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Abstract. The Fiat-Shamir transformation is the most efficient con-
struction of non-interactive zero-knowledge proofs.
This paper is concerned with two variants of the transformation that ap-
pear but have not been clearly delineated in existing literature. Both vari-
ants start with the prover making a commitment. The strong variant then
hashes both the commitment and the statement to be proved, whereas
the weak variant hashes only the commitment. This minor change yields
dramatically different security guarantees: in situations where malicious
provers can select their statements adaptively, the weak Fiat-Shamir
transformation yields unsound/unextractable proofs. Yet such settings
naturally occur in systems when zero-knowledge proofs are used to en-
force honest behavior. We illustrate this point by showing that the use
of the weak Fiat-Shamir transformation in the Helios cryptographic vot-
ing system leads to several possible security breaches: for some standard
types of elections, under plausible circumstances, malicious parties can
cause the tallying procedure to run indefinitely and even tamper with
the result of the election.
On the positive side, we define a form of adaptive security for zero-
knowledge proofs in the random oracle model (essentially simulation-
sound extractability), and show that a variant which we call strong Fiat-
Shamir yields secure non-interactive proofs.
This level of security was assumed in previous works on Helios and our
results are then necessary for these analyses to be valid. Additionally, we
show that strong proofs in Helios achieve non-malleable encryption and
satisfy ballot privacy, improving on previous results that required CCA
security.

1 Introduction

Zero-knowledge proofs of knowledge allow a prover to convince a verifier that
she holds information satisfying some desirable properties without revealing any-
thing else. To be useful, such proof systems should satisfy completeness (the
prover can convince the verifier that a true statement is indeed true) and sound-
ness (the prover cannot convince the verifier that a false statement is true).
Zero-knowledge proofs can either be interactive or non-interactive; for the latter



the prover only sends his proof and the verifier decides to accept or reject the
statement without any further interaction.

The focus of this paper is on the most common and efficient construction
of non-interactive proofs, namely the Fiat-Shamir heuristic [1]. Here, one begins
with an interactive sigma protocol, a special type of three-move protocol in which
the prover sends a commitment, the verifier answers with a random challenge
and the prover completes the protocol with a response. The idea behind the
transformation is simple and appealing: have the prover compute the message
of the verifier as the hash of the message sent by the prover — if the hash is
modelled as a random oracle the message computed this way should look random
as in an interactive execution, hence the properties of the original proof system
should somehow be preserved.

The transformation appears in the literature in two different forms, depend-
ing on what is hashed. In the formalization of Bellare and Rogaway [2], which
we refer to as the weak Fiat-Shamir transformation (wFS), the hash takes only
the prover’s first message as input. Other papers e.g. [3, 4] suggest including the
statement to be proved in the hash input. In the remainder of the paper we call
this the strong Fiat-Shamir transformation (sFS).

Contributions. The contributions of this paper fall into two main categories.
First we identify weaknesses of the weak (sic!) Fiat-Shamir transformation and
show that in applications it can be a serious source of insecurity. Secondly, we
provide several positive results regarding the strong Fiat-Shamir transformation
and its uses in applications.

Insecurity of wFS and attacks on Helios. Our first results show that the security
proofs commonly given for Fiat-Shamir proofs do not hold when applied to weak
proofs and when the prover can chose his statement(s) to prove adaptively. This
may or may not render a protocol using them insecure, as a protocol may have
other means of dealing with adaptivity. For example, in the original application
to identification protocols, weak proofs are sufficient.

As an example where weak proofs do not yield security, we consider Helios
[5, 6], a cryptographic voting protocol that has been used in practice. Versions
of Helios have been employed, for example, for the election of the president of
the Université catholique de Louvain [6], the Princeton University Undergrad-
uate Student Government [7] and the board of the IACR [8]. We focus on the
zero-knowledge protocols implemented since Helios 2.0 [6] for elections based on
homomorphic tallying, which are still used in the latest version of Helios as doc-
umented on [9] at the time of writing. In brief, those elections work as follows.
Trustees first jointly generate an election public key, using NIZK proofs to make
sure that this key actually includes contributions from all trustees. Then, to cast
a ballot, a voter encrypts a vote and attaches NIZK proofs that the vote is le-
gal. All ballots are placed on a publicly readable bulletin board. Eventually, the
election administrators homomorphically add all ballots, decrypt the result and
use NIZK to prove the correctness of their actions. The encryption scheme is ex-
ponential ElGamal and the particular NIZKs involved are obtained by applying
the weak Fiat-Shamir transformation to the Schnorr [10], Chaum-Pedersen [11]
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and disjunctive Chaum-Pedersen protocols (and variants thereof). These proofs
are used to guarantee that the privacy of the votes rests on all trustees, to en-
force that voters create ballots containing valid votes and to prevent dishonest
administrators from claiming a wrong result. We show that the use of the wFS
transformation is the source of three types of insecurity:

a) breaking verifiability by allowing colluding administrators to cast a single
ballot that is not well-formed and contains any chosen number of votes for a
specific candidate,

b) breaking liveness of the system by allowing colluding administrators to fail
providing the election outcome while proving that they behave honestly, or
by allowing voters to cast a random vote which leads to tallying taking su-
perpolynomial time, and

c) breaking privacy by allowing the casting of related ballots that do not contain
mere copies of previously submitted ciphertexts.

The first two of these attacks are undetectable under normal circumstances.

While our focus is on Helios which is our motivating application, in the full
version of our paper we also show attacks against schemes constructed via the
Naor-Yung paradigm and via the encrypt-then-prove construction: when using
proofs derived through wFS these constructions may yield malleable encryption
schemes.

Security of Strong Fiat-Shamir and Applications. The problems that we have
identified in the use of the wFS do not apply to proofs obtained through the
strong version of the transformation. It is then natural to ask what level of
security does one get from these proofs. We provide several results. First, we
formulate a security notion for non-interactive zero-knowledge proofs of knowl-
edge which captures adversaries that can choose their statements adaptively. In
essence, this notion is the analogue of simulation-sound extractability defined by
Groth in the common reference string model [12]. Informally, a malicious prover
is allowed to see simulated proofs (of potentially fake statements) and aims to
provide valid looking proofs for adaptively chosen statements in such a way that
an extractor cannot obtain witnesses. Interestingly, our definition is not simply a
rehashing of the notion in [12]. In the random-oracle model, extraction requires
the rewinding of the prover (as opposed to merely using a trapdoor) and in turn,
this implies complex interaction between the adversary, the simulator and the
extractor. We then show that applying sFS to Σ-protocols results in protocols
that are simulation-sound extractable. Our result seems to be the first thorough
investigation on the precise security guarantees offered by such proofs.

