
 

“Peeling the Onion” 
The Words and Actions that Distinguish Core from 

Periphery in Bug Reports and How Core and Periphery 
Interact Together 

 

Héla Masmoudi1, Matthijs den Besten2,  
Claude de Loupy3,4 and Jean-Michel Dalle1 

1. Université Pierre et Marie Curie, Paris, France. 
masmoudi_hela@yahoo.fr; jean-michel.dalle@upmc.fr 

 2. University of Oxford, Oxford, UK. 
matthijs.denbesten@oerc.ox.ac.uk 

3. Syllabs, Paris, France 
loupy@syllabs.com 

4. University of Paris 10, MoDyCo Laboratory, Paris, France 

Abstract. According to the now widely accepted “onion-model” of the 
organization of open source software development, an open source project 
typically relies on a core of developers that is assisted by a larger periphery of 
users. But what does the role of the periphery consist of? Raymond’s Linus’s 
Law which states that “given enough eyeballs all bugs are shallow” suggests at 
least one important function: the detection of defects. Yet, what are the ways 
through which core and periphery interact with each other? With the help of 
text-mining methods, we study the treatment of bugs that affected the Firefox 
Internet browser as reflected in the discussions and actions recorded in 
Mozilla’s issue tracking system Bugzilla. We find various patterns in the 
modes of interactions between core and peripheral members of the community. 
For instance, core members seem to engage more frequently with the 
periphery when the latter proposes a solution (a patch). This leads us to 
conclude that Alan Cox’s dictum “show me the code”, perhaps even more than 
Linus’s law, seems to be the dominant rule that governs the development of 
software like Firefox. 

1 Introduction 

What is the distribution of labor among members of the core and the periphery of a 
community engaged in distributed problem solving? We recently found preliminary 
indications of a stronger importance of the distinction between core and periphery 
than one might expect: bugs reported by core members are solved more rapidly when 
more duplicates are found while at the same time the number of duplicates associated 
with bugs does not seem to affect the speed at which bugs reported by peripheral 
members are fixed (Dalle et al. 2008). In this paper we report further investigations 
into the topic looking in particular at the relative size, characteristics, actions and 



316 Héla Masmoudi, Matthijs den Besten, Claude de Loupy and Jean-Michel Dalle 
 
interactions between the core and the periphery for people dealing with Firefox bugs 
on Mozilla’s Bugzilla issue tracking system.     

The organization of open source communities has been compared to an onion 
before and, in fact, the “onion-model” has become widely accepted. Crowston and 
Howison (2005) sliced the onion – presenting us with a cross-section of open source 
communities in which one could distinguish a core and periphery of people involved 
in software development. In this view, members from the core are responsible for the 
brunt of the development while members from the periphery provide additional 
services such as spotting problems with the existing code. Raymond (1998) famously 
compared the role of people in the pheriphery to eyeballs – spotting bugs. However, 
if the pheriphery’s role is to perceive and the core’s role is to process, as a brain 
would do, then the mechanisms available to members of the periphery in order to 
capture the core’s attention become crucially important. We suggest that the place 
where such problem-solving interaction between the core and periphery of a 
community like Firefox is most likely to occur is on the pages of its issue tracking 
system, which, in this case, is Bugzilla. In order to get an impression of what is 
going on on those pages, we have carried out a number of fishing expeditions – to 
use yet another metaphor. That is, not content with a cross-section of the onion, we 
ventured to “peel” the onion separating the actions and words used by the core from 
the periphery; furthermore, we “chopped” the onion, comparing and “tasting” the 
parts in order to characterize core and periphery specific actions and words; and 
finally we “fried” the onion by recoding the bug resolution actions and assessing 
their effect. 

For our investigations, we take advantage of the fact that bug patching in the 
Mozilla and Firefox communities involves a large amount of textual exchanges, 
which are archived and publicly available for examination. As far as we know, apart 
from the interesting work of Ripoche and Sansonnet (2006), text-mining techniques 
have not really been used on this data archive. Below we show how to construct a 
corpus for content analysis by extracting bug-reports and discuss what we found 
using methods such as coding, conceptual interpretation, and text mining. What our 
findings show substantively, if preliminarily, is that the periphery as we define it 
mostly engages in “eyeball” activities of noticing bugs, providing contextual 
elements, and focusing the attention on bugs that might have been forgotten or 
assumed to be solved; and that its most direct interaction with the core is when it 
proposes specific solutions to the bugs that were reported. 

