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Abstract—In this paper, a new policy is proposed for Store
and Drops cache content in the Wireless Access Networks nodes.
The proposed policy select content that can be dropped and
new content to be cached in a network node, on predefined
time periods at each day and with pre-established time duration
each one, repeated at each day. The temporal aspects and users
social behavior that connect to the node for decision making
are considered. An algorithm selects new content, in the same
proportion, from those categories historically requested ones in
these time periods on previous day. These new content selection
purpose is to cache them in current day, at the corresponding
time periods, to increase the content request hit ratio according
to this policy. Simulation results against established FIFO, LRU,
LFU and RANDOM policies shows that this proposed policy hit
ratio is 2.46 times higher than the others, with an average hit
ratio of 13.1% here versus an average hit ratio 5.325% of the
above cited policies, in the evaluated scenarios.

I. INTRODUCTION

On the Mobile Edge Computing context, [1], a fast growing
has been observed on smart wireless devices use to access
the Internet through Wireless Access Networks. The same
growth is predicted in a near future, with a traffic volume
exponentially growing, as CISCO claims [2]. Wireless access
traffic is expected to account for 77.49% of Internet traffic by
2022 and, together with new applications requirements, will
cause a high bandwidth demand and possible Wireless Access
Networks congestion at the Internet edge.

Due to this large data volume, new functions have been
proposed to meet network resources demands by mobile users
in these networks, such as multimedia content caching on the
edge, for example. Popular content, which are typically the
most requested ones, cause overloads in these access networks
due to the high demand for bandwidth and low latency needs.
One drawback perceived in those networks is the latency
growth and an unsatisfactory Quality of Experience (QoE) by
the mobile users, even in content centric (ICN, NDN or CCN)
architectures [3]–[5].

Considering the high and variable network latency for multi-
media traffic, mobile devices playback may suffer interruptions
and quality degradation. We introduce a policy to select and
cache multimedia files through statically computing the most
content categories requested by mobile users and when they
did it in a recent past in wireless access networks, in order

to reduce the network latency and to improve the QoE to
these mobile users. The content selection criteria proposed
in this work is based on users social behavior and on the
time they typically request them. These content are classified
by categories, similar to the ones found in YouTube [6] or
NetFlix.

The most requested content on previous days, their cate-
gories and the time period each one had been requested are
computed and ordered by requests number. These data are
stored at its respective time period. After that, the HASSAN-
S algorithm, proposed in this work and described in Section
III-B, selects new content to cache in the current day from a
content set on a network cache. These new selected content
are stored in cache at its respective time period, based on the
previously most requested content categories, and proportion-
ally to the number of times each one had content requested.
These new selected content belongs to the same categories
as those requested on previous days, as explained, but are
different from these ones and are stored in its respective files
and cached at the time period beginning on the current day.

This new policy expected result will be to contribute to
better save networks resources, since the most popular content
may be fetched from the local network cache, instead from
a geographically distant content provider. Artifacts on video
playout, such as disruptions or quality degradation, shall be
avoided since the network latency will be reduced, as the
content may be stored into the edge wireless network access
node cache when requested by the mobile area users.

The average hit rate resulting in the simulation from the
performance processing of the 4 algorithms was 5.325% and
the HASSAN-D algorithm was 13.1%.

The remainder of this work is organized as follows. In
Section II, related works are presented. In Section III the
policy guidelines are described, including it’s main algorithm
pseudo code, how the mobile users requests were modeled to
be processed in the evaluation and the algorithms summarized
description. Simulation results and scenarios description are
presented in Section IV. In Section V we present considera-
tions and challenges.
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II. LITERATURE REVIEW

The mobile users social and temporal behavior aren’t very
addressed together in the literature in Wireless Access Net-
works. Some approaches were found in the ICN architecture,
but in the TCP/IP traditional centralized network architecture,
which focus on address instead of content, it’s very poor.
Some mobile-related factors compared to the traditional com-
putation offloading techniques, such as device energy, band-
width utilization cost, network connectivity, mobility, context
awareness, location awareness and users social behavior only
recently have been considered.

