
On the Delay Performance of Browser-based
Interactive TCP Free-viewpoint Streaming

Tilak Varisetty, Markus Fidler
Institute of Communications Technology

Leibniz Universität Hannover

Email: firstname.lastname@ikt.uni-hannover.de

Matthias Ueberheide, Marcus Magnor
Computer Graphics Lab

Technische Universität Braunschweig

Email: lastname@cg.cs.tu-bs.de

Abstract—In free-viewpoint video arbitrary views of a scene or
an object are rendered from a 3-dimensional scene representation
that is obtained using multiple cameras or generated by computer
graphics. The interactivity that is due to the viewpoint selection is
particularly challenging in case of networked applications, where
a server renders the scene from a viewpoint that is chosen by
a remote client. Relying on widely-used standard browser-based
video streaming technology, data transport is performed by the
Transmission Control Protocol (TCP), implying an anticipated
risk of potentially large delays. The magnitude, frequency, and
origin of such delays are the focus of this work. To investigate
the tail distribution of the delays, we use a controlled testbed
environment and instrument the entire video streaming chain
from the server-side renderer to the display at the client using
various measurement points. We identify three major sources of
delays: the video coders, the protocol stack, and the network. We
investigate the causes of these delays and show a strong impact
of network parameters, such as round-trip time and packet loss
probability, on protocol stack delays. While stack delays can
significantly exceed network delays, we find that stack delays
can be reduced effectively by adapting the parameters of the
video encoder.

I. INTRODUCTION

Multiview video arises in many situations where a scene is

captured simultaneously by multiple cameras from different

viewpoints. The cameras can be configured as specific camera

arrays, or they can be naturally located at various positions,

e.g., cameras in a sports stadium or the cameras of mobile

phones that may be used to record a public event. Applications

of multiview video include immersive telepresence systems,

3-dimensional stereoscopic films, or free-viewpoint television,

where the viewer can freely navigate the viewpoint [1]. The

selected viewpoint may either coincide with a given camera

position or otherwise it may be rendered using the views of

nearby cameras. The rendering of a scene or an object from a

given viewpoint is also performed in many other application

areas of computer graphics such as gaming or Computer Aided

Design (CAD).

In a video streaming application a server encodes the video

and transmits it to one or more clients for simultaneous

reproduction. Due to varying network latencies referred to as

delay jitter, the client first stores the received data in a de-jitter

This work was supported in part by the European Research Council (ERC)
under StG 306644.

 0.001

 0.01

 0.1

 1

 120 150 180 210 240 270 300 330 360 390 420 450

C
C

D
F

Time (ms)

14msec RTT
28msec RTT
42msec RTT

Fig. 1. End-to-end delay of interactive TCP streaming of a free-viewpoint
application with server-side rendering. Different network RTTs of 14, 28, and
42 ms are evaluated. The packet loss rate is 1%. In the distribution tail, delays
exceed the RTT by an order of magnitude.

buffer, and then displays it from the buffer after a defined

playout delay that considers, e.g., a certain quantile of the

network latencies.

Streaming of multiview video is particularly challenging

due to the high bandwidth requirements when transmitting

multiple video streams [2]. Compression techniques such as

Multiview Video Coding (MVC) have been developed that use

prediction to take advantage of the temporal correlation within

the streams of the individual views (intra-view prediction) as

well as the spatial correlation between different views (inter-

view prediction).

Providing the entire set of all views to a client enables

non-interactive multiview video streaming, where viewpoint

selection or rendering of the viewpoint can be performed

locally, i.e., by the client. A significant reduction of the data

rate can be achieved, however, if only a selected subset of

the available views needs to be transmitted. This is done in

interactive streaming that uses a control channel from the

client to the server to notify the server about the client’s

viewpoint selection [2]. Using this information, the server may

either transmit a range of (potentially) relevant views, so that

selection or rendering of the viewpoint remains with the client,

or alternatively the server may perform the rendering itself

and transmit only the single selected view [3]. Server-side

rendering has the additional benefit that only a view but not the

source data, for example a CAD model, need to be disclosed.ISBN 978-3-903176-08-9 © 2018 IFIP

The reduction in bandwidth that is achieved by interactive

streaming entails, however, more stringent latency require-

ments. Given a subset of the views, the client’s viewpoint

navigation is constrained by the boundaries of this subset [4],

[5]. To prevent the client from selecting a viewpoint outside

of this subset, the server has to continuously keep track of

the viewpoint or even make a prediction of future viewpoints

to adapt the range of views that it provides accordingly [5]–

[7]. In case of server-side rendering, client and server have to

interact in real-time, as the client’s selection of the viewpoint

has to be considered immediately by the server.

To explore the feasibility of interactive free-viewpoint

streaming we investigate the delay performance of a reference

implementation [8] in a controlled network testbed. We im-

plement a server-side application that takes a 3-dimensional

model to render selected viewpoints without disclosing the

source data. We employ open source video coders and stream-

ing servers and consider a browser-based implementation of

the client that uses only standard HTML5 streaming without

requiring any additional plugins. As HTML5 streaming is

an emerging technology, the availability is still limited by

constraints such as codec, browser, operating system, and type

of video streaming [9]. The choice of HTML5 streaming also

implies the use of the Transmission Control Protocol (TCP).

Fig. 1 shows an example of the Complementary Cumulative

Distribution Function (CCDF) of the end-to-end delay of video

frames from the server-side renderer to the display at the

client. The end-to-end delays comprise the time needed for

encoding and decoding of the video as well as the transmission

of the video frames over the network. The measurements are

performed using different network configurations with Round

Trip Times (RTTs) of 14, 28, and 42 ms. Other parameters

have not been changed and the packet loss rate is 1% in all

experiments. The effect of the RTT is clearly visible in the

upper part of Fig. 1, where the curves are spaced 14 ms apart

from each other, as expected. A much stronger impact, that

exceeds the RTT by an order of magnitude, is visible in the

tail distribution of the end-to-end delays.

