Broadcasting Intermediate Blocks as a Defense
Mechanism against Selfish Mining in Bitcoin

Abstract. Although adopted by many cryptocurrencies, the Bitcoin
mining protocol is not incentive-compatible, as the selfish mining strate-
gy enables a miner to gain unfair mining rewards. Existing defenses either
demand fundamental changes to block validity rules or have little effect
on an attacker with more than one third of the total mining power. This
paper proposes an effective defense mechanism against resourceful selfish
miners. Our defense requires miners to publish intermediate blocks, the
by-products of the mining process, then build on each other’s work. By
adding transparency to the mining process, block forks are resolved by
comparing the amount of work of each branch. Moreover, this mecha-
nism has the advantages of backward compatibility, low communication
and computational costs, accelerating block propagation, and mitigating
double-spending attacks on fast payments. To evaluate our design, we
computed the most profitable mining strategy within our defense with
analysis and simulation. Our simulation showed that within our defense,
a selfish miner with almost half of the total mining power can only gain
marginal unfair block rewards.

1 Introduction

Bitcoin [17], a decentralized cryptocurrency system, attracts not only a lot of
users but also significant attention from academia. The vitality of Bitcoin relies
on an incentive mechanism named mining. Participants of the mining process,
called miners, work on solving a cryptographic puzzle generated from a set of new
transactions. Each time a puzzle is solved and recognized by the network, the set
of transactions, together with the puzzle solution, constituting a block, is added
to the blockchain, a ledger organized as a chain of blocks. The miner who solves
the puzzle can claim a block reward of new bitcoins. This incentive mechanism
encourages miners to contribute their resources to the system. Bitcoin’s designer
implicitly assumed the fairness of this incentive mechanism: as long as more than
half of the mining power follows the protocol, the chance that a miner can earn
the next block reward is proportional to her computational power [17].
Unfortunately, this assumption has been disproven. In a recent paper, Eyal
and Sirer highlighted an attack that enables a malicious miner to earn relatively
more block rewards [11]. The attack exploits the following fork-resolving policy
of Bitcoin: when more than one block is mined with the same preceding block
and the blockchain is forked into a tree, a miner adopts and mines on the longest
chain, or the first received block when several chains are of the same length. We
refer to this forked situation as a block race, and to an equal-length block race
as a tie. Eventually, all miners will convert to the same longest main chain, and

will discard blocks that are not in the main chain. Unintentionally, this policy
allows a selfish miner to deviate from the prescribed mining behavior as follows.
The selfish miner keeps discovered blocks private and continues to mine on top
of them, hoping to gain a larger lead on the public chain. When the public chain
approaches the private chain in length, the selfish miner makes the private chain
public and claims the block rewards. There are two situations in which the selfish
miner wins a block race: either the block race is a tie, and the next block is mined
on the selfish miner’s chain; or the selfish miner’s chain is longer. Accordingly,
the selfish miner increases relative block rewards by causing other miners’ work
to be discarded.

Existing defenses focus on two approaches: lowering the chance of honest
miners working on the selfish miner’s blocks during a tie [13], as suggested by
Eyal and Sirer [11] and Heilman [13]; or making fundamental changes to the block
validity rules, as suggested by Bahack [6] and Shultz [20]. The former approach
only mitigates the attack: even when no honest miner works on the selfish miner’s
chain during a tie, the selfish mining strategy is still more profitable as long as the
selfish miner controls more than one third of the total mining power [6,11]; while
the second approach would render the protocol backward incompatible. Besides,
no defense considers an adversary that can alter her strategy accordingly in order
to avoid losing block rewards.

This paper proposes another defense against selfish mining. We require min-
ers to publish intermediate blocks, or in-blocks for short, which are blocks that
are valid with lower puzzle difficulty, but confer no mining reward onto the min-
er who discovers one. When a fork happens, miners adopt the branch with the
largest total amount of work, rather than the longest chain. The defense is based
on one key observation: although the selfish miner may be lucky to find a longer
chain than the public one, the total amount of work of the private chain is almost
certain to be less than that of the public chain.

This defense has the following advantages: (1) the block validity rules re-
main unchanged; (2) the extra communication and computational costs are low;
(3) in-block broadcast can synchronize most transactions among all participants
before the full block is mined, thus decreasing block propagation time; (4) an in-
block can be seen as the miner’s commitment on a set of new transactions, and
such commitment contributes to double-spending mitigation on fast payments.
Other contributions of this paper include: (1) analyzing how a rational selfish
miner can modify her mining strategy to adapt to our defense; (2) computing
the most profitable mining strategy for a wide range of mining power under
the defense proposed by Eyal and Sirer [11] and our defense with Monte Carlo
method; (3) presenting a simple rule to help system designers choose parameters
in our defense, and verifying this rule with simulation; (4) comparing the perfor-
mance of our defense with two other defenses in thwarting the adaptive selfish
miner under real-world network propagation delay. Our simulation shows that a
selfish miner with 45% of mining power earns only 51% of relative block rewards,
compared with the 67% best result of prior defenses, given that an in-block is
broadcast every 30 seconds on average.

2 Background

2.1 The Bitcoin Protocol

We summarize here some essential characteristics for our discussion and refer to
Nakamoto’s original paper [17] for a complete view of the system. A transaction
in Bitcoin consists of at least one input and one output. An input is usually an
output of a previous transaction. An output contains the receiver’s public key
and an amount. The difference between the total amount of inputs and outputs
is called transaction fee, which will go to the miner who includes the transaction
in the blockchain. Transaction fees are supposed to substitute mining rewards
in the long run [16]. More than one transactions sharing at least one common
input are called double-spending transactions, and at most one can get into the
blockchain. The entire transaction is protected by cryptographic techniques so
that only the owner of an output can spend it. Every transaction is broadcast
to the entire peer-to-peer overlay network.