An approach in [7] considers the access costs to Base
Stations (BS) based on the availability of storage space and the
network bandwidth disposal to cache content in some BS near
to the requesting users and, dynamically, assign these content
requests to a proper BS content replica in cellular networks.
They presented an optimization model through an algorithm
online for caching and to dynamically associate content to
users content requests, but don’t consider the latency and the
effects on multimedia content.

In this approach, [8], the authors have considered a dis-
tributed caching in the wireless networks nodes in the near
geographical area and in the additional device-to-device com-
munications to help the popular content distribution to the
interested ones. These mobile devices were named helpers and
grouped in clusters. The simulations results have shown an
total data throughput improve of 400 to 500%, but they don’t
consider the QoE and the problems which we want to avoid.

In [9], the authors have proposed to combine the streaming
protocol (ABR) in Wireless Networks and Caching in Radio
Access Networks (RAN) to improve QoE and increase the
cache video capacity. Additionally, they had proposed an
algorithm to rates transmission adaptation and specific video
coding by its own characteristics. This may contribute to avoid
the problems for video streaming transmission.

In [10] the authors have considered the changes in com-
munications due to Smart phone growth and the users habit
of uploading a large volume of data through the devices
themselves. They also verified that these operations occur
systematically in a few locations geographically distinct and
different for each user.

They proposed a cellular network architecture for schedul-
ing these file submissions in order to optimize network re-
sources and to better distribute these operations over time.
Points were defined as Drops Zones, from where such files
could be transmitted in due time, depending on the availability
of the network. To cover the entire American territory, 963
were considered sufficient. They consider uploading files by
the mobile users and schedule them in network free time.
We consider downloading content immediately when they are
requested by mobile users.

In [11], the authors considered the high costs and poor QoE
perceived by users to obtain popular content and proposed a
system that leverages the ability of the current mobile devices
to connect them over a mobile network, in function of their

near locatizations, to obtain such content directly from one or
some of those devices that already have them in memory or
that require them, reducing the latency and the costs of its
obtaining by the others on that mobile network that also have
interest ourselves. This approach may avoid the problems, but
depend on the another local mobile users who don’t spent long
time in the same geographical location and maybe, don’t agree
to connect their devices in a mobile network to help another
users.

III. POLICY DESCRIPTION

This new caching policy, through previously prefetching
selected content into the cache, consider the content categories,
[6], most requested on previous days, in different day time pre-
established periods fhda(n). They was statistically computed
by counting and classifying the most requested ones by cate-
gories vc(y) and selecting other ones from the same categories,
but different from those it selves.

To do so, we have created fictitious users UE(i). To simulate
requests, users UE(s) had been randomly chosen from this
UE(i) set. In that file, each user has k preferred content
categories registered, established randomly too, to be used
at users requests simulation on new content selection to
cache. We had randomly established vc(y) different video files
content categories to be processed by the algorithms.

On each time period beginning in the current day, a new
content file selected is cached and we simulate the per-
formance of this policy against the LRU, FIFO, LFU and
RANDOM drop policies. Another algorithm, HASSAN-D, de-
scribed on section III, was implemented to drop content from
the cache as necessary on the simulation process, according
to this policy guidelines.

Those four established policies algorithms above don’t
process the same content file as algorithm HASSAN-D does,
they process another subset of content randomly selected from
the content set CD(u) on a network node, in a number equal
to those selected by HASSAN-S algorithm, but different from
them. These content selected to be processed by the four above
cited algorithms are loaded in main memory at the simulation
beginning, as it usually occur in the networks cache, and
process them with its own drops policies. They are cached
as was requested by users, if not yet into the cache.

The most requested content on previous days, its categories
and the times each one had content requested are computed
and ordered, considering in which previous day time period
fhda(n) it was requested. These data are stored in its respective
time period file. Then HASSAN-S algorithm selects new
content from a content set CD(u) in a network node.