This paper reports the results of an extensive measurement

study. We investigate the occurrence of large tail delays, show

their causes and how they may be circumvented. To identify

where delays occur, we instrument the video encoding and

transmission chain and perform logging at various measure-

ment points. Given that video frames are segmented into

several packets, i.e., TCP segments, we implement a frame

logging mechanism that identifies video frame boundaries in

a packet stream with packet loss and retransmissions to be

able to measure the delivery of entire video frames.

The remainder of the paper is structured as follows. In

Sec. II we discuss related works on multiview and free-

viewpoint streaming and the performance of TCP streaming.

We show our experimental setup in Sec. III. Our measurement

results obtained from the network experiments are presented

in Sec. IV and Sec. V, where we investigate the impact of

network and video parameters, respectively. Brief conclusions

are provided in Sec. VI.

II. RELATED WORK

We first discuss related works in multiview and free-

viewpoint streaming and focus on the streaming performance

of TCP afterwards.

A. Multiview and Free-viewpoint Video Streaming

Specific to multiview video streaming systems are multiple

cameras, e.g., a camera array, that capture a scene from

different viewpoints. The content that is generated by the

cameras is encoded and streamed by a server over a network to

one or more clients that can choose the viewpoint individually

from the set of views that are available. Using techniques from

computer graphics, the client may also render arbitrary new

views, thus enabling a free-viewpoint navigation. Significant

work has been dedicated to the quality and the complexity

of the view synthesis. For an introduction to multiview video

streaming see [2] and to free-viewpoint video [1].

One of the main challenges in multiview video streaming

is the bandwidth that is required to transmit a potentially

large set of views to the client. Various techniques have been

developed to reduce the amount of data that is needed. In

source coding, considerable works have taken advantage of the

spatial correlation of the individual views to achieve a higher

compression rate. A prominent example is the H.264/MPEG-

4 extension MVC [10] that makes efficient use of temporal

as well as spatial prediction. Using MVC, all views can be

jointly encoded and transmitted, so that the client can choose

the viewpoint without further interaction with the server.

Interactive multiview streaming, on the other hand, uses

a control channel from the client to the server to report

the viewpoint that is chosen by the client [2]. Using this

information, the server can transmit only the selected view

to the client to save bandwidth. Switching to a different view

implies a random access that can be supported by insertion

of intracoded frames. Since intracoded frames achieve less

compression gain, more efficient frame structures, so-called

merge frames, that enable view switching at defined intervals

T , are presented in [11].

A concern with interactive multiview streaming is the view

switching delay, that occurs if the user switches to a new

view that is not streamed currently. In addition to the view

switching interval T that can be small, i.e., in the order of

a few frames [5], the network RTT of up to hundreds of

milliseconds may have a considerable impact on the view

switching delay [5], [12]. An approach to avoiding view

switching delays is transmitting additional views, possibly

with a higher compression [7], that are likely to be requested

by the client within one RTT [4], [5], [7]. This creates a

general tradeoff between bandwidth and latency [12] and

requires a good anticipation of the viewpoint navigation of

the user [5], [6]. Similar aspects concern free-viewpoint video

streaming, where rendering can be performed at the client or

at the server, requiring either sufficient bandwidth to transmit

multiple views or small RTTs, respectively [3].

The importance of the RTT for view switching in interactive

video streaming is emphasized in [2]–[5], [12]–[14]. While

434

a number of works use an assumption of a deterministic

RTT [4], [5], [7], mostly as a constant to determine a range

of viewpoints that need to be prefetched, real networks ex-

hibit large delay variations, as observed, e.g., in experiments

in [12]. Further, recent works employ Dynamic Adaptive

Streaming over HTTP (DASH) and TCP for free-viewpoint

streaming with client-side rendering [14] and for multiview

streaming [13], where delays are observed that exceed the RTT

by orders of magnitude. For an example, [13] implements a

number of techniques like buffer control, server push schemes,

and parallel streaming to reduce the average view switching

delay from 3.2 s to 380 ms given a network RTT of 4 ms.

B. TCP Streaming Performance

Despite the fact that TCP may cause large delays, it has

become popular for streaming for other reasons, e.g., to

circumvent firewalls. Extensive literature is available on the

performance of TCP in multimedia streaming and specifically

DASH. Relevant performance measures include the throughput

and different types of delays that impact the users’ Quality of

Experience [15].

A major source of difficulty in TCP streaming is the vari-

ability of TCP’s throughput. A common approach is to adapt

the data rate of the encoded video to react to fluctuations of

the available network bandwidth [16]. To reduce delays, [17]

improves the adaptation based on TCP throughput predictions.

To what extent the achievable TCP throughput can be utilized

at all is investigated using an analytical model in [18]. An

important conclusion is that good streaming performance is

attained when the achievable TCP throughput is at least twice

the video data rate.

Regarding TCP delays, different types of delays have to

be distinguished. While there exist numerous studies that

investigate network delays of TCP packets, fewer works have

focused on TCP protocol delays [19]–[25]. TCP protocol

delays are defined as the time difference from a write on the

sender side socket to the corresponding read on the receiver

side socket [19]. They comprise network delays plus potential

transport layer queueing delays at the sender and at the

receiver [23].

