
HyLine: a Simple and Practical Flow Scheduling for

Commodity Datacenters

Soheil Abbasloo, Yang Xu, H. Jonathan Chao ({ab.soheil, yang, chao}@nyu.edu)

 New York University

Abstract— Today’s datacenter networks (DCNs) have been

built upon multipath topologies where each path contains multiple

links. However, flow scheduling schemes proposed to minimize

flow completion times (FCT) in DCNs are based on algorithms

which are optimum or close-to-optimum only over single link.

Moreover, most of these scheduling schemes seek either fully

centralized approaches having overhead of communicating to a

central entity or fully distributed approaches requiring changes in

the fabric.

Motivated by these shortcomings, we present HyLine a simple

scheduling design for commodity DCNs which is equipped with a

joint load-balancing and flow scheduling (path-aware) design

exploiting the multipath nature of DCNs. HyLine takes a hybrid

approach and uses the global-awareness of centralized and agility

of distributed techniques without requiring any changes in the

fabric. To that end, it determines a threshold margin identifying

flows for which using centralized approach is beneficial.

We have shown through extensive ns2 simulations that despite

HyLine’s simplicity, it significantly outperforms existing schemes

and achieves lower average and 99th percentile FCTs. For

instance, compared to Qjump–state-of-the-art practical scheme–

and pFabric–one of the best performing flow scheduling schemes–

HyLine reduces average FCT up to 68% and 31%, respectively,

under a production datacenter workload.

I. INTRODUCTION

User satisfaction (and total revenue) of today’s popular
datacenter applications such as search, social networks, and
recommendation systems is closely related to the response times
of these interactive applications. This motivates recent research
to propose new datacenter (DC) transport designs for
minimizing average flow completion times (AFCT) as the
primary objective that is mainly determined by the end-to-end
latency of datacenter networks (DCNs).

Prioritization is one of the main techniques used by different
approaches to achieve lower AFCTs [1-5]. Wide range of these
proposals use shortest remaining processing time (SRPT) (or its
simplified versions), the optimum scheduling algorithm when
used over a single link [1], to minimize AFCT in DCNs.
However, as we show in section III, these algorithms are
suboptimal for minimizing AFCT when each path in the
network has multiple links. This issue will be escalated when
multipath nature of today’s DCNs is considered.

Agility of fully in-network schemes motivates some
proposals to keep all changes in the network to achieve lower

response times [1, 6, 2]. However, this usually requires changes
in the fabric which brings extra costs for the datacenter owners
[18, 7]. On the other hand, using centralized schemes such as
[8], in which fabric will not be modified, comes at cost of
performance degradation due to the delay introduced by the
controller. This will be escalated when it is considered that most
of the DC flows are very small and can be finished in just a few
round trip times (RTTs) [9, 7]. Moreover, using explicit rate
control mechanisms to precisely adjust flows’ rates in the
network leads to high complexity in the centralized approach
(e.g., [3]) or the need to modify switches to coordinate with each
other for finding and maintaining the best rates in the distributed
approach (e.g., [6, 2]).

To overcome these shortcomings, in this paper, we present
HyLine, a simple and practical flow scheduling design which:

1. Takes a hybrid approach requiring no changes in the
fabric, and uses both global-awareness of centralized and agility
of distributed techniques such as priority flow control (PFC) in
layer 2,

2. Uses a joint load-balancing and flow scheduling (path-
aware scheduling) policy to exploit the multipath nature of
DCNs, and

3. Does not use any complicated per flow rate adjustment
mechanism.

To that end, HyLine determines a threshold identifying 2
categories of flows: flows that should be scheduled in a
centralized manner (2nd class flows having sizes larger than the
threshold) and flows that should not be (1st class flows having
size smaller than the threshold). Having that threshold, end-
hosts simply assign 1st class flows to the higher priority queue in
commodity switches and send them to the network at line rate
(TCP handles any further required rate adjustment). 2nd class
flows that are assigned to the lower priority queue will be
scheduled before coming to the network. Each of the 2nd class
flows should first send a request including flows’ information to
HyLine’s central MANager (MAN) seeking its permission.
MAN is responsible to control 2nd class flows in a very simple
stop-and-go fashion. To do that, it uses simple path-aware
scheduling policy to find the best path for the requested flow
based on flow’s information (priority). If a path is found for the
new flow, MAN sends back a Go signal carrying the path that
should be used by the corresponding flow. All permitted 2nd
class flows enter the network at their end-host’s line rate using
the assigned paths (each edge-link will be used by at most one
2nd class flow at a time). MAN also sends a Stop signal to the
preempted flows or the ones that cannot be served yet.

ISBN 978-3-903176-08-9 © 2018 IFIP

We evaluate HyLine’s performance through extensive
packet-level simulations in ns2 [10]. The results show that
despite simple nature of HyLine’s design, it significantly
outperforms recent schemes including pFabric [1], one of the
best performing flow scheduling schemes, Qjump [5], the state-
of-the-art practical scheme, and DCTCP [9]. In particular,
compared to pFabric, Qjump, and DCTCP, HyLine reduces
AFCT up to 31%, 68%, and 88% respectively, under a realistic
DCN workload [9].

II. RELATED WORKS

Transport Designs: There are vast number of TCP designs
targeting a specific environment (e.g., [28] in cellular context
and [3] in DCN context). Most of recent TCP proposals in DCN
context use various prioritization mechanisms to minimize FCT
[1, 4, 2, 3]. For instance, they assign different rates to flows
based on their criticality [2], tag each packet with its
corresponding priority and serve it regarding that priority in the
network [1], use strict priority scheduling among queues in
switches and assign flows dynamically to different levels of
priority [4], or use a combination of these strategies [3].
Although designs that use the prioritization idea achieve good
performance, they all are based on single-path scheduling
algorithms such as SRPT. Therefore, some of these schemes
(e.g., [3, 24]) only test their designs in single-path scenarios.
Most of the other ones including [1, 4, 11, 5] use packet spraying
[12] as load balancing mechanism to run their schemes on a
multipath DCN. However, packet spraying is not an available
feature in most of the commodity switches and is not used in
commodity DCNs [18, 7, 13]. Therefore, we avoid using such
load balancing mechanisms in this paper, though they might lead
to good performance.