These new selected content are cached in the current day at
its respective day time periods fh(n), based on the categories
most requested previously by users and proportionally to the
number of times each one had content requested. These new
selected content belongs to same categories vc(y) of those
requested ones on previous day, but are different from those
ones. They are stored on its respective time period files and
cached at it’s respective beginning on the current day. This



allows the HASSAN-S algorithm performance evaluation and
this policy results.

This prior content selection procedure to cache in its
respective current day time periods is this policy key point,
corresponding to the social and temporal users behavior. The
HASSAN-S algorithm is presented below:

Figure 1: Hassan-S Algorithm.

HASSAN-S - Algorithm Files and Variables Summary
Description.: fh: Selected content set to cache by prefetching
on current day period, Fig. 4.
fhda: Previous day time period content set.
cat-pop: Dictionary. k Key = content category, v Value =
same content category occurrences number in fhda set.
k,v: var key and value in cat-pop dictionary.
contselcd = var. Selected content from cd.

Fig. 1 shows Hassan-S Python algorithm code to select new
content to cache, based on the content categories historical
requested on previous days and same time periods.

That previous content selection, which considers the social
and temporal users behavior through their requests, is similar
to that behavior found in [10], where users make bulky files
uploads, such as multimedia files, in a few usual places.

The same behavior is assigned here to them for their
content downloads purposes. Users usually order them at their
respective custom times, and in the same geographical region
as well. The expectation is that the fulfillment of theirs requests
can get better results, due to the new content prefetching,
according to their personal preferences on their recent past
content requests, at the same geographic area.

We assume that many of these mobile users are in the habit
of accessing content of their preferences in user’s available pe-
riods: during breakfast, displacement to work and after lunch,
for example. Files from the same categories are correlated and
defined as similar files, content or the same genre, according
to [6].

As these content categories examples, there are the short
film series offered by providers, such as Netflix. They are
categories like Romance, Adventure, Cop, etc ..., as well as
sports videos or even artistic presentations. Events have their
fans too, who order and watch them when they can, due to
the possibility presented by cellular applications which allow
to watch these content in parts.

Another fact, already mentioned, is the need to optimize the
use of network resources consumption, to reduce the costs of
obtaining these files, even in high capacity networks such as
the predicted next 5G Networks.

Save networks resources is necessary, since the users de-
mands will continue growing exponentially as CISCO claims
[2] and it is expected to traffic account for 77.49%. There
are also legacy systems to consider with burden on back haul
links and long latency bandwidth utilization costs, working
as bottlenecks in the entire Network and resulting in its low
global performance.

A. Requisitions Modeling

In order to implement the mobiles users content requests
according to this policy guidelines, we have modeled the test
on a scenario as follows: A fictitious users file UE(i), where i
ranges from 0 to 999, was created with k different preferred
content categories from those on content file, randomly assign
to each one. We assume that (k) equal to 2 for our performance
evaluation process purpose.

A UE(s) randomly users set were chosen from those afore-
mentioned UE(i) users as a sample to generate the cache
requests. We have established (s) equal to 50.

The users simulation requests take in account these k users
assigned preferred content category to select new content to
cache at its respective current day fh(n) time period beginning.
We have established (n) equal to 10.

The fhda(n) corresponding previous day time period files
store the most users content requested on previous days and
the categories occurrence numbers of each requested content
computed.

The 10 current day time periods corresponding files store
new preselected content files, choose by applying this politic
social and temporal criterion to choose these new content
to cache on each respective fh(n) time period beginning on
current day.

They will be processed only by this policy main requests
processing HASSAN-D algorithm. The others four policies
algorithm will process another randomly content file instead,
with others chosen content from the same content set CD(u),
without any social or temporal users behavior previously
established criterion, as usually occurs in the Networks.