The works [19]–[22] present Cumulative Distribution Func-

tions (CDFs) of protocol delays that for certain relevant

network parameters show a long distribution tail due to heavy

sender-side buffering. The authors of [19], [20] conclude that

large tail delays may be avoided by reducing the sender’s

socket buffer size. Based on a testbed measurement study, [21]

develops a parametric model of the CCDF of TCP protocol de-

lays. The CCDFs show a characteristic exponential tail decay

that depends on the relation of the average TCP throughput

and the source data rate. The importance of this relation was

already discussed above as it is also observed in [18].

An analytical model of TCP delays is derived for Constant

Bit Rate (CBR) sources and the TCP version NewReno

in [23]. The model gives working regions, i.e., RTTs and

packet loss rates, that provide acceptable delay performance

for streaming applications. The work [22] estimates service

Network

Encoder

Web server

Client
browser

Streaming
server

Renderer
Application

Fig. 2. System overview. The renderer application generates images at a fixed
frame rate using the viewpoint that is selected by the mouse coordinates of
the client. The images are encoded and streamed to the client browser by a
webserver using HTTP and TCP.

curves of different TCP versions and shows how the different

algorithms for adaptation of the Congestion Window (CWND)

affect the video streaming performance. Queueing models of

TCP’s finite state machine are used to analyze its performance

in [26], [27].

III. EXPERIMENTAL SETUP

In today’s Internet, TCP became a de facto standard for

video streaming that has recently been adopted for more

demanding applications such as multi-view [13] and free-

viewpoint video streaming [14]. While [13], [14] use DASH

with view switching delays of several hundreds of milliseconds

up to seconds and client-side free-viewpoint rendering [14],

we consider an interactive free-viewpoint video streaming

system with server-side rendering that has significantly more

demanding delay requirements. Like [13], [14] we implement

a browser-based solution that also uses TCP but not DASH

for streaming. In this section, we first give a brief overview of

our implementation of free-viewpoint video streaming [8]. We

then introduce our Emulab testbed configuration that we use

for experimentation, and give details on our instrumentation

of the application and network that enables us to distinguish

different causes of delays.

A. Free-viewpoint Video Application

An overview of the system that we implemented is given

in Fig. 2. The setup uses a client-server model where the

server executes the necessary software for rendering, encoding,

streaming, and hosting of the video. The view that is generated

by the server-side renderer application is selected by the client.

The renderer application is programmed using OpenGL

libraries. It uses libwebsockets on a specified TCP port to

receive the coordinates of the viewpoint, i.e., the mouse

coordinates, from the client. The renderer application peri-

odically creates new images based on the selected viewpoint.

Rendering is performed at a configurable rate of up to 50

frames per second (fps).

435

TABLE I
SOFTWARE VERSIONS.

Software Version No.
Ubuntu 12.04.5 LTS

ffmpeg, ffserver 2.1.git
lighttpd 1.4.28
OpenGL 2.1 Mesa 8.0.4

libwebsocket 1.0.8
libvpx 1-3.0

Whenever the renderer creates a new image, it is encoded

by the open source software ffmpeg using the libvpx video

codec. The encoded image is streamed by ffserver and made

available to the client as an HTML5 file by a lighttpd web-

server. The client sends an HTTP GET request to receive the

HTML5 stream from the webserver. Streaming is performed

via TCP, specifically the TCP version Cubic with selective

acknowledgements (SACK) option. The client runs Google’s

Chrome browser to play the video. As our setup only uses

standard HTML5 streaming technology, the client’s browser

does not require any plugins.

For the purpose of the following measurements, we have

configured the video encoder to produce constant-sized frames,

specifically intracoded frames, to ease the interpretation of the

results by avoiding delay variations that are due to the size of

the frames. The size of video frames is approximately 12.6

kByte if not specified otherwise.

Tab. I summarizes the versions of the software used. Further

details on our implementation can also be found in [8].

B. Network Testbed Configuration

We use the Emulab installation at our institute to evaluate

the performance of our free-viewpoint video streaming ap-

plication. Emulab1 is a well-known framework for network

emulation that can configure arbitrary network topologies

consisting of nodes, i.e., hosts and routers, and links for

controlled experimentation. Each node is put into effect by

a physical machine that is booted with a defined operating

system to act either as a router or as a host that runs the

intended network application.

The machines have several network interfaces for experi-

mentation, in our case a minimum of four 1 Gbps Ethernet

interfaces, that are connected to a central switch. The switch

creates Virtual LANs (VLANs) between the nodes to form the

desired topology. Link parameters such as capacity, delay, and

packet loss are emulated by the system using additional nodes,

e.g., a link with a fixed delay comprises two VLAN links

connected to a delay node that forwards packets only after the

defined amount of time. The ipfw utility on freebsd is used for

this purpose2. Capacity limits and packet loss are emulated in

the same way. The machines have additional interfaces that are

connected to a separate control network that is used to execute

and monitor the experiments and to synchronize the clocks of

the different machines using the Network Time Protocol (NTP)

and the institute’s NTP server.

1https://www.emulab.net/
2https://www.freebsd.org/cgi/man.cgi?ipfw(8)

TABLE II
UTILIZATION WITH RESPECT TO THE GREEDY TCP THROUGHPUT FOR A

VIDEO FRAME RATE OF 10 FPS, DIFFERENT RTTS, AND LOSS RATES.

Loss rate (%) RTT (ms) Throughput (Mbps) Utilization (%)
0.5 28 5.03 20.0
1 14 7.29 13.8
1 28 3.57 28.2
1 42 2.58 39.0
2 28 2.57 39.1

In our experiments, we use 1 Gbps Ethernet links to connect

the video client and server. The Maximum Transmission Unit

(MTU) of the Ethernet is 1500 Byte such that the TCP

Maximum Segment Size (MSS) is 1460 Byte and video frames

of 12.6 kByte size result in 9 TCP segments. The central

link is configured to emulate a wide area network with RTTs

of 14, 28, and 42 ms, respectively. In addition, the link has

independent Bernoulli random packet losses of 0.5, 1, and

2%, respectively. Given the link parameters, the throughput

of a TCP connection is limited by TCP’s congestion control

algorithm. We measured the throughput that is achieved by

a greedy TCP Cubic source for these network parameters

using iperf3. The results are detailed in Tab. II. We define the

utilization of the TCP connection by the video source as the

quotient of the video data rate and the greedy TCP throughput.

