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Inertial migration has emerged as an efficient tool for manipulating both biological and engineered
particles that commonly exist with non-spherical shapes in microfluidic devices. There have been
numerous studies on the inertial migration of spherical particles, whereas the non-spherical parti-
cles are still largely unexplored. Here, we conduct three-dimensional direct numerical simulations to
study the inertial migration of rigid cylindrical particles in rectangular microchannels with different
width/height ratios under the channel Reynolds numbers (Re) varying from 50 to 400. Cylindrical
particles with different length/diameter ratios and blockage ratios are also concerned. Distributions
of surface force with the change of rotation angle show that surface stresses acting on the particle
end near the wall are the major contributors to the particle rotation. We obtain lift forces experienced
by cylindrical particles at different lateral positions on cross sections of two types of microchan-
nels at various Re. It is found that there are always four stable equilibrium positions on the cross
section of a square channel, while the stable positions are two or four in a rectangular channel,
depending on Re. By comparing the equilibrium positions of cylindrical particles and spherical par-
ticles, we demonstrate that the equivalent diameter of cylindrical particles monotonously increases
with Re. Our work indicates the influence of a non-spherical shape on the inertial migration and
can be useful for the precise manipulation of non-spherical particles. Published by AIP Publishing.
https://doi.org/10.1063/1.5018714

I. INTRODUCTION

Microfluidics emerges as promising technologies for
manipulation and detection of particles or cells. Differ-
ent active methods resorting to external fields for particle
focusing or separation have been developed, e.g., dielec-
trophoresis,1–3 acoustophoresis,4,5 magnetophoresis,6,7 and
thermophoresis.8,9 Recently, inertial migration has been
widely used for focusing,10–13 separation,14–18 filtration,18,19

enrichment,16,20 or hydrodynamic stretching of particles or
cells21,22 in a microfluidic device. The so-called “inertial
migration” was first observed by Segre and Silberberg, who
found that the randomly discrete spherical particles in a cir-
cular pipe migrated to an annulus centered at a radial position
about 0.6 times the pipe radius.23 Theoretical analyses based
on the perturbation method convincingly attribute this phe-
nomenon to the nonlinear effect of fluid inertia.24–27 Briefly,
inertial migration is due to the balance of two types of forces.
One is the shear-gradient-induced lift, FS , arising from the
curvature in the Poiseuille velocity profile that drives particles
toward the wall, and the other is the wall-induced lift, FW ,
produced by the wall correction with the bulk shear flow that
pushes particles away from the wall.25 An explicit lift formula
is proposed to clearly embody the contribution of FS and FW

a)Authors to whom correspondence should be addressed: guoqing.hu@
imech.ac.cn and chenxiaodong@imech.ac.cn. Tel.: 86-10-82544298.
Fax: 86-10-82543977.

to the inertial lift, FL,

FL = FW + FS = (β2G1 + βαG2)ρU2
maxa4/H2, (1)

where β is the dimensionless shear rate, α is the dimen-
sionless shear gradient, ρ is the fluid density, Umax is the
maximum channel velocity, a is the particle diameter, H is
the channel height, and G1 and G2 are functions of the lateral
positions.25

Microchannels fabricated by the planar soft-lithography
method commonly have rectangular cross sections. Equilib-
rium positions of particles in a rectangular channel are sym-
metrically dispersed, rather than annulus in a circular pipe.28,29

The equilibrium positions shift closer to the wall with increas-
ing channel Reynolds number Re (Re = ρUmaxH/η, where η is
the dynamic viscosity) in both rectangular30,31 and circular32

channels. Previous studies have found that the inertial migra-
tion of randomly dispersed particles in rectangular channels
can be regarded to be a two-stage process, i.e., (1) particles
predominately migrate away from the channel center and the
walls to a rounded rectangular ring-like region and (2) then
migrate along the channel perimetric direction to finally focus
at discrete equilibrium positions.18,29,33 This process has also
been observed in our recent study.15 The first stage is similar
to the inertial focusing in a pipe, both FS and FW driving the
particles to migrate to a rounded rectangular ring-like region.
After FS and FW cancel each other out, the rotation-induced lift
FR, whose direction is determined by the cross-product of the
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angular velocityω and the relative particle velocity vectors Ur,
i.e., FR ∼ ω × Ur, dominates the perimetric migration in the
second stage.18

Non-spherical particles or cells commonly exist in bio-
logical and bioengineering fields, e.g., biconcave disk-like red
blood cells (RBCs), cylindrical Escherichia coli, and ellipsoid
Euglena gracilis. Comparing with that of spherical particles,
studies on non-spherical particles are few. Inertial migrations
of non-spherical particles or cells are commonly quantified
by equivalent diameters, which are the diameter of spher-
ical particles, which have same equilibrium positions with
non-spherical particulates. However, the definitions of the
equivalent diameters varied among different studies. Recently,
several experimental investigations aiming to define the equiv-
alent diameters are conducted.34,35 Inertial migrations of sym-
metrically non-spherical particles have been found to mainly
depend on their rotational diameters, DR, i.e., their maxi-
mum size perpendicular to the rotation axis, regardless of
cross-sectional shapes.34,36

It is natural to ask how the non-spherical particles rotate
under the force exerted by ambient flow.37–39 Two-dimensional
direct simulations for inertial migration of cylindrical particles,
assuming that randomly released cylindrical particles prefer to
roll in a Poiseuille flow, have been previously conducted.40,41

Recent experimental evidence has shown that there is not
a dominant rotation behavior when Re is low.34,35 Besides,
remarkable focusing of non-spherical particles rarely occurs.36

Above a critical Re (about 50), non-spherical particles pre-
dominantly adopt to preferred rotational axes and migrate to
remarkable equilibrium positions.34,35,42 For instance, cylin-
drical and ellipsoid particles prefer to tumble while disk-
like particles prefer to roll. Because of the anisotropy of

non-spherical particles, the shape effect may continuously
change the angular velocity and sweeping area of particles,
leading to periodically varying lift force and equilibrium posi-
tion. For example, the tumbling motion of ellipsoid particles
has been found to predominantly change the wall-induce lift
and thus periodically shift the particle toward and away from
the wall.35,43

Rotational diameter has been used to roughly determine
equilibrium position. However, the detailed migration process
and the influence of Re to the equivalent diameter for equilib-
rium position are yet to be explored. In this paper, we study
numerically the migration dynamics and equilibrium positions
of cylindrical particles in rectangular microchannels. Detailed
particle motions and dynamical distributions of surface stress
are addressed. Distributions of lateral forces at cross sections
with different aspect ratios are obtained systematically. Com-
parisons of equilibrium positions with spherical particles with
different diameters are conducted. In addition, equilibrium
positions of cylindrical particles with different aspect ratios
and blockage ratios are carried out. Finally, an inertial migra-
tion of a special cylindrical particle, disk-like particle, is also
explored.