Joint Transport-Load Balancing Designs: Almost none of
the load-balancing designs in the network layer are priority-
aware. To the best of our knowledge, there is only one scheme
called DeTail [14] in which a cross-layer approach is used to
reduce the long tail of FCTs in DCNs. Although DeTail achieves
good performance, a lack of backward compatibility and the
need for changing both switches and end-hosts make it very hard
if not impractical for commodity DCNs. Fastpass [8] uses a
centralized entity to handle not only scheduling block but also
load balancing block. However, it also follows the traditional
approach of designing scheduling block (timeslot allocation
block in [8]) and load balancing block (path selection block in
[8]) separately. Moreover, Fastpass could not minimize FCTs,
because at least for the very small flows that could be finished
in a few RTTs, it adds (at least) one RTT delay caused by
communication with Fastpass’s central controller.

Load Balancing Designs: Nearly all load balancing
schemes in DCNs are designed based on the fairness nature of

the network among all flows [15, 16, 17]. For instance, Hedera
[15] detects flows with sizes more than 100MB (10% of the
link’s capacity) and estimates their demands based on max-min
fairness criterion to reroute them. However, as recent transport
designs show, minimizing FCT in DCNs should be done through
considering the prioritization in the network. Therefore,
following the fairness criterion for designing the load balancing
block will cause suboptimal FCT, though a better load balancing
design, such as [16, 17], could reduce the overall FCT.

III. MOTIVATIONS & DESIGN DECISIONS

Scheduling Over Single-Link vs. Multiple-Link Paths: It
is usually mentioned in the literature that preempting lower
priority flows to serve higher priority ones minimizes the AFCT.
This statement is a direct result of considering SRPT–the
optimum solution when scheduling over a single link–as main
algorithm to schedule flows (e.g., [1, 2, 3]). However, we show
that this statement is wrong in a network where paths contain
multiple links. For that purpose, we use a simple example shown
in Fig. 1 where flows #1 and #2 have 5 and 4 remaining units
respectively. Now a new flow (Flow #3) with 3 units comes to
the network (consider remaining size of each flow as its priority
i.e., smaller size has higher priority). So clearly, in contrast with
SRPT, using no preemption (Fig. 1.a) leads to smaller AFCT.
This is important to mention that using either local-aware SRPT
(in S1 and S2 switches) (as in [1]) or global-aware SRPT (as in
[3]) will lead to the suboptimal result (Fig. 1.b). Therefore, the
incorrectness of the mentioned statement illustrates the need for
designing better scheduling algorithms by considering the
multiple-link nature of paths in DCNs.

Simple, deployable, and end-to-end: Datacenter owners
usually prefer using scale out (using commodity switches) to
scale up (using high-end switches with high-end new features)
to build their networks [18, 7]. This motivates us to not modify
any switches in the network, though modifying switches might
give good performance [1, 16, 6, 24] and look for a simple end-
to-end solution which is deployment friendly.

Why Hybrid? Centralized approaches are attractive
because they could use global knowledge of the network to
make better decisions [15, 8]. However, they suffer from some
issues. Due to the communication delay with the controller,
scheduling small flows (most flows in DCNs [9]) through
centralized approaches is not desired. Another issue is their
response times. For instance, the scheduler in [15] runs every 5
seconds, which leads to its bad performance compared to
distributed solutions such as [16]. For centralized schemes such
as [8] that require highly synchronized nodes, synchronization
is another issue. Keeping nodes synchronized at the order of one
microsecond as [8] requires, is challenging in a real DC
environment [5]. On the other hand, although responsiveness of
distributed approaches [16, 6, 2] is good, they require adding
new functionalities to the switches. Therefore, instead of using
a fully distributed or a fully centralized technique, it is beneficial
to come up with a hybrid approach combining the global
awareness of centralized techniques and the agility of distributed
ones.

Why Path-Aware Scheduling? One of our main ideas is
that load balancing and flow scheduling are dependent design

Link2

Link1

S3

S2

S1

Time

Link2

Link1 5 3

4 5 8

4

New Flow: F#3:Size=3
Time

Link2

Link1 53

3 7 8

4

3

3

AFCT=(4+5+8)/3
=5.66

AFCT=(3+7+8)/3
=6.00

F#2:Rem.

Size=4

F#1:Rem.

Size=5

(a)without
preemption

(b)with

preemption

Fig. 1. AFCT with and without preemption.

335

blocks in DCNs and should be designed together to achieve a
global objective such as minimizing AFCT in a multipath DCN.
So, instead of using single-path scheduling policies (e.g., [1, 4,
6, 5, 2, 3, 24]), we consider a path-aware scheduling logic.

IV. DESIGN

Scheduling flows to minimize AFCT in single path scenario
is an NP-hard problem [1]. This problem in multipath scenarios
will remain NP-hard. In this section, we introduce the key design
principles of HyLine, which uses heuristic approach to minimize
AFCT using path-aware scheduling in multipath commodity
DCNs.

A. HyLine’s Big Picture

End-Hosts: In HyLine, end-hosts are responsible for
classifying all flows into two classes: 1) Latency-sensitive
flows, i.e., the small flows, that require less queuing and
transmission delays. 2) Bandwidth hungry flows that could
tolerate some delays during their transmission. This
classification will be done using a threshold provided by MAN,
a logically centralized network manager. All of the flows in the
latency-sensitive class (1st class i.e., flows having sizes smaller
than threshold) are assigned to the higher priority queue in
switches (Q1) and all of the bandwidth hungry flows (2nd class
i.e., flows having sizes bigger than threshold) are assigned to the
lower priority queue in switches (Q2). Next, all 1st class flows
are sent to the network at line rate, and flow-based ECMP is used
for balancing their loads among available paths. However, end-
hosts should first send a Request to Send (RTS) message to
MAN asking permission before sending any of their 2nd class
flows to the network. This RTS carries source, destination, and
size of the flow.