The greedy TCP throughput is the maximal throughput of

the TCP connection, that is achieved in case of a greedy

data source. Tab. II gives the utilizations for a frame rate of

10 fps. The utilization for other rates of x fps follows by

multiplication with x/10.

C. Measurement Points and Delays

To identify and evaluate the causes of large end-to-end de-

lays, as observed in Fig. 1, we instrument the video application

and the network using a number of Measurement Points (MP)

as shown in Fig. 3. The trace files that are recorded contain

tuples of timestamp and value, where the value is either

a unique video frame identifier or an entire TCP segment,

depending on whether the MP is in the application or in the

network.

In detail, MP-A denotes the timestamp after an image has

been created by the renderer application glrender. The image is

written to a pipe file and MP-B denotes the time when ffmpeg

fetches the image from the pipe. After encoding, ffmpeg writes

the corresponding video frame to a localhost socket, that is

MP-C. The frame is picked up from the localhost by ffserver

at MP-D and written to the TCP socket where MP-E is the

timestamp before the TCP send call. MP-F denotes the time

when the first TCP segment of the video frame is transmitted

on the network and MP-G is the time when the first TCP

segment of the video frame arrived at the client. Once all TCP

segments of the frame are received, the frame is delivered to

the browser for reproduction at MP-H. Since TCP delivers

data in order, the delivery of a complete frame is delayed if

one of the preceding frames is not yet complete.

3http://software.es.net/iperf/

436

Fig. 3. The streaming pipeline is instrumented using measurement points A
to H. We distinguish coding delays (A→C and D→E), stack delays (C→D
and E→F), and transfer delays (F→H).

The logging framework is implemented in the source code

of the software of the glrender application, ffmpeg, and

ffserver. The glrender application generates a video frame

number which is unique for every frame. It is mapped to the

ffmpeg input and used for logging from MP-A up to MP-

E. After MP-D, the ffserver assigns a unique Presentation

Time Stamp (PTS) to the header of each video frame that is

transmitted to the client. We note the correspondence of frame

number and PTS at MP-E and use the PTS for identification

of frames up to MP-H. Since TCP divides the video frames

into smaller segments, the TCP segments are captured at MP-

F and MP-G in the network using libpcap, respectively, the

wireshark software4. We postprocess the network trace files to

identify the video frame boundaries using the TCP sequence

number and the PTS from the recorded TCP segments.

The different types of delays that each video frame incurs

in the streaming pipeline from the rendering application to the

client browser can be classified as follows:
Coding delays: The coding delays comprise the loading

time of the image from the pipe (A→B), FFM encoder delays

(B→C), and delays due to packaging into the FFM container

format (D→E). In our measurements, the average delay be-

tween A→B is 18 ms, and B→C is 14 ms, respectively. The

delay between D→E is dependent on the frame rate as we

observed that ffserver generally buffers one video frame to

send the current frame on the TCP socket. Hence, the delay is

100, 50, and 33 ms for 10, 20, and 30 fps, respectively. The

coding delays observed in the experiments are not dependent

on the network conditions.
Stack delays: Delays in the sender’s protocol stack occur

whenever the transmission is throttled by TCP congestion

control so that frames have to wait for transmission in the

sender’s TCP stack (E→F), specifically in the socket buffer.

In our experiments, the socket buffer is configured to have a

size of 3 MByte. While the authors of [19], [20] argued that

4https://www.wireshark.org/

delays in the sender’s TCP stack can be avoided by reducing

the socket buffer size, we note that this approach shifts the

problem to the next higher entity that would have to adapt

accordingly. Precisely, if the socket buffer is full, the write call

to the TCP socket by ffserver (E) blocks so that ffserver cannot

fetch further frames from the localhost interface causing

additional delays there (C→D). In the following evaluation

we will generally show the combined stack delays of each

frame (C→D plus E→F).

Transfer delays: The transfer delay of a video frame

comprises the time to transmit all packets of the frame via the

network (F→G). In case of packet loss, retransmissions are

required in addition that can cause additional waiting times

at the receiver until all packets are received in sequence and

the frame can be delivered to the browser (G→H). In the

evaluation we will show the entire transfer delay until the last

TCP segment of the current video frame is delivered. (F→H).

IV. IMPACT OF NETWORK DELAYS AND LOSS

We conducted a large number of experiments with different

network configurations and parameter sets. For clarity of

exposition, we report experiments with selected parameter

sets that enable us to separate and identify certain effects

most clearly. In our evaluation, we first consider the impact

of the network delay, specifically different RTTs of 14, 28,

and 42 ms, on the transfer and stack delays experienced by

the video frames. The network discards packets randomly to

realize a loss rate of 1%. Different packet loss rates of 0.5%

and 2% are considered afterwards. The frame rate is 10 fps and

the frame size of 12.6 kByte corresponds to 9 TCP segments.

The video bit rate at 10 fps is about 1 Mbps, i.e., compared to

the greedy TCP throughput reported in Tab. II the utilization

is moderate in all cases with a maximum of 39.1%.

A. RTT-induced Delays

The network RTT has an obvious impact on the transfer

delay as it takes at least RTT/2 to deliver a video frame to

the client. Frequently, the transfer delay is, however, larger

as not all packets of a frame may be transmitted at once

due to TCP congestion control. Further, packets may require

retransmission in the case of packet loss. In addition, the RTT

may result in stack delays and blocking of the sender’s TCP

socket.

