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Abstract— Today’s datacenter networks (DCNs) have been 

built upon multipath topologies where each path contains multiple 

links. However, flow scheduling schemes proposed to minimize 

flow completion times (FCT) in DCNs are based on algorithms 

which are optimum or close-to-optimum only over single link. 

Moreover, most of these scheduling schemes seek either fully 

centralized approaches having overhead of communicating to a 

central entity or fully distributed approaches requiring changes in 

the fabric. 

Motivated by these shortcomings, we present HyLine a simple 

scheduling design for commodity DCNs which is equipped with a 

joint load-balancing and flow scheduling (path-aware) design 

exploiting the multipath nature of DCNs. HyLine takes a hybrid 

approach and uses the global-awareness of centralized and agility 

of distributed techniques without requiring any changes in the 

fabric. To that end, it determines a threshold margin identifying 

flows for which using centralized approach is beneficial.  

We have shown through extensive ns2 simulations that despite 

HyLine’s simplicity, it significantly outperforms existing schemes 

and achieves lower average and 99th percentile FCTs. For 

instance, compared to Qjump–state-of-the-art practical scheme–

and pFabric–one of the best performing flow scheduling schemes–

HyLine reduces average FCT up to 68% and 31%, respectively, 

under a production datacenter workload. 

I. INTRODUCTION 

User satisfaction (and total revenue) of today’s popular 
datacenter applications such as search, social networks, and 
recommendation systems is closely related to the response times 
of these interactive applications. This motivates recent research 
to propose new datacenter (DC) transport designs for 
minimizing average flow completion times (AFCT) as the 
primary objective that is mainly determined by the end-to-end 
latency of datacenter networks (DCNs).  

Prioritization is one of the main techniques used by different 
approaches to achieve lower AFCTs [1-5].  Wide range of these 
proposals use shortest remaining processing time (SRPT) (or its 
simplified versions), the optimum scheduling algorithm when 
used over a single link [1], to minimize AFCT in DCNs. 
However, as we show in section III, these algorithms are 
suboptimal for minimizing AFCT when each path in the 
network has multiple links. This issue will be escalated when 
multipath nature of today’s DCNs is considered. 

Agility of fully in-network schemes motivates some 
proposals to keep all changes in the network to achieve lower 

response times [1, 6, 2]. However, this usually requires changes 
in the fabric which brings extra costs for the datacenter owners 
[18, 7]. On the other hand, using centralized schemes such as 
[8], in which fabric will not be modified, comes at cost of 
performance degradation due to the delay introduced by the 
controller. This will be escalated when it is considered that most 
of the DC flows are very small and can be finished in just a few 
round trip times (RTTs) [9, 7]. Moreover, using explicit rate 
control mechanisms to precisely adjust flows’ rates in the 
network leads to high complexity in the centralized approach 
(e.g., [3]) or the need to modify switches to coordinate with each 
other for finding and maintaining the best rates in the distributed 
approach (e.g., [6, 2]).  

To overcome these shortcomings, in this paper, we present 
HyLine, a simple and practical flow scheduling design which: 

1. Takes a hybrid approach requiring no changes in the 
fabric, and uses both global-awareness of centralized and agility 
of distributed techniques such as priority flow control (PFC) in 
layer 2, 

2. Uses a joint load-balancing and flow scheduling (path-
aware scheduling) policy to exploit the multipath nature of 
DCNs, and 

3. Does not use any complicated per flow rate adjustment 
mechanism. 

To that end, HyLine determines a threshold identifying 2 
categories of flows: flows that should be scheduled in a 
centralized manner  (2nd class flows having sizes larger than the 
threshold) and flows that should not be (1st class flows having 
size smaller than the threshold). Having that threshold, end-
hosts simply assign 1st class flows to the higher priority queue in 
commodity switches and send them to the network at line rate 
(TCP handles any further required rate adjustment). 2nd class 
flows that are assigned to the lower priority queue will be 
scheduled before coming to the network. Each of the 2nd class 
flows should first send a request including flows’ information to 
HyLine’s central MANager (MAN) seeking its permission. 
MAN is responsible to control 2nd class flows in a very simple 
stop-and-go fashion. To do that, it uses simple path-aware 
scheduling policy to find the best path for the requested flow 
based on flow’s information (priority). If a path is found for the 
new flow, MAN sends back a Go signal carrying the path that 
should be used by the corresponding flow. All permitted 2nd 
class flows enter the network at their end-host’s line rate using 
the assigned paths (each edge-link will be used by at most one 
2nd class flow at a time). MAN also sends a Stop signal to the 
preempted flows or the ones that cannot be served yet. 
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We evaluate HyLine’s performance through extensive 
packet-level simulations in ns2 [10].  The results show that 
despite simple nature of HyLine’s design, it significantly 
outperforms recent schemes including pFabric [1], one of the 
best performing flow scheduling schemes, Qjump [5], the state-
of-the-art practical scheme, and DCTCP [9].  In particular, 
compared to pFabric, Qjump, and DCTCP, HyLine reduces 
AFCT up to 31%, 68%, and 88% respectively, under a realistic 
DCN workload [9]. 