MAN: MAN is the logically centralized entity in HyLine
that is responsible for scheduling 2nd class flows. To this end, it
guides transmission of all of the 2nd class flows in a very simple
Stop-and-Go fashion. If MAN decides that a flow could come to
the network, it sends back a Clear to Send (CTS) message (i.e.,
Go) carrying the path that should be used for transmission of this
flow. If not, it sends back a Stop to Send (STS) message forcing
the flow to be kept at the edge of network. Flows that get CTS
messages are sent to the network at line rate. These permitted
flows only would be stopped momentarily in two conditions by
two different mechanisms:

First: When there is no more bandwidth available to serve a
new incoming 2nd class flow with higher priority than a few of
the permitted ones. In this case, MAN uses a path-aware
preemption mechanism (§4.3) to select the best set of flows to

preempt and sends the STS messages to the preempted ones and
stops them.

Second: When permitted 2nd class flows are going to be
dropped at switches due to a high load in higher priority queue
caused by 1st class flows. In this case, to keep the design simple
and practical, instead of using fine-grained monitoring of the
queue occupancies for each switch, PFC– defined as part of
IEEE 802.1Qbb standard [19] and an available feature in today’s
commodity switches [9, 20]–is used to pause permitted 2nd class
flows without any need for coordination with MAN.

When a 2nd class flow is finished (or close to being
finished), its corresponding end-host sends a FIN message to
MAN indicating that the path (and bandwidth) allocated for this
flow is now free. Then, MAN assigns the available resources to
other flows which are stopped (by MAN).

B. Why it works?

There are three main reasons why HyLine boosts
performance of latency sensitive flows in DCNs:

1) Queue length builds up in a DCN mainly as a result of
having bandwidth hungry flows. This class of flows occupies
queues and causes dramatic increase in completion times of
small flows due to increasing buffer delay and increasing drop
rate of small flows’ packets and the consequent retransmission
of them. Therefore, giving credit to small flows and allowing
them to be served first in the switches significantly reduces their
completion times.

2) Due to the hash-based nature of flow-based ECMP, this
load balancing scheme performs very well when it is used for a
network that consists of only small flows [16].

3) Making the bandwidth hungry flows (large portion of all
bytes transferred in DCN [9, 7]) to be served after serving the
1st class flows opens room for the 1st class flows to bypass the
slow start phase of TCP and finish as soon as possible.

In addition, HyLine boosts performance of bandwidth
hungry flows, i.e., the 2nd class compared to single-path based
flow scheduler proposals [9, 1, 4, 5], because:

 1) Using the MAN, a logically centralized network manager,
enables HyLine to have global knowledge of the network for
scheduling the 2nd class flows.

2) HyLine benefits from the pre-planned nature of DCN
topologies and uses a preemption policy that not only considers
flows’ information but also network’s topology information at
the time of scheduling.

3) Since HyLine pushes back and stops the 2nd class flows
at the edge of the network when network could not serve them
at the current time, packet drops, retransmissions, queue
occupancy, and congestion for the 2nd class flows are reduced
dramatically.

C. Path-Aware Flow Scheduling Heuristic

In this section, we introduce a new path-aware scheduling
policy used in the core of HyLine by considering multiple-path
DCNs where each path has multiple links.

A B

F3: Rem. Size=P3

F1: Rem. Size=P1 F2: Rem. Size=P2

S6

Path 1: S1-S2-S4-S6
Path 2: S1-S3-S5-S6

F6: Rem. Size=P6

P6<P1<P2<P3<P4<P5

F4: Rem.
Size=P4 F5: Rem.

Size=P5

S5S3

S1

S2 S4

 Fig. 2. A simple multipath network.

336

To Preempt or Not to Preempt: To explain the HyLine’s
path-aware scheduling policy, we use the example shown in Fig.
2. Flow #6 (F6) with size 𝑝6 is generated at A and destined to
B, while there is no enough bandwidth to serve this flow without
preempting others (different links might contain different flows,
but Fig. 2 only shows the ones that have lower priorities (higher
remaining sizes) than F6). Similar to the example in Fig. 1, total
flow completion time (TF) when using each path can be
calculated as follow:

Without Preemption:

{

 𝑇𝐹𝑃𝑎𝑡ℎ1 = [𝑝1 + 𝑝2] + [𝑝3 + 𝑝4 + 𝑝5 + (𝑝6 + 𝑝5)] =∑ 𝑝𝑖
6

1
+ 𝑝5

𝑇𝐹 𝑃𝑎𝑡ℎ2 = [𝑝1 + 𝑝2 + (𝑝6 + 𝑝2)] + [𝑝3 + 𝑝4 + 𝑝5] = ∑ 𝑝𝑖
6

1
+ 𝑝2

 (1)

With Preemption:

{

𝑇𝐹𝑝𝑎𝑡ℎ1 = [𝑝1 + 𝑝2] + [(𝑝6 + 𝑝3) + (𝑝6 + 𝑝4) + (𝑝6 + 𝑝5) + 𝑝6]

=∑ 𝑝𝑖
6

1
+ 3𝑝6

𝑇𝐹𝑃𝑎𝑡ℎ2 = [(𝑝1 + 𝑝6) + (𝑝2 + 𝑝6) + 𝑝6] + [𝑝3 + 𝑝4 + 𝑝5]

=∑ 𝑝𝑖
6

1
+ 2𝑝6

 (2)

As these equations illustrate, path 2 is the best choice, and if
2𝑝6 < 𝑝2, preemption should be used.