To ensure participants have a consensus on valid transactions, all nodes fol-
low the same block and transaction validity rules and only maintain blocks in
the longest chain. Each block contains its distance from the first block, called
height, the hash value of the preceding block, a set of transactions, and a nonce.
Information about the preceding block guarantees that a miner must choose
which block to mine on before she starts mining. A special coinbase transaction
in the block allocates some new bitcoins to the miner without any input. To
construct a valid block, miners work on finding the right nonce so that the hash
of the block is smaller than the block difficulty target. The block difficulty target
is adjusted every 2016 blocks so that on average a block is generated every ten
minutes. Once a valid block is found, the miner publishes it to the entire overlay
network. If the block ends up being in the longest chain, the coinbase output and
all transaction fees in the block belong to the miner. To decrease the variance
of mining revenues, miners often form mining pools to work on the same puzzle
and split the rewards according to their contributions.

2.2 The st; Strategy Family

The idea of selectively delaying publication of blocks to gain an unfair advantage
of block rewards appears as early as 2010 [8]. A specific strategy is given the
name “selfish mining” and formally described and analyzed by Eyal and Sirer
in 2013 [11]. Bahack generalized the strategy to a family of strategies stj, where
k=0,1,2,--- , 00, and showed that any optimal mining strategy that may cause
other miners’ blocks to be discarded must be a member of the family [6]. Specif-
ically, sto is the honest strategy, and st; is the sefish mining strategy in [11].
Algorithm 1 describes the st strategy. On the premise that the selfish miner
has less mining power than honest miners combined, once in a while a new honest
block will surpass the height of the private chain. The selfish miner then gives up
her private chain and mines on the public chain. We call this state a consensus
and start the strategy description here (line 1 to 3). When the selfish miner finds

Algorithm 1 The st Strategy, k =0,1,2,--- ,00
on consensus
ls + 0 > s denotes the length of the private chain
lp <0 > I, denotes the length of the public chain
mine on the public chain
I found a block
ls +—ls+1
ifls —l, =1and I, > k then
publish the newly mined block
goto consensus
else
keep mining on the private chain

]
R AN - 2

others found a block

]
=]

10: if the block is mined on top of my block then
11: ls < 1s —1p

12: Ip 1

13: else

14: Ip < 1lp+1

15: if Iy — 1, < O then

16: goto consensus

17: else if I, — [, = 0 then

18: publish the entire private chain

19: mine on the private chain

20: elseif Iy — I, =1 and l, > k then

21: publish the entire private chain

22: goto consensus

23: else if g — [, > 1 then

24: publish the first unpublished private chain block

a block, she keeps mining on top of it (line 9) unless there is already a tie of
length %k, which we will discuss later. When a block is found by honest miners,
if the public chain is longer, the selfish miner gives up and goes to consensus
(line 15, 16). If both chains have the same length, the selfish miner publishes
her secret chain and hopes to win a block race (line 17 to 19). If the next block
is mined on top of the selfish miner’s block, whether by an honest miner or the
selfish miner, the selfish miner gets the block reward. Otherwise she loses the
block race and starts from consensus. When the lead is at least two, every time
an honest miner finds a block, the selfish miner publishes one block along with
it, so that the publicly visible part of the private chain has the same length as
the public chain (line 23, 24), until the lead is reduced to one and the length of
the block race reaches k.

The strategies in the family differ from each other when the selfish miner’s
lead is one (line 5 to 7, 20 to 22). For any I, > k, the st) strategy publishes
the latest block in the private chain and claim all the block rewards, whereas
a strategy with larger k keeps the last block secret. By keeping the last block
secret, the selfish miner gains more time for herself to mine on top of it before
anyone else could. However she also risks losing all block rewards for the first [,
blocks in the private chain.

3 Our Defense Mechanism

No existing defense can defend against a selfish miner with mining power share
a > 1/3 without any collateral damage, because such resourceful selfish miner

can abuse her luck of finding consecutive blocks to gain an unfair advantage
even if she loses all ties (line 5 to 7 and 20 to 24 of Alg. 1). In this section, we
present a defense mechanism that is effective against resourceful selfish miners.
Our key observation is inspired by the GHOST rule proposed by Sompolinsky
and Zohar [21]: a selfish miner with less than half of the total mining power
may be able to generate a longer chain, however the total amount of work of the
private branch is almost certain to be less than that of the public branch. By
demanding miners to publish and mine on each other’s in-blocks, we can make
the amount of computational power working on each branch visible.
Broadcasting lowered-difficulty blocks is first utilized by mining pools, such
as P2Pool [3], to help distribute mining rewards among participants. Several
Bitcoin developers reckoned that this mechanism can also be used for other
purposes [4,22]. However, to the best of our knowledge, this is the first work to
describe and analyze how this mechanism can defend against selfish mining.

3.1 Threat Model
We follow the four assumptions of most selfish mining studies [6,11,13,19, 20]:

Assumption 1. More than half of the total computational power follows the
honest mining strategy.

Assumption 2. There is only one colluding pool of dishonest miners.

Malicious miners can achieve higher input-output ratio by joining forces,
therefore we only consider this stronger form of attack. For brevity we use “the
selfish miner” instead of “the colluding pool of miners”.