2 Selection and preparation of bug reports 

By selecting only the bug reports which could be traced to comments in the code 
repository, we make sure only to look at the discussions and interactions that have 
affected Firefox proper and cut out the noise of unproductive activity that is 
undoubtedly also going on in the system. In particular, we distinguish three elements 
in the bug reports. These are action, comments, and affiliations. Actions are things 



“Peeling the Onion” 317
 
like changing the status of the bug, assigning it to someone, or including contextual 
information with the report; comments are messages that people working on the bug 
convey to each-other via the issue-tracking system; and affiliations are the email-
addresses from the people who carry out the actions or make the comments from 
which their origin as being part of the core or the periphery can be derived.  

The investigations described below rely on a variety of corpora that were created 
on the basis of the bug reports. In order to create these corpora, first a list of bug 
report numbers was created from the bugs mentioned in commit-comments in a 2007 
copy of the Mozilla CVS-code-repository for commits that were linked to files which 
were part of a Firefox, Firebird, or Phoenix branch. Having identified 37408 bugs 
this way, the corresponding bug-reports were retrieved from the Bugzilla issues 
tracker at Mozilla. The bugs span a period of approximately 10 years from first 
report to last activity. In order to distinguish between core and periphery among the 
contributors to bug reports, we checked who first reported the bugs and noted the 
status of the bug at the time of reporting. For bugs that are recognized as “New” 
straight from the start, we consider the reporter to be part of the core and for bugs 
that are labeled “Unconfirmed”, the reporter is considered to be part of the periphery 
since apparently he or she did not possess the so-called CanConfirm privilege 
granted by cooptation (Dalle et al. 2008). In subsequent bug reports, the people 
responsible for actions or comments that have already reported another bug with 
status “New” previously are considered to be part of the core and coded “N” while 
people that have most recently reported another bug with status “Unconfirmed” are 
considered to be part of the periphery “U”. A third group for which no core-
periphery status can be determined using the method just described is classed as 
other or “O”, but we shall see that “O” has a lot in common with “U” and so for most 
purposes this group can be considered to be part of the periphery as well. 

3 Core Dominance 

Our first investigation concerns the overall distribution of labor between core and 
periphery: how many people can we classify in either group and what is the 
proportion of activity that can be attributed to those people? Using the global corpus 
described above, we find that a proportion of 20-25% of the bugs are initiated by 
outsiders. Of the 6197 distinct email addresses that are associated with the opening 
of one or more of the 37k bug reports in our corpus, 1713 are marked as insiders and 
5118 as outsiders while 634 switch from one to the other. Most of the outsiders only 
report one bug (3851); 620 report two; 386 report more than two. The numbers of 
bugs reported by insiders is more evenly distributed and averages about 16 reports. 
Considering all actions taken and comments contributed to the bugs reports overall, 
it turns out that about 85% can be traced back to insiders. Moreover, lengthier 
interactions seem to be associated with a higher involvement from insiders: see 
Figure 1. 



318 Héla Masmoudi, Matthijs den Besten, Claude de Loupy and Jean-Michel Dalle 
 

We also plot the frequency of threads with given proportions of insider/outsider 
involvement (percentage of actions by core and peripheral members of the 
community). Figure 2 shows an interesting pattern according to which the frequency 
of threads depends linearly in log scale upon the proportion of insiders, for at least a 
large part of the spectrum. 

When outsiders and insiders interact, they solve exponentially more problems 
provided the proportion of insiders is higher. It might be so that discussion between 
outsiders and insiders are easier and often more frequently when they “know” each 
other. Maybe an appropriate metaphor here could be the tables at a wedding, where 
discussions seem to be considerably more active at tables where people knew each 
other ex ante, compared to discussion between strangers, or discussions at tables 
where many people know each other and there are only a limited number of 
“newcomers”. 

