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Abstract. We prove three optimal transference theorems on lattices possessing nε-unique shortest
vectors which relate to the successive minima, the covering radius and the minimal length of gener-
ating vectors respectively. The theorems result in reductions between GapSVPγ′ and GapSIVPγ for
this class of lattices. Furthermore, we prove a new transference theorem giving an optimal lower bound
relating the successive minima of a lattice with its dual. As an application, we compare the respective
advantages of current upper bounds on the smoothing parameter of discrete Gaussian measures over
lattices and show a more appropriate bound for lattices whose duals possess

√
n-unique shortest vectors.
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1 Introduction

Transference theorems are classical problems in the geometry of numbers [12, 22]. Usually, they
reflect relationships of the successive minima associated with the primal and dual lattices. More-
over, transference theorems relating to other quantities such as the covering radius and the minimal
length of generating vectors are considered as well. There are some important applications to com-
putational complexity theory and lattice-based cryptography. Transference theorems are applied to
improve the connection factor in the worst-case to average-case reductions [10,23] which were first
proposed by Ajtai [2] and have been outperformed by [14]. They also play a significant role in the
dimension preserving reduction from CVP (closest vector problem) to SIVP (shortest independent
vectors problem) [24]. As a consequence of transference theorems, the references [9,18] showed that
the approximating problems including SVP (shortest vector problem), SIVP and SBP (shortest ba-
sis problem) within a factor of O(n) can not be NP-hard under Karp-reductions unless NP=coNP,
and the factor has been improved to O(

√
n) by [1] for SVP. Besides, they are also used to bound

the operation numbers in each recursive step in the computation of CVP [8].
An n-dimensional lattice L(b1, . . . ,bn) = {

∑n
i=1 xibi : xi ∈ Z for 1 ≤ i ≤ n} is a discrete ad-

ditive subgroup of Rn generated by n linearly independent vectors b1, . . . ,bn in Rn.4 The se-
quence of vectors b1, . . . ,bn is called a lattice basis and it is represented conveniently as a ma-
trix B = [b1, . . . ,bn] with the basis vectors as columns. The family of all n-dimensional lat-
tices in Rn is denoted Ln. The determinant det(L) is the volume of the fundamental paral-
lelepiped P(B), where P(B) = {

∑n
i=1 xibi : 0 ≤ xi < 1}. The dual lattice of L is defined to

4 In fact, this is the definition of full-rank lattice, which is the case we consider in this paper.



be L∗ = {x ∈ span(L) : 〈x,y〉 ∈ Z for each y ∈ L}, where 〈x,y〉 is the canonical inner product in
Rn.

For any lattice L ∈ Ln and any 0-symmetric convex body U , define the ith successive minimum
of L with respect to U as λi(L,U) = min{r > 0 : dim(span(L∩rU)) ≥ i} for 1 ≤ i ≤ n. In this paper
we mainly concern the case U = Bn

p and write λ
(p)
i (L) instead of λi(L,Bn

p ) for simplicity, where Bn
p

is the closed unit ball of Rn in lp norm for p ∈ [1,∞]. Specially, we regard p as 2 when omitted.
We define that L possesses an nε-unique shortest vector, if λ2(L) > nελ1(L). The covering radius
of L with respect to U is defined as µ(L,U) = min{r > 0 : L + rU = Rn}. A deep hole is a point
t ∈ span(B) at distance dU (t, L) = µ(L,U), where dU (t, L) = infv∈L ‖t− v‖U = infv∈L inf{r ≥ 0 :
t − v ∈ rU}. The usual definition of the covering radius, denoted µ(L), regards U as Bn

2 which is
also the case considered in this paper. One more quantity wL(U) = minv∈L∗\{0}(maxu∈U 〈u,v〉 −
minu∈U 〈u,v〉) is called the lattice width of U . It’s clear that wL(Bn

2 ) = 2λ1(L∗). The upper bound
on µ(L,U) · wL(U) is investigated in the flatness theorem [7] which is a classical problem in the
geometry of numbers and also has important applications to integer programming [13,17]. Another
lattice quantity g(L) is the minimal length of generating vectors which is defined as the minimum r
such that the ball rBn

2 contains a set of basis of L. More generally, define gi(L) to be the minimum
r such that the sublattice generated by L ∩ rBn

2 contains an i-dimensional sublattice L′ satisfying
L′ = L ∩ span(L′) for 1 ≤ i ≤ n. Obviously, gi(L) ≥ λi(L) and gn(L) = g(L).

For any n-dimensional lattice L, determining the upper bound on max1≤i≤n λi(L)λn−i+1(L∗)
known as the transference theorem has experienced a long process from the initial superexponen-
tial results to polynomial bound. Lagarias et al. [18] gave the first polynomial bound of n2/6 for
n ≥ 7 using the Korkin-Zolotarev reduced basis. Based on Gaussian measures and their Fourier
transforms, Banaszczyk [4] proved the optimal bound max1≤i≤n λi(L)λn−i+1(L∗) ≤ n for any pos-
itive integer n. In the same reference, a transference theorem relating the successive minimum of
a lattice with the covering radius of its dual was given which is λ1(L∗)µ(L) ≤ n/2 for all pos-
itive integer n. In a subsequent work [10], Cai generalized the transference theorem and proved
max1≤i≤n λi(L∗)gn−i+1(L) ≤ cn for some constant c. Meanwhile, in order to improve Ajtai’s con-
nection factor in the worst-case to average-case reduction, Cai proved an upper bound O(n1−ε) on
λ1(L∗)g(L) for lattices possessing nε-unique shortest vectors when 0 < ε ≤ 1/2. It yields a stronger
upper bound on λ1(L∗)λn(L) consequently. However, our observations reveal that transference
theorems on lattices possessing nε-unique shortest vectors don’t reach the optimal bounds.