II. RELATED WORKS 

Transport Designs: There are vast number of TCP designs 
targeting a specific environment (e.g., [28] in cellular context 
and [3] in DCN context). Most of recent TCP proposals in DCN 
context use various prioritization mechanisms to minimize FCT 
[1, 4, 2, 3]. For instance, they assign different rates to flows 
based on their criticality [2], tag each packet with its 
corresponding priority and serve it regarding that priority in the 
network [1], use strict priority scheduling among queues in 
switches and assign flows dynamically to different levels of 
priority [4], or use a combination of these strategies [3]. 
Although designs that use the prioritization idea achieve good 
performance, they all are based on single-path scheduling 
algorithms such as SRPT. Therefore, some of these schemes 
(e.g., [3, 24]) only test their designs in single-path scenarios. 
Most of the other ones including [1, 4, 11, 5] use packet spraying 
[12] as load balancing mechanism to run their schemes on a 
multipath DCN. However, packet spraying is not an available 
feature in most of the commodity switches and is not used in 
commodity DCNs [18, 7, 13]. Therefore, we avoid using such 
load balancing mechanisms in this paper, though they might lead 
to good performance.  

Joint Transport-Load Balancing Designs: Almost none of 
the load-balancing designs in the network layer are priority-
aware. To the best of our knowledge, there is only one scheme 
called DeTail [14] in which a cross-layer approach is used to 
reduce the long tail of FCTs in DCNs. Although DeTail achieves 
good performance, a lack of backward compatibility and the 
need for changing both switches and end-hosts make it very hard 
if not impractical for commodity DCNs. Fastpass [8] uses a 
centralized entity to handle not only scheduling block but also 
load balancing block. However, it also follows the traditional 
approach of designing scheduling block (timeslot allocation 
block in [8]) and load balancing block (path selection block in 
[8]) separately. Moreover, Fastpass could not minimize FCTs, 
because at least for the very small flows that could be finished 
in a few RTTs, it adds (at least) one RTT delay caused by 
communication with Fastpass’s central controller.  

Load Balancing Designs: Nearly all load balancing 
schemes in DCNs are designed based on the fairness nature of 

the network among all flows [15, 16, 17]. For instance, Hedera 
[15] detects flows with sizes more than 100MB (10% of the 
link’s capacity) and estimates their demands based on max-min 
fairness criterion to reroute them. However, as recent transport 
designs show, minimizing FCT in DCNs should be done through 
considering the prioritization in the network. Therefore, 
following the fairness criterion for designing the load balancing 
block will cause suboptimal FCT, though a better load balancing 
design, such as [16, 17], could reduce the overall FCT. 

III. MOTIVATIONS & DESIGN DECISIONS 

Scheduling Over Single-Link vs. Multiple-Link Paths: It 
is usually mentioned in the literature that preempting lower 
priority flows to serve higher priority ones minimizes the AFCT. 
This statement is a direct result of considering SRPT–the 
optimum solution when scheduling over a single link–as main 
algorithm to schedule flows (e.g., [1, 2, 3]). However, we show 
that this statement is wrong in a network where paths contain 
multiple links. For that purpose, we use a simple example shown 
in Fig. 1 where flows #1 and #2 have 5 and 4 remaining units 
respectively. Now a new flow (Flow #3) with 3 units comes to 
the network (consider remaining size of each flow as its priority 
i.e., smaller size has higher priority). So clearly, in contrast with 
SRPT, using no preemption (Fig. 1.a) leads to smaller AFCT. 
This is important to mention that using either local-aware SRPT 
(in S1 and S2 switches) (as in [1]) or global-aware SRPT (as in 
[3]) will lead to the suboptimal result (Fig. 1.b). Therefore, the 
incorrectness of the mentioned statement illustrates the need for 
designing better scheduling algorithms by considering the 
multiple-link nature of paths in DCNs. 

Simple, deployable, and end-to-end: Datacenter owners 
usually prefer using scale out (using commodity switches) to 
scale up (using high-end switches with high-end new features) 
to build their networks [18, 7]. This motivates us to not modify 
any switches in the network, though modifying switches might 
give good performance [1, 16, 6, 24] and look for a simple end-
to-end solution which is deployment friendly. 

Why Hybrid? Centralized approaches are attractive 
because they could use global knowledge of the network to 
make better decisions [15, 8]. However, they suffer from some 
issues. Due to the communication delay with the controller, 
scheduling small flows (most flows in DCNs [9]) through 
centralized approaches is not desired. Another issue is their 
response times. For instance, the scheduler in [15] runs every 5 
seconds, which leads to its bad performance compared to 
distributed solutions such as [16]. For centralized schemes such 
as [8] that require highly synchronized nodes, synchronization 
is another issue. Keeping nodes synchronized at the order of one 
microsecond as [8] requires, is challenging in a real DC 
environment [5]. On the other hand, although responsiveness of 
distributed approaches [16, 6, 2] is good, they require adding 
new functionalities to the switches. Therefore, instead of using 
a fully distributed or a fully centralized technique, it is beneficial 
to come up with a hybrid approach combining the global 
awareness of centralized techniques and the agility of distributed 
ones.  

Why Path-Aware Scheduling? One of our main ideas is 
that load balancing and flow scheduling are dependent design 
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blocks in DCNs and should be designed together to achieve a 
global objective such as minimizing AFCT in a multipath DCN. 
So, instead of using single-path scheduling policies (e.g., [1, 4, 
6, 5, 2, 3, 24]), we consider a path-aware scheduling logic. 