Assumption 3. The selfish miner does not have the power to downgrade the
propagation speed of others’ blocks.

A malicious miner can earn unfair block rewards by deploying a sybil (see
Babaioff et al. [5]), DDOS (see Johnson et al. [14]), or eclipse attack (see Nayak
et al. [18]). We do not consider the former two attacks because defending against
them in peer-to-peer network is known to be difficult. Neither do we consider
the eclipse attack because countermeasures are already implemented [1].

Assumption 4. When the public chain becomes strictly longer, the selfish miner
abandons her secret chain and starts mining on the public chain.

Since in that case the majority of mining power would work on the public
chain, the chance that the selfish miner can finally surpass that chain is slim.

At last, this paper only considers the strongest attacker regarding network
connectivity:

Assumption 5. The selfish miner receives and broadcasts blocks and in-blocks
with no propagation delay.

e in-block

B full block

A count as weight of the public branch
O count as weight of the private branch

<— direct in-predecessor

Fig. 1. A typical block race. Although the selfish miner finds two blocks before honest
miners find one, honest miners would not mine after her branch because its weight
W (Bs) = 8 is smaller than the public branch weight W (By) = 10.

3.2 Mining and In-Block Broadcasting

We describe our mining and in-block broadcasting mechanism here and the cor-
responding main chain selection rule in Sect. 3.3. In both parts we introduce
some necessary definitions before presenting the algorithm.

Definition 1. We say @ is an in-block, if Q is a valid block in every aspect
except that H(Q), the hash of Q, is not lower than the block difficulty target d,
but satisfies d < H(Q) < d-m, where m is a predefined parameter of the system.

Definition 2. An in-block Q1 is an in-predecessor of a block or in-block Qs, if
they have the same preceding block, and either of the following conditions holds:
(1) there exists an in-block Qs such that Q1 is an in-predecessor of Q3 and Q3
is an in-predecessor of Q2; (2) after removing all double-spending transactions
from Q1 and Q2, the remaining transaction set of Q1 is a proper subset of that
of Q2. We use Pd(Q) to denote the in-predecessor set of @ known by a node.

Definition 3. From a node’s local perspective, the in-height of a block or in-
block @Q is defined as

B 1 PdQ)=10
he(Q) = {max{hq(Q/ﬂQl € Pd(Q)} +1 otherwise.

The system parameter m determines the expected number of in-blocks be-
tween two blocks. Our definition of in-predecessor can tolerate inconsistency in
terms of double-spending transactions, but does not tolerate missing transac-
tions. If @1 is an in-predecessor of (Q2, we can say with high certainty that Q2
is mined after Q1. For example, in Fig. 1, the in-height of a block or in-block is
the length of its longest path to the preceding block. We have hy(q;y) = 7 and
Pd(qy9) = {q; - q7, 99}; qg is not an in-predecessor of q;, because they are
mined on different blocks. The transaction set of q; is a superset of the union
of its in-predecessors’ transaction sets, excluding double-spending transactions.

Our mining and in-block broadcasting algorithm is described in Alg. 2. Our
defense requires miners to publish in-blocks they found during mining, and in-
clude the transactions of received in-blocks into the blocks they are working on.
In line with [6,11, 13], we believe nodes should broadcast all competing valid

Algorithm 2 Mining and In-Block Broadcasting

on found/received a new valid block B
1: Broadcast B to the network
2: maxInHeight(B) <+ 0
3: IbSet(B) < 0 > IbSet(B) is the set of in-blocks mined on B
4: goto update mining status
on found/received a new valid in-block Q
5: Bg < the preceding block of Q
6: if I have a valid block on top of Bg
or mazInHeight(Bg) > h(Q) + 7 then
7 delete @

8: else

9: Broadcast @ to nodes connected with me
10: IbSet(Bg) + IbSet(Bg) | J{Q}

11: if mazInHeight(Bg) < h(Q) then

12: mazInHeight(Bg) < h(Q)

13: goto update mining status

on update mining status

14: B <+ the block to mine on according to Alg. 3

15: W < my working transaction set

16: W < W — transactions in conflict with B’s branch
17: W= W U transactions new to W in IbSet(B)

U some new transactions, preferably only I know
18: mine on B with transaction set W

blocks (line 1 and 9), instead of just the first one they receive, as in the current
implementation. This modification to the current implementation increases the
detectability of selfish mining. An in-block is rejected by a miner if either of
two conditions holds (line 6, 7): (1) when she has already received one follow-up
block of the same preceding block; (2) when the in-height of the new in-block is
more than 7 behind the current maximum in-height of in-blocks with the same
preceding block. The parameter 7 is a tolerance threshold of in-block propaga-
tion. When 7 = 0, as soon as a node has received an in-block of in-height h, all
later-received in-blocks mined on the same block with in-height less than h are
rejected. Therefore in Fig. 1, q; must be broadcast to the network when qq is
mined, in order to be considered valid; q;; is rejected by nodes who receive it
after By. Every time a block or in-block is received, a miner should re-evaluate
which block to work on and adjust her working transaction set to make sure her
future block has as many in-predecessors as possible (line 14 to 18). To ensure
all blocks and in-blocks that have an in-block @ as their in-predecessor must
be mined after @), each miner can include some transactions only known to her-
self or a random set of newly received transactions when adjusting her working
transaction set (line 17).

We shall see in Sect. 3.3 that in the case of a block fork, the more in-
predecessors a block has, the more likely it would be selected by miners. The
rationale behind this requirement is that when the selfish miner delays publica-
tion of a block, some in-blocks only seen later in the network will not be included
in her block. Therefore when a block race happens, the block mined by an honest
miner will contain more in-predecessors previously seen by the network.