II. METHOD
A. Computational methods

As shown in Fig. 1(a), we consider a neutrally buoyant
rigid cylindrical particle, with axis length L and diameter D,
suspending in a Poiseuille flow within a straight rectangular
microchannel. The origin of coordinate is located at the center
of the channel inlet. The x-, y-, and z-coordinates represent the

FIG. 1. (a) Schematic illustration of
a cylindrical particle suspending in a
pressure-driven flow within a rectan-
gular microchannel. (b) The computa-
tional domain consists of four compo-
nent grids, i.e., the channel Cartesian
grids (black lines), the body fitted grids
for the particle with two poles removed
(green lines), and the grids for two poles
(red and blue lines). (c) Typical stream-
lines around a cylindrical particle for
the flow field with the relative veloc-
ity based on the center of the cylindrical
particle.
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directions of the mainstream, height, and width of the cross
section, respectively. The general function of the lift force (FL)
can be written as a function of the geometrical and physical
parameters15,44

FL = F (D, L, y, z, t, H, W , Umax, η, ρ) , (2)

where (y, z) is the lateral coordinate in the y-z plane, t is
the time, and W is the width of the channel. Among these
ten parameters, H, Umax, and ρ are used to nondimensional-
ize the system. According to the Buckingham π theorem,45

the general formula of lift force thus depends on seven
nondimensional quantities,

FL = F
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The aspect ratio of cylindrical particles, L/D, characterizes
the particle nonsphericity. The blockage ratio, κ = L/H, deter-
mines the main size of the particle in comparison to the channel
height. L/D and κ jointly determine the disturbance on the basic
flow due to the presence of the cylindrical particle. The time
is calculated by t·γ, where γ = 2Umax/H is the average shear
rate. The lateral position of the particle center is (2y/H, 2z/H),
where both 2y/H and 2z/H vary from 0 to 1, indicating the
position from the channel center to the walls. W /H determines
the velocity profile along the long axis of cross section varying
from parabolic to plug-shaped with W /H deviating from unity.
Re reflects the intensity of inertial nonlinearity of the undis-
turbed flow. Similar to that for spherical particles,25 we adopt
the dimensionless lift coefficient, CL, to measure the inertial
force acting on cylindrical particles,

CL =
FL(

ρU2
maxDN

4/H2
) , (4)

where the nominal diameter, DN , is the diameter of a spheri-
cal particle with identical volume with the cylindrical particle.
Our simulations investigate the cases that cylindrical parti-
cles migrate in microchannels with a fixed H of 50 µm. The
medium surrounding the particles is water.

Incompressible Navier-Stokes (N-S) equations for fluid
flow coupled with Newton’s second law of motion for particles
are numerically solved on structured overlapping grids with the
Overture object-oriented framework.46 The N-S equations are

∇ · u = 0, (5)

∂u
∂t

+ (u · ∇)u = −
1
ρ
∇p +

η

ρ
∇2u, (6)

where u is the fluid velocity tensor and p is the pressure. The
gravitational force is neglected here as the density of particles
is equals to that of the fluid. The force acting on the cylindrical
particle is obtained by integrating the surface stress over the
particle surface. The torque is obtained by integrating the cross
product of distance to the particle center and the surface stress
over the particle surface. The equations for particle motions
are thus

mp
dUp

dt
=

∫
Σ

(−p1 + τ) · ndσ, (7)

d
[
A(t)ωp

]

dt
=

∫
Σ

(x − xcm) × [(−p1 + τ) · n]dσ, (8)

where ωp = [ω1 ω2 ω3]T is the angular velocity vector, 1 is
the unit tensor, τ is the shear rate tensor, n is the unit normal
vector of particle surface, A(t) is the moment of inertia tensor
of the particle, and xcm is the position of the mass center of
the particle. We introduce the principle axes of inertia ei and
corresponding moment of inertia I i into our system. A(t) is a
symmetric positive definite tensor,

A = EΛET , (8a)

where Λ = diag(I1, I2, I3), E = [e1 e2 e3], ei·ej = δij,
E = E�1. Note thatΛ is independent with time. Since the axes of
inertia rotate with the cylindrical particle, the derivative versus
time is

Ė = ΩE, (8b)

where

Ω =



0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



, (8c)

and Eq. (8) can be rewritten as

ΩAωp + Aω̇p =

∫
Σ

(x − xcm) × [(−p1 + τ) · n]dσ. (8d)

The overlapping grid method is applied to the compu-
tational domain by means of the Overture object-oriented
framework. To obtain good computational efficiency and pre-
cision, the computational domain is constructed by four over-
lapping subzones with independent structured grids [Fig. 1(b)],
i.e., the Cartesian grids for the channel, the body-fitted grids
for the cylindrical particle with two poles removed, and
the body-fitted grids for two poles. Such arrangement of
grids avoids the singularity at two poles. The information
exchanges of the subzones are achieved via interpolation
between every two overlapped blocks, while the grid updates
every time step to guarantee the quality. The overlapping
grid method is robust in dealing with fluid flow around a
moving solid boundary. The interaction between particle sur-
face and surrounding flow can thus be predicted with high
precision. For example, Fig. 1(c) shows that smooth stream-
lines around the cylindrical particle can be obtained at every
time step.

The no-slip boundary conditions are implemented on the
channel walls and the particle surface. The velocity profile for
the Poiseuille flow in a rectangular cross section is imposed
on the inlet,47

u (y, z) =
4H2∆p

π3ηLC

∞∑
n,odd

1

n3



1 −
cosh

(
nπ

z
H

)
cosh

(
nπ

W
2H

)


× sin

[
nπ

(
y
H

+
1
2

)]
, (9)

where ∆p is the pressure difference between the inlet and
the outlet and LC is the channel length. The constraint of
p + ∂p/∂n = 0 is imposed as an outflow boundary condition.
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In the time stepping, viscous term is implicitly treated with
an implicit factor of 0.5 (the Crank-Nicolson method) and
the other terms are explicitly treated with a second-order
Adams predictor corrector.48 A second-order centered dif-
ference scheme is applied to the spatial discretization of the
convective term and viscous term.48 A stabilized bi-conjugate
gradient (BiCG-Stab) method with the incomplete precondi-
tioner (LU) is applied to iteratively solve the linear equations
derived from the pressure equation. The Courant-Friedrichs-
Lewy (CFL) number is set to be 0.75 to guarantee the stability
of the simulations. The solving process is done by the PETSc
software package,49 which has an interface to the Overture
framework.