Since the cryptographic lattices often possess gaps between λ1 and λ2, it’s of more practical
significance to study transference theorems on lattices with gaps especially possessing nε-unique
shortest vectors. In [3], Ajtai and Dwork constructed the first provable lattice-based cryptosystem
whose security is based on the worst-case hardness of uSVPγ (SVP for lattices with λ2 > γλ1).
Additionally, for the LWE-based cryptosystem [28], the gap between λ1 and λ2 in the embedding
lattice is discussed in [20] as well. Moreover, uSVPγ as an increasingly concerned problem used
in lattice-based cryptography, its hardness, polynomial time algorithm for γ = O(2n/4) and the
relevant embedding technique are investigated in [19, 21]. The NTRU cryptosystem is the most
efficient lattice-based encryption scheme up until now and the reference [16] pointed out that there
is a gap between λN and λN+1 in NTRU lattice of dimension 2N . Therefore, it’s deserved to study
transference theorems on lattices with gaps.

In this paper, we mainly study transference theorems on lattices possessing nε-unique shortest
vectors. First we prove λ1(L∗)µ(L) ≤ 1/2 + n1−ε for all positive integer n. It yields consequently
λ1(L∗)λn(L) ≤ 1 + 2n1−ε which improves the result in [10] when ε ∈ [1/2, 3/2]. Meanwhile, we give
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a transference theorem λ1(L∗)g(L) ≤ 1 + 4n1−ε for any ε > 0. Using the improvements, for this
class of lattices, there exist polynomial time reductions between GapSVPγ′ and GapSIVPγ .

Furthermore, we notice that nearly all transference theorems considered in current litera-
ture are about upper bounds on some quantities relating a lattice with its dual. It is obvious
that λ1(L∗)λn(L) ≥ 1, but for generic lp norm the lower bound on λ

(p)
1 (L∗)λ(q)

n (L) is not clear.
Our second contribution is to give a lower bound on the quantity η(Bn

p ,Bn
q ), where η(Bn

p ,Bn
q ) =

infL∈Ln min1≤i≤n λ
(p)
i (L)λ(q)

n−i+1(L
∗) for any p, q ∈ [1,∞]. As an application, we analyze the current

upper bounds on the smoothing parameter of discrete Gaussian measures over lattices and give a
more appropriate bound for lattices whose duals possess

√
n-unique shortest vectors.

The rest of this paper is organized as follows: Section 2 reviews basic notations and backgrounds.
In Section 3 we prove the optimal transference theorems on lattices possessing nε-unique shortest
vectors, and give the reductions between GapSVPγ′ and GapSIVPγ for this class of lattices. In
Section 4, we show a transference theorem giving the lower bound on η(Bn

p ,Bn
q ) and some investi-

gations of upper bounds on the smoothing parameter of discrete Gaussian measures over lattices.
Conclusions are given in Section 5.

2 Preliminaries

2.1 Notations and Backgrounds

The real numbers and integers are denoted by R and Z respectively. Vectors are represented as bold
lower-case letters, e.g. x. For a vector x, the ith coordinate is denoted by xi. The inner product
between x,y ∈ Rn is 〈x,y〉 =

∑n
i=1 xiyi.

A norm ‖ · ‖ is a nonnegative real-valued function on Rn that satisfies the following: ‖x‖ = 0
if and only if x = 0, ‖αx‖ = |α|‖x‖ for any scalar α ∈ R, and ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any
x,y ∈ Rn. It induces a corresponding distance function dist(x, y) =‖x − y‖. The lp norm of x is
‖x‖p = (

∑n
i=1 |xi|p)1/p for any p ∈ [1,∞) and the l∞ norm is ‖x‖∞ = max1≤i≤n |xi|. We mean p = 2

when omitted. For any x, y ∈ Rn, the Hölder’s inequality shows, if 1/p + 1/q = 1, p, q ∈ [1,∞],
then

∑n
i=1 |xiyi| ≤ ‖x‖p · ‖y‖q. We mean 1/p = 0 (1/q = 0, respectively) when p = ∞ (q = ∞).

The following definition shows a straightforward way to get a basis of the dual lattice from a
given primal lattice basis.

Definition 2.1. For a basis B = [b1, . . . ,bn] of a lattice L ∈ Ln, its dual basis is defined as
D = [d1, . . . ,dn] which satisfies 〈bi,dj〉 = δij, where δij (1 ≤ i, j ≤ n) denotes the Kronecker
symbol.

For a lattice L, the Gram-Schmidt minimum is defined as,

Definition 2.2 ([14]). For any lattice L ∈ Ln, the Gram-Schmidt minimum is defined as

b̃l(L) = min
B

‖ B̃ ‖= min
B

max
1≤i≤n

‖ b̃i ‖,

where B̃ = [b̃1, . . . , b̃n] denotes the Gram-Schmidt orthogonalization of B and the minimum is
taken over all bases B of L.

The following lemma states that a basis within a
√

n/2 enlargement in size can be computed in
polynomial time from any set of n linearly independent lattice vectors.
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Lemma 2.3 ([11]). Let s1, . . . , sn be any linearly independent vectors in a lattice L = L(b1, . . . , bn)
with ‖si‖ ≤ M . Then a basis r1, . . . , rn can be computed in polynomial time such that ‖r̃i‖ ≤ ‖s̃i‖
and ‖ri‖ ≤ max{1,

√
n/2}M .

We give precise definitions for some computational lattice problems considered in this paper,
which are of great importance and widely studied.

Definition 2.4 (SVPγ). Given an n-dimensional lattice L ⊆ Zn, find a nonzero vector v ∈ L
such that ‖v‖ ≤ γ · λ1(L).

Definition 2.5 (GapSVPγ). Given an n-dimensional lattice L ⊆ Zn and a parameter d > 0. If
λ1(L) ≤ d, output Yes instances. If λ1(L) > γ · d, output NO instances.

Definition 2.6 (SIVPγ). Given an n-dimensional lattice L ⊆ Zn, find a set of n linearly inde-
pendent vector {v1, . . . ,vn} in L such that max1≤i≤n ‖vi‖ ≤ γ · λn(L).