A malicious miner might generate a huge in-block so that any block or in-
block mined after it would exceed the block size limit. Therefore the size of an

in-block should be limited according to its in-height. We omit the details of this
mechanism to simplify our description.

3.3 Main Chain Selection Policy

Definition 4. A block or in-block Q is called a child of a block B (B # Q) if
the chain ends with Q) contains B; block B’s children set is denoted as Ch(B).

Definition 5. The weight of a block B is defined as W (B) = |Pd(B)|+|Ch(B)|+
1, where the | - | symbol denotes the number of elements in a set.

In our notation, the child relation is transitive: a child of a child is also a
child. The weight of a block is defined as the total number of its in-predecessors,
children and itself. In Fig. 1, W(Bs) =5+2+1=8, W(By) =9+0+1 = 10.

Algorithm 3 Choosing Which Block to Mine on

B <+ the preceding block of the block fork
Sucp < all blocks mined on B

. if Sucg = 0 then

return B and exit

¢ Smazw {C|C € Sucp and

VC' € Sucg, W(C') < W(C)}

B <+ a random element in Sy, qzw

7: goto line 2

SN O

@

Our main chain selection rule is described in Alg. 3. In short, when a block
fork happens, a miner chooses the branch whose earliest block, or head, has the
largest weight value. If multiple heads have the same weight, the miner chooses
randomly which branch to mine on. This is different from the current longest-
chain rule, but in line with the GHOST rule. Sompolinsky and Zohar proved that
under the GHOST rule, miners will eventually converge to the same history [21].
They also proved that a malicious miner with less than 50% of mining power
cannot secretly create a heavier branch. Their proofs are directly applicable to
our variant. We now prove the resilience of our design against selfish mining.

Proposition 1. Assume that a selfish miner with mining power share o < 0.5
finds a block By at time T after consensus, and secretly mines on top of it for
time t before another block By, is found by an honest miner at T +t and a block
race happens. The probability that the selfish miner can win the block race by
publishing all her blocks and in-blocks goes to zero as t goes to infinity.

Proof. Let us consider the weight values of two competing branches when the
block race happens. All public in-blocks found before T' would be in-predecessors
of both branches, thus they do not affect the comparison result. A secret in-
predecessor of B found by the selfish miner with in-height hg would be invali-
dated as soon as an in-block with in-height hs + 741 is published. According to
Assumption 3, the selfish miner cannot delay or prevent such event. Therefore,

after the hg + 7 + 1 in-block finishes broadcasting, for any honest miner, either
she has received the hg selfish in-block earlier and the next block or in-block she
finds will have it as its in-predecessor, or she has not received it and this in-block
does not count as the in-predecessor of B;. In both cases, the secret in-block does
not help the selfish miner in the comparison result. For the remaining parts of
the branches, since the blocks and in-blocks contribute to the private chain must
be children of By and Bj is kept secret, the mining power share working on the
private chain is no more than «, and that of the public chain is 1 — a.. Therefore
according to the law of large numbers, the probability that the selfish miner can
win the block race becomes arbitrarily low as ¢ grows. a

3.4 Costs and Incentives

Computational Cost. To miners, in-blocks are merely by-products found during
mining. Adjusting working transaction set according to newly received in-blocks
introduces a small computational overhead. However, for the majority of miners,
scheduling and mining are performed on different chips, if not different devices
entirely, hence absorbing this overhead will not damage their mining power.

Communication Cost. The current Bitcoin implementation transfers a block
along with all transactions within it. This is not necessary in our scheme. A block
or in-block can refer to the hash values of its direct in-predecessors instead of
repeating all transactions when there is no conflicting transaction. The receiver
can reconstruct and verify the block or in-block in the memory and ask for
the missing in-predecessors if necessary. New transactions in a block or in-block
would need to be transferred anyway. Therefore by applying this technique, the
only communication overhead of our scheme is the in-block headers and the hash
values of their direct in-predecessors. This constitutes only a few dozen bytes per
in-block, which is shorter than the smallest transaction.

Backward Compatibility. The validity rules of Bitcoin transactions and blocks
remain unchanged in our scheme. Introducing several new message types is feasi-
ble in practice; even if some nodes do not understand the messages broadcasting
in-blocks, they can still participate in the network with no difficulty. The only
change to the protocol is the main chain selection rule, which requires consen-
sus among honest miners. Due to the convergence of history under the GHOST
rule, non-miner nodes follow the longest-chain rule will adopt the same history
eventually [21].

Miners’ Incentives. First, by broadcasting an in-block, a miner increases the
weight value of its possible future block, thus increasing the chance of winning a
potential block race. Second, broadcasting in-blocks can accelerate propagation
of the next block, therefore reducing the occurrence of block forks. The current
implementation requires a node to verify a block before broadcasting it. As a
result, a major contributor to the block propagation delay is the verification time
of new transactions within the block [9]. In-blocks would help synchronizing

most transactions before the full blocks are received, therefore reducing their
propagation delay. Last but not least, as we have shown, broadcasting in-blocks
would stop selfish miners and help guarantee the fairness of the system, which
is in line with the interests of most participants of the network.

Mitigating Double-Spending on Fast Payments. An in-block can be seen as a
proof that its miner has accepted the transactions in it. Therefore, as an addi-
tional benefit, our defense mechanism can mitigate the double-spending attack
on fast payments. An explanation on the attack and how it can be mitigated by
our defense can be found in Appendix A.