B. Measurement of lift force

To obtain the lift force experienced by a cylindrical par-
ticle at certain lateral position, (2y/H, 2z/H), a constraint is
adopted to fix the cross-sectional position by setting lateral
velocity (Uy and Uz) to be constant zero, while the particle
moves freely in the axial direction of the channel. Under this
constraint, the cylindrical particle is initially placed at a prede-
fined lateral position and then driven by the force imposed by
the surrounding flow to translate and rotate. When the trans-
lational and rotational motions both reach steady states, the
CL component (CLy and CLz) can be obtained by integrating
the hydrodynamic forces acting on the particle. This constraint
method has been previously utilized by our group15,50,51 and
other groups22,33 to obtain the inertial lift force acting on spher-
ical particles and deformable droplets. Due to the tumbling
motion of cylindrical particles, the inertial lift is a constant with
small periodical oscillations in the present study. We here aver-
age the lift force coefficient for several oscillation periods at
steady state to obtain the averaged lift force coefficient Cav. By
varying the lateral position and carrying out the corresponding
simulation, the spatial distribution of Cav in the cross section
can be obtained as well as the tendency of inertial migration
toward equilibrium positions.

C. Grid independence study

A grid independence study is conducted with three grid
resolutions. The grid resolution is measured by the ratio of
the size of the background grid, ∆x, to L, varying from 0.1 to
0.05. Figure 2(a) shows variations of FL acting on the cylin-
drical particle constrained at (0.5, 0) for three ∆x/L under
Re = 100. The differences among the results of the two finer
grid resolutions are small. Figure 2(b) shows the variation of
Cav along the y-axis. Negligible differences are also observed.
Further comparisons for Cav under Re = 30 and 300 are
shown in Figs. 2(c) and 2(d). Therefore, the grid resolution of
∆x/L = 0.075 is used in subsequent simulations due to the ade-
quate accuracy and proper numerical cost. The channel length
varies from 15H to 80H, which is enough for a cylindrical
particle to reach the steady state. The maximum grid number
is about 25 000 000. Totally over 700 simulations are car-
ried out to produce a systematical investigation on the inertial
migration of cylindrical particles.

D. Methods’ validation

The equilibrium position at cross section can be obtained
by the constraint method when Cav = 0. We find that equilib-
rium positions by the constraint method are almost identical to
the free model in which particles move without constraint. The
solid line in Fig. 3(a) shows the trajectory of the center of a
free cylindrical particle released from initial lateral position of
(0.4, 0). After reaching the steady state, the rotating parti-
cle oscillates periodically around a time-averaged equilib-
rium position. The time-averaged equilibrium position is at
(0.534, 0) as represented with a black dashed line in Fig. 3(a).
The magnitude of the periodical oscillations ∆ is only 1.25%
of the L. The red dashed line in Fig. 3(a) represents the equi-
librium position obtained by the constraint method, (0.536, 0).
The negligible difference between the two equilibrium posi-
tions indicates that the constraint method is able to obtain
the equilibrium position. Figure 3(b) further confirms the

FIG. 2. Comparisons of lift forces
under three grid resolutions for cylin-
drical particles with L/D = 2 and κ = 0.3
in a rectangular channel with W /H = 1.
(a) CL at Re = 100; (b) Cav at Re = 100,
(c) Cav at Re = 30; (d) Cav at Re = 300.
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FIG. 3. Comparisons of cylindrical particles with and without constraint at Re = 100 for cylindrical particles with L/D = 2 and κ = 0.3 in a rectangular channel
with W /H = 1: (a) Equivalent equilibrium position. (b) Angular velocity. (c) DN , DA, and DR corresponding to spherical particles with the equivalent volume
diameter, axial length, and rotational diameter of the cylindrical particle as diameter, respectively.

excellent agreement in the angular velocity for the particles
with and without constraint.

The small oscillation magnitude of the equilibrium posi-
tion, ∆/L = 1.25%, suggests that cylindrical particles have
well-defined equilibrium positions that can be equivalent to
those of spherical particles. Figure 3(c) shows three types of
diameters, i.e., nominal diameter DN , rotational diameters DR,
and axial length diameter DA. The axial length diameter DA

is equal to the axial length of the cylindrical particle. Inertial
forces and equilibrium positions of spherical particles with
three types of diameters will be calculated and compared with
those of cylindrical particles in Sec. III.

III. RESULTS AND DISCUSSION
A. Particle motion and surface stress

For a typical case, Fig. 4(a) show the variation of CL in
the y and z directions, CLy and CLz, as well as orientations of
the particle looking in directions perpendicular to the x-y plane

(first row) and x-z plane (second row). The mass center of the
cylindrical particle is constrained at (0.5, 0.3). From both view
directions, the particle tumbles counterclockwise. CLy and CLz

vary in-phase, while the amplitude of CLy is larger than that
of CLz due to which the particle is closer to the wall in the y
direction. Variations of CLy and CLz are smooth when the long
axis of cylindrical particles is near the orientation in-line with
the flow, while sharp variations are observed when the long
axis deviates from the orientation.