Definition 2.7 (GapSIVPγ). Given an n-dimensional lattice L ⊆ Zn and a parameter d > 0. If
λn(L) ≤ d, output Yes instances. If λn(L) > γ · d, output NO instances.

2.2 Gaussian Measures and Fourier Transform

Gaussian measures over lattices and their Fourier transforms are main tools to prove the existing
transference theorems [4, 5, 10]. Meanwhile, Gaussian measures are also used to construct a new
technique to sample random points in worst-case to average-case reductions [14,25,27]. Our trans-
ference theorems also utilize Gaussian measures and their Fourier transforms, combining some new
observations of geometrical properties of lattices with gaps.

For any vectors c,x ∈ Rn and any s > 0, let

ρs,c(x) = e−π‖x−c‖2/s2

be a Gaussian function centered at c scaled by a parameter s. We assume s and c are taken to be
1 and 0 respectively when omitted. We write ρs,c(A) =

∑
x∈A ρs,c(x) for any countable set A.

For any vector c, real s > 0, and lattice L, define the Gaussian distribution DL,s,c over L as

∀x ∈ L, DL,s,c(x) =
ρs,c(x)
ρs,c(L)

.

The Fourier transform of DL is

D̂L(y) =
∫
x∈Rn

e2πi〈y,x〉dDL =
∑
v∈L

e2πi〈y,v〉DL(v) =
∑

v∈L e2πi〈y,v〉e−π‖v‖2∑
v∈L e−π‖v‖2 ,

where y ∈ Rn. As DL is an even function, so

D̂L(y) =
∑
v∈L

DL(v) cos(2π〈y,v〉) =
∑

v∈L cos(2π〈y,v〉)e−π‖v‖2∑
v∈L e−π‖v‖2 .

From the Poisson summation formula, the following equality converts the calculation of Fourier
transform on the primal lattice to its dual.

Lemma 2.8 ([4]). One has D̂L(y) = ρ(L∗ + y)/ρ(L∗), where L∗ is the dual lattice of L.
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The smoothing parameter ηε(L) is a very important lattice quantity, since it’s upper bound
determines good distribution properties of discrete Gaussian measures over lattices. It is also used
to estimate the size of the connection factor for worst-case to average-case reductions of lattice
problems. Informally, if an uniformly random lattice point is perturbed by a Gaussian of radius
s ≥ ηε(L), then the resulting distribution is ε close to uniform distribution over the entire space.
(For the detailed statement, please refer to [25].) The precise definition is the following.

Definition 2.9 ([25]). For any lattice L ∈ Ln and real ε > 0, the smoothing parameter ηε(L) is
the smallest s > 0 such that ρ1/s(L∗\{0}) ≤ ε.

2.3 Previous Work

There are a series of important results in studying transference theorems in the geometry of num-
bers. Banaszczyk proved the transference theorem about the successive minima of a primal lattice
and its dual.

Theorem 2.10 ([4]). Let L be an arbitrary lattice in Ln, then for all positive integer n one has

λi(L)λn−i+1(L∗) ≤ n (i = 1, . . . , n).

Banaszczyk also gave a transference theorem relating the successive minimum of a lattice with
the covering radius of its dual.

Theorem 2.11 ([4]). Let L be an arbitrary lattice in Ln, then for all positive integer n one has

λ1(L∗)µ(L) ≤ n

2
.

Cai extended the transference theorem (Theorem 2.10) to the quantities λi(L∗) and gn−i+1(L).

Theorem 2.12 ([10]). For every constant c > 3/2π, there exists an n0 such that

λi(L∗)gn−i+1(L) ≤ cn,

for every lattice L of dimension n ≥ n0, and every 1 ≤ i ≤ n.

It is also remarked that the constant c can be selected as 2 for any positive integer n. There are
transference theorems on lattices possessing nε-unique shortest vectors.

Theorem 2.13 ([10]). For every lattice L of dimension n, if L∗ has an nε-unique shortest vector,
0 < ε ≤ 1/2 and c > 3/2π, then

λ1(L∗)g(L) ≤ cn1−ε,

for all sufficiently large n.

Theorem 2.14 ([10]). For every lattice L of dimension n, if L∗ has an nε-unique shortest vector,
then

1 ≤ λ1(L∗)λn(L) ≤ O(nδ),

where

δ =


1− ε 0 < ε ≤ 1/2
1/2 1/2 < ε ≤ 1
3/2− ε 1 < ε ≤ 3/2
0 ε > 3/2.
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3 Improved Transference Theorems on Lattices Possessing nε-unique Shortest
Vectors

For any lattice L ∈ Ln, define that L possesses an nε-unique shortest vector if λ2(L) > nελ1(L).
In Section 3.1, corresponding to three different lattice quantities, we prove transference theorems
on this class of lattices. Based on our results, in Section 3.2 reductions between GapSVPγ′ and
GapSIVPγ for this class of lattices are presented.

3.1 The Improved Transference Theorems

On lattices possessing nε-unique shortest vectors, firstly we prove a transference theorem giving
an upper bound relating the successive minimum of a lattice with the covering radius of its dual.
It yields consequently a bound on λ1(L∗)λn(L). Secondly, we give another transference theorem
about the successive minimum and the minimal length of generating vectors, which improves Cai’s
result.

The following measure inequality proved by Banaszczyk aimed to study transference theorems.

Lemma 3.1 ([4]). For each c ≥ 1/
√

2π and any u ∈ Rn, one has

1. ρ(L \ c
√

nBn
2 ) < (c

√
2πe e−πc2)nρ(L),

2. ρ((L + u) \ c
√

nBn
2 ) < 2(c

√
2πe e−πc2)nρ(L).

Before our theorem, we also need the following lemma which reveals the relation between µ(L)
and λn(L) for any lattice L ∈ Ln.