4 The Adaptive Strategy of the Selfish Miner

As the original selfish mining strategy will lose most block races in our scheme,
it makes no sense for the selfish miner to insist on that strategy. The adaptive
selfish mining strategy family in our scheme is described in Alg. 4.

Algorithm 4 The asty Strategy, k =0,1,2,--- , 00
on consensus
1. Ws 0 > W, denotes the set of blocks and in-blocks only count as weight of the private
branch
2: Wy <= 0 > W), denotes the set of blocks and in-blocks only count as weight of the public branch
mine on the public branch
on I found a block or in-block Bjg
Wa « W, [J{B:}
if |[Ws| —|Wy,| =1 and |W,| > k then
publish the entire private branch
goto consensus
else
keep mining on the private branch
on others found a block or in-block B
10: if B is mined on my block in W, then
11: remove all published elements from Wy
12: Wp 0
13: for all in-block Q € W, that will be invalidated by B do

w

=

L

14: publish and remove @ from Wy
15: if B is the first block of the public branch then
16: publish but do not remove the head block and the next |W,| blocks and in-blocks from Wy

17: if B is a block or I have at least one secret block then
18: W, « W, | J{B}

19: if [W| — |Wp| < 0 then

20: goto consensus

21: else if |W,| — |W,| = 0 then

22: publish the entire private branch

23: mine on the private branch

24: else if |W,| — |W,| =1 and |W,| > k then
25: publish the entire private branch

26: goto consensus

27: else if |W,| — |W,| > 1 and
the head block in the private branch is published then
28: publish the first unpublished block or in-block

Most steps of the algorithm can be traced back to Alg. 1 by substituting
the heights of the public and private branches with the weights of the branches.

Therefore we refer to Bahack’s work [6] for an analysis on the optimality of the
strategy family and only explain the differences. When the selfish miner finds
an in-block on top of a public block, it is in her best interest to keep it secret
before it expires, hoping that it will only be counted in the weight of her block
when a block race happens. Therefore such an in-block of in-height hg will not
be broadcast until the adaptive selfish miner learns that a block or an in-block
with in-height hs + 7 + 1 is found by an honest miner. Then she broadcasts it
before the block or hs + 7+ 1 in-block reaches any other node except its finder
(line 13, 14). If the first block after consensus is found by an honest miner, this
mechanism would result in an empty private branch and a non-empty public
branch, therefore the consensus state (line 17 to 20). Once a block is mined by
the selfish miner, she can start working secretly on top of it. An in-block mined
by an honest miner belongs only to the public branch if the private branch has a
secret block (line 17, 18), because otherwise it can be an in-predecessor of both
branches. Lastly, we note that when the lead of the private chain is more than
1 and the public branch has no block, there is no need for the selfish miner to
publish the earliest secret block, since the honest miners are unaware that a block
race is happening (line 27). Only when a competing block is found by an honest
miner does the selfish miner publish the head block and some subsequent blocks
and in-blocks, so that the public visible part of the private branch and public
branch are of the same weight (line 15, 16). We will discuss how to choose the
most profitable strategy from the family for a selfish miner with certain mining
power share in Sect. 5.2.

5 Simulations

We are aware that simulation is not the only way to analyze mining strategies.
A formal analysis of the Bitcoin protocol is given by Garay et al. [12]. Bahack
presented some analytical results on how to choose the most profitable strategy
from the st family [6]. Concurrent to our work, Sapirshtein et al. extended
Bahack’s results and presented an algorithm to the find a near-optimal strategy
for the selfish miner [19]. However, estimating the revenue share with simulations
facilitates our discussion on the influence of different parameters and non-trivial
network propagation speed.

5.1 Choosing the Most Profitable Strategy from the st;, Family

In this part, we use Monte Carlo simulation to estimate the revenue share for the
selfish miner with mining power share «, in order to choose the most profitable
one from the st family. We assume the defense due to Eyal and Sirer [11] is
implemented, namely honest miners choose randomly when ties happen. The
results of this simulation will facilitate our discussion on choosing the most
profitable strategy from the ast; family in Sect. 5.2.

In this simulation we consider the mining process as a stationary Markov
chain, and omit all propagation delay. There is one honest miner and one selfish

0.6 4

° o asty, m=10

5 081 s — . —asty, m=10 P

o 0 — .. -asty, m=10

o 0.7 © 0.5 T /

> 2 - aSto, m=10

g 06 g ——ast{, m=5 &

& & —+—asty, m=20 /

w 0.5 ©04

g 2

£ 04 E

% 0.3 203

ko) ©

$ 02 3

(0] Q

£ o

=01 . . - - - = 0.2
0.2 0.25 0.3 0.35 0.4 0.45 0.2 0.25 0.3 0.35 0.4 0.45
The Selfish Miner's Mining Power Share (a) The Selfish Miner's Mining Power Share (a)

(a) stk (b) asty

Fig. 2. The expected revenue share of the st;, and asty strategy families

miner. Two transitions are possible from each state: the selfish miner finds a block
with probability «, or the honest miner finds a block with probability 1 — «. The
longest-chain rule and heaviest-branch rule are identical in this setting since it
is impossible for more than one block to be found by the honest miner at the
same time. We simulate all « values between 0.20 and 0.48 with interval 0.01 for
strategies sty to stig and st.. For every pair of o and k£ we run the simulation
to generate 107 blocks and compute the revenue share of each miner.