1) Per-frame Transfer Delays: In Fig. 4(a), we show the

dependence of the CCDF of the transfer delay (F→H) on

the RTT. We notice that all curves show the same stepped

trend, where the first step at 7, 14, and 21 ms, respectively,

corresponds to RTT/2 and the following steps have a width

of 14, 28, and 42 ms, respectively, corresponding to the RTT.

The step height, on the other hand, shows little influence of

the RTT and is almost identical for the first steps.

The behavior is explained by the CDF of the CWND that

is shown in Fig. 4(b). First, we notice that the CDF of the

CWND exhibits no significant influence of the RTT. As the

CDF indicates the probability that the CWND does not exceed

a given value, we see that a CWND of less than 9 MSS, that

437

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240

C
C

D
F

Time (ms)

14 ms RTT
28 ms RTT
42 ms RTT

Constant step height

Varying step width

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

C
D

F

Congestion window size in MSS

14 ms RTT
28 ms RTT
42 ms RTT

Required CWND

(b) CWND

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

C
C

D
F

Time (ms)

14 ms RTT
28 ms RTT
42 ms RTT

(c) Stack delay

Fig. 4. Impact of the RTT. The packet loss rate is 1%. The CCDF of the transfer delay exhibits first a minimum delay of RTT/2 followed by steps of a
width of RTT. The CDF of the CWND shows only a marginal influence of the RTT. A CWND of at least 9 MSS permits sending a video frame at once. The
probability that the CWND falls below 9 MSS corresponds to the probability to see transfer delays of more than RTT/2. Stack delays are observed when the
transfer of a frame takes longer than 100 ms so that the next frame, at a frame rate of 10 fps, has to wait for transmission.

is the minimum CWND that is required to be able to transmit

a video frame at once without waiting for acknowledgements,

occurs with probability 0.77. In this case only a part of the

video frame, i.e., CWND packets, can be transmitted before

the transmission is paused. The transmission is resumed after

one RTT when the first acknowledgements appear at the

sender. We observe that the probability of 0.77 corresponds

to the first step of a width of RTT in Fig. 4(a). The following

steps can be explained in a similar way, e.g., in case of a

CWND of less than 5 MSS it takes another round of one

RTT. In addition, retransmissions that also take one RTT start

to have an influence. In the given case of 9 TCP segments

per frame and 1% packet loss, the transfer of a frame requires

retransmission of one or more packets with a probability of

almost 0.09.

We conclude that the RTT has only a minor effect on

the CDF of the CWND in our experiments. Hence, the

probabilities of observing transfer delays of several RTTs are

similar irrespective of the RTT. In contrast, the magnitude of

the transfer delays grows linearly with the RTT.

2) Stack Delays and Blocking: If the transfer of one or

more video frames is not completed when the next video

frame is ready for transmission, additional buffering applies

at the sender resulting in stack delays and possibly blocking

of the sender’s TCP socket. Given the frame rate of 10 fps,

this applies if video frames do not complete transfer within

100 ms. From Fig. 4(a), we find that transfer delays exceed

100 ms with a probability of slightly less or more than 0.01

in case of an RTT of 14 and 28 ms, and about 0.1 in case

of an RTT of 42 ms. The CCDFs of the stack delays (C→D

plus E→F) presented in Fig. 4(c) confirm these probabilities.

Again, the effect is due to the probability that the CWND falls

below a critical value. This critical value depends, however,

on the RTT, so that the probability of incurring stack delays

is also RTT dependent. For example, assume that the CWND

is small, e.g., less than 5 MSS, so that it takes 3 rounds to

deliver a video frame. In case of an RTT of 42 ms but not in

case of 28 or 14 ms the transfer delay exceeds 100 ms and

the next frame has to wait in the protocol stack.

The stack delays may also be interpreted as queueing delays

at a system with random service [22] and the magnitude of the

delays can be related to the utilization. Since the greedy TCP

throughput depends on the RTT, see Tab. II, we have different

utilizations of 13.8%, 28.2%, and 39.0% in case of an RTT of

14, 28, and 42 ms, respectively. We note that the stack delays

are significant already at a moderate utilization of 39.0%.

B. Loss-dependent Delay Probabilities

Next, we evaluate the impact of the packet loss probability.

For the experiments, we set the loss rate to 0.5, 1, and 2%,

respectively. The RTT is fixed to 28 ms.

1) Role of the CWND Distribution: Fig. 5(a) displays the

CCDFs of the transfer delays. All curves show the same

characteristic stepped shape as in Fig. 4(a) with a step width

that is determined by the RTT of 28 ms. The curves differ,

however, with respect to their step height that decreases in case

of a larger packet loss rate, i.e., transfer delays that exceed the

minimal transfer delay of RTT/2 by one or more RTTs become

more frequent if the packet loss rate is larger.

The effect is caused by the CWND that is stochastically

decreasing in the packet loss rate. The CWND falls with a

higher probability below certain critical values if the packet

loss rate is increased. The CDFs of the CWND are presented

in Fig. 5(b). As before, a CWND of at least 9 MSS is required

to be able to transmit an entire video frame at once, whereas it

takes at least one additional round of one RTT if the CWND

falls below 9 MSS. This happens with probability 0.5, 0.77,

and 0.95 in case of a packet loss rate of 0.5, 1, and 2%,

respectively. The probabilities correspond to the step heights

of the first step of the transfer delay CCDFs in Fig. 5(a). The

following steps are explained similarly.