As a first application of this result, we investigate the security of non-malleable
encryption schemes that are built by combining an IND-CPA encryption scheme
with a proof of knowledge of the randomness used in the encryption process.
We refer to this construction as the Enc+PoK approach. A well-known instanti-
ation is the TDH0 scheme introduced and studied by Shoup and Gennaro [13].
Intuitively the construction should achieve IND-CCA security but so far, all at-
tempts have failed to confirm or disprove this under natural assumptions (e.g.,
DDH in the random oracle model) [14, 15]. As a consequence, the form of non-
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malleability ensured by Enc+PoK schemes is, surprisingly, still unknown. We
provide a lower-bound on the answer to this question: if the proof of knowledge
used in the encryption process is simulation-sound extractable, then the result-
ing scheme is NM-CPA secure. An immediate corollary is that the TDH0 scheme
is NM-CPA secure in the random oracle model under the DDH assumption.

We then turn to the analysis of ballot privacy in Helios. Prior work shows that
ballot privacy is guaranteed if the encryption scheme used in the construction is
IND-CCA [16, 17]. Since ballots in Helios use the Enc+PoK paradigm (which, as
discussed above, is not known to be IND-CCA) a natural suggestion is then to
replace it with something stronger. For example, Bernhard et al. suggested ap-
plying the Naor-Yung transformation to the underlying ElGamal encryption [17],
while Bulens et al. used a variant of the TDH2 scheme [18]. These modifications
both substantially increase the computational costs of the system and require
major changes in the implementation.

Our final result is to show that although the NM-CPA notion is strictly weaker
than IND-CCA [19], it is sufficient to ensure ballot privacy. In particular a minor
tweak of the Enc+PoK construction currently used in Helios where we replace
wFS with its strong counterpart and check for repeated ciphertexts is sufficient.
The change that we require is easily accomplished by including additional el-
ements in the inputs of the hash function and preserves the current level of
efficiency.

2 The Fiat-Shamir/Blum Transformation

In this section we introduce the two variants of the Fiat-Shamir heuristic that we
analyze. We start by fixing notation and recalling some standard notions. In the
following we let R ⊆ P({0, 1}∗×{0, 1}∗) be an efficiently computable relation. R
defines a language LR = {Y ∈ {0, 1}∗|∃w : R(w, Y )} in NP. We further assume
that there is a well-defined set Λ ⊇ L decidable in polynomial time.3

A non-interactive proof system for language LR is a pair algorithms (Prove,
Verify). Such a proof system is complete for LR if for every (w, Y ) ∈ R, with
overwhelming probability if π ← Prove(w, Y ) then Verify(Y, π) = 1. We define
soundness of such proof systems (the property that a cheating prover cannot
make the verifier accept a false statement) later in the paper. Here we recall the
notion of zero-knowledge in the random oracle model [20].

In this setting, a simulator S for a proof system is an algorithm in charge of
answering random oracle queries and producing valid proofs for any statement
Y ∈ Λ with respect to this oracle. In particular, it can “patch” the oracle to
create its simulated proofs. Such a simulator responds to the following queries:

3 Suppose that L is the set of DDH triples (Ga, Gb, Gab) over some group G. Then
Λ could be G3. The reason for defining this formally is that we will later expect
our zero-knowledge simulator to produce valid “proofs” for some “false statements”,
but which ones? Can it produce a proof for the statement consisting of the empty
string, for example? We use Λ as the class of statements on which the simulator can
produce proofs.
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H(s) S maintains a list of oracle query/response pairs. For repeated queries, S
answers consistently; for fresh queries, S draws a random value r, adds (s, r)
to its list and returns r.

Simulate(Y ) For Y ∈ Λ, the simulator returns a proof π such that Verify(Y, π) =
1 if the verifier uses the simulator for its oracle queries. S can add query/response
pairs to its oracle list to process a simulation query.

Definition 1 (Zero-Knowledge). A proof system is zero-knowledge if there
is a simulator S such that no adversary who can make queries to the random
oracle and queries of the form create-proof(w, Y ) can distinguish the following
two settings with non-negligibly better than 1/2 probability.

1. Random oracle queries are answered by a random oracle. In response to
create-proof(w, Y ), the challenger checks that R(w, Y ). If not, he returns ⊥.
Otherwise, he returns Prove(w, Y ).

2. The challenger runs a copy of the simulator S. It forwards random ora-
cle queries to S directly. For create-proof(w, Y ), the challenger checks if
R(w, Y ) holds: if not, the challenger returns ⊥; if it holds, the challenger
sends Simulate(Y ) to S and returns the result to the adversary.

Sigma Protocols. A sigma protocol for a language LR is a protocol for two parties,
a prover and a verifier. Both share a statement Y ∈ LR as input and the prover
may additionally hold a witness w.

The prover begins by sending a value A known as the commitment. The
verifier replies with a challenge c drawn uniformly from a fixed challenge set.
The prover finishes the protocol with a response f whereupon the verifier applies
a deterministic algorithm Verify to Y,A, c and f which can accept or reject this
execution.

A sigma protocol is correct (w.r.t. LR) if the prover, on input a pair (w, Y )
satisfying R and interacting with the verifier who has input Y , gets the verifier
to accept with probability 1.

A sigma protocol has special honest verifier zero knowledge if there is an
algorithm Simulate that takes as input a statement Y ∈ Λ, challenge c and
response f and outputs a commitment A such that Verify(Y,A, c, f) = 1 and
furthermore, if c and f where chosen uniformly at random from their respective
domains then the triple (A, c, f) is distributed identically to that of an execution
between the prover and the verifier. Notice that the verifier is supposed to work
with statements that may be false.

A sigma protocol has special soundness if there is an algorithm Extract that
takes as input a statement Y and any two triples (A, c, f) and (A′, c′, f ′) such
that both verify w.r.t. Y , A = A′ and c 6= c′, and returns a witness w such that
R(w, Y ).

The Fiat-Shamir Transformation. The Fiat-Shamir transformation [1] (which
[2] attributes to Blum) is a technique to make sigma protocols non-interactive
using a cryptographic hash function. There are two commonly used descriptions
of this technique that we call weak and strong Fiat-Shamir and which we describe
together in the following definition.
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Definition 2 (Fiat-Shamir Transformation). Let Σ = (ProveΣ ,VerifyΣ) be
a sigma protocol and H a hash function. The weak Fiat-Shamir transformation
of Σ is the proof system wFSH(Σ) = (Prove,Verify) defined as follows:

Prove(w, Y ) Run ProveΣ(w, Y ) to obtain commitment A. Compute c← H(A) .
Complete the run of ProverΣ with c as input to get the response f . Output
the pair (c, f).

Verify(Y, c, f) Compute A from (Y, c, f), then run VerifyΣ(Y,A, c, f).

The strong Fiat-Shamir transformation of Σ, i.e., sFS(Σ) = (Prove,Verify) is
obtained as above with the difference that c is computed by c← H(Y,A).

3 Pitfalls of the Weak Fiat-Shamir Transformation

We now describe various standard protocols in which the use of the weak Fiat-
Shamir transformation can have undesirable effects. We illustrate these effects
through several new practical attacks on various components of the Helios voting
system, which relies on these protocols.