To discuss variations of lift force and torque acting on the
cylindrical particle in detail, we simulate a situation when the
particle is constrained at (0.5, 0), where the particle only rotates
counterclockwise in the z direction. Figure 4(b) shows the vari-
ation of CL with θ, as well as the minimum distance between
the particle surface and the wall, ∆y, nondimensionalized by
H/2. Figure 4(c) shows the variation of the dimensionless
torque, Ctor , as well as the angular velocity,ω, nondimension-
alized by γ. The Ctor is defined as Ctor = T tor /(ρU2

maxD5
N /2H2),

where T tor is the torque. All the variables change periodically
over each integer of θ/π, which corresponds to half the rotation

FIG. 4. (a) CL components for a cylin-
drical particle located at (0.5, 0.3) with
orientations of the particle looking in
directions perpendicular to the x-y plane
(first row with the black dashed line)
and the x-z plane (second row with the
red dashed line). Variations of CL and
2∆y/H (b), Ctor andω/γ (c) for a cylin-
drical particle located at (0.5, 0). The
dots are marked where θ = 0, π/4, π/2,
and 3π/4. The results are for cylindrical
particles with L/D = 2 and κ = 0.3 in
a rectangular channel with W /H = 1 at
Re = 100.
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cycle of the particle. Two peaks and two troughs of CL exist
within one θ/π, as shown in Fig. 4(b). Initially, CL increases
when θ/π varies from 0 to about 0.10 and the particle is pushed
toward the channel wall. The value of CL then reduces sharply
as the particle tilts, indicating that the lift force tends to push
the particle back toward the channel center. The minimum CL

is obtained when the diagonal line of the particle cross sec-
tion in the y-x plane is nearly perpendicular to the wall at
θ/π ≈ 0.35. After that, CL increases rapidly and obtains a
maximum value at θ/π ≈ 0.65 when the other diagonal line
is nearly perpendicular to the wall. Those two orientations
also correspond to the situations when 2∆y/H has the mini-
mum value as shown in Fig. 4(b). Figure 4(c) shows that ω/γ
has its maximum value at θ/π ≈ 0.50, i.e., the cylindrical parti-
cle has a larger angular velocity when diagonal lines rotate to
and away from the direction perpendicular to the wall. Large
disturbances are thus imposed on the lift force because of the
angular momentum. When diagonal lines are nearly perpen-
dicular to the wall, extreme values of the lift are observed as
the disturbances in the direction of lift force reach their peaks.
As shown in Fig. 4(c), Ctor is near zero at θ/π = 0, where
the angular velocity reaches its minimum value. As the par-
ticle rotates, Ctor increases to its peak near θ/π ≈ 0.35 and
decreases to zero, when ω/γ is at its largest. Ctor continues to
decrease to its smallest and subsequently increases back to near
zero at θ/π = 1.

The magnitudes and directions of the lift and torque can be
determined by the distribution of surface stresses acting on the
particle surface. The dimensionless surface stress is defined as
Cf = f /(0.5ρU2

max κ
2), where f = (�p1 + τ)·n is the surface

stress. Figure 5 shows the distribution of surface stresses for
four rotation angles marked with dots in Fig. 4, i.e., θ = 0, π/4,
π/2, and 3π/4. The magnitudes of Cf are represented with sur-
face contours, while the directions of the surface stresses are
represented with vectors. Figure 5(a) shows a smooth distri-
bution of surface stresses acting on the cylindrical particle as
θ = 0. Figures 5(b)–5(d) show that large surface stresses emerge
at the end near the channel wall when the particle’s long axis

FIG. 5. The distribution of the surface stress coefficient Cf with the change
of θ. The vectors donate the orientation of the stress and the contours donate
the magnitude. (a) θ = 0, (b) θ = π/4, (c) θ = π/2, and (d) θ = 3π/4.

is not in line with the channel axis. As the lift is negative at
θ = π/4 but positive at θ = π/2 and 3π/4 [Fig. 4(a)], the surface
stresses acting on the end near the wall mainly direct away
from the wall at θ = π/4 [Fig. 5(b)] while they direct toward
the wall as θ = π/2 [Fig. 5(c)] and 3π/4 [Fig. 5(d)]. The magni-
tudes of surface stresses for θ = π/2 are obviously smaller than
those for θ = π/4 and 3π/4. As the torque is positive at θ = π/4
and π/2 but negative at θ = 3π/4 [Fig. 4(c)], the surface stresses
on the end near the wall tend to drive the cylindrical particle
to rotate clockwise at θ = π/4 and π/2, while counterclock-
wise at θ = 3π/4. By contrast, surface stresses acting on the
end away from the wall tend to drive the cylindrical particle to
rotate with counterclockwise at θ = π/4 and π/2, while clock-
wise at θ = 3π/4. The main direction of surface stresses is also
opposite to the direction of lift force on the cylindrical parti-
cle. However, the magnitudes of surface stresses acting on the
end away from the wall are smaller than that acting on the end
near the wall. Therefore, we conclude that the surface stresses
acting on the end near the wall are the major contributors to
the particle rotation.

B. Force distributions and particle migration

A series of direct numerical simulations are conducted to
investigate the migration behavior of cylindrical particles at
different Re. We here investigate the cylindrical particle with
L/D = 2 and κ = 0.3 in a microchannel with two different aspect
ratios, i.e., W /H = 1 and 2. The total number of the cases for the
two W /H is 175 and 440, respectively. We regard the cross-
sectional positions, where the average lift force is zero, as
equilibrium positions. An equilibrium position is stable if the
particle will be pushed back once it is disturbed away from the
position. An unstable equilibrium position is an equilibrium
position that a small disturbance will drive the particles away
from the initial position.

Figure 6 shows the distributions of lift vectors in the
cross sections along with particle trajectories under Re varying
from 50 to 200. Figures 6(a)–6(c) demonstrate that there are
always four stable equilibrium positions for a square channel
(W /H = 1). As shown in Figs. 6(d) and 6(e), only two sta-
ble equilibrium positions appear at the long wall centers with
W /H = 2 for Re varying from 50 to 100, while two other equi-
librium positions at the short wall centers are unstable. Many
groups have reported two equilibrium positions of spherical
particles centered at the two long walls if the W /H highly
deviates from unity.22,35 However, six or even eight equilib-
rium positions have also been observed in microchannels with
similar W /H.52 Figure 6(e) shows that the unstable equilib-
rium positions of cylindrical particles turn to stable as Re
increases to 200.