Lemma 3.2 ([15]). For any lattice L ∈ Ln, we have

λn(L)
2

≤ µ(L) ≤
√

n

2
λn(L).

Theorem 3.3. Let L be any lattice in Ln, if L∗ has an nε-unique shortest vector where ε > 0, then
for any positive integer n, we have

1
2
≤ λ1(L∗)µ(L) ≤ 1

2
+ n1−ε.

It follows that if ε > 1, then λ1(L∗)µ(L) approximately equals 1/2 for all sufficiently large n.

Proof. The lower bound comes from µ(L) ≥ λn(L)/2 (Lemma 3.2) and λ1(L∗)λn(L) ≥ 1. In
order to prove λ1(L∗)µ(L) ≤ 1/2 + n1−ε, suppose the contrary that there exists a lattice L with
λ1(L∗) · µ(L) > 1/2 + n1−ε. Without loss of generality, we assume that

λ1(L∗) > n
1
2
−ε, (1)

µ(L) > n
1
2 +

1
2
nε− 1

2 . (2)

If L doesn’t satisfy the two inequalities, replace L by sL for a suitably chosen constant s to make
the assumptions hold.

Then we get λ2(L∗) > n1/2 from assumption (1). Assumption (2) implies there exists a deep
hole t ∈ Rn such that (L + t) ∩ (n1/2 + nε−1/2/2)Bn

2 = ∅. Let z be an nε-unique shortest vector
for L∗ and K be the sublattice of L∗ generated by z. Since L∗ has an nε-gap between λ1(L∗) and
λ2(L∗), any point lay in L∗ ∩

√
nBn

2 belongs to K.
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Because a deep hole still keeps its distance to the lattice unchanged after a shift of any lattice
point, without loss of generality, we can assume that 0 ≤ 〈t, z〉 < 1. Let t′ = 〈t,z〉

〈z,z〉 · z, and x = t− t′

when 〈t, z〉 ≤ 1/2. (Let x = t − t′ + z/‖z‖2 when 〈t, z〉 > 1/2. The proof is essentially the same.
So we just consider the case 〈t, z〉 ≤ 1/2). Then we have ‖t′‖ ≤ nε−1/2/2 and 〈x,v〉 = 0 for any
v ∈ K.

Consider the Fourier transform of DL∗(v) = ρ(v)/ρ(L∗) on the point x, then

D̂L∗(x) =
∑
v∈L∗

DL∗(v) cos(2π〈x,v〉)

=
∑
v∈K

DL∗(v) +
∑

v∈L∗\K

DL∗(v) cos(2π〈x,v〉)

≥ 1− 2DL∗(L∗\K) ≥ 1− 2DL∗
(
L∗\

√
nBn

2

)
> 1− 2cn,

where the last inequality comes from Lemma 3.1 and c =
√

2πe/eπ < 1.
On the other hand, for any r ∈ L we know that,

‖r + x‖ = ‖r + t− t′‖ ≥ ‖r + t‖ − ‖t′‖ > n
1
2 +

1
2
nε− 1

2 − 1
2
nε− 1

2 = n
1
2 .

Then by Lemma 3.1, we have

D̂L∗(x) =
ρ(L + x)

ρ(L)
=

ρ((L + x) \
√

nBn
2 )

ρ(L)
< 2cn.

Thus we obtain the inequality

1− 2cn < 2cn, where c =
√

2πe/eπ < 1.

However this is a contradiction for any positive integer n. The proof is completed. ut

Combined with Lemma 3.2 and Theorem 3.3, we give an uniform upper bound on λ1(L∗)λn(L)
for lattices possessing nε-unique shortest vectors which is better than Cai’s transference theorem
(Theorem 2.14).

Theorem 3.4. Let L be any lattice in Ln, if L∗ has an nε-unique shortest vector where ε > 0, then
for any positive integer n, we have

1 ≤ λ1(L∗)λn(L) ≤ 1 + 2n1−ε.

It follows that if ε > 1, then λ1(L∗)λn(L) approximately equals 1 for sufficiently large n.

The next corollary is immediately from the fact wL(Bn
2 ) = 2λ1(L∗).

Corollary 3.5. Let L be any lattice in Ln, if L∗ has an nε-unique shortest vector where ε > 0,
then for any positive integer n, we have

2 ≤ wL(Bn
2 )λn(L) ≤ 2 + 4n1−ε.

It follows that if ε > 1, then wL(Bn
2 )λn(L) approximately equals 2 for all sufficiently large n.

We consider a new transference theorem relating the successive minimum of a lattice with the
minimal length of generating vectors of its dual.
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Theorem 3.6. Let L be any lattice in Ln, if L∗ has an nε-unique shortest vector where ε > 0, then
for any positive integer n, we have

1 ≤ λ1(L∗)g(L) ≤ 1 + 4n1−ε.

It follows that if ε > 1, then λ1(L∗)g(L) approximately equals 1 for all sufficiently large n.

Proof. Firstly, let s be an nε-unique shortest vector for L∗. We extend s to a basis {s, s2, . . . , sn} of
L∗. Denote its dual basis {d1, . . . ,dn} which is a basis of L. Let S⊥ be the hyperplane orthogonal to
s. Then L∩S⊥ is an n− 1 dimensional sublattice of L generated by {d2, . . . ,dn}. For any nonzero
vector r ∈ (L∩S⊥)∗, let r′ = r− 〈r,d1〉s, combining the definition of dual basis it is easy to verify
r′ ∈ L∗. Let x = 〈r,d1〉 − d〈r,d1〉c where d〈r,d1〉c denotes the nearest integer to 〈r,d1〉, so we get
r− xs ∈ L∗ which is linearly independent with s and |x| ≤ 1/2. Because s is an nε-unique shortest
vector for L∗, we have

‖r‖2 + ‖s‖2/4 ≥ ‖r− xs‖2 > (nε‖s‖)2,
then ‖r‖ >

√
n2ε − 1/4‖s‖. Hence we get a lower bound on λ1((L ∩ S⊥)∗)

λ1((L ∩ S⊥)∗) ≥
√

n2ε − 1/4‖s‖.