Figure 2(a) shows the result of four strategies within the family. The optimal
strategy according to our simulation is:

StOptSim (O[) = Stk(a)

where the value of A(«) is defined as follows:

a | [0.2,0.24] [0.25,0.31] [0.32,0.35] {0.36,0.37}
@) 0 1 2 3

a [[0.38,0.41] {0.42,0.43} 044 [0.45,0.48]
@) 4 5 8 o

5.2 Choosing the Most Profitable Strategy from the asty Family

The selfish miner’s expected revenue share differs according to the value of m,
and it is infeasible to enumerate all m values. However, that does not render the
problem insoluble. We have the following conjecture to simplify the problem:

Conjecture 1. The optimal strategy from the asty family should follow almost
the same rule as that from the sty family.

The reason is that as soon as the first block of the public branch is mined during
a block race, the behaviors of Alg. 1 and Alg. 4 with the same k value become
identical. Therefore the probability of the selfish miner winning the block race

becomes the same. Although the expected revenue is different, that does not
affect the comparison result among strategies.

We simulate the mining process for m = 5,10 and 20 within our defense to
verify our conjecture. In this simulation, four transitions are possible from each
state: the selfish miner finds a block with probability «/m, the selfish miner finds
an in-block with probability « - (m — 1)/m, the honest miner finds a block with
probability (1 — «)/m, and the honest miner finds an in-block with probability
(1—a)-(m—1)/m. Miners choose the predecessors and in-predecessors of their
blocks and in-blocks according to their respective strategies. Since there is no
propagation delay we set 7 = 0. For every (m,k,) combination we simulate
3 x 10° blocks and compute the revenue share of each miner.

Figure 2(b) shows the results of six pairs of (m,k) values. For a given m,
the difference in revenue share between two strategies from the ast; family is
much smaller than that from the st; family, which makes it harder to identify
the optimal strategy. However, we can still conclude with strong confidence that
asty(q) serves as a good estimation of the optimal strategy. In most situations we
have astoptsim(m, a) = asty)+1. For all (m,) pairs, the difference in revenue
share between astoptsim(m, @) and asty(q) never exceeds 1%. Therefore for the
rest of this section we use asty(,) as an approximation of the optimal strategy
for the selfish miner within our defense. The optimal strategy of the three m
values in our simulation can be found in Appendix B.

5.3 Choosing m and 7T

As we have seen, as m grows, the proof-of-work of each branch is more accurately
revealed, and the secret branch is less likely to win a block race. Meanwhile, as
the number of in-blocks grows, the expected in-block interval decreases. The
next conjecture shows the optimal value of 7 when m is not too large:

Conjecture 2. As long as the average interval between in-blocks is larger than
or on the same order as the propagation delay, T = 0 yields the best performance
in thwarting the selfish miner.

The reason behind this conjecture is as follows. To the honest miners’ advan-
tage, a larger 7 value would reduce unintentional rejection of in-blocks mined
by honest miners. To the selfish miner’s advantage, a larger 7 value encourages
her to further delay the publication of in-blocks so that these in-blocks have a
larger probability of contributing only to the selfish miner’s blocks. However,
the frequency of these events differs. When the propagation delay is comparable
with the interval between two consecutive honest in-blocks, the former case hap-
pens relatively rarely: if all honest miners behave correctly, only when another
in-block is found at roughly the same time of the “unlucky” in-block and more
than 7 in-blocks are mined during the propagation of the in-block may result
in its rejection by some honest miners. Whereas the selfish miner can always
delay publication of her in-blocks until it would be invalidated by an honest
block or in-block. Moreover, as the mining power of the selfish miner grows, the
probability of the former case will decrease further, because the total number

of in-blocks found by honest miners will decrease, thus increasing the expected
interval and decreasing the expected overlap of in-block propagation. Therefore
the smallest 7 would best thwart a resourceful selfish miner.

We incorporate network propagation delay in the simulation to verify this
conjecture. One simulation round represents 1 second in real time. The proba-
bility that a block is found by the network in a round is 1/600 so that on average
it takes 10 minutes to find a block. We choose m = 20 so that on average an
in-block is found every 30 seconds, in line with P2Pool [3]. The honest min-
ing power share is split into 1000 identical honest miners. Every honest miner
manages her own blockchain, and may reject in-blocks that do not reach her in
time. In terms of propagation speed for the honest miner’s blocks and in-blocks,
there are two different settings. First, in slow propagation, a block or in-block
mined by an honest miner reaches all honest miners in 120 seconds at an even
rate. This setting exaggerates the network connectivity advantage of the selfish
miner. Second, in real propagation, a block or in-block mined by an honest miner
reaches half of the honest miners in 5 seconds at an even rate, and the other
half in the next 20 seconds at an even rate. This is a rough approximation of
reality [2]. We simulate 7 values ranging from 0 to 5. One simulation represents
250 days in real time. The results of our simulation can be found in Appendix C.
In both settings, 7 = 0 performs the best in thwarting the selfish miner.

At last, we note that the conclusion may not hold when the selfish miner suf-
fers the same network propagation delay or the expected interval between honest
in-blocks is much smaller than the propagation delay. We leave this investigation
to future work.

5.4 Comparison with Other Defenses

Two mining strategies are simulated with no defense as the base lines for our
comparison: the sty strategy, namely the honest mining strategy, and the st
strategy. We implement two defense strategies besides our own. The first one
requires miners to choose a random branch when ties happen [11], which we
refer to as Random Branch. The second one is Freshness Preferred, which requires
miners to choose the block with fresher unforgeable timestamp [13] when two
competing blocks are received within 120 seconds. A timestamp is released every
minute as the author suggested. We do not consider the defense due to Bahack [6]
and Schultz [20] because they are not backward compatible. For our own defense
we use parameters m = 10, 7 = 0 so that the expected interval between two
consecutive publications of in-blocks or blocks equals the interval of timestamps
in Freshness Preferred. The set of parameters m = 20, 7 = 0 are also simulated.
Each simulation represents 500 days in real time. Block and in-block propagation
speed is the same with the real propagation mode in Sect. 5.3.