IV. DESIGN 

Scheduling flows to minimize AFCT in single path scenario 
is an NP-hard problem [1]. This problem in multipath scenarios 
will remain NP-hard. In this section, we introduce the key design 
principles of HyLine, which uses heuristic approach to minimize 
AFCT using path-aware scheduling in multipath commodity 
DCNs.  

A. HyLine’s Big Picture 

End-Hosts: In HyLine, end-hosts are responsible for 
classifying all flows into two classes: 1) Latency-sensitive 
flows, i.e., the small flows, that require less queuing and 
transmission delays. 2) Bandwidth hungry flows that could 
tolerate some delays during their transmission. This 
classification will be done using a threshold provided by MAN, 
a logically centralized network manager. All of the flows in the 
latency-sensitive class (1st class i.e., flows having sizes smaller 
than threshold) are assigned to the higher priority queue in 
switches (Q1) and all of the bandwidth hungry flows (2nd class 
i.e., flows having sizes bigger than threshold) are assigned to the 
lower priority queue in switches (Q2). Next, all 1st class flows 
are sent to the network at line rate, and flow-based ECMP is used 
for balancing their loads among available paths. However, end-
hosts should first send a Request to Send (RTS) message to 
MAN asking permission before sending any of their 2nd class 
flows to the network. This RTS carries source, destination, and 
size of the flow. 

MAN: MAN is the logically centralized entity in HyLine 
that is responsible for scheduling 2nd class flows. To this end, it 
guides transmission of all of the 2nd class flows in a very simple 
Stop-and-Go fashion. If MAN decides that a flow could come to 
the network, it sends back a Clear to Send (CTS) message (i.e., 
Go) carrying the path that should be used for transmission of this 
flow. If not, it sends back a Stop to Send (STS) message forcing 
the flow to be kept at the edge of network. Flows that get CTS 
messages are sent to the network at line rate. These permitted 
flows only would be stopped momentarily in two conditions by 
two different mechanisms: 

First: When there is no more bandwidth available to serve a 
new incoming 2nd class flow with higher priority than a few of 
the permitted ones. In this case, MAN uses a path-aware 
preemption mechanism (§4.3) to select the best set of flows to 

preempt and sends the STS messages to the preempted ones and 
stops them. 

Second: When permitted 2nd class flows are going to be 
dropped at switches due to a high load in higher priority queue 
caused by 1st class flows. In this case, to keep the design simple 
and practical, instead of using fine-grained monitoring of the 
queue occupancies for each switch, PFC– defined as part of 
IEEE 802.1Qbb standard [19] and an available feature in today’s 
commodity switches [9, 20]–is used to pause permitted 2nd class 
flows without any need for coordination with MAN. 

When a 2nd class flow is finished (or close to being 
finished), its corresponding end-host sends a FIN message to 
MAN indicating that the path (and bandwidth) allocated for this 
flow is now free. Then, MAN assigns the available resources to 
other flows which are stopped (by MAN). 

B. Why it works? 

There are three main reasons why HyLine boosts 
performance of latency sensitive flows in DCNs: 

1) Queue length builds up in a DCN mainly as a result of 
having bandwidth hungry flows. This class of flows occupies 
queues and causes dramatic increase in completion times of 
small flows due to increasing buffer delay and increasing drop 
rate of small flows’ packets and the consequent retransmission 
of them. Therefore, giving credit to small flows and allowing 
them to be served first in the switches significantly reduces their 
completion times. 

2) Due to the hash-based nature of flow-based ECMP, this 
load balancing scheme performs very well when it is used for a 
network that consists of only small flows [16].  

3) Making the bandwidth hungry flows (large portion of all 
bytes transferred in DCN [9, 7]) to be served after serving the 
1st class flows opens room for the 1st class flows to bypass the 
slow start phase of TCP and finish as soon as possible.  

In addition, HyLine boosts performance of bandwidth 
hungry flows, i.e., the 2nd class compared to single-path based 
flow scheduler proposals [9, 1, 4, 5], because: 

 1) Using the MAN, a logically centralized network manager, 
enables HyLine to have global knowledge of the network for 
scheduling the 2nd class flows. 

2) HyLine benefits from the pre-planned nature of DCN 
topologies and uses a preemption policy that not only considers 
flows’ information but also network’s topology information at 
the time of scheduling. 

3) Since HyLine pushes back and stops the 2nd class flows 
at the edge of the network when network could not serve them 
at the current time, packet drops, retransmissions, queue 
occupancy, and congestion for the 2nd class flows are reduced 
dramatically. 

C. Path-Aware Flow Scheduling Heuristic 

In this section, we introduce a new path-aware scheduling 
policy used in the core of HyLine by considering multiple-path 
DCNs where each path has multiple links.  
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 Fig. 2. A simple multipath network. 
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To Preempt or Not to Preempt: To explain the HyLine’s 
path-aware scheduling policy, we use the example shown in Fig. 
2. Flow #6 (F6) with size 𝑝6  is generated at A and destined to 
B, while there is no enough bandwidth to serve this flow without 
preempting others (different links might contain different flows, 
but Fig. 2 only shows the ones that have lower priorities (higher 
remaining sizes) than F6). Similar to the example in Fig. 1, total 
flow completion time (TF) when using each path can be 
calculated as follow: 

Without Preemption: 