In general, when N, 𝑃𝑚𝑎𝑥 , and 𝑃𝑛𝑒𝑤 represent number of
required preemption on a path, maximum priority on a path, and
priority of the new flow, if 𝑁 × 𝑃𝑛𝑒𝑤 < 𝑃𝑚𝑎𝑥 , preemption is
preferred, while in other cases, using no-preemption leads to
smaller AFCT. Therefore, totally, the path that has the Minimum
of either 𝑁 × 𝑃𝑛𝑒𝑤 (in short, MNP) or 𝑃𝑚𝑎𝑥 is the best path.

D. Scheduling Logic’s Details

HyLine’s main path-aware scheduling policy is based on the
fact that permitted flows are sent at edge link’s line rate. This
makes the overall design very simple and omits the need for any
precise rate calculation and sophisticated scheduling policies.
Another key rule to simplify the logic and reduce the time
complexity is out-of-order delivery avoidance. To avoid out-of-
order delivery, paths allocated for permitted flows could not be
changed. In other words, only new flows and already stopped
ones (by MAN) could be assigned to other paths.

Algorithm 1 shows MAN’s main logic. With new incoming
(RTS) request for a flow, MAN looks for the best path for the
new flow. For this purpose, MAN finds the number of required
preemptions and lowest priority on each path.

Balanced Load: When new flow is permitted to come to the
network, and there are multiple choices for the final path, the
remaining BW of these paths is considered and the path with the
maximum remaining BW is selected for the new incoming flow
(Remaining BW of a path is defined as the minimum remaining
BW of the links in that path). If the remaining BW is also equal
for those paths, random selection will be used to break the tie.
MAN will only consider 2nd class flows to calculate remaining
BW, because it does not have any information about 1st class
flows. HyLine manages the impact of 1st class flows by using
PFC in the network.

Reschedule: After selecting a path for a new incoming flow
and likely stopping/preempting some other flows on this path,
there might be available room for flows that have been stopped
before. Therefore, in case of preemption, MAN checks the
possibility of admitting more flows into the network
(considering out-of-order delivery avoidance rule). Clearly,
there is a trade-off between adding more rounds of rescheduling
to admit more probable flows and the overall time complexity
of the algorithm. To reduce the time complexity of the main
logic, we decided to do only one round of rescheduling. The
results in §5 show that this decision still leads to very good
overall performance.

HyLine’s Time Complexity: Here, we show that the time
complexity of HyLine is O(|F|) where |F| is the total number of
active flows in the 2nd class. To show this result, we first should
notice that the maximum number of permitted flows on a link
has an upper bound that is independent of the number of flows

337

considering the assumption that all flows are sent at line rate.
Assuming that the lowest and highest link rates on a path are S
bps and M bps, respectively, the maximum number of 2nd class
flows in a link of that path is M/S. When findMNP procedure
(line 37 in Algorithm 1) is implemented simply by exploring the
entire valid preemption list of flows in a path, for each path, at

most, it looks at (𝑀 𝑆⁄)𝑙 combinations in which, l is number of
links in a path. For instance, in a 3-tier datacenter, l is equal to
6. Therefore, FindPath takes constant time. In addition, the out-
of-order delivery avoidance rule causes a flow to be considered
during the ReSchedule procedure at most once. This illustrates
that the Complexity of Schedule function, which is equal to the
total complexity of the algorithm, is O(|F|).

PFC and Head-of-Line Blocking Issue: PFC if used in a
normal network will cause head-of-line blocking issue for flows
using the same priority queue. However, in HyLine, MAN
pushes most of the 2nd class flows back and stops them from
coming into the network. This strategy significantly reduces the
head-of-line blocking issue and as the results in §5.5 show, using
PFC boosts the overall performance.

Rate Control: HyLine has no complicated rate control
mechanism. It uses TCP, and to send flows at line rate, changes
initial congestion window size. However, 2nd class flows being
stopped by MAN should not cause TCP time-outs. So we
modify TCP to avoid such time-outs for the 2nd class flows
(when they receive STS signal from MAN) without affecting
TCP time-out mechanism for 1st class flows. This modification
only requires adding a few lines of code to the original TCP
implementation.

E. The Threshold to Distinguish Classes of Traffic

Some recent studies [1, 4] tried to formalize the problem of
finding optimum thresholds to distinguish different flows based
on their sizes and use available priority queues in today’s
commodity switches to separate packets of different types of
flows. PIAS and pFabric use simple M/M/1 and M/G/1 queue
models, respectively, to find the best threshold values. Even
with these simplifications, the problem of finding optimum
thresholds is complicated [1] and NP-hard [4]. Moreover, these
simplifications do not work in our case. In fact, none of the
M/M/1 or M/G/1 FIFO queue models are valid approximations
for our 2nd queue. Even in simple single queue scenario where
our 2nd queue scheduling mechanism is equal to SRPT, FIFO
queue models should be replaced by complex SRPT queue
models [21]. From this point of view, the problem of finding the
best thresholds becomes even more complicated than before.
Therefore, in this paper, we choose another direction and instead
of finding the optimum threshold, we determine a band for
practical threshold values.

Lower Bound: In theory, forcing more flows to be
controlled by MAN (i.e., decreasing the threshold) increases the
performance because of having a global view of the network
during the scheduling; however, in practice, reducing threshold
(H) causes additional delays for the small flows due to the
controller’s delay (both network delay for reaching the MAN
and computation delay of MAN). To simplify the analysis and
find a lower bound for H, we consider single queue model and
use mean queue analysis. We define a delay cost, 𝑇𝑐𝑜𝑠𝑡, for any

flow which is controlled by MAN, 𝑓𝑠 as the smallest flow in the
2nd queue (𝑓𝑠’s size = H), and 𝑊𝑓𝑠 as expected waiting time of 𝑓𝑠
(time from when it first arrives to when it receives service for
the first time). We argue that 𝑊𝑓𝑠 should not be smaller than

𝑇𝑐𝑜𝑠𝑡 (if 𝑇𝑐𝑜𝑠𝑡 > 𝑊𝑓𝑠 , putting 𝑓𝑠 in the 1st queue (increasing the

threshold to 𝐻 + 𝜀) will cause lower FCT for 𝑓𝑠).