Schnorr Proofs. The Schnorr [10] signature scheme is the weak Fiat-Shamir
transformation of the Schnorr identification protocol. In a group G of order q
generated by G, it proves knowledge of an exponent x satisfying the equation
X = Gx for a known X. Viewing (x,X) as a signing/verification key pair and
including a message in the hash input yields a signature of knowledge.

To create a proof, the prover picks a random a← Zq and computes A = Ga.
He then hashes A to create a challenge c = H(A). Finally he computes f = a+cx;
the proof is the pair (c, f) and the verification procedure consists in checking

the equation c
?
= H(G

f

Xc ).
The weak Fiat-Shamir transformation can safely be used here, as discussed

in previous analysis [10, 21], since the public key X is selected first and given as
input to the adversary who tries to produce a forgery.

However, if the goal of the adversary is to build a valid triple (X, c, f) for any
X of his choice, then this protocol is not a proof of knowledge anymore unless
the discrete logarithm problem is easy in G. Suppose indeed that there is an
extractor K that, by interacting with any prover P that provides a valid triple
(X, c, f), extracts x = logG(X). This extractor can be used to solve an instance
Y of the discrete logarithm problem with respect to (G, G) as follows: use Y as

the proof commitment, compute c = H(Y ), choose f ← Zq and set X = (G
f

Y )
1
c .

Since the proof (Y, c, f) passes the verification procedure for statement X, the
extractor K should be able to compute x = logG(X) by interacting with our
prover. We now observe that, by taking the discrete logarithm in base G on
both sides of the definition of X, we obtain the solution logG(Y ) = f − cx to
the discrete logarithm challenge.

Application to Helios. Schnorr proofs are used during the key generation pro-
cedure of Helios as a way to prevent trustees from choosing their public key as
a function of the public key of the other trustees, which could give them the
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possibility to select the election private key at will and to decrypt all individual
votes [22]. While the scenario above shows that trustees who publish a public key
together with a Schnorr proof for that public key do not necessarily know the
corresponding private key, the fact that our scenario does not allow the prover to
choose his statement (but just to compute it as a function of the elements of the
proof) does not seem to give rise to any practical attack. These weak Schnorr
proofs would, however, break the proof of ballot privacy that we give later in
this paper (assuming strong proofs).

Chaum-Pedersen Proofs. Chaum and Pedersen [11] introduced a proof of dis-
crete logarithm equality, which they make non-interactive using the strong form
of the Fiat-Shamir transformation. More precisely, given two group elements
(G,X), a prover who knows the discrete logarithm x = logG(X) can prove that
two group elements (R,S) satisfy the relation logG(X) = logR(S) as follows. He
picks a random a ← Zq, computes A = Ga, B = Ra, c = H(R,S,A,B) and
f = a + cx. The proof is the pair (c, f) and the verification procedure consists

in checking the equation c
?
= H(R,S, G

f

Xc ,
Rf

Sc ).

We observe that this proof is not sound anymore if it is used as a proof
that three elements (X,R, S) are such that logG(X) = logR(S), that is, if the
prover also has the possibility to choose X in the process of building his proof.
Indeed, a prover could select (a, b, r, s) ← Z4

q at random, compute A = Ga,

B = Gb, R = Gr and S = Gs from which he can compute c = H(R,S,A,B) and
f = b+cs

r . He now completes the proof by computing x = (f − a)/c and setting

X = Gx. Now, we observe that logG(X) = s
r + b−ar

rc while logR(S) = s
r , which

differ with overwhelming probability.

Application to Helios. Chaum-Pedersen proofs instantiated with the weak Fiat-
Shamir transformation (that is, c = H(A,B)) are used during the ElGamal
decryption procedure of Helios, in order to demonstrate that the decryption of
the product of the votes that is computed by the trustees is consistent with the
public key. More precisely, given a public key X and a ciphertext (R,S) that
encrypts the sum of all votes, a trustee is required to compute T = Rx where
x = logG(X) and to publish it together with a Chaum-Pedersen proof that
logG(X) = logR(S). The ElGamal decryption is then computed as logG(S/T ).

In this proof, a malicious trustee does not have the possibility to choose his
private key at decryption time, but has the possibility to select T as part of
the proof computation process. He can do so as follows. Select (a, b) ← Z2

q at

random, compute the proof commitments A = Ga and B = Gb, the challenge
c = H(A,B) and the response f = a + cx. Eventually, compute the decryption

factor T = (R
f

B )
1
c . It is easy to verify that the proof (c, f) is valid for the tuple

(G,X,R, S), but that logR(T ) = x + ar−b
c , which will be different from x with

overwhelming probability. As a result, the decryption procedure will provide an
aberrant result: an essentially random element of Zq. This strategy provides a
way to build a denial of service attack against a Helios election, without anyone
being able to detect who was responsible.
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A more dangerous attack can be mounted if we assume that the trustees have
the possibility to passively eavesdrop on the randomness of all voters. Though
demanding, such an attack is still easier to mount and harder to detect than a
full active attack. We would expect the impact of such a scenario to be “only”
a complete loss of privacy by the voters but we show that it actually provides a
way for the trustees to announce any election outcome of their choice as soon as
they can actively corrupt a single voter (which can happen simply if a trustee is
a voter himself).

Consider an election with trustees who would like to announce the election
outcome m. These trustees select a private key x and publish the public key
X. They also select (a, b) ← Z2

q, compute A = Ga, B = Gb, c = H(A,B) and
f = a+cx. Then all the voters submit their votes, except the corrupted one who
waits until the last minute of the election. At that time, the trustees compute the
product of all encrypted votes that have been submitted and obtain a ciphertext
(R′, S′) = (Gr

′
, Gm

′ · Gxr′) for some values r′ and m′ that they can compute

using the randomness of the voters. They now compute r = b+c(m′−m)
f−cx , as well

as a ciphertext (Gr−r
′
, Gx(r−r

′)) which is an encryption of 0 for which they can
compute a proof of validity since they know r − r′. This ciphertext and proof
are submitted by the corrupted voter, with the effect that the product of all
encrypted votes is (R,S) = (Gr, Gm

′ · Gxr). It can now be verified that (c, f)
form a valid proof that logG(X) = logR( S

Gm ), which indicates that m is the
outcome of the election.

Disjunctive Chaum-Pedersen Proofs. Disjunctive proofs allow proving
that one of two statements holds without revealing which one is correct. These
proofs have numerous applications. For instance, they can be used by a voter to
demonstrate that a ciphertext he produced is an encryption of either 0 or 1 (but
nothing else), expressing whether or not he supports a candidate.