4 Words that Core & Peripheral Members Use 

Our second investigation is an attempt to qualify the activities of the core and the 
periphery. In particular, we want to find out whether the words that insiders tend to 
use are different from the word the outsiders use, hoping that this is indicative for a 
more general mindset. 

Here, we look at a subset of the bug-reports in more detail. We consider two sets. 
The first, “cvs-sub”, consists of 2000 bugs with bug id between 54452 and 730951; 
the second, “cvs-mile”, consists of the 694 bugs in the corpus which were associated 
with a target milestone specifying a version of Firefox (or its previous incarnations 
Firebird and Phoenix). 

The reports in the corpus were tagged and subsequently partitioned with help of 
those tags using the following constructs: 
• <R = [NUO] > to identify whether the event recorded was originated by someone 

from the core (N), or periphery (U/O); 
• <a = [a-z] > to identify contributor 1-25 (a-y) and subsequent contributors (z) 

who participated in the bug resolution in order of appearance; 
• <stat = {NEW, UNCONFIRMED, ASSIGNED, REOPENED, RESOLVED, 

CLOSED, …}> to identify the official status of the bug during the resolution 
process (cf. Bugzilla manual); 
 
The type of analysis we do here can be described as textual content analysis. 

There are several tools available to perform this kind of analysis. Our tool of choice 

 
1  Note that these are 2000 consecutive bugs that were traced in the comments of the CVS 

log; the fact that the difference in bug id leaves space for about 20000 bugs suggests that 
90% of bug reports on Mozilla’s bugzilla are either resolved without affecting the code 
base or deal with code that is not related to Firefox. 



“Peeling the Onion” 319
 
is called Lexico2. We choose this tool because it is particularly helpful in estimating 
the likelihood of occurrences of words and other items and comparing these 
frequency-estimates among different parts of the corpus (Lamalle et al. 2003). A 
crucial metric in this type of analysis is what in Lexico is called specificity. This 
metric is an indicator of how specific certain terms are to the parts of the corpus in 
which they occur. The sign of the metric indicates whether terms are over- or under-
employed in specific parts (Lebart and Salem 1994). 

Table 1 and 2 give a list of the words that are most specific to comments from the 
core and the periphery respectively. The words that are identified as being specific to 
core or periphery are quite telling. The relative importance of words like “We” and 
“I” could be interpreted as being indicative of a sense of community where the plural 
is used or the lack there-of when the singular is prevalent3. There is a clear 
distinction between the people who are dealing with the technical issues under the 
hood and use the corresponding terms on the one hand and people who approach the 
black box of Firefox from the outside. Noteworthy as well is the relative importance 
of “Windows” and “NT” among the periphery. Finally, it seems that outsiders are 
disproportionately doing the marking of duplicates, which is understandable given 
that this is administrative work that benefits more to bug reporters than to people 
who spend most of their time trying to resolve a small number of bugs. 

5 Peripheral Activities 

Our third investigation delves a bit deeper by exploring in which phases of the bug 
resolution process the members of the core and periphery are particularly active. For 
this probe we take the corpus “cvs-sub” described in the previous section and discard 
all the comment text. We devide the corpus in parts that correspond to each of the 
stages delimited by the tag <stat =…> and we compare the relative frequencies of 
participation by people from the core and people from the periphery at each stage of 
the bug resolution process.  

If we take for instance the partition of the corpus according to bug status, then we 
have seven parts corresponding to the possible modalities of status that a bug can 
take. In the typical bug status sequence from “Unconfirmed” to “New” to 
“Assigned”, the partition “Unconfirmed” corresponds to the actions that were taken 
from the moment the bugs had achieved status “Unconfirmed” to the moment that its 
status was changed into “New”. In addition to marking events like status changes 
and periods of inactivity, we also marked the identify of the person contributing to 
bug resolution in terms of how many people before him or her had already 
participated in the discussions and actions relating to that bug. Persons 1 to 25 were 
assigned letters a to y while z was assigned to all the ultimate latecomers: people 

 
2  http://www.cavi.univ-paris3.fr/Ilpga/ilpga/tal/lexicoWWW/index.htm 
3  Note that it is possible to use stoplists in Lexico in order to avoid dealing with tool words 

but in this case, tool words are very indicative and we decided to keep them.  