Those content categories are represented by two 2 letters.
The sequential numbers following these two letters represent
the different available videos content in each established
categories, vc(y), were y ranges from 3 to 50. They are novel
content category videos, but obviously different from each
other. The content fi18 and no15, for example, are respectively,
fiction and novel content categories representation and the
numbers represent each ones in its category.

The cache frame size may be selected on the process
beginning, when we had used the sizes 16 and 30 for this
parameter for convenience only in this simulation process.
They are vectors data structure position numbers which store
content representation symbols.

B. Summarized Algorithms Description

Two algorithms were projected and implemented according
this policy strategy for new content selection to cache in the
respective current day time periods beginning, and for drop
cache content files, respectively: HASSAN-S and HASSAN-
D. A main algorithm was implemented to process users
requests in the cache for the others four algorithms.

The HASSAN-S algorithm selects (n) new content from
those available on content set. Each new different selected
content belongs to the same categories and in proportional
number as the same previous categories content requested in
the respective previous day time period.

The content selection process for the FIFO, LRU, LFU
and RANDOM policies algorithms had no previous content
selection criterion. Its randomly chosen from CD content set.
Only this policy algorithm process user’s content requests
cached from a preselected content file and compute the hit
and miss when their content were referred on main memory on
requests processing algorithm. A aforementioned file is only
for this policy processing. The other four policies algorithms
process another content file, without no content selection
criterion.

Summarized Algorithms Implementation Strategies:
FIFO : As the predefined cache capacity has been com-

pleted, the item at the ”0” index position, the list ”head”, is
dropped. The new item is inserted at the same list at the bottom
position.

LRU : The strategy to determine the LRU item was to
reorder the page items into the cache, whenever one of them
was referenced, placing it at the queue end. Thus, at the time
of substitution, the LRU item was the one in the list ”head”,
at index ”0” position.

LFU : The strategy to determine the LFU item was to
define an auxiliary list, with the same cache page capacity
and size, where instead of storing a copy of the items in the
cache, the amount of references to each ones during their stay
on the page are stored. These two lists, page and auxiliary list,
are ”tied” through their indexes in its respective lists. Thus, for
an item replacement from the page, the auxiliary list lowest
index value content, LFU, is searched and dropped from the
page to free space. The corresponding item in the auxiliary

list is also dropped and a new item with a ”0” content value
number is added to control its references number.

RANDOM: A random function was used to generate
random numbers in range ”0” to the cache memory ”current
size”, to be used as the next drops item index when necessary.

HASSAN-D : It have used the criterion to drop the less
referenced content in the cache, due to it doesn’t contribute to
this proposed policy guidelines performance increase.

The key to this algorithm is the input file, prepared with pre-
viously selected content, according to the history of requests
from users in previous day time period.

The cache queries hits and miss count was performed for
all those strategies, after each cache request simulation. This
approach expectation results was that such users would request
similar content from the same recent past content categories
they had requested.

The same new content request category probability is ex-
pected to be high than others content categories in current day.
A miss will occur if the requested content is not in the cache,
otherwise it get a hit. At the end of the considered time period,
new preselected content are cached, at the new time period
beginning, dropping all previous time period cache content.

IV. SIMULATION RESULTS

The simulation results presented below, Figs. 2 and 3,
registered in the table and graph, were obtained from up to
ten different sets of fifth randomly content sample previously
selected. The used parameters to generate these results were
the page size, common to all algorithms. The two input
”workload.txt” and ”fh.txt” content files were limited to 50
contents each one as upper bound, corresponding to each
UE(s) set requests, since all these UE(s) requests may be
different one from another, but repeated content requests may
occur.

The hit rates table, Fig. 2, shows the average simulation
hits reached from the 10 different input files processing, for
each frame size stablished in the permormance evaluation.
The graph, Fig. 3, shows graphically these same average
results too, where each column has its corresponding color,
representing to each one policy, as shown in the legend.

At the end of this evaluation, the calculations present a result
of the HASSAN algorithms with performance 13.1%, 2.46
times higher than the others algorithms, with 5.325% on a
average hit ratio of them, Figs. 2 and 3.