The 𝑓𝑠 will be served only after serving all flows in the 1st
queue and after serving all flows having smaller remaining sizes
(but originally bigger) than it in the 2nd queue. In other words,
any flow with smaller size than 𝑓𝑠 in 1st queue or any flow with
smaller remaining size than 𝑓𝑠 in 2nd queue will preempt 𝑓𝑠
before it receives service for the first time. So, from 𝑓𝑠′s point of
view, 𝑊𝑓𝑠 in this network is equal to 𝑊𝑓𝑠 in a network where

there is only a single SRPT queue. Therefore, we can use [21]’s
analysis for an M/G/1/SRPT queue to find average value of 𝑊𝑓𝑠:

 𝐸[𝑊(𝑥)] =
𝜆(𝑚2(𝑥)+𝑥

2(1−𝐹(𝑥)))

2(1−𝜌(𝑥))
2  

Here, we denote average arrival rate by 𝜆, service time (service

time=size/service rate, service rate=link speed) of a flow by X,

CDF of service time distribution by 𝐹(𝑥) , 𝑚2(𝑥) =

∫ 𝑡2𝑓(𝑡)𝑑𝑡
𝑥

0
, and the load made up by the flows of service time

less than or equal 𝑥 by 𝜌(𝑥) = 𝜆𝑋𝑥̅̅ ̅ in which 𝑋𝑥̅̅ ̅ = ∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑥

0
.

Substituting 𝑥 in this formula with ℎ = 𝐻 𝐶⁄ in which C

represents bandwidth of the link, will lead to calculation of

𝐸[𝑊(ℎ)] = 𝐸[𝑊𝑓𝑠]. So, the following inequality represents the

lower bound:

 𝑇𝑐𝑜𝑠𝑡 ≤
𝜆(𝑚2(ℎ)+ℎ

2(1−𝐹(ℎ)))

2(1−𝜌(ℎ))
2  

Upper Bound: Increasing H puts more flows into the 1st
class, causes congestion in the 1st queue and consequently
decreases the performance. Therefore, to address this issue, we
require an upper bound on H. Here, the important observation is
that almost all of the schemes including normal TCP perform
very well when load is very low (less than 10%) [1, 4, 3, 5]. The
reason is that at low load, inter-arrival of the flows is large
enough to serve flows without having congestion issue. Based
on this important observation, we cap the overall load of the 1st

queue. In more detail, we choose 𝜌1 = 𝜌(ℎ) ≤
𝜌𝑡𝑜𝑡𝑎𝑙

10
. Since

𝜌𝑡𝑜𝑡𝑎𝑙 < 1, this choice guarantees that the total load in the 1st
queue (𝜌1) is always smaller than 10%; therefore, congestion in
the 1st queue will not be an issue. So, following equation
represents the upper bound:

𝜌1

𝜌𝑡𝑜𝑡𝑎𝑙
=

𝑋ℎ̅̅ ̅̅

𝑋𝑡𝑜𝑡𝑎𝑙 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
≤ 0.1 

𝐸[𝑊(𝐻)] and
𝜌1

𝜌𝑡𝑜𝑡𝑎𝑙
 for web search workload and different

loads (up to 90%) are shown in Fig. 3 (C=1Gbps). The band for
choosing H in a moderate load of 60% is depicted in this figure
too (through this paper we assume 𝑇𝑐𝑜𝑠𝑡 = 100𝜇𝑠).

338

Static vs. Dynamic Threshold Assignment: Clearly,
assigning thresholds dynamically based on the load of the flows
(as lower bound criterion suggests) is beneficial. For that
purpose, different agents at end-hosts could periodically report
summary of all their flows to the MAN. Later, MAN will use
these reports to choose the threshold and report it back to the
end-hosts. Although HyLine’s structure enables us to use this
approach, to keep the design simple and practical we use a static
threshold assignment, and in §5, we will show that this approach
works very well for different loads and even for different types
of workloads. So, through the rest of this paper, based on Fig. 3,
we choose H=1MB.

V. EVALUATION

In this section, we evaluate the performance of HyLine using
extensive packet-level simulations in ns2 (available at:
https://github.com/soheil-ab/hyline). First, we compare the
performance of HyLine with existing proposals including
Qjump [5], pFabric [1], DCTCP [9], and TCP-New Reno. Then,
through micro-benchmarks, we evaluate HyLine’s performance
such as its sensitivity to the threshold value, improvements
caused by PFC.

A. Simulation Settings

Datacenter Topology: We use a 3-tier fat-tree topology [18]
which is the base topology for today’s DCNs [22,13] for our
evaluation (Fig. 4.a). The topology includes 8 pods
interconnecting 256 end-hosts using 80 8-port switches with a
300µs overall end-to-end RTT delay between end-hosts located
in different pods.

Load-balancing Mechanism: To have a fair comparison of
HyLine’s performance with other single-path based flow-
scheduling schemes, we use flow-based ECMP used in
commodity DCNs [18, 7] as the load balancing scheme.

Traffic Workloads: We use two realistic workloads from
production datacenters: web search workload [9] and data
mining workload [7]. In addition, we use 2 other synthetic
workloads named Heavy and Light to change the heavy-
tailedness of the traffic and do stress tests. The flow size
distributions of all workloads are shown in Fig. 4.b.