Suppose that a voter builds an exponential ElGamal ciphertext (R,S) with
respect to public key X and wants to prove that it encrypts 0 or 1. We consider
the case where it is an encryption of 1 (the other case is similar). First, the voter
simulates a proof that logR(S) = x by selecting a random proof (c0, f0) ← Z2

q

and computing A0 = Gf0/Rc0 and B0 = Xf0/Sc0 . Then he selects a1 ← Zq,
computes A1 = Ga1 , B1 = Xa1 , c = H(A0, B0, A1, B1), c1 = c − c0 and f1 =
a1 +c1r. The proof consists of (c0, c1, f0, f1) and verification consists of verifying

whether c0 + c1 = H(G
f0

Rc0
, X

f0

Sc0
, G

f1

Rc1
, Xf1

(S/G)c1 ).

Application to Helios. The proof we just described is exactly the one used in
Helios to guarantee that voters encode at most one vote for each candidate and
it exhibits weaknesses that are similar to those described above, but with an even
more dangerous effect. Consider an election organized by corrupted trustees who
would like to influence the election outcome by adding (or removing) m approvals
to a candidate of their choice. These trustees now have the freedom to choose
any public key and ciphertext of their choice that would allow them to compute
an encryption of m and to prove that it is an encryption of 0 or 1. They can
achieve this as follows.
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They first select (a0, b0, a1, b1) ← Z4
q, from which they compute the com-

mitments A0 = Ga0 , B0 = Gb0 , A1 = Ga1 , B1 = Gb1 , the challenge c =

H(A0, B0, A1, B1) and the private key x = (b0+cm)(1−m)−b1m
a0(1−m)−a1m and the public

key X = Gx. Using this public key, they select a random encryption of m by
selecting r ← Zq and computing (R,S) = (Gr, GmXr). Eventually, they com-
pute the challenges c1 = b1−a1x

1−m and c0 = c− c1 and the responses f0 = a0 + c0r
and f1 = a1 + c1r. It can be verified that (c0, c1, f0, f1) form a proof that (R,S)
encrypt 0 or 1, while it actually encrypts an arbitrary m.

Furthermore, it can be observed that this proof, like the others that we pre-
sented above, is indistinguishable from a regular one. We can indeed define this
ciphertext and proof through 11 parameters: (x, r, s, a0, a1, b0, b1, c0, c1, f0, f1)
which, in order to provide a valid proof and encrypt m, must satisfy the 6 equa-
tions below, leaving 5 degrees of freedom.

s = rx+m
c0 + c1 = H(A0, B0, A1, B1)

f0 = a0 + rc0

f1 = a1 + rc1
f0x = b0 + c0s
f1x = b1 + c1(s− 1)

A simulator can produce 11 parameters from the exact same distribution as
follows. Given random x and r, compute s = rx+m, then pick (c0, c1, f0, f1)←
Z4
q at random, compute the unique values a0, b0, a1, b1 that satisfy the last four

equations above, and patch the random oracle to make sure thatH(A0, B0, A1, B1) =
c0 + c1. In order to see that these parameters are distributed like those from the
malicious proof, we observe that they satisfy the same equations and are gen-
erated from the same number of degrees of freedom except that the simulator
has the benefit of one extra degree coming from its possibility to patch the ran-
dom oracle. Now, we also observe that this simulator proceeds exactly as the
simulator of a normal disjunctive Chaum-Pedersen proof, which shows that our
malicious proof is indistinguishable from a regular one: they are both indistin-
guishable from the simulated one. Since the simulated proofs can be computed
from the ciphertexts only, and since an encryption of m is computationally in-
distinguishable from an encryption of 0 or 1, our malicious ciphertext and proof
are indistinguishable from regular ones.

Other attack possibilities exist, based on the same techniques. For instance,
a voter who does not know the election private key can build a ciphertext that
encrypts a random value in Zq and prove that it encrypts 0 or 1, which would
make the decryption procedure fail. We do not know however whether it is
possible to build such a proof in a way that is indistinguishable from a regular
one.4

Encrypt + PoK. Adding a proof of knowledge of the plaintext/randomness to
a ciphertext in an IND-CPA secure public key encryption scheme is a common
way to yield a non-malleable encryption scheme.5 We formalise this construction
and show that using wFS does not yield non-malleable encryption.

4 Our current technique involves setting c0 = 0. While such a ballot passes the current
Helios verifier, this could be detected in an audit.

5 Though the exact form of non-malleability that is provided is unclear [13].
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Definition 3 (Encrypt+PoK). Let E = (KeyGen,Enc,Dec) be a public-key
encryption scheme. Let R((m, r), (Y, pk)) := (Y = Enc(pk,m; r)) be the relation
that Y is an encryption of m with randomness r for public key pk, let Λ be the
ciphertext space (or some suitable superset thereof) and let P = (Prove,Verify)
be a NIZK-PoK for this relation.

The Encrypt+PoK transformation EP is the following encryption scheme.

KeyGen’ Run KeyGen.
Enc’(pk,m) Draw some randomness r and create a ciphertext E = Enc(pk,m; r).

Create a proof π ← Prove(pk,E,m, r). The ciphertext is the pair (E, π).
Dec’(sk,E, π) First run Verify(pk,E, π). If this fails (returns 0), output ⊥ and

halt. Otherwise, return Dec(sk,E).

Consider the ElGamal encryption scheme with weak Schnorr proofs of the
randomness used for encryption (which would allow one to extract the message),
which would be a weak variant of the TDH0 scheme [13]. In other words, a
ciphertext for a message M under public key X is (Gr,M · Xr, c, f) where
c = H(Gf/(Gr)c). We can rerandomise such a ciphertext (R,S, c, f) by picking
a random u and setting the new ciphertext to be (R ·Gu, S ·Xu, c, f + cu). The
new plaintext is the same as the old one as S/Rx = M ·Xr+u/(Gr+u)x = M and

the proof still verifies as c = H
(
Gf+cu

(Gr+u)c

)
= H

(
Gf

(Gr)c

)
. Clearly, this encryption

scheme is malleable.

Application to Helios. The same rerandomisation technique can be applied to
current Helios ballots, giving a ballot privacy attack in the style of Cortier and
Smyth [23] (based on the same principles as the attacks described in [24, 25].) He-
lios ballots contain ElGamal ciphertexts (R,S) with disjunctive Chaum-Pedersen
proofs (c0, c1, f0, f1). To rerandomise such a ciphertext, pick a random u and set
R′ = R · Gu, S′ = S · Y u, f ′0 = f0 + c0u and f ′1 = f1 + c1u. Unlike previously
known rerandomisation techniques, this one does not make use of a repeated El-
Gamal ciphertext or proof. It can be detected however by checking for repeated
hash values, just as for the previous attacks.

Further examples. The various attacks that we described above focus on ap-
plications to the Helios voting system, which uses the weak Fiat-Shamir trans-
formation in all proofs. We believe that these examples provide clear evidence
that the weak Fiat-Shamir transformation should not be used in that context:
in particular, we showed that malicious authorities can arbitrarily influence the
outcome of an election, which is in clear contradiction with the universal verifia-
bility properties expected from that system. In the next sections, we will focus on
the properties of the strong Fiat-Shamir transformation and show the benefits
that its adoption would provide for the Helios system.