320 Héla Masmoudi, Matthijs den Besten, Claude de Loupy and Jean-Michel Dalle 
 
with more than 25 other persons adding their bit to the resolution of a bug before 
them. 

Starting with the stages of the bug resolution process as defined by Bugzilla 
manual, it is of interest to note that there are two peaks of activity for people from 
the periphery, as reported in Fig. 3. The first is, unsurprisingly, while the bug has 
status “Unconfirmed”, for this is the point at which the person from the periphery 
who has submitted a bug makes the case that this is a real bug in order to get it 
accepted as “New”. The second peak of activity is much later in the resolution 
process: at the point that the bug is declared “Closed”. A possible interpretation here, 
in line with other findings presented in this paper, would be that outsiders go on 
reporting duplicates of already closed bugs. Conversely, it might be so to that they 
could try to reopen bugs that, according to them were inappropriately closed. 

Another interesting result, presented in Fig. 4, concerns the identity of people 
involved in the discussion. People who enter later in the discussion are less likely to 
come from the core than earlier on. When discussions around bugs tend to involve an 
increasing number of people, more people from the core tend to jump in and to 
contribute. 

6 Interactions leading to bug resolution 

Our fourth investigation looks at the effect of all activities and comments by 
members of the core and the periphery. We focus on the activities or groups of 
activities that distinguish bugs that are resolved at once from bugs that are resolved 
but then reopened again. Taking the whole corpus of 37000 bugs, we introduce an 
“alphabetic” coding. That is, we assign letters to represent events. Actions are 
encoded as follows: 
• M – messages in general; 
• C – messages signalling the creation of an attachment; 
• D – messages identifying a bug duplicate; 
• S – other bug status actions; 
• A – addition of someone to CC-watch-list; 
• Q – QA-contact; 
• G - assignment of person who takes the lead in bug resolution; 
• R – change in priority; 
• V – change in severity; 
• X – bug is declared resolved; 
• P – attachment is of type “patch”; 
• T – attachment is of type “text”; 
• I – attachment is of type “image”. 

 
Having this encoding crucially allows us to distinguish between the bugs in the 

corpus that were resolved just once and bugs that had to be reopened and resolved 
more than once. This allows us to compare the frequencies of different actions 



“Peeling the Onion” 321
 
depending whether bug were resolved only once (X) or more than once (XX), firstly 
for action unigrams (i.e. the frequency of occurrence, see Table 3) and secondly for 
the most and least frequent action bigrams (co-occurrences) in these bugs (Tables 4 
& 5, respectively). Looking at the unigrams in Table 3, it appears that patches and 
priority actions are most frequent in X bugs, while duplicates and QA contact actions 
are least frequent. The data on action bigrams in Table 4 and 5 confirm these 
observations. 

7 Interactions between core and periphery 

We now turn to an enhanced alphabetic coding, in which all actions that originated 
from core members are left in capitals while actions from the periphery are recoded 
into lower case letters.   Table 6 presents the frequencies of action unigrams for core 
and peripheral members, Table 7 presents their frequencies in relation to X and XX 
bugs, and Table 8 and 9 respectively present the most and least frequent action 
bigrams associated with X bugs. Clearly, patches are more frequent in X bugs, as are 
actions dealing with the priority of the bugs. On the contrary, duplicates are most 
frequent in XX bugs - an indication perhaps of their complexity - as is the provision 
of screenshots indicating the need for contextualization. Also changes in severity 
provided by peripheral members and changes in QA contact provided by core 
members are more frequent in XX bugs. The action bigrams strengthen the 
impression that patches are important. Moreover it appears that discussions about 
QA contact and assignment, and also discussions involving members of the 
periphery, tend to be associated with the XX bugs, which are declared resolved more 
than once. 

Finally, Table 10 presents the probability of having an action from the core or the 
periphery following a given action from the core or the periphery. Strikingly, actions 
from the core are mostly followed by other actions from the core. This observation is 
less strong for bug duplicates, probably because of sequences of duplicates at the end 
of many bug discussions, sometimes after they are closed, provided by either core or 
peripheral members of the community; and for status actions, messages, and actions 
dealing with the severity of the bug, all of which could serve as entry points for 
peripheral members, for various reasons. 