Performance Metrics: We consider AFCT and 99th
percentile FCT of flows as the performance objectives like prior
work [1, 4, 2, 3]. We normalize all FCTs to the flows’ ideal
values achieved if each flow is transmitted over the fabric
without any interference from competing traffic. In addition,
since most of the datacenter applications (from search and social
networks to MapReduce) use partition-aggregate structure
equipped with different deadlines for flows in different layers of

its hierarchy [23], similar to prior work [1, 3, 23], we use the
application throughput defined as the fraction of flows that meet
their deadline as another performance metric to investigate the
impact of HyLine on real applications.

Schemes Compared: We compare HyLine with Qjump [5],
pFabric [1], DCTCP [9], and TCP-New Reno with Sack. The
parameters used for the evaluation of these schemes are selected
based on their authors’ recommendations or reflect the best
settings that we have experimentally determined (Table 1). We
use these parameters for evaluations in this section unless
otherwise specified.

PFC Implementation in ns2: We use a simplified version
of PFC (on/off style) that we have added to ns2 simulator. For
that purpose, when the queue size hits a threshold (pause
threshold), the switch sends pause signal to upstream switch.
When the queue size becomes less than another threshold
(resume threshold) the switch sends resume message.

B. Overall Performance

In this section, we present the overall performance of
HyLine under the aforementioned workload and DCN topology.
[9, 7]. We show that despite HyLine’s simplicity, it outperforms
all compared schemes.

Overall AFCT: The overall normalized FCT of flows with
different schemes for search and data mining workloads are
shown in Fig. 5.e and Fig. 6.e, respectively. As these results
illustrate, HyLine achieves the best performance among all
compared schemes. For instance, AFCT using HyLine is ~3-
31% and ~52-66% lower than pFabric and Qjump respectively.
All schemes generally perform better in data mining workload.
The reason is that in this workload probability of having two
large flows competing for the same link is less than search
workload (Fig. 4.b). For this workload, HyLine achieves ~18-
30% lower AFCT than Qjump and compared to pFabric
performs roughly the same.

AFCT in More Detail: As expected, pFabric performs well
for the very small flows in (0, 100kB] range (Fig. 5.a and Fig.

...

Pod 1

All Links:
1Gbps

... ...

Pod 8

16 Core Switches

...

... ...

256 Servers in 8
Pods

Fig. 4. Simulation setup (a) The 3-tier topology (b) Flow size distributions of workloads used

Workload

% of Flows

smaller than

100KB

Heavy 40%

Web Search 58%

Data Mining 83%

Light 97%

Fig. 3. 𝑬[𝑾(𝑯)] and 𝝆𝟏/𝝆𝒕𝒐𝒕𝒂𝒍

TABLE I. DEFAULT SIMULATION SETTINGS

Scheme Parameters

pFabric
qsize = 50pkts (=2×BDP), initCwnd = 25pkts (=𝐵𝐷𝑃),

minRTO =1ms (≈3× 𝑅𝑇𝑇)

Qjump qsize = 225pkts, initCwnd = 25pkts, minRTO = 4ms

dctcp & tcp qsize = 225pkts, initCwnd = 10pkts, minRTO = 4ms

HyLine

qsize = 225pkts, initCwnd = 25pkts,

H=1MB, Tcost=100us, minRTO = 4ms,
initCwnd (2nd class) = 25pkts, minRTO (2nd class) = 1s,

pause threshold=215pkts, resume threshold=205pkts

339

6.a). However, it comes at the expense of performance reduction
for other ranges of flows, due to its local strategy of dropping
packets at earliest stages of the network and reacting to this
sooner by using small priority queues in switches and small
timeouts at end-hosts. In contrast, HyLine allows the other 1st
class packets (i.e. flows in (100kB, 1MB] range) to be queued in
switches too. Considering multipath nature of network and the
fact that all of these 1st class flows will not compete for the same
output links in the next stages of the network, this increases the
chance of serving flows in (100kB, 1MB] range later in the
network (Fig. 5.b and Fig. 6.b). Moreover, Qjump cannot
achieve very good performance for the small flows (specially for
the search workload (Fig. 5.a)) because it reduces the throughput
of these flows to give more bandwidth to the bigger ones.

For the 2nd class flows ((1MB, 10MB] and (10MB, ∞)
ranges), HyLine benefits from having a global view and path-
aware nature in its scheduler compared to other schemes . So, as
Fig. 5.c-d and Fig. 6.c-d illustrate, it performs better than all
other schemes for almost all loads and workloads except very
high loads in search workload for flows in (10MB, ∞) range. For
high loads in this range (Fig. 5.d), since total number of flows
including big flows increases, the total number of preemptions
for this range of flows increases too. Therefore, largest flows in
the network face more preemption delay. In contrast, TCP
achieves best performance at high loads (Fig. 5.d), because it
loses less bandwidth due to the fairness nature of its design.

C. Varying Performance Metrics

Application Throughput: Most of the today’s datacenter
applications use partition-aggregate structure in which flows in
each level of the hierarchy have deadlines [23]. For instance, in
a search application, if responses (flows) from workers miss
their deadlines, they are not included in the total response,
typically hurt the response quality, and waste network
bandwidth. Therefore, to investigate impact of HyLine for such
applications, we assign different deadlines to different flows and
similar to prior work [1, 2, 23] consider application throughput
as the performance metric. Here, deadline of each flow is

considered 4x of its ideal completion time achieved when there
are no other competing flows in the network. We used tighter
and looser deadlines for flows too, but since the overall results
are similar to the presented results, for brevity, we only report
the results for the mentioned deadline. Fig. 7 depicts the overall
results for two realistic workloads across different loads. HyLine
outperforms other schemes for both workloads.

Since in both workloads, most traffic are small flows,
finishing these small flows faster increases the probability of
meeting their deadlines. Therefore, schemes which achieve
better results for small flows potentially perform better for
deadline-aware traffic too. That’s why HyLine and pFabric
perform very well compared to other schemes. It is important to
notice that HyLine achieves this performance without any
changes in the network, while pFabric requires changes in
switches.