{
 

 𝑇𝐹𝑃𝑎𝑡ℎ1 = [𝑝1 + 𝑝2] + [𝑝3 + 𝑝4 + 𝑝5 + (𝑝6 + 𝑝5)] =∑ 𝑝𝑖
6

1
+ 𝑝5

𝑇𝐹 𝑃𝑎𝑡ℎ2  = [𝑝1 + 𝑝2 + (𝑝6 + 𝑝2)] + [𝑝3 + 𝑝4 + 𝑝5] = ∑ 𝑝𝑖
6

1
+ 𝑝2

      (1) 

With Preemption: 

{
  
 

  
 
𝑇𝐹𝑝𝑎𝑡ℎ1 = [𝑝1 + 𝑝2] + [(𝑝6 + 𝑝3) + (𝑝6 + 𝑝4) + (𝑝6 + 𝑝5) + 𝑝6]

=∑ 𝑝𝑖
6

1
+ 3𝑝6

𝑇𝐹𝑃𝑎𝑡ℎ2  = [(𝑝1 + 𝑝6) + (𝑝2 + 𝑝6) + 𝑝6] + [𝑝3 + 𝑝4 + 𝑝5]

=∑ 𝑝𝑖
6

1
+ 2𝑝6

          (2) 

As these equations illustrate, path 2 is the best choice, and if 
2𝑝6 < 𝑝2, preemption should be used.  

In general, when N, 𝑃𝑚𝑎𝑥  , and 𝑃𝑛𝑒𝑤  represent number of 
required preemption on a path, maximum priority on a path, and 
priority of the new flow, if 𝑁 × 𝑃𝑛𝑒𝑤 < 𝑃𝑚𝑎𝑥 , preemption is 
preferred, while in other cases, using no-preemption leads to 
smaller AFCT. Therefore, totally, the path that has the Minimum 
of either 𝑁 × 𝑃𝑛𝑒𝑤  (in short, MNP) or 𝑃𝑚𝑎𝑥  is the best path.  

D. Scheduling Logic’s Details 

HyLine’s main path-aware scheduling policy is based on the 
fact that permitted flows are sent at edge link’s line rate. This 
makes the overall design very simple and omits the need for any 
precise rate calculation and sophisticated scheduling policies. 
Another key rule to simplify the logic and reduce the time 
complexity is out-of-order delivery avoidance. To avoid out-of-
order delivery, paths allocated for permitted flows could not be 
changed. In other words, only new flows and already stopped 
ones (by MAN) could be assigned to other paths.  

Algorithm 1 shows MAN’s main logic. With new incoming 
(RTS) request for a flow, MAN looks for the best path for the 
new flow. For this purpose, MAN finds the number of required 
preemptions and lowest priority on each path.  

Balanced Load: When new flow is permitted to come to the 
network, and there are multiple choices for the final path, the 
remaining BW of these paths is considered and the path with the 
maximum remaining BW is selected for the new incoming flow 
(Remaining BW of a path is defined as the minimum remaining 
BW of the links in that path). If the remaining BW is also equal 
for those paths, random selection will be used to break the tie. 
MAN will only consider 2nd class flows to calculate remaining 
BW, because it does not have any information about 1st class 
flows. HyLine manages the impact of 1st class flows by using 
PFC in the network. 

Reschedule: After selecting a path for a new incoming flow 
and likely stopping/preempting some other flows on this path, 
there might be available room for flows that have been stopped 
before. Therefore, in case of preemption, MAN checks the 
possibility of admitting more flows into the network 
(considering out-of-order delivery avoidance rule). Clearly, 
there is a trade-off between adding more rounds of rescheduling 
to admit more probable flows and the overall time complexity 
of the algorithm. To reduce the time complexity of the main 
logic, we decided to do only one round of rescheduling. The 
results in §5 show that this decision still leads to very good 
overall performance.  

HyLine’s Time Complexity: Here, we show that the time 
complexity of HyLine is O(|F|) where |F| is the total number of 
active flows in the 2nd class. To show this result, we first should 
notice that the maximum number of permitted flows on a link 
has an upper bound that is independent of the number of flows 
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considering the assumption that all flows are sent at line rate. 
Assuming that the lowest and highest link rates on a path are S 
bps and M bps, respectively, the maximum number of 2nd class 
flows in a link of that path is M/S.  When findMNP procedure 
(line 37 in Algorithm 1) is implemented simply by exploring the 
entire valid preemption list of flows in a path, for each path, at 

most, it looks at (𝑀 𝑆⁄ )𝑙  combinations in which, l is number of 
links in a path. For instance, in a 3-tier datacenter, l is equal to 
6. Therefore, FindPath takes constant time. In addition, the out-
of-order delivery avoidance rule causes a flow to be considered 
during the ReSchedule procedure at most once. This illustrates 
that the Complexity of Schedule function, which is equal to the 
total complexity of the algorithm, is O(|F|). 

PFC and Head-of-Line Blocking Issue: PFC if used in a 
normal network will cause head-of-line blocking issue for flows 
using the same priority queue. However, in HyLine, MAN 
pushes most of the 2nd class flows back and stops them from 
coming into the network. This strategy significantly reduces the 
head-of-line blocking issue and as the results in §5.5 show, using 
PFC boosts the overall performance. 