Similarly, but not less striking, actions from the periphery are generally followed 
by other actions from the periphery! This is most marked for assignee actions, but 
this is probably linked to the fact that new assignees act themselves immediately 
after they take the assignment. A similar feature can be observed for priority actions, 
which seems to trigger further actions from the periphery, maybe by the same 
contributor. On the other hand, this property is least marked for duplicates, 
messages, and severity actions, mirroring the latter observations, but also for QA 
actions and for patches. It might indeed be that QA actions by peripheral members 
do trigger a reaction from core members. Consequently, discussions around patches 
appear as a strong locus of interaction between core and peripheral members of 



322 Héla Masmoudi, Matthijs den Besten, Claude de Loupy and Jean-Michel Dalle 
 
open-source communities, in that sense perhaps validating Alan Cox’s (1998) dictum 
“show me the code” which stresses the importance of suggesting solutions for 
outsiders who want to be heard.  

8 Conclusion 

We believe that the collaboration and interactions between the core and the periphery 
of the community is an important aspect of open source development. Using 
econometric techniques we had already established that adherence to core or 
periphery matters in the case of Firefox (Dalle et al. 2008). In this paper, we have 
presented a cascade of techniques for textual analysis and alphabetic coding in order 
to shed more light on the interactions between insiders and outsiders in so far as they 
occur in the context of bug resolution related to Firefox. We found that most of the 
activities with respect to bug resolution are carried out by a small minority of core 
members. People in the periphery seem to content themselves with the reporting of 
bugs and the identification of duplicates while it is the people from the core who 
develop most of the solutions. There are some indications that contributions from the 
periphery are ignored. An exception is when these contributions involve “patches.” 
This lead us to think that within Firefox “show me the code” is valued while 
volunteering to be an “eyeball” is simply taken for granted. 

Thus, the explorations in text mining presented in this paper have yielded quite a 
few interesting if not puzzling observations that globally show that we still don’t 
know enough about the nature and the subtleties of the interactions between core and 
periphery. Needless to say, the results presented here are still very preliminary and 
further investigations are still needed, using for instance vector spaces or hidden 
Markov models.       

References 

[1] A. Cox. Cathedrals, bazaars and the town council. Available at 
http://www.linux.org.uk/Papers_CathPaper.cs, 1998. 

[2] K. Crowston and J. Howison. The social structure of open source software development 
teams. First Monday, 10(2), February 2005. 

[3] J.-M. Dalle, M. den Besten, and H. Masmoudi. Channelling Firefox developers: Mom 
and dad aren’t happy yet. In Open Source Systems, Milan, September 2008. 

[4] C. Lamalle, W. Martinez, S. Fleury, and A. Salem. Lexico 3, Outils de statistique 
textuelle. Manuel d’utilisation. Université de la Sorbonne Nouvelle, 2002. 

[5] L. Lebart and A. Salem. Statistique textuelle. 1994. 
[6] L. Lebart, A. Salem, and L. Berry. Exploring Textual Data. 1998. 
[7] E. S. Raymond. The cathedral and the bazaar. First Monday, 3, 1998. 
[8] G. Ripoche and J.-P. Sansonnet. Experiences in automating the analysis of linguistic 

interactions for the study of distributed collectives. Computer Supported Cooperative 
Work, 15:149–183, 2006. 