We stress that there are various other contexts in which the weak Fiat-Shamir
transformation should not be used. For instance, similarly to our observation for
the weak variant of the TDH0 scheme, the scheme resulting from the Naor-Yung
transformation [26] applied to ElGamal encryption may become malleable if
the weak Fiat-Shamir transformation is used, contradicting the level of desired
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security. We provide in Appendix A attacks against a concrete instantiation of
that transformation.

4 Simulation Sound Extractable Proofs

The examples discussed in the previous section show that the wFS transform
fails to offer even the most basic soundness properties in many contexts. We
now investigate the soundness properties of the sFS transform. More precisely,
we formulate the notion of simulation sound extractable proofs in the random
oracle model and show its applications to the sFS transformation. Our definition
draws inspiration from that of witness-extended emulation [4] in which the exis-
tence of an extractor is demanded such that for any adversary returning a vector
of statements and proofs, the extractor returns identically distributed elements
along with the witnesses to the proven statements. However, the definition is per-
haps more appropriately viewed as the analogue definition of simulation sound
extractability defined by Groth [12] which combines the simulation soundess
approach of Sahai [27], with proofs of knowledge [28].

We consider a malicious prover who may ask to see simulated proofs (as in
simulation-soundness). The extractor that we consider gets the transcript of a
run of the prover where the prover outputs several valid proofs together with
the transcipt of random oracle queries. His goal is to extract witnesses of these
proofs. In the process, we allow the extractor to invoke and communicate with
copies of the prover that use the same randomness as the run it is trying to
extract from. This ability is what permits the knowledge extractor to fork the
prover’s execution without giving the extractor access to the coins of the prover.6

A bit more precisely, a malicious prover for a proof system P = (Prove,Verify)
is an algorithm A that expects access to two oracles: a hashing oracle and a
simulation oracle. Thus A may submit some string s and expects H(s) in return
and it may also make simulation calls Simulate(Y ) for any statement Y ∈ Λ and
expects to obtain a proof π such that Verify(Y, π) = 1. The prover returns a pair
of vectors (Y ,π).

Definition 4 (Simulation Sound Extractability). Let P be a zero-knowledge
proof system with simulator S. We say that P is simulation sound extractable
(SSE) if there exists an extractor K such that for every prover A, K wins the
following game with non-negligible probability.

1. (Initial run.) The game selects a random string ω for A. It runs an instance
of A with the simulator S until A makes his output and halts. If A does
not output any proofs, any of the proofs do not verify (w.r.t. the instance
of S used as the random oracle) or any of A’s statement/proof pairs (Y, π)
is such that π was the result of a Simulate(Y ) query, then K wins the game
directly.

6 Although not necessary for this paper, hiding the adversary’s randomness from the
extractor can be helpful in other contexts to prove separation results.
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2. (Extraction.) The game runs an instance of K, giving it the transcript of all
queries in the initial run and the produced (Y ,π) as input. K may repeatedly
make one type of query invoke in response to which the game runs a new
invocation of A on the same randomness ω that it chose for the initial run.
All queries made by these instances are forwarded to K who can reply to
them.

3. K wins the game if it can output a vector of witnesses w that match the
statements Y of the initial run, i.e. for all i we have R(wi, Yi).

The following theorem confirms that the strong Fiat-Shamir transformation
yields proof systems that satisfy the notion we described above.

Theorem 1. Let Σ be a sigma protocol with a challenge space that is expo-
nentially large in the security parameter, special soundness and special honest
verifier zero-knowledge. Then sFS(Σ) is zero-knowledge and simulation sound
extractable with respect to expected polynomial-time adversaries.

Applications. The Schnorr and Chaum-Pedersen protocols are clearly both sigma
protocols with special soundness and special honest verifier zero knowledge so
Theorem 1 applies and the sFS versions of these protocols are SSE proofs. For
disjunctive Chaum-Pedersen, the challenge is the actual c obtained from the
verifier and the response is the tuple f = (f0, f1). This is a sigma protocol with
special soundness and almost special honest verifier zero knowledge — almost,
because in our definition the simulator chooses c, f independently and uniformly
at random yet if c 6= c0 + c1 then the resulting proof will not verify, patched
oracle or not. We could fix this by not sending c1 in the response and having the
verifier recompute c1 = c− c0. We will ignore this point as it is easy to see that,
if the simulator chooses c, f at random and then adjusts c0, all relevant theorems
still hold. In particular, the sFS transformation of disjunctive Chaum-Pedersen
is still a simulation-sound extractable proof.

Encrypt + PoK.
With this notion we can restore the folklore result that appending a PoK

to an IND-CPA scheme gives a NM-CPA one, if the PoK is simulation-sound
extractable. For space reasons the proof is in the appendices.

Theorem 2. Let E be an IND-CPA secure encryption scheme with respect to
expected polynomial-time adversaries and P be a simulation-sound extractable
NIZK-PoK for the encryption relation. Then EP is non-malleable (NM-CPA)
secure.

5 Ballot Privacy in Helios

In this section we propose a modification to Helios and prove that it satisfies
ballot privacy in the model of single-pass voting of Bernhard et al. [17].

Single-Pass Schemes. A single-pass voting scheme is a protocol consisting of
the following algorithms and execution protocol for a set V of voters, a set T
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of trustees and a bulletin board B. The class of single-pass schemes includes
not only Helios [5] but also several other cryptographic voting schemes [29–31].
Single-pass voting models two of the most popular approaches to cryptographic
voting, homomorphic tallying and mix-nets. Voters need only read a single mes-
sage off the board (the election specification and public keys) and post a single
message (their ballot) in return. We assume some underlying voter authentica-
tion mechanism.7

Setup(1λ) is an algorithm to create public parameters for the election and secret
ones for all trustees.
Setup produces one public output Y known as the public key of the election
and a secret output xi for each trustee Ti in the set of trustees T . The secret
outputs of all trustees together are known as the secret key of the election.

Vote(id, v, Y ) is a probabilistic algorithm run by voters to prepare their votes
for submission. It takes as input a voter’s identity id, a vote v and public
information Y and outputs a ballot s← Vote(id, v, Y ).

Validate(b, s) models the algorithm run by the bulletin board during voting. Its
inputs are the current board state b and the submitted ballot s. It returns 1
if the submission is deemed valid (given the current state of the board) and
0 otherwise.

Tally(b) is a tallying protocol that is run by the trustees. Its inputs are the board
so far and the private data kept by the trustees from the setup phase.

Result(b) is a deterministic algorithm that takes a bulletin board b of a completed
election and returns the result of the election, or a special symbol ⊥ if the
board does not contain a valid result.

A single-pass scheme is executed as follows.