Rate Control: HyLine has no complicated rate control 
mechanism. It uses TCP, and to send flows at line rate, changes 
initial congestion window size. However, 2nd class flows being 
stopped by MAN should not cause TCP time-outs. So we 
modify TCP to avoid such time-outs for the 2nd class flows 
(when they receive STS signal from MAN) without affecting 
TCP time-out mechanism for 1st class flows. This modification 
only requires adding a few lines of code to the original TCP 
implementation.  

E. The Threshold to Distinguish Classes of Traffic 

Some recent studies [1, 4] tried to formalize the problem of 
finding optimum thresholds to distinguish different flows based 
on their sizes and use available priority queues in today’s 
commodity switches to separate packets of different types of 
flows. PIAS and pFabric use simple M/M/1 and M/G/1 queue 
models, respectively, to find the best threshold values. Even 
with these simplifications, the problem of finding optimum 
thresholds is complicated [1] and NP-hard [4]. Moreover, these 
simplifications do not work in our case. In fact, none of the 
M/M/1 or M/G/1 FIFO queue models are valid approximations 
for our 2nd queue. Even in simple single queue scenario where 
our 2nd queue scheduling mechanism is equal to SRPT, FIFO 
queue models should be replaced by complex SRPT queue 
models [21]. From this point of view, the problem of finding the 
best thresholds becomes even more complicated than before. 
Therefore, in this paper, we choose another direction and instead 
of finding the optimum threshold, we determine a band for 
practical threshold values.  

Lower Bound: In theory, forcing more flows to be 
controlled by MAN (i.e., decreasing the threshold) increases the 
performance because of having a global view of the network 
during the scheduling; however, in practice, reducing threshold 
(H) causes additional delays for the small flows due to the 
controller’s delay (both network delay for reaching the MAN 
and computation delay of MAN). To simplify the analysis and 
find a lower bound for H, we consider single queue model and 
use mean queue analysis. We define a delay cost, 𝑇𝑐𝑜𝑠𝑡, for any 

flow which is controlled by MAN, 𝑓𝑠 as the smallest flow in the 
2nd queue (𝑓𝑠’s size = H), and 𝑊𝑓𝑠  as expected waiting time of 𝑓𝑠 
(time from when it first arrives to when it receives service for 
the first time). We argue that 𝑊𝑓𝑠  should not be smaller than 

𝑇𝑐𝑜𝑠𝑡 (if 𝑇𝑐𝑜𝑠𝑡 > 𝑊𝑓𝑠 , putting 𝑓𝑠 in the 1st queue (increasing the 

threshold to 𝐻 + 𝜀) will cause lower FCT for 𝑓𝑠).  

The 𝑓𝑠 will be served only after serving all flows in the 1st 
queue and after serving all flows having smaller remaining sizes 
(but originally bigger) than it in the 2nd queue. In other words, 
any flow with smaller size than 𝑓𝑠 in 1st queue or any flow with 
smaller remaining size than 𝑓𝑠  in 2nd queue will preempt 𝑓𝑠 
before it receives service for the first time. So, from 𝑓𝑠′s point of 
view, 𝑊𝑓𝑠  in this network is equal to 𝑊𝑓𝑠  in a network where 

there is only a single SRPT queue. Therefore, we can use [21]’s 
analysis for an M/G/1/SRPT queue to find average value of 𝑊𝑓𝑠: 

 𝐸[𝑊(𝑥)] =
𝜆(𝑚2(𝑥)+𝑥

2(1−𝐹(𝑥)))

2(1−𝜌(𝑥))
2  

Here, we denote average arrival rate by 𝜆, service time (service 

time=size/service rate, service rate=link speed) of a flow by X, 

CDF of service time distribution by 𝐹(𝑥) , 𝑚2(𝑥) =

∫ 𝑡2𝑓(𝑡)𝑑𝑡
𝑥

0
, and the load made up by the flows of service time 

less than or equal 𝑥 by 𝜌(𝑥) = 𝜆𝑋𝑥̅̅ ̅ in which 𝑋𝑥̅̅ ̅ = ∫ 𝑡𝑓(𝑡)𝑑𝑡
𝑥

0
. 

Substituting 𝑥  in this formula with ℎ = 𝐻 𝐶⁄  in which C 

represents bandwidth of the link, will lead to calculation of 

𝐸[𝑊(ℎ)] = 𝐸[𝑊𝑓𝑠]. So, the following inequality represents the 

lower bound: 

 𝑇𝑐𝑜𝑠𝑡 ≤
𝜆(𝑚2(ℎ)+ℎ

2(1−𝐹(ℎ)))

2(1−𝜌(ℎ))
2  

Upper Bound: Increasing H puts more flows into the 1st 
class, causes congestion in the 1st queue and consequently 
decreases the performance. Therefore, to address this issue, we 
require an upper bound on H. Here, the important observation is 
that almost all of the schemes including normal TCP perform 
very well when load is very low (less than 10%) [1, 4, 3, 5]. The 
reason is that at low load, inter-arrival of the flows is large 
enough to serve flows without having congestion issue. Based 
on this important observation, we cap the overall load of the 1st 

queue. In more detail, we choose 𝜌1 = 𝜌(ℎ) ≤
𝜌𝑡𝑜𝑡𝑎𝑙

10
. Since 

𝜌𝑡𝑜𝑡𝑎𝑙 < 1, this choice guarantees that the total load in the 1st 
queue (𝜌1) is always smaller than 10%; therefore, congestion in 
the 1st queue will not be an issue. So, following equation 
represents the upper bound: 