99th Percentile: In addition to previous metrics, we also
consider the 99th percentile FCT as a performance metric to
have a better comparison of HyLine with other schemes. Fig. 8
and Fig. 9 show the results of 99th percentile FCT for data
mining and search workloads respectively for different flows’
size ranges. 99th percentile result’s pattern is similar to the AFCT
result’s pattern discussed earlier.

D. Impact of Workload

So far we evaluated HyLine under realistic DCN workloads.
However, there might be still two concerns about the HyLine’s
performance: 1-What if traffic consists of more 1st class flows?
2-What if a workload consists of more 2nd class flows? To
evaluate the performance under these two corner cases, we used
Bounded-Pareto distribution to generate 2 synthetic workloads
named Light and Heavy (Fig. 4.b). In Light workload, 97% of
the flows are smaller than 100KB, while this number is only
40% for Heavy workload. This will provide us with workloads
to check the two mentioned concerns. Fig. 10 and Fig. 11 show
the AFCT, and application throughput results using Light and
Heavy workloads. Under Light workload, all schemes generally

Fig. 6. Normalized FCT statistics across different flow sizes for data mining workload.

(a) (0,100kB] (b) (100kB, 1MB] (c) (1MB, 10MB] (d) (10MB, ∞) (e) Overall

Fig. 5. Normalized FCT statistics across different flow sizes for web search workload.

(a) (0,100kB] (b) (100kB, 1MB] (c) (1MB, 10MB] (d) (10MB, ∞)

(e) Overall

Fig. 7. Application Throughput

across different loads

(a) Web Search

(b) Data Mining

340

perform well. However, for Heavy workload including more big
flows, the performance of schemes drops dramatically. Here,
scheduling issue and handling big flows dominate, and the
scheme which manages these issues better than others will
achieve higher performance. That’s why compared to other
schemes, HyLine works very well under Heavy workload.

E. HyLine Deep Dive

In this section, a series of targeted simulations are conducted
to dig deeper into HyLine’s design.

Sensitivity to Threshold: To check our analysis in the §4.5,
we use search workload and change the threshold identifying the
two classes of traffic, and check the AFCT as the performance
metric. Fig. 12 presents overall results in 60% load. Here, the
results fit very well with our lower bound and upper bound
analysis (Fig. 3). As we expected, for the thresholds below the
lower bound, cost of doing centralized scheduling dominates,
and for the ones above the upper bound, benefits of using
centralized scheduler is not so much. So, in both cases, overall
performance drops.

PFC: PFC, if used in a normal network, could cause the
head-of-line blocking issue. However, since HyLine controls all
of the 2nd class flows in the network, it prevents the head-of-
line blocking issue for this class of flows. Moreover, PFC is used
to prevent any drop of the 2nd class packets due to the increase
in the number of 1st class flows at high load situations. To show

the impact of using PFC at high loads, we use web search
workload and do simulations with and without PFC feature in
switches. Fig. 13 illustrates the improvement of the overall
performance for the 2nd class of flows when PFC is turned on.
In fact, PFC improves AFCT and 99th FCT by up to 13% and
15% respectively at high loads.

MAN: Here, we report MAN’s performance measurements
including average number of requests that MAN receives (Fig.
14), average waiting time (the time from when a flow first
arrives at the end-host to when it receives first CTS (GO signal)
from MAN), average preemption time (the total time that a flow
is in STOP state (i.e., preempted by MAN)), and average
number of preemptions that a flow experiences under web
search workload. When load increases, as expected, number of

preemptions per flow for the biggest flows (in (10MB-∞) range)

increases (Fig. 15). However, since smaller flows (in (1-10MB]
range) could be finished faster due to no competing bigger flows
which are already stopped by MAN at the edge of network, the
probability of being preempted during their transmission will be
small. This is shown in Fig. 15.

Fig. 16 shows ratio of waiting and preemption times that on
average a flow experiences to its total completion time across
different loads for 2 different ranges of flow sizes. As mentioned
earlier preemption time of flows in (1-10MB] range is small.
Also, as loads increases waiting time of flows in this range
slightly increases. The reason is that the flows which already

Fig. . Normalized th percentile FCT statistics for data mining workload across different flow sizes.

(a) (,1 k] (b) (1 k , 1M] (c) (1M , 1 M] (d) (1 M ,)

Fig. . Normalized th percentile FCT statistics for web search workload across different flow sizes.

(a) (,1 k] (b) (1 k , 1M] (c) (1M , 1 M] (d) (1 M ,)
Fig. 1 . Normalized FCT statistics

(a) Heavy workloads (b) Light workloads

Fig. 11. Application Throughput

(a) Heavy workload (b) Light Workload

Fig. 1 . AFCT

across different

thresholds.

Fig. 13. erformance with without FC

(a) AFCT (b) th ercentile FCT
Fig. 1 . Avg. of

preemptions per flow

for ranges of flow

sizes

Fig. 1 . Average of
req. received by MAN

Fig. 1 . Average portion of waiting and

preemption times that a flow experiences

to the total flow s completion time.

(b) (1 M) range(a) (1 1 M] range

341

have got permission from MAN most likely have smaller
remaining sizes compared to the new incoming flows, so new
incoming flows will wait for the completion of these flows.

VI. DISCUSSION

Flow Information: Previous studies show that for many
DCN applications (e.g. web search, Hadoop [25], data
processing), size of the flows are known at initiation time (For
example, see §2.1 of [23]), and can be conveyed to lower layer
(e.g., through a socket option). In other cases, when sizes of
flows are not known precisely in advance, offline measurements
enable applications to have an approximation of the flow sizes
and use them later at run time. However, it is important to
mention that based on DCN’s traffic characteristics, HyLine
does not require exact size information for 1st class flows (most
of the DCN’s flows), because it let them come to the network
without scheduling them one by one, while all other size-aware
schemes (e.g., [1], [2], [3]) need to know the exact size of all of
the flows. Therefore, using HyLine, for most of the DCN’s
flows, these offline measurements will be just to check whether
a flow is less than a threshold (e.g., 1MB).