1. Setup phase. The trustees run the Setup algorithm and post the public key
Y to the bulletin board.

2. Voting phase. Each voter may proceed as follows or abstain. He reads public
key Y off the board and computes a ballot s← Vote(id, v, Y ) where id is his
identity and v is his vote, and submits s to the board.
The board runs Validate(b, s) on every submission it receives and appends
valid ones to its state.

3. Tallying phase. The trustees run the Tally protocol and may post to the
board.

A single-pass protocol is correct w.r.t. a result function ρ if as long as everyone
follows the protocol, with overwhelming probability (in the security parameter)
none of the algorithms abort, Result returns a result when executed on the board
at the end of the tallying phase and this result corresponds to ρ evaluated on
the votes cast by the voters.8

7 In the election of the president of UC Louvain [6] using Helios, authentication was
handled by the university’s existing infrastructure. As such it escapes cryptographic
modelling and we choose not to model authentication (in particular we do not wish
to assume a PKI).

8 One may also want ρ to operate on (v, id) pairs: in the Helios election at UC Louvain,
votes from students, faculty and staff were weighted differently.
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Ballot Privacy. We base our definition of ballot privacy on previous work
in this area by Bernhard et al. [17, 32]. Ballot privacy is defined by means of a
cryptographic indistinguishability game. The new feature of our definition is that
it can deal with dishonest trustees; we introduce a simulator to handle tallying
in this case.

Definition 5 (Ballot Privacy). A single-pass protocol for n trustees and any
number of voters has ballot privacy against up to m < n dishonest trustees if
there is a simulator S such that for any efficient adversary A, the advantage
Pr[A wins ] − 1/2 against the following indistinguishability game is negligible
(as a function of the security parameter). The simulator S is given black-box
access to the adversary A and may invoke further copies of A using the same
randomness as was used in the main run in the security game. We assume
static corruption of trustees: the sets of honest and dishonest trustees are fixed
in advance. The adversary can adaptively choose voters to be honest or dishonest,
however.

Setup phase. The challenger picks a bit β ← {0, 1} uniformly at random. He
sets up two bulletin boards L and R. The adversary is given access to either
L if β = 0 or to R if β = 1.
The trustees jointly run the Setup protocol, the challenger playing the honest
trustees and the adversary, the corrupt ones. This produces some output Y
on the visible board. The challenger then copies Y from the visible board to
the hidden one. If the setup phase fails to complete, the adversary loses the
game.

Voting phase. The adversary may make two types of queries.

Vote(id, vL, vR) queries. The adversary provides a voter identity id and
two votes (vL, vR). The challenger runs bL ← Vote(id, vL, Y ) and bR ←
Vote(id, vR, Y ), where Y is the public key of the election that can be
computed using Keys on the public information on the board from the
setup phase.
The ballots bL and bR are submitted to the corresponding boards which
process them normally (run Validate and append the ballot if it passes
validation).

Ballot(id, b) queries. These are queries made on behalf of corrupt voters.
Here the adversary provides a ballot b. The challenger first submits b to
the board visible to the adversary, which validates it and appends it if
validation is successful. If the ballot successfully validates on the visible
board, the challenger also submits the ballot to the invisible board which
again validates the ballot and appends it if successful.

Tallying phase. If the adversary sees the L board (β = 0) then tallying can
take place as normal. The trustees execute the Tally protocol, the challenger
playing the honest ones and the adversary, the dishonest ones.
If the adversary sees the R board, the challenger starts up the simulator S
and passes it both the L and R boards and the state of the honest trustees.
In the random oracle model, the simulator is responsible for the random
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oracle from this point onwards (and gets a list of all previously queried
input/output pairs). The simulator acts on behalf of the honest trustees
from now onwards and may post to the board.

At the end of the game the adversary may make a guess of β and wins if his
guess is correct.

Helios as a Single-Pass Scheme. We describe our proposed, fixed Helios
protocol in the language of single-pass voting schemes. It is identical to the
current version of Helios except for two changes:9

– All weak proofs are replaced with their strong counterparts, i.e. the state-
ments (ciphertexts (R,S), public key Y and generator G) are hashed as
well.10

– Ballots are rejected by the board if they contain repeated ciphertexts.

Setup We assume that a cyclic group G of order prime q with generator G is
fixed and public. We also assume that the election parameters (names of can-
didates, election type i.e. approval or single-choice etc.) are fixed and public.
Each of the n trustees Ti picks a random secret key xi ← Zq and computes a
public key Yi = Gxi . Ti then computes a strong Schnorr proof of knowledge
πi of an xi such that Gxi = Yi and posts (Yi, πi) to the bulletin board. The
actual election public key is Y =

∏
1≤i≤n Yi which can be computed from

the values on the board.

Vote The voter creates a ballot by encrypting each of his choices as an expo-
nential ElGamal ciphertext, i.e., to encrypt a vote v he chooses a random r
and computes R = Gr, S = Gv · Y r. He then creates a disjunctive Chaum-
Pedersen proof π = (c0, c1, f0, f1) that his ciphertext contains an encryption
of 0 or 1. If the election specification contains further rules, for example that
voters may pick at most one candidate in each question, the voter may have
to complete further proofs. A more detailed description of Helios ballots
and the process by which the disjunctive proofs are made is in Appendix B.
In our proposed Helios, all the voters’ proofs are strong Fiat-Shamir proofs.

Validate The bulletin board accepts a ballot if it is of the correct format, i.e.
the number of ciphertexts and proofs match the election parameters, and
all proofs verify. Furthermore, a ballot is invalid if any of the ciphertexts
(R,S) in this ballot (including the implicit sum-ciphertext, if overall proofs
are present) have been used in any previous ballot, either explicitly or as an
implicit sum-ciphertext, if overall proofs are used.

9 All proofs used in Helios currently include the commitments as part of the proof
representation. A third but minor change is that we remove these commitments in
order to obtain more compact proofs. This has no security impact, though.

10 A potentially simpler solution would be to use, instead of Y and G, the election id
that is computed as soon as a Helios election is freezed, which is a hash of all public
election parameters, including the public key and group description but also the list
of candidates, ballot posting URL, . . .
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Tally Each trustee first checks that the board is valid so far, i.e., that each
ballot verifies and that no ciphertexts (explicit or implicit) are repeated. If
these checks fail, the trustee refuses to tally.
The following procedure is repeated once for every candidate or question. The
trustee Ti computes the result-ciphertext (RΣ , SΣ) =

(∏
V ∈V RV ,

∏
V ∈V SV

)
.

He produces a decryption factor Di = (RΣ)xi and proves it correct with a
strong Chaum-Pedersen proof of knowledge πDi of an xi such that Yi = Gxi

and Di = (RΣ)xi . The hash is taken as H(G, Yi, D,RΣ , SΣ). The trustee Ti
then posts the pair (Di, π

D
i ) to the board.