By Theorem 2.12, for the (n− 1)-dimensional sublattice L ∩ S⊥, we bound g(L ∩ S⊥) as

g(L ∩ S⊥) ≤ 2(n− 1)
λ1((L ∩ S⊥)∗)

≤ 4n1−ε/‖s‖,

for any integer n. So we have n−1 linearly independent vectors v1, . . . ,vn−1 bounded by 4n1−ε/‖s‖
which can generate L ∩ S⊥.

Secondly, we intend to extend v1, . . . ,vn−1 to a basis of L. Let P be a hyperplane defined as
P = {x ∈ Rn : 〈x, s〉 = 1}, clearly it is the closest parallel hyperplane to S⊥ which has orthogonal
distance 1/‖s‖ to S⊥. Because L ∩ P is a shift of L ∩ S⊥ by some lattice point in L, the covering
radius of L ∩ P equals that of L ∩ S⊥. So by Lemma 2.11, we get

µ(L ∩ P ) = µ(L ∩ S⊥) ≤ n− 1
2λ1((L ∩ S⊥)∗)

≤ n1−ε/‖s‖.

Consequently, we have a lattice vector vn in L ∩ P with length bounded by 1/‖s‖+ n1−ε/‖s‖,
which is linearly independent with v1, . . . ,vn−1. Then we get a set of n linearly independent vectors
in L with norm at most max{4n1−ε, 1+n1−ε}/‖s‖, which is obviously smaller than (1+4n1−ε)/‖s‖.

Now we show this sequence of n vectors can generate L. First the vector s partitions L into
subsets L ∩Hi (i ∈ Z) where Hi is an (n− 1)-dimensional hyperplane Hi = {x ∈ Rn : 〈x, s〉 = i}.
Here H0 = S⊥, H1 = P . For any v ∈ L, there must exist a hyperplane where v lies and denote it
by Hk. Then v − kvn ∈ L ∩ S⊥ and it can be generated by v1, . . . ,vn−1. So v can be represented
by integer combinations of v1, . . . ,vn. Thus the set of v1, . . . ,vn is a basis of L. Therefore g(L) ≤
(1 + 4n1−ε)/‖s‖. We have proved that

λ1(L∗)g(L) ≤ 1 + 4n1−ε. ut

Obviously, our bound on λ1(L∗)λn(L) improves Cai’s result for ε > 1/2. In fact, based on our
results, the instance given in [10] can illustrate that all the bounds we proved in this section are
optimal up to constants for any ε > 0. The details are included in Appendix A. We also notice
that for any n-dimensional lattice L, if L∗ has an nε-unique shortest vector where ε > 1, all the
quantities g(L), λn(L) and 2µ(L) are equal to 1/λ1(L∗) approximately.
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3.2 Reductions between GapSVPγ′ and GapSIVPγ

The transference theorem due to Banaszczyk immediately implies a reduction from GapSVPγn to
GapSIVPγ for any factor γ. Also, Micciancio gave a polynomial time and dimension preserving
reduction from SVP to SIVP for the exact (γ = 1) version [24], and announced an open problem to
find polynomial time reductions between SVPγ and SIVPγ that preserve both the dimension of the
lattice and the quality of approximation. As an application of the improved transference theorem in
Section 3.1, we give the polynomial time reductions between GapSVPγ′ and GapSIVPγ for lattices
possessing nε-unique shortest vectors. We also indicate that the approximation factors are almost
preserved if ε > 1.

Theorem 3.7. For any approximation factor γ, there are polynomial time reductions between
GapSIVPγ and GapSVPγ′ for lattices with nε-gaps.
1. For any lattice L ∈ Ln which has an nε-unique shortest vector (ε > 0), the problem GapSVPγ(1+2n1−ε)

can be reduced to GapSIVPγ.
2. For any lattice L ∈ Ln whose dual lattice L∗ has an nε-unique shortest vector (ε > 0), the
problem GapSIVPγ(1+2n1−ε) can be reduced to GapSVPγ.

Proof. 1. Let (L(B), d) be an instance of GapSVPγ(1+2n1−ε) where the input lattice has an nε-
unique shortest vector. We need to output YES if λ1(L) ≤ d and NO if λ1(L) > γ(1 + 2n1−ε)d. By
Theorem 3.4, if λ1(L) ≤ d, then λn(L∗) ≥ 1/d. If λ1(B) > γ(1 + 2n1−ε)d, then λn(L∗) < 1/(γd).
Thus the GapSVPγ can be solved by calling a GapSIVPγ oracle on (L∗, 1/(γd)) such that: If the
GapSIVPγ oracle on (L∗, 1/(γd)) outputs YES, we output NO for the GapSVPγ(1+2n1−ε). If the
GapSIVPγ oracle on (L∗, 1/(γd)) outputs NO, we output YES for the GapSVPγ(1+2n1−ε).

The proof of 2 is essentially the same.
In particular, if ε > 1, the approximation factors are almost preserved. ut

4 Transference Theorem about Lower Bound on η(Bn
p , Bn

q )

In this section, we prove a transference theorem giving a lower bound on the quantity η(Bn
p ,Bn

q )

where η(Bn
p ,Bn

q ) = infL∈Ln min1≤i≤n λ
(p)
i (L)λ(q)

n−i+1(L
∗) for any p, q ∈ [1,∞]. In Section 4.2, we

show some applications to upper bounds on the smoothing parameter of Gaussian measures over
lattices and also give a more appropriate bound for lattices whose duals have

√
n-unique shortest

vectors.