The selfish miner follows the sty strategy under Random Branch. The
optimal strategy under Freshness Preferred is non-trivial, we use st; as the base
strategy and implemented the attack proposed by Schultz [20]: when a consensus
block is found by honest miners, the selfish miner keeps mining on its preceding
block when a fresher timestamp is available but within the 120-second window.

o
oo
)

honest

- = -stwo .

o
3

—a—random branch ’
—eo—freshness preferred -,

=)

[}
.

N

—>—our defense, m=10 .

—a— our defense, m=20 ,- -

I [
EN 3
.

o
w

The Selfish Miner's Revenue Share

o
N
-

0.2 0.25 0.3 0.35 04 0.45
The Selfish Miner's Mining Power Share (a)

Fig. 3. Comparison with Other Defenses

Upon success, the earlier block, now stale, would be discarded by honest miners.
Besides, when o < 0.33 and the lead of the private branch is no more than one,
she publishes the whole branch when a new timestamp is released to avoid losing
a tie; when a > 0.34 she bets on winning block races by having a longer chain.

The simulation results are shown in Fig. 3. It can be seen that our m = 10
defense outperforms the two other defenses in almost every data point. The
only exception is when o = 0.27, where Freshness Preferred earns 0.2% less
block rewards than in our defense. The advantage of our defense becomes more
obvious against stronger selfish miners, since under the two other defenses, the
selfish miner can always win a block race when she has a longer chain.

6 Conclusion

The selfish mining attack disproves the fairness assumption in Bitcoin designer’s
original analysis. Furthermore, since the revenue of a malicious miner rises super-
linearly with her computational power, rational miners would prefer to join their
forces for a higher input-output ratio, and the decentralized structure of Bitcoin
would be damaged. We observed that it is easier for a selfish miner to create
a private branch with a longer chain than more amount of work. Based on the
observation, this paper proposed a defense that demands miners to broadcast
the by-products of their mining, so that block forks can be resolved by com-
paring the amount of work of each branch. This mechanism has the benefit of
very low communication and computation overhead, in addition to accelerating
block propagation and mitigating double-spending attack on fast payments. We
provided a simple rule on choosing the parameters according to the network syn-
chronization speed. Our simulation showed that even the most profitable mining
strategy within our defense obtains only marginal unfair block rewards.

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Bitcoin core version 0.10.1 released, https://bitcoin.org/en/release/v0.10.1
Bitcoin stats - data propagation, http://bitcoinstats.com/network /propagation/
P2Pool, http://p2pool.in/

Andresen, G.: Re: Faster blocks vs bigger blocks,
https://bitcointalk.org/index.php?topic=673415.msg7658481msg7658481
Babaioff, M., Dobzinski, S., Oren, S., Zohar, A.: On Bitcoin and red balloons. In:
13th ACM Conference on Electronic Commerce. pp. 56-73. ACM (2012)

Bahack, L.: Theoretical Bitcoin attacks with less than half of the computational
power (draft). arXiv preprint arXiv:1312.7013 (2013)

Bamert, T., Decker, C., Elsen, L., Wattenhofer, R., Welten, S.: Have a snack, pay
with Bitcoins. In: 13th IEEE International Conference on Peer-to-Peer Computing
(P2P). pp. 1-5. IEEE (2013)

btchris, Bytecoin, mtgox, RHorning: Mining cartel attack (2010),
https://bitcointalk.org/index.php?topic=2227

Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:
13th IEEE International Conference on Peer-to-Peer Computing (P2P) (2013)
Dmitrienko, A., Noack, D., Sadeghi, A., Yung, M.: On offline payments with Bitcoin
(poster abstract). In: 1st Workshop on Bitcoin Research, affiliated with Financial
Cryptography and Data Security. pp. 159-160 (2014)

Eyal, I., Sirer, E.G.: Majority is not enough: Bitcoin mining is vulnerable. In:
Financial Cryptography and Data Security, pp. 436-454. Springer (2014)

Garay, J.A., Kiayias, A., Leonardos, N.: The Bitcoin backbone protocol: Analysis
and applications. In: EUROCRYPT. pp. 281-310 (2015)

Heilman, E.: One weird trick to stop selfish miners: Fresh Bitcoins, a solution
for the honest miner. Cryptology ePrint Archive, Report 2014/007 (2014), http-
s://eprint.iacr.org/2014,/007

Johnson, B., Laszka, A., Grossklags, J., Vasek, M., Moore, T.: Game-theoretic
analysis of ddos attacks against Bitcoin mining pools. In: 1st Workshop on Bit-
coin Research, affiliated with Financial Cryptography and Data Security. Springer
2014

%(aralzw, G.0O.: Two Bitcoins at the price of one? double-spending attacks on fast
payments in Bitcoin. In: 19th ACM Conference on Computer and Communications
Security (2012)

Moser, M., Bohme, R.: Trends, tips, tolls: A longitudinal study of Bitcoin trans-
action fees. In: 2nd Workshop on Bitcoin Research, affiliated with Financial Cryp-
tography and Data Security. pp. 19-33 (2015)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008),
http://www.bitcoin.org/bitcoin.pdf