To compute the actual tally t, any trustee can compute T = SΣ/
∏

1≤i≤nDi.
To extract t, he takes the discrete logarithm of T which he can do efficiently
as t ≤ |V|.

Result Verify all proofs on the board and return the result(s) t (for each ques-
tion) on the board if verification succeeds, otherwise return ⊥.

One can inspect the algorithms to deduce that if everyone acts honestly, an
election will run correctly.

Theorem 3. In the random oracle model, the modified Helios described above
satisfies ballot privacy against up to m = n−1 dishonest trustees, assuming that
DDH is hard in the underlying group.

6 Conclusion

The prominence of Helios (it has been used in several real elections, notably in
the election of the IACR board of directors) justifies the level of attention it
has recently received. Results are divided between finding attacks against ballot
privacy (e.g. the method of casting related ballots [23, 33] which we further refine
in this paper) and proposing modifications that enable rigorous security proofs
[23, 17, 34]. Our paper seems to be the natural convergence point. We identify the
use of weak Fiat-Shamir proofs as a source of attacks much stronger than all those
previously proposed: we have presented new and unforeseen consequences of
these weak proofs and we have shown that switching to their strong counterpart
allows for a proof of ballot secrecy for Helios, and provides a crucial assumption
on which existing verifiability analyses of Helios rely [34]. In the process, we
have made several conceptual contributions: we have defined simulation sound
extractability in the random oracle model, proved that the strong Fiat-Shamir
transformation yields secure non-interactive zero-knowledge proofs of knowledge,
and justified the new notion through applications that include the Enc+PoK
paradigm.

In the remainder of this section we discuss two points that naturally arise
from our work.

Usability of wFS. Our results discourage the use of wFS proofs as they may lead
to failures in the systems that employ them. Nonetheless, the transformation
works well for its original application (and its generalizations [35]) in constructing
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signature schemes from identification schemes [1], since the statement (essentially
the verification key) is fixed in advance. It is interesting to find other settings
where wFS can actually be used safely. An intriguing possibility is to exploit
malleability of wFS proofs as, for example, in the recent work of Chase et al.
[36] that relies on controlled malleability of (standard model) non-interactive
zero-knowledge proofs. A necessary first step in this direction is understanding
precisely what is the level of malleability of wFS proofs, which we leave for further
work.

Practical impact of our attacks. As Helios in its current form has been used in
real elections, a discussion of the impact of our attacks in practice is in order.
We note that our attacks have been tested and succeeded on the current version
of the Helios system on http://vote.heliosvoting.org.

Our denial of service attacks may only have an impact on future elections:
as far as we know, all Helios elections led to the successful computation of a
tally. Regarding our attack on privacy, the scale and outcome of all known real-
world elections based on Helios rule out the possibility of effectively violating
the privacy of voters through ballot copying. We also checked the 2010 IACR
bulletin board and verified that it does not contain any copied ballot.

Our most realistic new attack challenges the verifiability of elections: we
showed that corrupted authorities colluding with a single voter can submit an
encryption of an arbitrary (positive or negative) number of approvals for any
candidate, and that this encryption is indistinguishable from a normal one. This
attack could have a decisive impact on approval elections, where the addition of a
reasonable number of votes for a single candidate can easily remain undetected.

Many important Helios elections did not use approval voting, though (e.g.,
the UCL president election and the IACR 2010 election): in those elections,
voters were only allowed to select a limited number of candidates. The capability
to submit a single malicious ciphertext has a much more limited effect in that
case, due to the need to produce an overall proof of the validity of the ballot
besides the individual 0/1 proofs. In this context, two possibilities are left to an
attacker: either (1) cheat on an individual proof, that is, if allowed to choose up
to n candidates, encrypt n votes for a single candidate, 0 for all others, and the
overall proof could still be built normally; or (2) cheat on the overall proof, that
is, select as many candidates as desired and fake the overall proof. The result
of these limited manipulations could not have changed the outcome of the two
particular elections mentioned above.

Extending our attack to more than a single ciphertext does not seem immedi-
ate. Indeed, our attack requires selecting the private key as a function of the hash
of all the commitments in one proof. As a result, building two proofs based on
different commitments would require using different election keys, which would
not be possible in a single election.

Our second most damaging attack relies on authorities that gain access to
the randomness that is used by all voters in order to encrypt their messages.
This could possibly be achieved by hiding a function that sends this randomness
in the JavaScript code sent by the Helios server to the voters for the ballot
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preparation, or by forcing server-side encryption. Though more demanding, the
effect of this attack can also be more severe as the single actively corrupted voter
now only needs to submit a regular ballot.

In all cases, including for approval elections (such as the 2011 IACR elec-
tion) for which our first attack on verifiability applies, there remain possibilities
to remove the concerns that our attacks may raise. For instance, a (possibly
independent) set of trustees could be asked to run a mixnet on the ciphertexts
posted on the bulletin board of the considered elections, which could then be fol-
lowed by the individual decryption of all shuffled ballots. An invalid ballot would
then be detected immediately, and the trustees would not be able to cheat on
the decryption of a second ciphertext.

The existence of such a possibility shows that we still are in a better situation
than the one obtained with postal voting. Here, the trustees still have a possi-
bility to demonstrate that they did not manipulate the election. That would be
much harder for postal voting, where there is no practical way for the tallying
officers to demonstrate that the tally they announce actually corresponds to the
authentic ballots.
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A The Weak Naor-Yung Transformation

The Naor-Yung transformation [26] is a generic transformation from an IND-CPA
secure encryption scheme into a IND-CCA secure one. A transformed ciphertext
consists of two ciphertexts for the same message under different keys and a non-
interactive proof that both ciphertexts encrypt the same message. To decrypt,
one first checks the proof (returning ⊥ if this fails) and then decrypts the first
ciphertext. In the security proof, the challenger chooses the key for the second
encryption himself; when the adversary makes decryption queries the challenger
uses his second key to answer them. In this step, he relies on the adversary
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having proven that he encrypted the same message in both ciphertexts. When the
adversary makes his challenge query, the challenger uses his IND-CPA challenge
query to get a first ciphertext, picks anything he likes for the second ciphertext
and forges the proof of equal messages. If the adversary can detect that the
challenger is cheating he can either detect simulated proofs or break IND-CPA of
the second encryption; if not then the adversary’s guess can be used to attack
the first encryption.

Consider an implementation using ElGamal as the encryption scheme and a
weak generalised Schnorr proof.

KeyGen Pick two secret keys x1, x2 and create public keys Y1 = Gx1 , Y2 = Gx2 .
Encrypt(M) Pick two random values r1, r2 and set A = Gr1 , B = Gr2 , C =

(Y1)r1 · M,D = (Y2)r2 · M . Create a proof by picking random a1, a2 and
setting commitments A1 = Ga1 , A2 = Ga2 , A3 = (Y1)a1/(Y2)a2 . Compute
c ← H(A1, A2, A3) and f1 = a1 + c · r1, f2 = a2 + c · r2. The ciphertext is
(A,B,C,D,A1, A2, A3, f1, f2).