Figure 2: Hit Rates Tables.



Figure 3: Hit Rates Graphics.

A. Scenarios Description

These tables and graphics presents simulation results from
two scenarios: 1 - Frame Size equal to 16, meaning that the
cache content store capacity are 16 simultaneous different
content, and scenario 2 - Frame Size equal to 30, which mean-
ing that the cache content store capacity are 30 simultaneous
different content.

In both scenarios, we have used 10 different UE(s) set of
50 UE(i) each ones, to generate content request to the cache,
registered on 10 (rq-fh) different requested content files.

In the second scenario, we have used the same UE(s) num-
ber, but the cache capacity to store grew to 30 simultaneous
content.

The differences between the simulation results performance
may be seen in the tables and were registered on both graphics.
Those presented hits results in the two tables are an average
from content requests of those 10 different content sets rq-
fh(n) to the cache, for both scenarios. Each content set was a
50 content sample randomly selected from the CD set, based
on previous days fhda(n) content set.

These fhda (n) files have been pre-selected considering each
UE’s preferred content category in each group of 10 UEs,
with 50 UEs each, to be used as parameters of previous days
user requests and most requested content categories, and set
to allow a new content selection to cache by prefetching at
different time periods beginning on each current day.

Each fh(n) selected set, ranging from 0 to 9, had differents
content chosen based on the content categories in the fhda(n)
sets, allowing us to obtain an average performance hit number

in current day, which may gave us a consistent simulation
result, as shown on tables and graphics.

Fig. 4 shows a sample file, fh(0), which was used in the
simulation to represent preselected content by Hassan-S algo-
rithm for prefetching on current day time period beginning.

The fh(0) file have some content which belong to the same
content category , represented by the two equal characters,
but with different numbers each ones, representing different
content in the same category. This is due to the selection pro-
portionality of new content from the same requested categories
on previous day, at the same time period.

We have choosen the original Hassan-D report snippets to
show content inclusions into the cache, until it be full.

In it’s partial report presented on Fig. 5, it may be seen the
content inclusion on cache until it be full. Then, it may be
seen the cache content replacement by the algorithm, showing
which content was dropped and which one was added. Hit
and miss, when occurred, are showed too in this partial report.
During all report, the cache content is shown, to enable better
monitoring of your performance.

Figure 4: (fh0) Content File Sample.

Complete reports like this have been generated for each
of the 10 pre-selected user files to perform cache content
requisitions in order to obtain an hits and miss average of
these groups.

The same procedure was done for the two scenarios, whit
two different frame size, as we already explained.

For the others four algorithms, we have proceeded in the
same way, using its own files to compute its hits and miss. The
workload(n) files were prefetched to be processed by these
four algorithms, and similar report was generated to allow
counting their hits and miss and to generate tables and graphs
for performance comparison.

For each algorithm, a complete report like this presented
in Fig. 5 was generated, for each one of the 10 different
pre-selected UE(s). Group UEs(0), by example, had generated
requests to be processed over the workload(0) cache content
file, and so on.

V. CONCLUSION

The presented results are considered a good policy function-
ing and appropriateness indication. The HASSAN-S algorithm
complete implementation, with automatic new real data set
selection and cache at each different time period beginning,
constitutes a future implementation challenge.



Figure 5: Hassan-D Partial (fh0) Content File Processing
Report.

This new policy have showed that there is a gain in the
wireless network resource utilization optimization.

Content requests presented results may provide a better QoE
to users as showed. This is a low computational complexity
policy, simple to implement, but may produces good results.
It can be gradually implanted in the network cache memories.

The benefits are huge and may contribute to eliminate the
interruptions and frames loss problem from video content file
when playing. The entire network will also benefit from this
policy due to reduction on possible core data traffic. Billing
reductions may be possible too as lower data volume will pass
through the network core, since many requested content may
be already stored in the local wireless access network node
cache.
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