4.1 A Lower Bound on η(Bn
p , Bn

q )

Theorem 4.1. For any positive integer n, we have

η(Bn
p ,Bn

q ) ≥
{

n1/p+1/q−1 1/p + 1/q < 1, p, q ∈ [1,∞]
1 1/p + 1/q ≥ 1, p, q ∈ [1,∞],

where η(Bn
p ,Bn

q ) = infL∈Ln min1≤i≤n λ
(p)
i (L)λ(q)

n−i+1(L
∗) and we mean 1/p = 0 (1/q = 0, respec-

tively) when p = ∞ (q = ∞).

Proof. For any lattice L ∈ Ln and any 1 ≤ i ≤ n, we prove λ
(p)
i (L) · λ

(q)
n−i+1(L

∗) satisfies the
inequality. Let {v1, . . . ,vi} ⊂ L be i linearly independent vectors reaching the successive minima
λ

(p)
1 (L), · · · , λ

(p)
i (L). Take n − i + 1 linearly independent vectors {d1, . . . ,dn−i+1} ⊂ L∗ such that

9



‖d1‖q ≤ ‖d2‖q ≤ · · · ≤ ‖dn−i+1‖q = λ
(q)
n−i+1(L

∗). Not all of them are orthogonal to every v1, . . . ,vi.

Hence, there exist k, j such that 〈dk,vj〉 6= 0 (1 ≤ k ≤ n − i + 1, 1 ≤ j ≤ i). We denote d(l)
k and

v(l)
j as the lth coordinate of dk and vj respectively.

Case 1: 1/p + 1/q < 1, p, q ∈ [1,∞].
Let 1/p + 1/q = c, where c < 1. By Hölder’s inequality, we have

‖dk‖cq = (
n∑

l=1

|d(l)
k |cq)

1
cq ≤ ((

n∑
l=1

|d(l)
k |cq·

1
c )c · n1−c)

1
cq = ‖dk‖q · n

1−c
cq .

In the same way, we deduce ‖vj‖cp ≤ ‖vj‖p · n
1−c
cp . Therefore

1 ≤ |〈dk,vj〉| ≤ ‖dk‖cq · ‖vj‖cp ≤ ‖dk‖q · n
1−c
cq · ‖vj‖p · n

1−c
cp

= n
1− 1

p
− 1

q ‖dk‖q‖vj‖p ≤ n
1− 1

p
− 1

q λ
(p)
i (L) · λ(q)

n−i+1(L
∗).

We have shown that λ
(p)
i (L) · λ(q)

n−i+1(L
∗) ≥ n

1
p
+ 1

q
−1

.
Case 2: 1/p + 1/q ≥ 1, p, q ∈ [1,∞].
Let 1/p + 1/q = c, where c ≥ 1. By Hölder’s inequality, we get

‖dk‖cq = (
n∑

l=1

|d(l)
k |cq)

1
cq ≤ ((

n∑
l=1

|d(l)
k |q)c)

1
cq = ‖dk‖q.

Similarly, ‖vj‖cp ≤ ‖vj‖p, thus

1 ≤ |〈dk,vj〉| ≤ ‖dk‖cq · ‖vj‖cp ≤ ‖dk‖q · ‖vj‖p ≤ λ
(p)
i (L) · λ(q)

n−i+1(L
∗).

We complete the proof. ut

We construct some concrete lattices to illustrate that the lower bound is optimal. For the case
1/p + 1/q ≥ 1, it can be easily achieved by the lattice Zn. While for 1/p + 1/q < 1, for any
integer n, we define an n-dimensional lattice L generated by the basis B = [b1,b2, . . . ,bn] where
b1 = (−1, 1, 1, . . . , 1)t, bi = (0, . . . , n, . . . , 0)t which has a single n at the ith position and 0 elsewhere
for 2 ≤ i ≤ n. Thus its dual lattice L∗ has a basis D = [d1,d2, . . . ,dn] where d1 = (−1, 0, . . . , 0)t,
di has 1/n at the first and ith positions and 0 elsewhere for 2 ≤ i ≤ n. It’s easy to get λ

(p)
1 (L) = n1/p

and the largest lq norm of the n independent vectors d1 + . . .+dn,d2, . . . ,dn in L∗ is n1/q−1. Then
λ

(q)
n (L∗) ≤ n1/q−1. Combined with λ

(p)
1 (L) · λ(q)

n (L∗) ≥ n1/p+1/q−1, we obtain λ
(q)
n (L∗) = n1/q−1,

therefore λ
(p)
1 (L) · λ(q)

n (L∗) = n1/p+1/q−1.
Combined with the results of Banaszczyk, we give some refinements on relationships of some

lattice quantities.

Lemma 4.2 ([5]). A numerical constant C exists such that

sup
L∈Ln

max
1≤i≤n

λ
(p)
i (L)λ(∞)

n−i+1(L
∗) ≤ C

√
pn1/p

√
log n (1 ≤ p < ∞).

Lemma 4.3 ([6]). For any 1 ≤ p, q ≤ ∞, there exists a lattice L ∈ Ln such that

λ
(p)
1 (L) · λ(q)

1 (L∗) > [vol(Bn
p ) · vol(Bn

q )]−1/n,

where vol(Bn
p ) denotes the volume of the closed unit ball of Rn in lp norm.
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The first corollary is about the successive minima in l∞ and l2 norms.

Corollary 4.4. For any lattice L ∈ Ln, we have

1√
n
≤ λ

(∞)
1 (L) · λ(2)

n (L∗) ≤ 4
√

n log n.

Proof. The lower bound follows from Theorem 4.1. The upper bound is a result of Lemma 4.2. In
fact, the constant can be easily calculated according to ( [5], Lemma 1.6, 2.9, 2.10). One can refer
to Appendix B for details. ut

We also remark that for any integer n, there exists a lattice L ∈ Ln such that λ
(∞)
1 (L)·λ(2)

n (L∗) >

(8πe)−1/2 ·
√

n. In fact, by Lemma 4.3, there exists a lattice L with

λ
(∞)
1 (L) · λ(2)

n (L∗) > [vol(Bn
∞) · vol(Bn

2 )]−1/n = [2n · πn/2

Γ(n/2 + 1)
]−1/n ≥ (8πe)−1/2 ·

√
n,

where the last inequality follows from the double inequality due to Robbins [29].
Next we show the refined relationship between the Gram-Schmidt minimum of a primal lattice

and the successive minimum in l∞ norm of its dual.