 
𝜌1

𝜌𝑡𝑜𝑡𝑎𝑙
=

𝑋ℎ̅̅ ̅̅

𝑋𝑡𝑜𝑡𝑎𝑙 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅
≤ 0.1 

𝐸[𝑊(𝐻)] and 
𝜌1

𝜌𝑡𝑜𝑡𝑎𝑙
 for web search workload and different 

loads (up to 90%) are shown in Fig. 3 (C=1Gbps). The band for 
choosing H in a moderate load of 60% is depicted in this figure 
too (through this paper we assume 𝑇𝑐𝑜𝑠𝑡 = 100𝜇𝑠). 
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Static vs. Dynamic Threshold Assignment: Clearly, 
assigning thresholds dynamically based on the load of the flows 
(as lower bound criterion suggests) is beneficial. For that 
purpose, different agents at end-hosts could periodically report 
summary of all their flows to the MAN. Later, MAN will use 
these reports to choose the threshold and report it back to the 
end-hosts. Although HyLine’s structure enables us to use this 
approach, to keep the design simple and practical we use a static 
threshold assignment, and in §5, we will show that this approach 
works very well for different loads and even for different types 
of workloads. So, through the rest of this paper, based on Fig. 3, 
we choose H=1MB. 

V. EVALUATION 

In this section, we evaluate the performance of HyLine using 
extensive packet-level simulations in ns2 (available at: 
https://github.com/soheil-ab/hyline). First, we compare the 
performance of HyLine with existing proposals including 
Qjump [5], pFabric [1], DCTCP [9], and TCP-New Reno. Then, 
through micro-benchmarks, we evaluate HyLine’s performance 
such as its sensitivity to the threshold value, improvements 
caused by PFC.  

A. Simulation Settings 

Datacenter Topology: We use a 3-tier fat-tree topology [18] 
which is the base topology for today’s DCNs [22,13] for our 
evaluation (Fig. 4.a). The topology includes 8 pods 
interconnecting 256 end-hosts using 80 8-port switches with a 
300µs overall end-to-end RTT delay between end-hosts located 
in different pods. 

Load-balancing Mechanism: To have a fair comparison of 
HyLine’s performance with other single-path based flow-
scheduling schemes, we use flow-based ECMP used in 
commodity DCNs [18, 7] as the load balancing scheme. 

Traffic Workloads: We use two realistic workloads from 
production datacenters: web search workload [9] and data 
mining workload [7]. In addition, we use 2 other synthetic 
workloads named Heavy and Light to change the heavy-
tailedness of the traffic and do stress tests. The flow size 
distributions of all workloads are shown in Fig. 4.b. 

Performance Metrics: We consider AFCT and 99th 
percentile FCT of flows as the performance objectives like prior 
work [1, 4, 2, 3]. We normalize all FCTs to the flows’ ideal 
values achieved if each flow is transmitted over the fabric 
without any interference from competing traffic. In addition, 
since most of the datacenter applications (from search and social 
networks to MapReduce) use partition-aggregate structure 
equipped with different deadlines for flows in different layers of 

its hierarchy [23], similar to prior work [1, 3, 23], we use the 
application throughput defined as the fraction of flows that meet 
their deadline as another performance metric to investigate the 
impact of HyLine on real applications. 

Schemes Compared: We compare HyLine with Qjump [5], 
pFabric [1], DCTCP [9], and TCP-New Reno with Sack. The 
parameters used for the evaluation of these schemes are selected 
based on their authors’ recommendations or reflect the best 
settings that we have experimentally determined (Table 1). We 
use these parameters for evaluations in this section unless 
otherwise specified.  

PFC Implementation in ns2: We use a simplified version 
of PFC (on/off style) that we have added to ns2 simulator. For 
that purpose, when the queue size hits a threshold (pause 
threshold), the switch sends pause signal to upstream switch. 
When the queue size becomes less than another threshold 
(resume threshold) the switch sends resume message. 

B. Overall Performance 

In this section, we present the overall performance of 
HyLine under the aforementioned workload and DCN topology. 
[9, 7]. We show that despite HyLine’s simplicity, it outperforms 
all compared schemes. 

Overall AFCT: The overall normalized FCT of flows with 
different schemes for search and data mining workloads are 
shown in Fig. 5.e and Fig. 6.e, respectively. As these results 
illustrate, HyLine achieves the best performance among all 
compared schemes. For instance, AFCT using HyLine is ~3-
31% and ~52-66% lower than pFabric and Qjump respectively. 
All schemes generally perform better in data mining workload. 
The reason is that in this workload probability of having two 
large flows competing for the same link is less than search 
workload (Fig. 4.b). For this workload, HyLine achieves ~18-
30% lower AFCT than Qjump and compared to pFabric 
performs roughly the same. 

AFCT in More Detail: As expected, pFabric performs well 
for the very small flows in (0, 100kB] range (Fig. 5.a and Fig. 

...

Pod 1

All Links: 
1Gbps

... ...

Pod 8

16 Core Switches

...

... ...