Stopping vs. Terminating an Application: Although
results shown in Fig. 16 indicate that most of the 2nd class flows
have a very small preemption time, it is worth mentioning that
stopping a 2nd class flow momentarily is not equal to
terminating it. From the applications’ point of view, it is more
like TCP being in slow phase, so when a flow is stopped
momentarily by MAN, connections are still there and
applications are not terminated. Also, as mentioned before,
HyLine modifies TCP to avoid having time-outs in STOP state
and reacting to them as indication of packet loss.

Line Rate Transmission: With today’s advances in both
software (e.g., Intel DPDK [26], SR-IOV [27]) and hardware
(e.g., [29], [30]), end-hosts can achieve line rate transmissions.
However, if applications become the bottleneck of sending at
line rate, for the 2nd class flows, they could simply add their
maximum capable sending rate (maxRate) as part of their
request message to MAN. MAN could consider those flows as
flows generated by end-hosts having virtual maxRate-links
(instead of their physical speed links). Therefore, without
changing the logic, it could allow more flows to come and use
same links.

VII. CONCLUSION

We presented HyLine a simple and practical flow scheduling
design for DCNs. HyLine’s path-aware scheduling policy
exploiting the multipath nature of today’s DCNs shows that
load-balancing and flow scheduling design blocks are dependent
blocks, and they should be designed together to minimize AFCT
in DCNs. Moreover, HyLine’s hybrid approach indicates that to
reach high performance and minimize AFCT, it is unnecessary
to use fine-grained scheduling structures trying to schedule
every flow in DCNs by calculating and assigning either precise
rates or priorities to them. In sum, Despite the simple nature of
HyLine’s design and the fact that it does not require any changes
in the fabric, our evaluation results show that it outperforms
recent flow scheduling solutions. That’s why HyLine is a good

candidate to be used in today’s commodity DCNs, and why we
believe that performance meets simplicity at HyLine.

REFERENCES

[1] M. Alizadeh et al., pFabric: Minimal near-optimal datacenter transport. In
Proc. of SIGCOMM’13.

[2] C.-Y. Hong et al., Finishing Flows Quickly with Preemptive Scheduling.
In Proc. of SIGCOMM, 2012.

[3] A. Munir et al., Friends, not Foes - Synthesizing Existing Transport
Strategies for Data Center Networks. In Proc. of SIGCOMM 2014.

[4] W. Bai et al., Information-Agnostic Flow Scheduling for Commodity
Data Centers. In NSDI, 2015.

[5] M. . Grosvenor et al., Queues Don’t Matter When You Can JUM
Them! In NSDI, 2015.

[6] F. R. Dogar et al., Decentralized Task-aware Scheduling for Data Center
Networks. In roc. of SIGCOMM’1 .

[7] A. Greenberg et al., VL2: a scalable and flexible data center network. In
Proc. of SIGCOMM, 2009.

[8] J. Perry et al., Fastpass: A Centralized "Zero-Queue" Datacenter Network.
In Proc. of SIGCOMM, 2014.

[9] M. Alizadeh et al., Data center TCP (DCTCP). In Proc. of SIGCOMM,
2010.

[10] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.

[11] P. X. Gao et al., pHost: Distributed Near-optimal Datacenter Transport
Over Commodity Network Fabric. In Proc. ACM CoNEXT, Dec. 2015.

[12] A. Dixit et al., On the Impact of Packet Spraying in Data Center
Networks. In Proc. of INFOCOM, 2013.

[13] A. Singh et al., Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google's Datacenter Network. In Proc. of
SIGCOMM, 2015.

[14] D. Zats, et al. DeTail: Reducing the Flow Completion Time Tail in
Datacenter Networks. In Proc. of SIGCOMM, 2012.

[15] M. Al-Fares et al., Hedera: dynamic flow scheduling for data center
networks. In Proc. of NSDI, 2010.

[16] M. Alizadeh et al., CONGA: Distributed Congestion-aware Load
Balancing for Datacenters. In Proc. of SIGCOMM, 2014.

[17] K. He et al., Presto: Edge-based Load Balancing for Fast Datacenter
Networks. In Proc. of SIGCOMM, 2015.

[18] M. Al-Fares et al., A scalable, commodity data center network
architecture. In Proc. of SIGCOMM, 2008.

[19] IEEE 802.1: 802.1Qbb - Priority-based Flow Control.
http://www.ieee802.org/1/pages/802.1bb.html.

[20] HP FlexFabric 5700 Switch Series.
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=c043473
52

[21] L.E. Schrage and L.W. Miller. The queue M/G/1 with the shortest
processing remaining time discipline. Operations Research, 1966.

[22] A. Roy et al., Inside the social network’s (datacenter) network. In roc.
of SIGCOMM, 2015.

[23] C. Wilson Better never than late: meeting deadlines in datacenter
networks. In Proc. of SIGCOMM, 2011.

[24] Y. Lu et al., One More Queue is Enough: Minimizing Flow Completion
Time with Explicit Priority Notification, In Proc. of INFOCOM, 2017.

[25] Hadoop. http://hadoop.apache.org/.

[26] DPDK. http://dpdk.org/.

[27] SR-IOV. https://www.pcisig.com/specifications/iov/.

[28] S. Abbasloo et al., “Cellular controlled delay TC (C TC),” in IFI
Networking Conference (IFIP Networking) and Workshops, 2018. IEEE,
2018.

[29] P. K. Gupta, Intel® Xeon® + FPGA Platform for the Data Center. In FPL
Workshop on Reconfigurable Computing for the Masses, Really?, 2015.

[30] SmartNIC. http://rnet-tech.com/smartnic.html

342