Corollary 4.5. For any lattice L ∈ Ln, we have

1√
n
≤ b̃l(L) · λ(∞)

1 (L∗) ≤ 4
√

n log n.

Proof. First, we prove b̃l(L) · λ
(∞)
1 (L∗) ≥ 1/

√
n. Let B = [b1,b2, . . . ,bn] be a basis of L with

max1≤i≤n ‖b̃i‖ = b̃l(L). For any nonzero vector v ∈ L∗, not all bis are orthogonal to v. Denote k
the smallest index such that 〈v,bk〉 6= 0. Then

1 ≤ |〈v,bk〉| = |〈v, b̃k〉| ≤ ‖v‖ · ‖b̃k‖ ≤ ‖v‖ · b̃l(L) ≤
√

n‖v‖∞ · b̃l(L).

Therefore b̃l(L) · λ(∞)
1 (L∗) ≥ 1/

√
n.

Lemma 2.3 implies that for any n linearly independent vectors S = [s1, . . . , sn] ⊂ L, one
can find a basis R of L with ‖R̃‖ ≤ ‖S̃‖. So b̃l(L) ≤ λ

(2)
n (L). Then from Corollary 1, we have

b̃l(L) · λ(∞)
1 (L∗) ≤ λ

(2)
n (L) · λ(∞)

1 (L∗) ≤ 4
√

n log n. ut

We point out that the lower bound in Corollary 4.5 is tight and the optimal upper bound is
larger than (8πe)−1/2 ·

√
n. The details are included in Appendix C.

4.2 Comparison of Upper Bounds on the Smoothing Parameter

In this section, on the smoothing parameter of Gaussian measures over lattices, we compare the
respective advantages of previous upper bounds relating to different lattice quantities. In addition,
a more appropriate bound for a class of lattices whose duals have

√
n-unique shortest vectors is

suggested.
For any lattice L ∈ Ln and any ε > 0, Micciancio and Regev proved ηε(L) ≤

√
ln(2n(1 + 1/ε))/π·

λ
(2)
n (L) [25] which relates the smoothing parameter with λ

(2)
n (L). For the purpose of achieving

worst-case to average-case reductions in lp norms [27], Peikert gave another bound relative to
the dual minimum distance in lp norm. In particular, for l∞ norm, it is proved that ηε(L) ≤
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√
ln(2n(1 + 1/ε))/π/λ

(∞)
1 (L∗). In [14] where new notion of trapdoor functions with preimage sam-

pling was presented, Gentry et al. showed ηε(L) ≤
√

ln(2n(1 + 1/ε))/π · b̃l(L) where b̃l(L) denotes
the Gram-Schmidt minimum of L. Using the transference theorems given in Section 4.1, we compare
the three upper bounds on ηε(L) shown in Table 1.

upper bounds on ηε(L) f(n) · λ(2)
n (L) f(n)/λ

(∞)
1 (L∗) f(n) · b̃l(L)

b̃l(L) · λ(∞)
1 (L∗) ≥ 1 L S M

b̃l(L) · λ(∞)
1 (L∗) ≤ 1 and λ

(2)
n (L) · λ(∞)

1 (L∗) ≥ 1 L M S
λ

(2)
n (L) · λ(∞)

1 (L∗) ≤ 1 M L S

Table 1. L, M and S represent the bound is largest, middle and smallest respectively and
f(n) =

√
ln(2n(1 + 1/ε))/π.

Case 1: b̃l(L) · λ(∞)
1 (L∗) ≥ 1 implies 1/λ

(∞)
1 (L∗) ≤ b̃l(L) ≤ λ

(2)
n (L). And Corollary 4.5 shows

there exist lattices satisfying this inequality.
Case 2: b̃l(L) · λ(∞)

1 (L∗) ≤ 1 and λ
(2)
n (L) · λ(∞)

1 (L∗) ≥ 1 result in b̃l(L) ≤ 1/λ
(∞)
1 (L∗) ≤ λ

(2)
n (L).

We give an instance which satisfies this condition. Define a 3-dimensional lattice Λ generated by the
basis B = [b1,b2,b3], where b1 = (1,−1/2,−1)t, b2 = (0, 1, 0)t and b3 = (0, 0, 2)t. Thus its dual
lattice Λ∗ has a basis D = [d1,d2,d3], where d1 = (1, 0, 0)t, d2 = (1/2, 1, 0)t and d3 = (1/2, 0, 1/2)t.
It is easy to verify that b̃l(Λ) ≤

√
2, 1/λ

(∞)
1 (Λ∗) = 2 and λ

(2)
3 (Λ) = 2.

Case 3: λ
(2)
n (L) · λ(∞)

1 (L∗) ≤ 1 implies that b̃l(L) ≤ λ
(2)
n (L) ≤ 1/λ

(∞)
1 (L∗). And Corollary 4.4

shows there exist such lattices.
The following corollary shows a stronger bound on the smoothing parameter of Gaussian mea-

sures over lattices whose duals possess
√

n-unique shortest vectors.

Corollary 4.6. For any lattice L ∈ Ln and any ε > 0, if L∗ has a
√

n-unique shortest vector, we
have

ηε(L) ≤
√

ln(2n(1 + 1/ε))/π/λ
(2)
1 (L∗).