We have previously observed the so-called two-stage
process during the inertial migration of spherical particles
in rectangular channels with W /H = 2.15 By tracking the
particle trajectories according to lift vectors, the two-stage
process is also found for cylindrical particles as shown in
Figs. 6(a)–6(f), i.e., in the first stage, particles predominately
migrate away from the channel center and the walls to form a
rectangular ring, and, in the second stage, particles migrate
along the channel perimetric direction and finally focus at
discrete equilibrium positions. In the first stage, both FS
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FIG. 6. Distributions of lift force act-
ing on a cylindrical particle in a quarter
cross section of the square channel with
W /H = 1 [(a)-(c)] and the rectangular
channel W /H = 2 [(d)-(f)] under Re = 50
[(a) and (d)], 100 [(b) and (e)], 200 [(c)
and (f)]. Each red vector represents the
lift force experienced by a cylindrical
particle with its center at the origin of the
vector. The trajectories of the cylindri-
cal particle center are represented with
the green lines. The small black full
circles are put on the trajectories with
same nondimensional time units. The
solid-line red circles represent stable
equilibrium positions and the dashed-
line ones represent unstable equilibrium
positions. The blue dashed lines confine
the area that the center of the particle
can reach. The blue solid lines are the
separatrices dividing the cross sections
into two portion, in each of which par-
ticles will focus to the corresponding
equilibrium position.

and FW drive the particles to migrate to a rounded rectan-
gular ring-like region where two forces cancel each other
out. The rotation-induced lift FR then becomes the domina-
tor in the second stage and drives the cylindrical particles
with smaller migration velocity since FR is much weaker than
FS and FW .18,24,53

We further investigate the cases under Re = 300 and 400
as shown in Fig. 7. With the increase of Re, the larger FR will
act on cylindrical particles and thus induces a velocity com-
ponent directing particles to equilibrium positions before a
remarkable rectangular ring of particles is formed. The rectan-
gular ring becomes less remarkable in the square channel with
W /H = 1 [Figs. 7(a) and 7(b)], which can also be observed
near the short wall in the rectangular channel with W /H = 2
[Fig. 7(d)]. The blue solid lines in Fig. 7 divide the cross sec-
tions into two portions, in each of which particles will focus

to the corresponding equilibrium position. In the rectangular
channel with W /H = 2, Figs. 7(c) and 7(d) show a more obvi-
ous migration toward equilibrium positions at the short wall
centers, with the increasing Re due to the larger portion.

C. Comparisons with spherical particles

It is a natural question that how the forces experienced
by cylindrical particles compares to that of spherical parti-
cles. There are three types of diameters as shown in Fig. 3(c),
i.e., nominal diameter, DN , axial length diameter, DA, and rota-
tional diameter, DR. Figures 8(a)–8(d) show the comparison
of Cav for cylindrical particles and spherical particles with
DN , DA, and DR as diameters when Re deviates from 50 to
200 with an interval of 50. For the cylindrical particle and the
spherical particle with a diameter of DN , the curves of Cav are

FIG. 7. Distributions of lift force act-
ing on a cylindrical particle in a quarter
cross section of the square channel with
W /H = 1 [(a) and (b)] and the rectangu-
lar channel with W /H = 2 [(c) and (d)]
under Re = 300 [(a) and (c)], 400 [(b)
and (d)].
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FIG. 8. Comparison of Cav at Re = 50
(a), 100 (b), 150 (c), and 200 (d) in chan-
nels with W /H = 1. Here DN , DA and DR
are defined in Fig. 3(c).

close to each other near the channel center for all Re. Mean-
while, the difference between the two curves of Cav increases
as particles are close to the wall. Near the wall, the curves for
the cylindrical particle and the spherical particle with diame-
ter of DR almost overlap. Near the equilibrium position, the
curve for cylindrical particles is close to that for the spherical
particle with a diameter of DA at Re = 50. As Re increases,
the curve for cylindrical particles shifts to be close to that for
the spherical particles with a diameter of DR. The curves for the
cylindrical particle and the spherical particle with a diameter
of DR almost overlap at Re = 200.

It is of practical interest to characterize equilibrium posi-
tions of cylindrical particles by single diameters. We thus
define the equivalent diameter of a cylindrical particle to be the
diameter of the corresponding spherical particle that has the
same equilibrium position. Figure 9(a) shows the variations
of the equilibrium positions obtained from Figs. 8(a)–8(d) for
W /H = 1. One can use DA as the equivalent diameter when
Re = 50, while the proper equivalent diameter can be DR when
Re = 200 [Fig. 9(a)]. As in previous studies,27,30,31 we find
that spherical particles migrate to the wall as Re increases
from 50 to 200. The variation of equilibrium position with Re
for cylindrical particles is also found to be smaller than that for
the spherical particles [Fig. 9(a)]. The variation of equilibrium
position is only 0.83% of the L when Re varies from 50 to 200.
This small variation may be due to that the increase of Re is
balanced out by the non-spherical shape of the cylindrical par-
ticle. The increase of the equivalent diameters (from DA to DR)
gives rise to the increase of wall-induced force. The increase
of shear-induced force with Re is thus balanced out by the
wall-induced force.

We also carry out a series of simulations to obtain the
equilibrium position for cylindrical particles at the long wall
center for a channel with W /H = 2. Figure 9(a) has shown that
equilibrium position of the spherical particle with DA is far
away from that for the cylindrical particle. Therefore, Fig. 9(b)

compares the variation of the equilibrium position for cylin-
drical particles with spherical particles with diameters of DA

and DR as Re varies from 50 to 200. As shown in Fig. 9(a), the
equilibrium position of the cylindrical particle is far away from
that of the spherical particle with DN [Fig. 9(b)]. DA can be
used as the equivalent diameter when Re = 50. The equivalent

FIG. 9. Comparison of the variation of stable equilibrium positions at
different Re in a channel with W /H = 1 (a) and W /H = 2 (b).
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diameter changes to DR when Re = 100. Further increase of Re
gives rise to an equivalent diameter larger than DR. Intuitively,
the increasing Re causes the increase of the influence of cylin-
drical particles on surrounding flow, leading to the increase of
the equivalent diameter. The wall-induced force thus increases
against the shear-induced force to push the cylindrical particle
further away from the wall.