256 Servers in 8 
Pods

   
 

Fig. 4. Simulation setup  (a) The 3-tier topology (b) Flow size distributions of workloads used 

 

Workload

% of Flows 

smaller than 

100KB

Heavy 40%

Web Search 58%

Data Mining 83%

Light 97%

 

Fig. 3. 𝑬[𝑾(𝑯)] and 𝝆𝟏/𝝆𝒕𝒐𝒕𝒂𝒍  

TABLE I.  DEFAULT SIMULATION SETTINGS 

Scheme Parameters 

pFabric 
qsize = 50pkts (=2×BDP), initCwnd = 25pkts (=𝐵𝐷𝑃), 

minRTO =1ms (≈3× 𝑅𝑇𝑇) 

Qjump qsize = 225pkts, initCwnd = 25pkts, minRTO = 4ms 

dctcp & tcp qsize = 225pkts, initCwnd = 10pkts, minRTO = 4ms 

HyLine 

qsize = 225pkts, initCwnd = 25pkts,  

H=1MB, Tcost=100us, minRTO = 4ms, 
initCwnd (2nd class) = 25pkts, minRTO (2nd class) = 1s,  

pause threshold=215pkts, resume threshold=205pkts 
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6.a). However, it comes at the expense of performance reduction 
for other ranges of flows, due to its local strategy of dropping 
packets at earliest stages of the network and reacting to this 
sooner by using small priority queues in switches and small 
timeouts at end-hosts. In contrast, HyLine allows the other 1st 
class packets (i.e. flows in (100kB, 1MB] range) to be queued in 
switches too. Considering multipath nature of network and the 
fact that all of these 1st class flows will not compete for the same 
output links in the next stages of the network, this increases the 
chance of serving flows in (100kB, 1MB] range later in the 
network (Fig. 5.b and Fig. 6.b). Moreover, Qjump cannot 
achieve very good performance for the small flows (specially for 
the search workload (Fig. 5.a)) because it reduces the throughput 
of these flows to give more bandwidth to the bigger ones. 

For the 2nd class flows ((1MB, 10MB] and (10MB, ∞) 
ranges), HyLine benefits from having a global view and path-
aware nature in its scheduler compared to other schemes . So, as 
Fig. 5.c-d and Fig. 6.c-d illustrate, it performs better than all 
other schemes for almost all loads and workloads except very 
high loads in search workload for flows in (10MB, ∞) range. For 
high loads in this range (Fig. 5.d), since total number of flows 
including big flows increases, the total number of preemptions 
for this range of flows increases too. Therefore, largest flows in 
the network face more preemption delay. In contrast, TCP 
achieves best performance at high loads (Fig. 5.d), because it 
loses less bandwidth due to the fairness nature of its design.  

C. Varying Performance Metrics 

Application Throughput: Most of the today’s datacenter 
applications use partition-aggregate structure in which flows in 
each level of the hierarchy have deadlines [23]. For instance, in 
a search application, if responses (flows) from workers miss 
their deadlines, they are not included in the total response, 
typically hurt the response quality, and waste network 
bandwidth. Therefore, to investigate impact of HyLine for such 
applications, we assign different deadlines to different flows and 
similar to prior work [1, 2, 23] consider application throughput 
as the performance metric. Here, deadline of each flow is 

considered 4x of its ideal completion time achieved when there 
are no other competing flows in the network. We used tighter 
and looser deadlines for flows too, but since the overall results 
are similar to the presented results, for brevity, we only report 
the results for the mentioned deadline. Fig. 7 depicts the overall 
results for two realistic workloads across different loads. HyLine 
outperforms other schemes for both workloads.  

Since in both workloads, most traffic are small flows, 
finishing these small flows faster increases the probability of 
meeting their deadlines. Therefore, schemes which achieve 
better results for small flows potentially perform better for 
deadline-aware traffic too. That’s why HyLine and pFabric 
perform very well compared to other schemes. It is important to 
notice that HyLine achieves this performance without any 
changes in the network, while pFabric requires changes in 
switches. 

99th Percentile: In addition to previous metrics, we also 
consider the 99th percentile FCT as a performance metric to 
have a better comparison of HyLine with other schemes. Fig. 8 
and Fig. 9 show the results of 99th percentile FCT for data 
mining and search workloads respectively for different flows’ 
size ranges. 99th percentile result’s pattern is similar to the AFCT 
result’s pattern discussed earlier.  

D. Impact of Workload 

So far we evaluated HyLine under realistic DCN workloads. 
However, there might be still two concerns about the HyLine’s 
performance: 1-What if traffic consists of more 1st class flows? 
2-What if a workload consists of more 2nd class flows? To 
evaluate the performance under these two corner cases, we used 
Bounded-Pareto distribution to generate 2 synthetic workloads 
named Light and Heavy (Fig. 4.b). In Light workload, 97% of 
the flows are smaller than 100KB, while this number is only 
40% for Heavy workload. This will provide us with workloads 
to check the two mentioned concerns. Fig. 10 and Fig. 11 show 
the AFCT, and application throughput results using Light and 
Heavy workloads. Under Light workload, all schemes generally 

 

Fig. 6. Normalized FCT statistics across different flow sizes for data mining workload.  
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Fig. 5. Normalized FCT statistics across different flow sizes for web search workload. 
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perform well. However, for Heavy workload including more big 
flows, the performance of schemes drops dramatically. Here, 
scheduling issue and handling big flows dominate, and the 
scheme which manages these issues better than others will 
achieve higher performance. That’s why compared to other 
schemes, HyLine works very well under Heavy workload. 

E. HyLine Deep Dive 

In this section, a series of targeted simulations are conducted 
to dig deeper into HyLine’s design.  