“Peeling the Onion” 323
 
Appendix 

 

Fig. 1. Proportion of N given length of threads 

0.00001

0.0001

0.001

0.01

0.1

1
0 0.2 0.4 0.6 0.8 1 1.2

N O U Expon. (N) Expon. (O)

 
Fig. 2. Number of threads where there’s a given % of N and O 
 

 

Table 1. The words that are most specific for core members (N) and periphery members (O, 
U) in corpus “cvs-sub” 

N  O  U 
 Freq Specif   Freq Specif   Freq Specif 
We 6933 ***  Mozilla 691 ***  *** 698 *** 
* 5970 ***  * 268 ***  Mozilla 382 31 
Patch 5584 ***  + 260 ***  Bug 365 30 
+ 5009 ***  message 304 28  duplicate 349 30 



324 Héla Masmoudi, Matthijs den Besten, Claude de Loupy and Jean-Michel Dalle 
 

Line 3412 ***  5 264 24  marked 347 27 
Mozilla 1179 ***  my 488 21  URL 174 23 
Int 1615 49  mail 260 18  Windows 173 23 
Trunk 1405 45  browser 254 17  page 309 20 
Const 1447 42  text 348 16  bug 1218 18 
Builds 1100 36  with 1200 14  has 600 18 
Branch 1081 36  I 3350 13  been 443 16 
Bytes 1283 35  page 337 12  text 276 14 
Cpp 2508 33  www 173 11  of 1971 13 
Fix 3344 32      as 993 13 
Details 4614 31         
Checked 1493 28         
unsigned 997 28         
Created 3642 27         
attachment 4772 24         
JS 798 22         

 

Table 2. The words that are most specific for core members (N) and periphery members (O, 
U) in corpus   “cvs-mile” 

N  O  U 
 Freq Specif   Freq Specif   Freq Specif 
+ 3318 ***  0 1915 ***  *** 870 *** 
attachment 2956 ***  5 1276 ***  + 179 *** 
Details 2941 ***  Windows 1101 ***  Bug 506 31 
We 2200 ***  Firefox 1080 ***  Windows 619 29 
0 2147 ***  Mozilla 924 ***  5 689 28 
Mozilla 2142 ***  Gecko 627 ***  duplicate 451 28 
Update 1751 ***  U 620 ***  marked 440 26 
From 1547 ***  rv 616 ***  source 196 22 
Content 1289 ***  patch 388 ***  Mozilla 484 20 
Firefox 1140 ***  *** 351 ***  U 329 20 
Revision 1041 ***  attachment 329 ***  Firebird 181 19 
5 931 ***  details 320 ***  Gecko 332 18 
Windows 807 ***  mozilla 316 ***  has 653 17 
Toolkit 778 ***  we 272 ***  been 540 17 
Mozilla 642 ***  + 168 ***  NT 229 17 
Xul 587 ***  update 115 ***  0 1024 16 
Cvsroot 521 ***  content 92 ***  as 1027 14 
Rv 515 ***  From 68 ***  rv 328 12 
Gecko 366 ***  toolkit 44 ***     
U 323 ***  revision 4 ***     
NT 213 ***  cvsroot 4 ***     
Browser 2031 48  NT 398 47     
Done 693 46  I 3731 34     
= 902 45  7 382 30     
Rdf 538 43  my 499 29     

 



“Peeling the Onion” 325
 

 

Fig 3. Relative frequencies of actions from core and periphery in different phases of the bug-
resolution process 

 

Fig. 4. Frequency that an action stems from someone from the core “N” or periphery “O”, “U” 
for the n-th (coded by alphabetical letters) different actor involved in the bug discussion 



326 Héla Masmoudi, Matthijs den Besten, Claude de Loupy and Jean-Michel Dalle 
 
Table 3. Frequencies of action unigrams for singly (X) and multiply (XX) resolved bugs 

Action X XX Number of occurrences 
P 0.882 0.118 61702
C 0.871 0.129 79263
S 0.861 0.139 345335
R 0.856 0.144 10621
M 0.836 0.164 401267
A 0.831 0.169 124808
T 0.827 0.173 11081
G 0.826 0.174 28208
V 0.819 0.181 5317
I 0.813 0.187 3964
Q 0.8 0.2 9529
D 0.759 0.241 20360

 
 
Table 4. Most frequent action bigrams for singly (X) and multiply (XX) resolved bugs 

Action X XX Number of occurrences 
CS 0.894 0.106 35 004
SP 0.890 0.110 22 143
AP 0.888 0.112 5 162
PC 0.882 0.118 59 324
MP 0.877 0.123 26 095
GS 0.868 0.132 5 144
CP 0.867 0.133 5 563
SS 0.866 0.134 117 826
RS 0.862 0.138 9 088
AS 0.861 0.139 10 453
SM 0.860 0.140 118 639
MS 0.854 0.146 158 665
CA 0.852 0.148 7 382