D. The influence of κ and L/D

The blockage ratio, κ = L/H, determines the main size
of the particle in comparison to the channel height. A series
of simulations are carried out for κ = 0.2 and 0.15 to study
the influence of κ to the equilibrium position with W /H = 1.
Figures 10(a) and 10(b) show that variations of the equilibrium
position with Re for κ = 0.2 and 0.15 are similar to the results
of the cylindrical particle with κ = 0.3 in Fig. 9(a), i.e., the
equivalent diameter varies from DA to DR with the increasing
Re. Besides, the equilibrium position is further away from the
wall than that of the spherical particle with a diameter of DR as
at Re = 200. Figure 10(c) compares the equilibrium positions
of cylindrical particles with κ = 0.15, 0.2, and 0.3 under differ-
ent Re. The equilibrium positions obviously shift away from
the wall with increasing κ. Although the changes of equilib-
rium positions are all very small under different Re, the shift
to the wall with increasing Re is observed. Besides, the shift
distance due to the change of Re increases with the increas-
ing κ. Figure 10(d) shows the variation of angular velocities
with the rotation angle of cylindrical particles (with κ = 0.15,
0.2, and 0.3) located at (0.5, 0) under Re = 100. The angular
velocities of cylindrical particles are almost independent with
κ, similar to that for ellipsoidal particles.54

The above discussion is about cylindrical particles with
L/D = 2. The effect of L/D is yet to be explored. We thus vary D
and fix L to study the inertial migration of cylindrical particles
with L/D = 3 and 4. Figure 11(a) shows that equilibrium posi-
tions slowly shift to the wall with increasing L/D. The slow

variations with Re are also observed, while the equilibrium
position of cylindrical particles with L/D = 3 and 4 begins to
shift away from the wall when Re varies from 150 to 200.
Figure 11(b) shows CL curves for cylindrical particles with
different L/D located at (0.5, 0). The magnitude of oscillation
increases with L/D, while the rotation angles have extreme
CL values increasing with L/D. Figure 11(c) shows that the
variations of angular velocities for different L/D are almost
in-phase. Meanwhile, the oscillation amplitude increases with
L/D. Jeffery has demonstrated that an isolated oblate ellipsoid
in an unbounded linear shear flow undergoes a periodic tum-
bling motion around the vortex axis.54 The period of the oblate
ellipsoid, Tell, depends on its shape,

Tell =
2π
γ0

(AR +
1

AR
), (10)

where γ0 is the shear rate at the particle center in an undis-
turbed flow and AR is the aspect ratio of the ellipsoid. Analo-
gously, we normalize the period of cylindrical particles, T, with
2π(L/D + D/L)/γ0 as shown in Fig. 11(d). The normalized
period is found to decrease with increasing L/D. Additionally,
there is a proportional relationship between Re and the nor-
malized period. With the increasing Re, the influence of edges
on the two ends of the cylindrical particle is strengthened, indi-
cating a smaller L/D. Therefore, the variations of a normalized
period with increasing Re and L/D show an opposite trend.

E. A special case: Disk-like particle

We have studied inertial migration of cylindrical particles
with L/D > 1. When L/D < 1, the cylindrical particle becomes
a disk-like particle. Here, we consider two types of disk-like
particles with L/D = 4:15 and different edge shapes. One has
sharp edges with a radius of L/16 and the other has smooth
edges with a radius of L/2. The blockage ratio of disk-like
particles is defined as κd = D/H. Different from cylindrical
particles with L/D > 1, we find that disk-like particles tend to

FIG. 10. The influence of κ for cylin-
drical particles in a channel with
W /H = 1. Comparison of equilibrium
positions with spherical particles for
cylindrical particles: (a) κ = 0.15 and (b)
κ = 0.2. Comparing equilibrium posi-
tions (c) and ω/γ (d) of cylindrical
particles with κ = 0.15, 0.2, and 0.3.
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FIG. 11. The influence of aspect ratio
(L/D = 2, 3 and 4) for cylindrical par-
ticles in a channel with W /H = 1: (a)
equilibrium positions, (b) lift force, (c)
angular velocity, and (d) normalized
period. (b)–(d) are for a cylindrical par-
ticle located at (0.5, 0).

roll for Re varying from 50 to 200 [the corresponding particle
Reynolds number in our paper Rep = 2ρUmaxD2/(Hη) = 2–30].
This founding agrees with the previous observations that a
disk-like particle with L/D = 1:2 prefers to roll in a shear flow
when Rep is less than 230.55

Figure 12 compares the variation of equilibrium positions
with Re for disk-like particles with κd = 0.3 and a spherical par-
ticle with a diameter of DR, which is equal to D. Equilibrium
positions of disk-like particles are closer to the channel cen-
ter than those of the spherical particle with a diameter of DR.
The distinctions increase with the increase of Re indicating
slower variations of equilibrium positions of disk-like parti-
cles. Meanwhile, equilibrium positions of sharp-edged parti-
cles are closer to the channel center than those of smooth-edged
particles.

It has been known that a biconcave disk-like RBC shows
two basic motions in shear flows, i.e., tumbling motion
under low shear stress and rolling motion under higher shear
stress.56,57 Di Carlo et al. have experimentally studied the iner-
tial migration of RBCs in rectangular microchannels42 and

FIG. 12. The variation of equilibrium position of disk-like particles with
κd = 0.3 in a channel with W /H = 1. Two types of disk-like particles,
sharp-edged and smooth-edged, are simulated.

found that RBCs behave as rigid particles under Re = 60.
RBCs migrate to four equilibrium positions near the wall
center and then roll with the short axis parallel to the wall.
Available experimental evidence later reveals that the RBC
under rolling motion has a stabilized cell membrane and
can maintain its biconcave disk-like shape.58–60 Under phys-
iological conditions, a mature RBC is about 6–8 µm in
diameter and 2 µm in thickness. A smooth-edged disk-like
particle with L/D = 4:15 is used to model the RBC with
7.5 µm in diameter and 2 µm in thickness. Fixing the par-
ticle size, we investigate the influence of the blockage ratio.
The distinctions between equilibrium positions of the RBC-
like particles and the corresponding spherical particles with a
diameter of DR become larger with the increasing κd and Re
[Figs. 13(a)–13(c)]. As shown in Fig. 13(d), the angular veloc-
ity decreases with the increasing Re, with smoother variation
for smaller κd.

Figure 14 shows the distribution of surface stresses of the
RBC-like particle constrained at (0.6, 0) under Re = 100. The
RBC-like particle is rolling counterclockwise with a constant
angular velocity. By viewing the surface stresses in different
perspectives, the large stresses are found to mainly appear
in the top, bottom-left, and bottom-right of the particle sur-
face. The top surface near the wall has the largest surface
stresses. The corresponding force vectors are along the flow
direction and dominated by the shear-induced viscous stress.
Surface stresses on the left surface facing the flow contribute
a lift directing to the wall, while surface stresses on the right
side push the particle away from the wall. The stresses on
the top and bottom surfaces tend to drive the particle to roll
counterclockwise, while the stresses on the left and right
surface have the opposite effect. The stresses balance them-
selves in the circumferential direction. The circumferential
surface of the RBC-like particle is observed to be squeezed
and stretched in the directions with about π/4 and 3π/4 to
the x-axis, respectively. The different parts of circumferential
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FIG. 13. The influence of the blockage
ratio of smooth-edged disk-like parti-
cles with 7.5 µm in diameter and 2 µm
in thickness in a channel with W /H = 1:
(a) κd = 0.150, (b) κd = 0.225, and
(c) κd = 0.300. (d) The variation of angu-
lar velocity of smooth-edged disk-like
particles located at (0.5, 0) is shown for
different κd.