Sensitivity to Threshold: To check our analysis in the §4.5, 
we use search workload and change the threshold identifying the 
two classes of traffic, and check the AFCT as the performance 
metric. Fig. 12 presents overall results in 60% load. Here, the 
results fit very well with our lower bound and upper bound 
analysis (Fig. 3). As we expected, for the thresholds below the 
lower bound, cost of doing centralized scheduling dominates, 
and for the ones above the upper bound, benefits of using 
centralized scheduler is not so much. So, in both cases, overall 
performance drops.  

PFC: PFC, if used in a normal network, could cause the 
head-of-line blocking issue. However, since HyLine controls all 
of the 2nd class flows in the network, it prevents the head-of-
line blocking issue for this class of flows. Moreover, PFC is used 
to prevent any drop of the 2nd class packets due to the increase 
in the number of 1st class flows at high load situations. To show 

the impact of using PFC at high loads, we use web search 
workload and do simulations with and without PFC feature in 
switches. Fig. 13 illustrates the improvement of the overall 
performance for the 2nd class of flows when PFC is turned on. 
In fact, PFC improves AFCT and 99th FCT by up to 13% and 
15% respectively at high loads.  

MAN: Here, we report MAN’s performance measurements 
including average number of requests that MAN receives (Fig. 
14), average waiting time (the time from when a flow first 
arrives at the end-host to when it receives first CTS (GO signal) 
from MAN), average preemption time (the total time that a flow 
is in STOP state (i.e., preempted by MAN)), and average 
number of preemptions that a flow experiences under web 
search workload. When load increases, as expected, number of 

preemptions per flow for the biggest flows (in (10MB-∞) range) 

increases (Fig. 15). However, since smaller flows (in (1-10MB] 
range) could be finished faster due to no competing bigger flows 
which are already stopped by MAN at the edge of network, the 
probability of being preempted during their transmission will be 
small. This is shown in Fig. 15.  

Fig. 16 shows ratio of waiting and preemption times that on 
average a flow experiences to its total completion time across 
different loads for 2 different ranges of flow sizes. As mentioned 
earlier preemption time of flows in (1-10MB] range is small. 
Also, as loads increases waiting time of flows in this range 
slightly increases. The reason is that the flows which already 

 

 

Fig.  . Normalized   th percentile FCT statistics for data mining workload across different flow sizes.
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have got permission from MAN most likely have smaller 
remaining sizes compared to the new incoming flows, so new 
incoming flows will wait for the completion of these flows. 

VI. DISCUSSION 

Flow Information: Previous studies show that for many 
DCN applications (e.g. web search, Hadoop [25], data 
processing), size of the flows are known at initiation time (For 
example, see §2.1 of [23]), and can be conveyed to lower layer 
(e.g., through a socket option). In other cases, when sizes of 
flows are not known precisely in advance, offline measurements 
enable applications to have an approximation of the flow sizes 
and use them later at run time. However, it is important to 
mention that based on DCN’s traffic characteristics, HyLine 
does not require exact size information for 1st class flows (most 
of the DCN’s flows), because it let them come to the network 
without scheduling them one by one, while all other size-aware 
schemes (e.g., [1], [2], [3]) need to know the exact size of all of 
the flows. Therefore, using HyLine, for most of the DCN’s 
flows, these offline measurements will be just to check whether 
a flow is less than a threshold (e.g., 1MB).  

Stopping vs. Terminating an Application: Although 
results shown in Fig. 16 indicate that most of the 2nd class flows 
have a very small preemption time, it is worth mentioning that 
stopping a 2nd class flow momentarily is not equal to 
terminating it. From the applications’ point of view, it is more 
like TCP being in slow phase, so when a flow is stopped 
momentarily by MAN, connections are still there and 
applications are not terminated. Also, as mentioned before, 
HyLine modifies TCP to avoid having time-outs in STOP state 
and reacting to them as indication of packet loss. 

Line Rate Transmission: With today’s advances in both 
software (e.g., Intel DPDK [26], SR-IOV [27]) and hardware 
(e.g., [29], [30]), end-hosts can achieve line rate transmissions. 
However, if applications become the bottleneck of sending at 
line rate, for the 2nd class flows, they could simply add their 
maximum capable sending rate (maxRate) as part of their 
request message to MAN. MAN could consider those flows as 
flows generated by end-hosts having virtual maxRate-links 
(instead of their physical speed links). Therefore, without 
changing the logic, it could allow more flows to come and use 
same links. 

VII. CONCLUSION 

We presented HyLine a simple and practical flow scheduling 
design for DCNs. HyLine’s path-aware scheduling policy 
exploiting the multipath nature of today’s DCNs shows that 
load-balancing and flow scheduling design blocks are dependent 
blocks, and they should be designed together to minimize AFCT 
in DCNs. Moreover, HyLine’s hybrid approach indicates that to 
reach high performance and minimize AFCT, it is unnecessary 
to use fine-grained scheduling structures trying to schedule 
every flow in DCNs by calculating and assigning either precise 
rates or priorities to them. In sum, Despite the simple nature of 
HyLine’s design and the fact that it does not require any changes 
in the fabric, our evaluation results show that it outperforms 
recent flow scheduling solutions. That’s why HyLine is a good 

candidate to be used in today’s commodity DCNs, and why we 
believe that performance meets simplicity at HyLine. 
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