Proof. Notice that the rotation of coordinate system doesn’t change the smoothing parameter
ηε(L) and λ

(2)
1 (L) since their definitions depend on the l2 norm of lattice vectors. Hence we rotate

the coordinate system making λ
(∞)
1 (L′∗) as large as possible where L′ is the lattice in the new

coordinate system. We know that λ
(∞)
1 (L′∗) ≤ λ

(2)
1 (L′∗) = λ

(2)
1 (L∗), but not all lattices can make

λ
(∞)
1 (L′∗) equal λ

(2)
1 (L∗) by rotations of coordinate system. However, if λ

(2)
2 (L∗) ≥

√
nλ

(2)
1 (L∗),

let v ∈ L∗ with ‖v‖2 = λ
(2)
1 (L∗), then rotate the coordinate system to keep v on one axis. Since

λ
(2)
2 (L∗) ≥

√
nλ

(2)
1 (L∗), there exists no lattice point in λ

(2)
1 (L∗) · Bn

∞ except 0 and ±v. So λ
(∞)
1 (L′∗)

equals λ
(2)
1 (L∗). Followed by ηε(L′) ≤

√
ln(2n(1 + 1/ε))/π/λ

(∞)
1 (L′∗), we get ηε(L) = ηε(L′) ≤√

ln(2n(1 + 1/ε))/π/λ
(2)
1 (L∗). ut

5 Conclusion

In this paper, we prove three transference theorems on lattices possessing nε-unique shortest vectors
and show reductions between GapSVPγ′ and GapSIVPγ for this class of lattices. Furthermore, a
transference theorem on the lower bound relating the successive minima of a lattice with its dual
is presented. As applications, we compare the respective advantages of current upper bounds on
smoothing parameter of Gaussian measures over lattices and show a more appropriate bound for
lattices whose duals possess

√
n-unique shortest vectors.
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Appendix

A. An instance [10] showing the optimum of our transference theorems in Section 3.1
For any positive integer n, let Λ1 be a self-dual (n−1)-dimensional lattice which means Λ∗

1 = Λ1

and let λ1(Λ1) = c
√

n for some constant c. Conway and Thompson [26] showed that there exist
self-dual lattices satisfying this condition. Let u be a vector perpendicular to the linear span of Λ1

with norm cn1/2−ε. Define Λ∗ = Λ1 ⊕ 〈u〉. Then λ1(Λ∗) = cn1/2−ε and u is an nε-unique shortest
vector of Λ∗. The dual of Λ∗ is Λ = Λ1 ⊕ 〈u/‖u‖2〉. For any n linearly independent vectors of Λ,
the orthogonal projections to span(Λ1) are n − 1 linearly independent vectors of Λ1. So we get
λn(Λ) ≥ λn−1(Λ1) ≥ λ1(Λ1) = c

√
n. Therefore, λ1(Λ∗)λn(Λ) ≥ c2n1−ε. By Lemma 3.2, we have

λ1(Λ∗)µ(Λ) ≥ c2n1−ε/2. It is easy to get λ1(Λ∗)g(Λ) ≥ c2n1−ε since g(Λ) ≥ λn(Λ). So the upper
bounds we proved in Section 3.1 are all optimal up to constants.

B. The supplementary proof of Corollary 4.4
To calculate the constant 4 in λ

(∞)
1 (L) ·λ(2)

n (L∗) ≤ 4
√

n log n, we first list some useful notations
and results as follows.

Given a lattice L ∈ Ln and a 0-symmetric convex body U in Rn, define α(U) = supL∈Ln

ρ(L\U)
ρ(L)

and β(U) = supL∈Ln
supu∈Rn ρ((L + u) \ U)/ρ(L). Then for arbitrary r > 0, Banaszczyk proved

β(rBn
2 ) < 2n/(πr2), and β(rBn

∞) < 2n/eπr2
[5]. In the same reference, it is also proved that for any

0-symmetric convex bodies U , V in Rn, if 2α(U)+β(V ) ≤ 1−e−π, then supL∈Ln
max1≤i≤n λi(L,U)·

λn+1−i(L∗, V + Bn
2 ) ≤ 1.

Let r1 = 2
√

n, r2 =
√

log n, then

2α(r1Bn
2 ) + β(r2Bn

∞) ≤ 2 · 2n

πr1
2

+
2n

eπr2
2 =

1
π

+
2

nπ−1
≤ 1− e−π.

So we get
sup

L∈Ln

max
1≤i≤n

λi(L, 2
√

nBn
2 ) · λn+1−i(L∗,

√
log nBn

∞ + Bn
2 ) ≤ 1.

As λ
(∞)
n+1−i(L

∗) = 2
√

log nλn+1−i(L∗, 2
√

log nBn
∞) ≤ 2

√
log nλn+1−i(L∗,

√
log nBn

∞ + Bn
2 ), and

λ
(2)
i (L) = 2

√
nλi(L, 2

√
nBn

2 ), therefore

sup
L∈Ln

max
1≤i≤n

λ
(2)
i (L)λ(∞)

n−i+1(L
∗) ≤ 2

√
n · 2

√
log nλi(L, 2

√
nBn

2 ) · λn+1−i(L∗,
√

log nBn
∞ + Bn

2 )

≤ 4
√

n log n.

C. The optimum of Corollary 4.5
For the optimum of the lower bound, refer to the instance after Theorem 4.1. Let T be the

lattice generated by D, then its dual lattice T ∗ = L(B). It’s easy to get that λ
(∞)
1 (T ∗) = 1. Since

b̃l(T ) ≤ λ
(2)
n (T ) = 1/

√
n and b̃l(T ) ≥ (1/

√
n)λ(∞)

1 (T ∗) = 1/
√

n, we get b̃l(T ) = 1/
√

n. Therefore
b̃l(T ) · λ(∞)

1 (T ∗) = 1/
√

n.
Notice that b̃l(L) ≥ λ

(2)
1 (L), so for the upper bound, we claim by Lemma 4.3 that there exists

a lattice L with

b̃l(L) · λ(∞)
1 (L∗) ≥ λ

(2)
1 (L) · λ(∞)

1 (L∗) > [vol(Bn
2 ) · vol(Bn

∞)]−1/n

= [2n · πn/2

Γ(n/2 + 1)
]−1/n ≥ (8πe)−1/2 ·

√
n.