2) Effect on Stack Delays: The CWND distribution also

affects the probability and the magnitude of stack delays. With

increasing packet loss rate, the CWND falls more frequently

below the critical value that is required to deliver a frame

within the frame generation interval of 100 ms. Likewise, the

utilization increases with the loss rate, i.e., in the experiments

the utilization is 20.0%, 28.2%, and 39.1% given the packet

438

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240 260

C
C

D
F

Time (ms)

0.5% packet loss
1% packet loss
2% packet loss

RTT/2

Varying step height

Constant step width

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
D

F

Congestion window size in MSS

0.5% packet loss
1% packet loss
2% packet loss

Required CWND

(b) CWND

 0.001

 0.01

 0.1

 1

 0 50 100 150 200 250 300 350 400

C
C

D
F

Time (ms)

0.5% packet loss
1% packet loss
2% packet loss

(c) Stack delay

Fig. 5. Impact of the packet loss rate. The RTT is 28 ms. The packet loss rate determines the height of the steps of the transfer delay CCDF. The effect is
via the CWND, that is stochastically decreasing with the packet loss rate. For increasing packet loss rates, large tail delays are observed in the stack.

loss rates of 0.5%, 1%, and 2%, respectively, causing larger

queueing delays in the stack.

V. ADAPTATION OF VIDEO PARAMETERS

The RTT and the packet loss rate determine the TCP

throughput as well as transfer and stack delays, as observed for

a defined video traffic profile in Sec. IV. In order to mitigate

delays, the video traffic can be adapted using a variety of

encoding parameters that determine the compression gain and

hence the data rate. Common options are adaptation of the

temporal resolution, the spatial resolution, or the quantizer,

i.e., the quality. While the first option determines the frame

rate, the other two options influence the frame size. Generally,

the goal of adapting the video data rate is to control the

utilization to avoid load-dependent delays. In our evaluation,

we discover that the interaction with the TCP protocol stack

causes a number of relevant other effects.

A. Frame Rate

To investigate the impact of the frame rate, we adapt the ren-

derer application to generate 10, 20, and 30 fps, respectively.

First, we consider the effect of the utilization on delays before

we turn to an artifact that is caused by TCP’s fast retransmit

algorithm.

1) Effect of the Utilization: In Figs. 6(a) and 6(b) we show

the impact of the frame rate on the transfer and the stack

delay, respectively. The RTT is 28 ms and the loss rate 1%.

In relation to the greedy TCP throughput the utilization is

28.2%, 56.4%, and 84.6% for 10, 20, and 30 fps, respectively.

While we notice little change in the transfer delay in Fig. 6(a),

a significant impact of the frame rate on the stack delay is

observed in Fig. 6(b). As before, the stepped transfer delay

curves in Fig. 6(a) are caused by the size of the CWND, e.g.,

if the CWND falls below the frame size of 9 MSS it takes

one or more additional RTT-sized rounds to transfer a frame,

see Fig. 4(b) and the explanation in Sec. IV-A1. This effect is

independent of the frame rate.

If the transfer of a frame exceeds the time until the next

frame is ready for transmission, that is the reciprocal of

the frame rate, stack delays occur. Fig. 6(b) confirms that

the probability of non-zero stack delays corresponds to the

probability to see transfer delays of more than 100, 50, and

33 ms for 10, 20, and 30 fps, respectively. The magnitude of

the stack delays in Fig. 6(b) demonstrates the effectiveness

of rate adaptation and supports earlier observations [18], [22]

that good delay performance is achieved only if the video data

rate is smaller than the greedy TCP throughput by a factor of

about two or more.

2) Issue of Last Segment Lost: In Fig. 6(a), the tail delay

at a probability of 0.01 shows an opposing effect: the transfer

delay is larger by almost 50 ms in case of a smaller frame rate

of 10 fps. The effect persists if the RTT is reduced from 28 ms

in Fig. 6(a) to 14 ms in Fig. 7, where additionally a difference

of about 17 ms is noticed between the curves obtained for

frame rates of 30 and 20 fps.

The reason for this is packet loss, specifically loss of

the last TCP segment of a video frame. In general, TCP’s

fast retransmit algorithm, that is triggered by three duplicate

acknowledgements, as well as selective repeat of missing

segments indicated by SACKs deal effectively with loss. An

exception is the loss of the last TCP segment of a video

frame after which the transmission pauses. It resumes when

the next video frame is available and eventually duplicate

acknowledgements or a SACK indicate the missing TCP

segment and trigger the retransmission. In the experiments,

the loss rate is 1% and the frame generation period is 100, 50,

and 33 ms in case of a frame rate of 10, 20, and 30 fps,

respectively. Consequently, if the frame rate is smaller, it

takes longer until the next frame resumes transmission and the

retransmission is triggered. The time differences 100−50 = 50
and 50 − 33 = 17 ms are observed in Fig. 7 roughly at the

loss probability of 0.01.

In more detail, if the last TCP segment of a frame is lost, it

takes up to one frame generation period plus at least one RTT

until duplicate acknowledgements or a SACK appear at the

sender. Once there are three duplicate acknowledgements or a

SACK, the retransmission is triggered. It arrives earliest after

another RTT/2 at the receiver. In case of an RTT of 14 ms

the numbers add up to 54, 71, and 121 ms for a frame rate

of 30, 20, and 10 fps, respectively. The arrows in Fig. 7 mark

these numbers approximately. For Fig. 6(a), where the RTT is

28 ms, the numbers are 75, 92, and 142 ms. The reason why

439

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180

C
C

D
F

Time (ms)

10 fps
20 fps
30 fps

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900

C
C

D
F

Time (ms)

10 fps
20 fps
30 fps

(b) Stack delay

Fig. 6. Impact of the frame rate. The RTT is 28 ms and the packet loss rate 1%. The frame rate determines the utilization that is 28.2%, 56.4%, and 84.6%
for 10, 20, and 30 fps, respectively. The CCDF of the transfer delay shows little influence of the frame rate with significant deviations only in the tail. In
contrast, the frame rate has a major impact on the stack delays. The probability to see non-zero stack delays corresponds to the probability that the transfer
delay exceeds the frame generation interval of 100, 50, and 33 ms, respectively.