Nayak, K., Kumar, S., Miller, A., Shi, E.: Stubborn mining: Generalizing selfish
mining and combining with an eclipse attack. Cryptology ePrint Archive, Report
2015/796 (2015), https://eprint.iacr.org/2015/796

Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in
Bitcoin. arXiv preprint arXiv:1507.06183 (2015)

Shultz, B.L.: Certification of witness: Mitigating blockchain fork attacks (2015),
http://bshultz.com/paper/Shultz_Thesis.pdf

Sompolinsky, Y., Zohar, A.: Secure high-rate transaction processing in Bitcoin.
Financial Cryptography and Data Security (2015)

Todd, P.: Near-block broadcasts for proof of tx propagation,
http://lists.linuxfoundation.org/pipermail /bitcoin-dev,/2013-
September/003275.html

A Mitigating Double-Spending on Fast Payments

By convention, a transaction needs to be “buried” under six blocks in the
blockchain to be considered valid. Bitcoin by default provides no protection
against double spending on fast payments, which do not require several blocks
buried on top of the transaction to confirm. The difficulty of securing fast pay-
ments from double-spending attacks is highlighted by Karame and Androulak-
i [15], as well as Bamert et al. [7]. Guidelines are provided in these studies for
merchants to lower their risks. Dmitrienko et al. designed an offline payment
system to address the problem [10]. We present here our suggestion on how to
utilize in-block broadcasting to mitigate the attack.

Assume the adversary wants the merchant to accept transaction A, mean-
while trying to have a conflicting transaction B eventually accepted by the net-
work. Intuitively, the merchant can accept A and release the goods as long as she
receives a certain number of in-blocks containing A, as suggested by Todd [22].
However this approach has two disadvantages: first, the adversary can perform
a network-level attack on the merchant so that she only receives in-blocks con-
taining A, as pointed out by Bamert et al. [7]; second, the adversary can set a
higher transaction fee to B and publish it only after the goods are released, in
the hope that rational miners would abandon A for the extra transaction fee.

Therefore we propose to add two extra rules to defend against the attack.
First, a miner should stick to the first conflicting transaction she receives, regard-
less of the transaction fee. Admittedly, this rule might not be rational if the only
goal of a miner is to maximize her rewards; however, following this rule would
strengthen the security of fast payments, thus might help stabilize the future
exchange rate of Bitcoin, therefore be consistent with the long-term rationality
of miners. Second, a cryptographic proof on the identity of the miner should be
incorporated in every block and in-block. For example, the miner can sign the
merkle root of the transaction set excluding the coinbase transaction with her
private key, and include this signature to the coinbase transaction. With these
rules enforced, an in-block can be seen as a commitment on a certain version
of a transaction by the miner. A merchant can maintain a blacklist of public
keys of miners who do not stick to their commitments. Once the merchant has
confirmed that the overwhelming majority of mining power is honest and has
committed on A, she can deliver the goods. The mining power share of a miner
associated with a public key can be calculated as the number of blocks of the
last 100 blocks with the public key.

B The Optimal Strategy for m = 5, 10 and 20 in Our
Simulation

The most profitable strategies in our simulation for all three m values are:
astoptsim(m, o) = aSt3 ()

where

o (0.2,0.24] {0.25,0.27,0.3,0.31} {0.26,0.28,0.29,0.33,0.38}

NE 0 1 2

a [{0.34,0.36} {0.32,0.37} {0.35,0.39,0.41,0.42} [0.43,0.46]
Al 5, a) 3 4) 8

a 04 {0.47,0.48}
Al 5, a) 9 10

a | [0.2,025 [0.26,0.34] {0.36,0.37} {0.35,0.38,0.39,0.41,0.42}
A(10, @) 0 1 3 4

a 0.4 0.45 {0.43,0.44} and [0.46, 0.48]
A(10, @) 5 6 7

a 0.21 {0.2,0.26,0.3,0.32,0.35,0.36} and [0.22,0.24]
A(20, @) 0 1

« {0.25,0.34,0.37,0.39} and [0.27,0.29] {0.31,0.33} {0.4,0.41}
2(20, @) 2 3 4

«Q 0.38 0.42 0.45 {0.43,0.44} and [0.46,0.48]
A(20,) 5 6 9 00

We believe that the unordered data points should be attributed to random
error.

C The influence of 7 in Different Network Settings

The experimental setting can be found in Sect. 5.3.

Table 1. The Selfish Miner’s Expected Revenue Share in Slow Propagation

o\t | 0 1 2 3 4 5

0.25 | 0.2697 0.2741 0.2700 0.2788 0.2802 0.2756
0.30 | 0.3227 0.3248 0.3260 0.3317 0.3290 0.3373
0.35 | 0.3869 0.3902 0.3941 0.3939 0.3997 0.3992
0.40 | 0.4521 0.4579 0.4598 0.4644 0.4705 0.4755
0.45 | 0.5312 0.5420 0.5529 0.5563 0.5581 0.5586

Table 2. The Selfish Miner’s Expected Revenue Share in Real Propagation

a\T 0 1 2 3 4 5

0.25 | 0.2574 0.2583 0.2564 0.2562 0.2452 0.2583
0.3 | 0.3100 0.3086 0.3101 0.3115 0.3156 0.3102
0.35 | 0.3648 0.3693 0.3682 0.3731 0.3917 0.3698
0.4 | 0.4275 0.4340 0.4332 0.4319 0.4373 0.4333
0.45 | 0.5056 0.5127 0.5197 0.5246 0.5276 0.5146