FIG. 14. The distribution of Cf for a RBC-like parti-
cle with κd = 0.150 located at (0.6, 0) under Re = 100
is shown with contour plots. The contours denote the
absolute value and the vectors denote the orientation.

surface continuously roll through these two directions,
which may be helpful for investigation of the shape stability
of the RBCs.42

IV. CONCLUSION

In the present work, we conduct three-dimensional direct
numerical simulations to investigate the inertial migrations of
cylindrical particles in rectangular microchannels under dif-
ferent aspect ratios, blockage ratios, channel aspect ratios,
and Reynolds numbers. Our results show that the lift and
the torque experienced by cylindrical particles vary periodi-
cally over each half rotation cycle of the particles. Extreme
values of the lift are observed when diagonal lines of the par-
ticle cross section in the x-y plane are nearly perpendicular to
the wall. Distributions of surface stresses demonstrate that the
surface stresses on the particle end near the wall play impor-
tant roles in the particle rotation. The measurements of lift
forces for particles with κ = 0.3 indicate that there are four
stable equilibrium positions for the channel with W /H = 1
under Re varying from 50 to 400, while the number for the
channel with W /H = 2 increases from two (Re = 50, 100)
to four (Re = 200, 300, 400). Inertial migrations of spher-
ical particles with three types of diameters are also carried

out to investigate the equivalent diameters of cylindrical parti-
cles. Equivalent diameters are found to monotonously increase
with Re for both long cylindrical particles (L/D > 1) and
short cylindrical particles (L/D < 1), regardless of the change
of κ. Complicated variations of equilibrium positions under
Re varies from 50 to 200 are also addressed in details. In a
square channel, the equilibrium positions of cylindrical parti-
cles mainly shift to the wall with increasing Re, though show-
ing smoother change compared with spherical particles with
rotational diameters, DR, as diameters. However, the remark-
able shift away from the wall is observed under Re varying
from 50 to 200 in a rectangular channel with W /H = 2 for the
cylindrical particle with L/D = 2 and κ = 0.3. The RBC-like
particles with L/D = 4:15 are also investigated as short cylin-
drical particles. By investigating the surface stresses on the
RBC-like particle, we find that its circumferential surface is
squeezed and stretched in the directions with about π/4 and
3π/4 to the x-axis, respectively. Our simulations systemati-
cally investigate the inertial migration of cylindrical particles,
revealing their typical migration behavior and the relationship
and difference with spherical particles. The findings may be
helpful for the precise manipulation of cylinder-like particles
and provide a reference for the study of other non-spherical
particles.



032007-12 Su, Chen, and Hu Phys. Fluids 30, 032007 (2018)

ACKNOWLEDGMENTS

This work was supported financially by the National
Natural Science Foundation of China (NSFC) (Grant Nos.
11572334, 11402274, and 11772343), the CAS Strategic Pri-
ority Research Program (No. XDB22040403), and the CAS
Key Research Program of Frontier Sciences (No. QYZDB-
SSW-JSC036).

1Y. Ai, A. Beskok, D. T. Gauthier, S. W. Joo, and S. Qian, “Dc electrokinetic
transport of cylindrical cells in straight microchannels,” Biomicrofluidics
3, 44110 (2009).

2N. Lewpiriyawong, C. Yang, and Y. C. Lam, “Continuous sorting and sep-
aration of microparticles by size using AC dielectrophoresis in a PDMS
microfluidic device with 3-D conducting PDMS composite electrodes,”
Electrophoresis 31, 2622 (2010).

3X. Chen, Y. Ren, W. Liu, X. Feng, Y. Jia, Y. Tao, and H. Jiang, “A sim-
plified microfluidic device for particle separation with two consecutive
steps: Induced charge electro-osmotic prefocusing and dielectrophoretic
separation,” Anal. Chem. 89, 9583 (2017).

4P. Li, Z. Mao, Z. Peng, L. Zhou, Y. Chen, P. H. Huang, C. I. Truica, J. J.
Drabick, W. S. El-Deiry, M. Dao, S. Suresh, and T. J. Huang, “Acoustic
separation of circulating tumor cells,” Proc. Natl. Acad. Sci. U. S. A. 112,
4970 (2015).

5G. Nava, F. Bragheri, T. Yang, P. Minzioni, R. Osellame, I. Cristiani,
and K. Berg-Sørensen, “All-silica microfluidic optical stretcher with
acoustophoretic prefocusing,” Microfluid. Nanofluid. 19, 837 (2015).

6N. Xia, T. P. Hunt, B. T. Mayers, E. Alsberg, G. M. Whitesides, R. M.
Westervelt, and D. E. Ingber, “Combined microfluidic-micromagnetic sep-
aration of living cells in continuous flow,” Biomed. Microdevices 8, 299
(2006).

7L. Liang, C. Zhang, and X. Xuan, “Enhanced separation of magnetic and
diamagnetic particles in a dilute ferrofluid,” Appl. Phys. Lett. 102, 234101
(2013).

8D. Vigolo, R. Rusconi, H. A. Stone, and R. Piazza, “Thermophore-
sis: Microfluidics characterization and separation,” Soft Matter 6, 3489
(2010).

9Y. Zhao, C. Zhao, J. He, Y. Zhou, and C. Yang, “Collective effects on
thermophoresis of colloids: A microfluidic study within the framework of
DLVO theory,” Soft Matter 9, 7726 (2013).

10A. J. Chung, D. R. Gossett, and D. Di Carlo, “Three dimensional,
sheathless, and high-throughput microparticle inertial focusing through
geometry-induced secondary flows,” Small 9, 685 (2013).

11J. Oakey, R. W. Applegate, Jr., E. Arellano, D. Di Carlo, S. W. Graves, and
M. Toner, “Particle focusing in staged inertial microfluidic devices for flow
cytometry,” Anal. Chem. 82, 3862 (2010).