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140

C
C

D
F

Time (ms)

10 fps
20 fps
30 fps

Fig. 7. Impact of the frame rate on the transfer delay. The RTT is 14 ms
and the packet loss rate 1%. The tail transfer delays increase with decreasing
frame rate. The effect is due to packet loss of the last TCP segment of a
video frame. In this case duplicate acknowledgements or SACKs trigger TCP
fast retransmit or selective repeat, respectively, only when the next frame is
transmitted. The arrows indicate the differences between the frame generation
intervals of 100, 50, and 33 ms.

the transfer delays in Fig. 6(a) show no difference between 30

and 20 fps is that due to the small CWND at probability 0.01,

the tail delay to deliver a frame is 3.5 RTT, i.e., 98 ms, and

hence larger than the estimated delays of 75 and 92 ms for

retransmission of the last TCP segment.

B. Frame Size

Given that a reduction of the video frame rate can lead

to larger transfer delays, we now investigate whether an

adaptation of the frame size is more effective. We modify the

quantizer to generate video streams with different frame sizes,

where we specify the frame size relative to the one that we

used in the previous experiments. We show results for frame

sizes of 80%, 100%, and 120%. The frame rate is 10 fps and

the network has an RTT of 28 ms and a loss rate of 1%.

1) Impact on the Transfer Delays: In Fig. 8(a), we consider

the CCDF of the transfer delay. As before, we notice that

the curves have distinct steps. The width of the steps is

independent of the frame size and determined by the RTT.

The height of the steps increases with decreasing frame size.

This means that reducing the frame size effectively improves

the transfer delay.

2) Relation with the CWND: The way in which the frame

size helps reduce the transfer delay is via its relation to the

CWND. First, we notice that the frame size has little effect on

the CDF of the CWND, that is presented in Fig. 8(b), where

larger frame sizes tend to result in slightly larger CWNDs.

A possible reason for this is TCP’s Congestion Window

Validation algorithm [28], that freezes the CWND if it is not

fully utilized. Hence, the CWND only rarely grows to large

values if the frame size is small.

Given the similarity of the CWND CDFs in Fig. 8(b),

the improvement of the transfer delay is due to the different

CWND requirements given frames of different size. In the

above case, the frame sizes correspond to 7, 9, and 11 TCP

segments, respectively. If the CWND falls below any of these

values, frames of the respective size cannot be transmitted in

one round, resulting in one or more additional RTTs of transfer

delay. The required CWNDs are marked in Fig. 8(b) and the

probabilities that the CWND falls below any of these values

are clearly visible as the height of the first step of the different

transfer delay CCDFs in Fig. 8(a).

Regarding the stack delays, we observe relatively moderate

values that do not show strong differences for the frame sizes

above. The reason is the low utilization of 22.7%, 28.2%, and

33.8%, respectively. We omit showing the results and note,

however, that the adaptation of the frame size can effectively

reduce stack delays if the utilization is high.

VI. CONCLUSIONS

We investigated interactive TCP streaming of a free-

viewpoint rendering application. We instrumented the entire

streaming chain to identify delays and performed a compre-

hensive measurement study in a controlled network testbed

to analyze the impact of relevant network and encoding

parameters. A finding is that the utilization of the TCP

connection has to be kept low as it has a major impact on

delays in the sender’s TCP socket buffer. Further, a pronounced

influence of the distribution of the CWND on the transfer

440

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200 220 240

C
C

D
F

Time (ms)

80% frame size
100% frame size
120% frame size

 RTT/2

Varying step height

Constant step width

(a) Transfer delay

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
D

F

Congestion window size in MSS

80% frame size
100% frame size
120% frame size

CWND-2

CWND-1

CWND-3

(b) CWND

Fig. 8. Impact of the frame size. The RTT is 28 ms, the packet loss rate 1%, and the frame rate 10 fps. The frame size effectively controls the CWND
requirements of the video stream, where a CWND of 7, 9, and 11 MSS, respectively, permits sending a video frame at once. The probabilities that the CWND
falls below these critical values correspond to the probabilities to see transfer delays of more than RTT/2.

delay is noticed. The insights guide the design of adaptive

applications and suggest to include feedback about the size of

the CWND and the socket buffer filling to the application.

Our measurements of the end-to-end delay showed a high

variability of a few 100 ms. Hence, the receiver of a video

streaming application has to provision an adequate de-jitter

buffer to accomodate the observed tail delays. In case of our

rendering application, frames are displayed immediately when

they arrive at the receiver. For moderate RTT and packet loss,

stalling is sporadic and the user perception of the time lag is

mostly acceptable.

REFERENCES

[1] S. Aljoscha, “3d video and free viewpoint video – from capture to
display,” Pattern Recognition, vol. 44, no. 9, pp. 1958–1968, Sep. 2011.

[2] J. Chakareski, “Adaptive multiview video streaming: challenges and
opportunities,” IEEE Communications Magazine, vol. 51, no. 5, pp. 94–
100, May. 2013.

[3] A. Hamza and M. Hefeeda, “Adaptive streaming of interactive free view-
point videos to heterogeneous clients,” in Procs. of the 7th International
Conference on Multimedia Systems, May. 2016, pp. 10–22.

