are
currently 262 topologies. Among them, 77 topologies where
selected that did not contain multiple paths. In some of the
remaining 77 topologies, a small fraction of nodes that do not
have latitude/longitude information has been removed.

The first experiment aims at comparing the maximum
latency result obtained by LAIP with the standard K-means
in the 77 network topologies. In this experiment, LAIP
was executed in each topology. It returned the number of
controllers needed to meet the maximum latency values of
21ms, 15ms, 9ms, and 6ms. After this, the standard K-means
was executed 50 times in each topology having K defined
as the number of controllers found by LAIP. In Figure 8,
the cumulative distribution (CDF) results for the examined
topologies are presented. In the figure, the x-axis represents
latency values and the y-axis represents the fraction of the
topologies. While in 100% of the topologies, LAIP achieved
a maximum latency below the threshold, the standard K-means
often failed to achieve comparable results. Next, the execution
of both algorithms in some topologies will be examined in
detail.

Figure 9 presents the maximum latency CDF obtained in
OS3E, Chinanet and RNP topologies for a maximum latency
requirement of 6ms. For the OS3E topology, LAIP obtained
5.59ms with 5 controllers. For the Chinanet topology, LAIP
got 5.49 ms with 9 controllers. For the RNP topology, LAIP
obtained 5.59 ms with 8 controllers. In Figure 9, the dashed
line represents the value obtained by LAIP and the solid line
represents the values obtained by 100 rounds of standard K-
means.

Still, in Figure 9, it can be observed that the maximum
latency obtained in each round of the K-means is mostly
above the maximum latency obtained by LAIP. As an example,
in Figure 9 (c) it can be seen that less than 5 % of the
results obtained by the standard K-means obtained a maximum
latency less than or equal to 6 ms. Besides, LAIP is only
executed once, since the same result is always obtained for
each execution. This is due to incremental partitioning. After
each partitioning, LAIP always obtains the same centroids and
consequently chooses the same nodes with a maximum latency
of the centroid. Therefore obtaining the same network latency
response.

We use LAIP to determine how many partitions are required
to meet the maximum latency requirements in various network
topologies. Of the 77 topologies, 32 were removed from this
evaluation because they needed only 1 controller to obtain the
maximum latency of 6 ms. Figure 10 shows the results for the
remaining topologies, which shows the number of controllers
that must be allocated to reach a maximum latency of less
than 21 ms, 15 ms, 9 ms and 6 ms in each topology.

Zhttp://www.topology-z0o.org;
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Fig. 8: CDF of maximum latencies obtained by LAIP and standard K-means in the 77 networks topologies

B. Comparison between LAIP and Optimized K-means

As mentioned in Section III, the Optimized K-means algo-
rithm of [6] can be used to obtain the response of the number
of controllers that are required to meet a maximum latency
requirement. However, this process has a higher computational
cost due to the need to define the number of K controllers
in advance. In this context, the execution times of the LAIP
algorithm and the optimized K-means algorithm were also
examined.

Figure 11 presents the comparative results for the Chinanet,
RNP and OS3E topologies for several latency limits. In the
figure, it can be observed that LAIP obtains better performance
and comparison with the Optimized K-means starting at 12 ms
latency in all the topologies. The results were obtained from an
average of 20 runs for each experiment. The experiments were
performed on a machine with the following configurations:
Intel® Core™ i7-4770K CPU @ 3.50GHz; 8GB RAM and
Windows 10 Home 64bit Operating System.

As it can be seen in Figure 11, the computational cost in
LAIP is less than the Optimized K-means. As there are smaller
latency requirements, more controllers are needed to be placed.
Thus, the LAIP algorithm outperforms the Optimized K-means
starting at a minimum latency requirement of 12 ms.

VI. CONCLUSION

The problem of controller placement in SDN networks is
extensively researched. As seen in this work, the placement of
controllers is a fundamental decision for the construction of
SDN networks. In this work, we propose LAIP, an algorithm
for placement of controllers based on K-means that does not
need previous information of the number of controllers. With
this approach, it is expected to help in the decision of where to
place and about the number of required controllers to deliver
the desired latency requirement. Our experiments indicate that
LAIP has superior performance when compared to standard
K-means and Optimized K-means. We also presented experi-
mental results to evaluate the number of controllers needed to
meet the maximum latency requirements for several network
topologies.

In this work, we did not consider the placement of con-
trollers taking into account the dynamic allocation of the
network. As mentioned by [7], the dynamic network allocation
strategy can take a considerable time. Therefore, a promising
future work is to design a controller placement algorithm
that encompasses this scenario. Another future work is to
investigate the usage of LAIP with other network performance
metrics, such as queueing delay and throughput.
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