12A. J. Chung, D. Pulido, J. C. Oka, H. Amini, M. Masaeli, and D. Di Carlo,
“Microstructure-induced helical vortices allow single-stream and long-term
inertial focusing,” Lab Chip 13, 2942 (2013).

13A. E. Reece and J. Oakey, “Long-range forces affecting equilibrium inertial
focusing behavior in straight high aspect ratio microfluidic channels,” Phys.
Fluids 28, 043303 (2016).

14A. A. S. Bhagat, H. W. Hou, L. D. Li, C. T. Lim, and J. Han, “Pinched
flow coupled shear-modulated inertial microfluidics for high-throughput
rare blood cell separation,” Lab Chip 11, 1870 (2011).

15C. Liu, G. Hu, X. Jiang, and J. Sun, “Inertial focusing of spherical particles
in rectangular microchannels over a wide range of Reynolds numbers,” Lab
Chip 15, 1168 (2015).

16J. S. Sun, M. M. Li, C. Liu, Y. Zhang, D. B. Liu, W. W. Liu, G. Q. Hu, and
X. Y. Jiang, “Double spiral microchannel for label-free tumor cell separation
and enrichment,” Lab Chip 12, 3952 (2012).

17J. Zhou, P. V. Giridhar, S. Kasper, and I. Papautsky, “Modulation of aspect
ratio for complete separation in an inertial microfluidic channel,” Lab Chip
13, 1919 (2013).

18J. Zhou and I. Papautsky, “Fundamentals of inertial focusing in microchan-
nels,” Lab Chip 13, 1121 (2013).

19A. J. Mach and D. Di Carlo, “Continuous scalable blood filtra-
tion device using inertial microfluidics,” Biotechnol. Bioeng. 107, 302
(2010).

20S. C. Hur, N. K. Henderson-MacLennan, E. R. B. McCabe, and D. Di
Carlo, “Deformability-based cell classification and enrichment using inertial
microfluidics,” Lab Chip 11, 912 (2011).

21J. S. Dudani, D. R. Gossett, H. T. K. Tse, and D. Di Carlo, “Pinched-
flow hydrodynamic stretching of single-cells,” Lab Chip 13, 3728
(2013).

22D. R. Gossett, H. T. K. Tse, J. S. Dudani, K. Goda, T. A. Woods, S. W. Graves,
and D. Di Carlo, “Inertial manipulation and transfer of microparticles across
laminar fluid streams,” Small 8, 2757 (2012).

23G. Segre and A. Silberberg, “Radial particle displacements in Poiseuille
flow of suspensions,” Nature 189, 209 (1961).

24P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid
Mech. 22, 385 (1965).

25B. P. Ho and L. G. Leal, “Inertial migration of rigid spheres in two-
dimensional unidirectional flows,” J. Fluid Mech. 65, 365 (1974).

26J. A. Schonberg and E. J. Hinch, “Inertial migration of a sphere in Poiseuille
flow,” J. Fluid Mech. 203, 517 (2006).

27E. S. Asmolov, “The inertial lift on a spherical particle in a plane
Poiseuille flow at large channel Reynolds number,” J. Fluid Mech. 381, 63
(1999).

28D. Di Carlo, J. F. Edd, K. J. Humphry, H. A. Stone, and M. Toner, “Particle
segregation and dynamics in confined flows,” Phys. Rev. Lett. 102, 094503
(2009).

29H. Shichi, H. Yamashita, J. Seki, T. Itano, and M. Sugihara-Seki, “Inertial
migration regimes of spherical particles suspended in square tube flows,”
Phys. Rev. Fluids 2, 044201 (2017).

30Y.-S. Choi, K.-W. Seo, and S.-J. Lee, “Lateral and cross-lateral focusing of
spherical particles in a square microchannel,” Lab Chip 11, 460 (2011).

31M. Abbas, P. Magaud, Y. Gao, and S. Geoffroy, “Migration of finite sized par-
ticles in a laminar square channel flow from low to high Reynolds numbers,”
Phys. Fluids 26, 123301 (2014).

32Y.-S. Choi and S.-J. Lee, “Holographic analysis of three-dimensional iner-
tial migration of spherical particles in micro-scale pipe flow,” Microfluid.
Nanofluid. 9, 819 (2010).

33N. Nakagawa, T. Yabu, R. Otomo, A. Kase, M. Makino, T. Itano, and
M. Sugihara-Seki, “Inertial migration of a spherical particle in laminar
square channel flows from low to high Reynolds numbers,” J. Fluid Mech.
779, 776 (2015).

34S. C. Hur, S.-E. Choi, S. Kwon, and D. D. Carlo, “Inertial focusing of
non-spherical microparticles,” Appl. Phys. Lett. 99, 044101 (2011).

35M. Masaeli, E. Sollier, H. Amini, W. Mao, K. Camacho, N. Doshi,
S. Mitragotri, A. Alexeev, and D. Di Carlo, “Continuous inertial focusing
and separation of particles by shape,” Phys. Rev. X 2, 031017 (2012).

36H. Amini, W. Lee, and D. Di Carlo, “Inertial microfluidic physics,” Lab
Chip 14, 2739 (2014).

37S.-D. Chen, T.-W. Pan, and C.-C. Chang, “The motion of a single and mul-
tiple neutrally buoyant elliptical cylinders in plane Poiseuille flow,” Phys.
Fluids 24, 103302 (2012).

38I. Lashgari, M. N. Ardekani, I. Banerjee, A. Russom, and L. Brandt, “Inertial
migration of spherical and oblate particles in straight ducts,” J. Fluid Mech.
819, 540 (2017).

39S.-L. Huang, S.-D. Chen, T.-W. Pan, C.-C. Chang, and C.-C. Chu, “The
motion of a neutrally buoyant particle of an elliptic shape in two dimensional
shear flow: A numerical study,” Phys. Fluids 27, 083303 (2015).

40T. Inamuro, K. Maeba, and F. Ogino, “Flow between parallel walls con-
taining the lines of neutrally buoyant circular cylinders,” Int. J. Multiphase
Flow 26, 1981 (2000).

41T.-W. Pan and R. Glowinski, “Direct simulation of the motion of neutrally
buoyant circular cylinders in plane Poiseuille flow,” J. Comput. Phys. 181,
260 (2002).

42D. Di Carlo, D. Irimia, R. G. Tompkins, and M. Toner, “Continuous inertial
focusing, ordering, and separation of particles in microchannels,” Proc. Natl.
Acad. Sci. U. S. A. 104, 18892 (2007).
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