[4] X. Xiu, G. Cheung, and J. Liang, “Frame structure optimization for
interactive multiview video streaming with bounded network delay,” in
Procs. of IEEE International Conference on Image Processing, Sep.
2011, pp. 593–596.

[5] ——, “Delay-cognizant interactive streaming of multiview video with
free viewpoint synthesis,” IEEE Trans. on Multimedia, vol. 14, no. 4,
pp. 1109–1126, Aug. 2012.

[6] T. Maugey and P. Frossard, “Interactive multiview video system with
low complexity 2d look around at decoder,” IEEE Trans. on Multimedia,
vol. 15, no. 5, pp. 1070–1082, Aug. 2013.

[7] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp, “Client-driven selective
streaming of multiview video for interactive 3DTV,” IEEE Trans. on
Circuits and Systems for Video Technology, vol. 17, no. 11, pp. 1558–
1565, Nov. 2007.

[8] M. Ueberheide, F. Klose, T. Varisetty, M. Fidler, and M. Magnor,
“Web-based interactive free-viewpoint streaming: A framework for high
quality interactive free viewpoint navigation,” in Procs. of the ACM
International Conference on Multimedia, Oct 2015, pp. 1031–1034,
Short Paper.

[9] X. Yan, L. Yang, S. Lan, and X. Tong, “Application of HTML5
multimedia,” in Procs. of International Conference on Computer Science
and Information Processing (CSIP), Aug. 2012, pp. 871–874.

[10] A. Vetro, T. Wiegand, and G. J. Sullivan, “Overview of the stereo
and multiview video coding extensions of the H.264/MPEG-4 AVC
standard,” Procs. of the IEEE, no. 4, pp. 626–642, Apr. 2011.

[11] G. Cheung, A. Ortega, and N. M. Cheung, “Interactive streaming of
stored multiview video using redundant frame structures,” IEEE Trans.
on Image Processing, vol. 20, no. 3, pp. 744–761, Mar. 2011.

[12] J.-G. Lou, H. Cai, and J. Li, “A real-time interactive multi-view video
system,” in Procs. of the ACM International Conference on Multimedia,
Nov. 2005, pp. 161–170.

[13] D. Yun and K. Chung, “Dash-based multi-view video streaming system,”
IEEE Trans. on Circuits and Systems for Video Technology, vol. 99,
no. 99, pp. 1–1, Apr. 2017.

[14] A. Hamza and M. Hefeeda, “A DASH-based free viewpoint video
streaming system,” in Procs. of Network and Operating System Support
on Digital Audio and Video Workshop, Mar. 2014, pp. 55–60.

[15] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hofeld, and P. Tran-Gia,
“A survey on quality of experience of HTTP adaptive streaming,” IEEE
Commun. Surveys Tuts., vol. 17, no. 1, pp. 469–492, Mar. 2015.

[16] S. Akhshabi, A. C. Begen, and C. Dovrolis, “An experimental evaluation
of rate-adaptation algorithms in adaptive streaming over HTTP,” in
Procs. of the ACM Conference on Multimedia Systems, Feb. 2011, pp.
157–168.

[17] K. Miller, A.-K. Al-Tamimi, and A. Wolisz, “QoE-based low-delay
live streaming using throughput predictions,” ACM Trans. Multimedia
Comput. Commun. Appl., vol. 13, no. 1, pp. 41–44, Oct. 2016.

[18] B. Wang, J. Kurose, P. Shenoy, and D. Towsley, “Multimedia streaming
via TCP: An analytic performance study,” in Procs. of the ACM
International Conference on Multimedia, Oct. 2004, pp. 908–915.

[19] A. Goel, C. Krasic, K. Li, and J. Walpole, “Supporting low latency
TCP-based media streams,” in IEEE International Workshop on Quality
of Service, Aug. 2002, pp. 193–203.

[20] A. Goel, C. Krasic, and J. Walpole, “Low-latency adaptive streaming
over TCP,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 4,
no. 3, pp. 21–40, sep. 2008.

[21] R. Lübben and M. Fidler, “On characteristic features of the application
level delay distribution of TCP congestion avoidance,” in Procs. of IEEE
International Conference on Communications (ICC), May 2016.

[22] ——, “Service curve estimation-based characterization and evaluation
of closed-loop flow control,” IEEE Trans. on Network and Service
Management, vol. 14, no. 1, pp. 161–175, Mar. 2017.

[23] E. Brosh, S. A. Baset, V. Misra, D. Rubenstein, and H. Schulzrinne,
“The delay-friendliness of TCP for real-time traffic,” IEEE/ACM Trans.
on Networking, vol. 18, no. 5, pp. 1478–1491, Oct. 2010.

[24] J. Wu, C. Yuen, and J. Chen, “Leveraging the delay-friendliness of TCP
with FEC coding in real-time video communication,” IEEE Trans. on
Communications, vol. 63, no. 10, pp. 3584–3599, Oct. 2015.

[25] Y. Xiong, M. Wu, and W. Jia, “Rate adaptive real-time video transmis-
sion scheme over TCP using multi-buffer scheduling,” in Procs. of the
International Conference for Young Computer Scientists, Nov. 2008, pp.
354–361.

[26] R. L. Cigno and M. Gerla, “Modeling window based congestion control
protocols with many flows,” Performance Evaluation, vol. 36-37, pp.
289–306, Aug. 1999.

[27] M. Garetto, R. L. Cigno, M. Meo, and M. A. Marsan, “Modeling
short-lived TCP connections with open multiclass queuing networks,”
Computer Networks, vol. 44, no. 2, pp. 153–176, Feb. 2004.

[28] G. Fairhurst, A. Sathiaseelan, and R. Secchi, “Updating TCP to support
rate-limited traffic,” RFC 7661, Oct. 2015.

441