 
 
Table 5. Least frequent action bigrams for singly (X) and multiply (XX) resolved bugs 

Action X XX Number of occurrences 
MM 0.820 0.180 139 161
GM 0.813 0.187 21 425
QS 0.804 0.196 5 368
MG 0.789 0.211 8 209
MQ 0.787 0.213 6 678
AD 0.786 0.214 14 818
DA 0.773 0.227 8 523
DM 0.769 0.231 6 450

 

 

 



“Peeling the Onion” 327
 
Table 6. Frequencies of action unigrams by Core and Peripheral members 

Action-Core Number of 
occurrences 

 Action-periphery Number of 
occurrences 

A 71 443  a 16 986 
C 46 363  c 7 325 
D 15 159  d 2 607 
G 19 927  g 1 690 
I 1 880  i 892 

M 269 849  m 42 155 
P 31 044  p 10 198 
Q 7 418  q 959 
R 8 035  r 660 
S 216 711  s 22 387 
T 6 061  t 2 186 
V 3 738  v 617 

 
 

Table 7. Frequencies of action unigrams by Core and Peripheral members in singly (X) and 
multiply (XX) resolved bugs 

Action X XX Total 
P 0.868 0.132 30216
p 0.866 0.134 10057
C 0.856 0.144 45373
r 0.854 0.146 644
R 0.839 0.161 7770
S 0.839 0.161 208468
c 0.832 0.168 7148
s 0.829 0.171 21506
g 0.819 0.181 1619
M 0.818 0.182 261032
q 0.813 0.187 938
A 0.813 0.187 70895
t 0.809 0.191 2163
T 0.805 0.195 5940
V 0.801 0.199 3636
a 0.800 0.200 16879
m 0.798 0.202 40612
G 0.795 0.205 19294
i 0.787 0.213 875
Q 0.782 0.218 7204
I 0.774 0.226 1858
V 0.764 0.236 483
D 0.750 0.250 14852
D 0.738 0.262 2552

 
 
 



328 Héla Masmoudi, Matthijs den Besten, Claude de Loupy and Jean-Michel Dalle 
 
Table 8. Most frequent action bigrams associated with singly(X) and multiply (XX) resolved 
bugs 

Action X XX Total 
CS 0.884 0.116 16 104
pC 0.878 0.122 5 927
SP 0.878 0.122 9 780
PC 0.867 0.133 28 265
MP 0.862 0.138 12 565
RS 0.844 0.156 6 473
SM 0.842 0.158 70 211
SS 0.841 0.159 64 131
CM 0.835 0.165 15 074
MS 0.833 0.167 102 327
MR 0.832 0.168 5 230
AA 0.831 0.169 9 281

 
 

Table 9. Least frequent action bigrams associated with singly (X) and multiply (XX) resolved 
bugs 

Action X XX Total 
GM 0.798 0.202 16 993
mm 0.787 0.213 6 793
AD 0.782 0.218 10 084
mM 0.778 0.222 9 263
Mm 0.775 0.225 7 927
MG 0.774 0.226 5 430
MQ 0.774 0.226 5 132

 
 

Table 10. Frequencies of action from the Core or the Periphery after given Core or Peripheral 
actions 

Action 
Core 

Proba 
Core 

Proba 
Periphery     Action 

Periphery 
Proba 
Core 

Proba 
Periphery 

A 0.915 0.085 a 0.499 0.501 
C 0.942 0.057 c 0.406 0.594 
D 0.857 0.135 d 0.523 0.471 
G 0.963 0.036 g 0.304 0.695 
I 0.958 0.042 i 0.406 0.594 
M 0.895 0.069 m 0.505 0.476 
P 0.965 0.035 p 0.645 0.355 
Q 0.915 0.081 q 0.578 0.419 
R 0.959 0.040 r 0.364 0.635 
S 0.819 0.068 s 0.447 0.468 
T 0.960 0.040 t 0.425 0.575 
V 0.896 0.095 v 0.554 0.444 

 