Decrypt(E) Check the verification equationsGf1 = A1·Ac, Gf2 = A2·Bc, (Y1)f1/(Y2)f2 =
A3 · (C/D)c where c = H(A1, A2, A3).

To forge a ciphertext/proof pair one proceeds as follows.

1. Pick random values a1, a2, a3, f1, f2 ← Zq. ComputeA1 = Ga1 , A2 = Ga2 , A3 =
Ga3 .

2. Compute c = H(A1, A2, A3) and n = 1/c (mod q).
3. Compute A = (Gf1/A1)n, B = (Gf2/A2)n. Pick a random c ← Zq and set
C = Gc, D = C/((Y1)f1/(Y2)f2/A3)n.

It can easily be verified that this ciphertext verifies. The first “message” is
C/Ax1 = G(c−n.x1.(f1−a1)) whereas the second isD/x2.B = G(c−n·(f1·x1−f2.x2−a3)−n·x2·(f2−a2)).
The difference is Gn·(a1·x1−a2·x2−a3) from which we see that the two ciphertexts
encode the same message if and only if a1 · x1 − a2 · x2 = a3. This is of course
how an honest encryptor chooses his A3 but it only holds with probability 1/q
for randomly chosen values. This breaks the proof of the Naor-Yung transfor-
mation’s IND-CCA security which relies on adaptive soundness of the involved
proof. In more detail, because we can recover the “first message” as C − (Y1)a1

we can distinguish between a real decryptor who will always return this mes-
sage and the reduction, which will not. We note that hashing the ciphertexts
A,B,C,D and the public keys Y1, Y2 as well would not only defeat this attack
but also restore the security proof.

B The Helios Ballot Format

Briefly, a Helios ballot consists of additively homomorphic ElGamal [37] cipher-
texts encoding the vote and disjunctive Fiat-Shamir proofs [1] that the encoded
vote is legal. Helios ballots are encoded in a JSON format which is described in
more detail in the specification [9].
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We assume that there are m candidates standing for election. Helios allows
both approval voting and elections where a voter may pick at most a fixed
number k of candidates where 1 ≤ k ≤ m. A valid vote is thus a vector in
{0, 1}m with at most k non-zero entries. (Actually Helios elections can consist
of several independent “questions”, for example to elect candidates to several
offices. For simplicity we describe an election with one question only.)

To create a ballot, a voter first obtains the ElGamal public key Y of the
election and computes the following values where G is the generator of the group
in question.

Ciphertexts For each bit v ∈ {0, 1} of the vote (for i = 1 to m), the voter
picks a random value r and computes the ciphertext (R,S)← (Gr, Gv ·Y r).

Individual proofs For each ciphertext the voter proves that it contains 0 or
1. This is done by a disjunctive proof over v ∈ {0, 1} of a value r such that
R = Gr and S/Gv = Y r.
Let v be the chosen vote and v := 1− v.
1. Simulate a proof for v: pick cv, fv ← Zp and set Av ← Gfv/αcv , Bv ←
Y fv/(S/vG)cv .

2. Pick a nonce av ← Zp and compute commitments Av ← Gav , Bv ← Y av .
3. Compute the challenge c ← H(A0, B0, A1, B1). Note that neither the

actual ciphertext (R,S) nor the election public key is hashed.
4. Compute the partial challenge cv ← c − cv and complete the proof for

case v as fv ← av + cv.r.
The proof is π = (A0, B0, A1, B1, c0, c1, f0, f1).

Overall proof If the election rules stipulate that a voter may only choose up
to k of m candidates, the voter additionally computes the homomorphic sum
of all his ciphertexts and executes a further proof on this sum, proving that
the contained plaintext is in {0, . . . , k} (rather than {0, 1}). This is done
similarly to the individual proofs, simulating proofs for all values except the
correct one.

The final ballot consists of the list of ElGamal ciphertexts, the list of individ-
ual proofs and if required, the overall proof. We write b = ((c1, . . . , cm) , (π1, . . . , πm) [, πΣ ])
to denote a Helios ballot where ci = (Ri, Si) and πi is as described above.

Verification For each ciphertext with proof

(R,S, π = (A0, B0, A1, B1, c0, c1, f0, f1))

check the following equations

Gf0 = A0 ·Rc0 (1)

Gf1 = A1 ·Rc1 (2)

Y f0 = B0 · Sc0 (3)

Y f1 = B1 · (S/G)c1 (4)

c0 + c1 = H(A0, B0, A1, B1) (5)
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If an overall proof πΣ is present, compute the homomorphic sum of all ci-
phertexts (RΣ , SΣ) and check πΣ against this (for range {0, . . . , k}):

∀i : Gfi = Ai ·Rci (6)

∀i : Y fi = Bi · (S/Gi)ci (7)
k∑
i=0

ci = H(A0, B0, A1, B1, . . . , Ak, Bk) (8)

C Proofs Related to Helios Ballot Privacy

C.1 Theorem 2: IND-CPA + SSE-PoK gives NM-CPA

We use a theorem of Bellare and Sahai [38] that NM-CPA is equivalent to the
following indistinguishability-based game in which the adversary may make one
parallel decryption query:

Definition 6. The following game is the IND version of NM-CPA.

1. The challenger runs (pk, sk)← KeyGen and gives pk to the adversary.
2. The adversary picks two messages m0,m1 and hands them to the chal-

lenger who picks a bit β ← {0, 1} and returns an encryption c∗ of mβ .
3. The adversary may submit a vector c = (ci)i of ciphertexts. For each
ci, if ci = c∗ (the challenge ciphertext) then the challenger returns ⊥,
otherwise he returns Dec(sk, ci).

4. The adversary may submit a guess β′ for β.

The adversary wins if β′ = β and his advantage is defined as |Pr[β′ =
β]− 1/2|.

Note that while the adversary may submit as many ciphertexts as he wishes,
he may not submit them adaptively, i.e. he may not wait to see the decryption
of c1 before choosing c2.

Proof. (Theorem 2) We begin with a game-hop from the original game to a game
in which, on receipt of (m0,m1), we create the E-ciphertext as before but add a
simulated P-proof. If the adversary can detect this change then he can tell real
from simulated proofs and break the zero-knowledge property of P.

We construct a reduction to IND-CPA security of E with black-box access
to the adversary. Run a copy of the simulator S for P. Obtain a public key pk
from the challenger and forward it to the adversary. When the adversary submits
messages m0,m1, we submit them to our challenger to get a challenge ciphertext
E. We use S to simulate a proof π for E and return the pair c∗ = (E, π) to the
adversary. We let S handle all random oracle queries made by the adversary. If
we can extract the witnesses to the adversary’s ciphertexts (as we no longer have
the secret key to answer the decryption query) then the reduction is identical
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from the adversary’s point of view to the previous game. Therefore, we can
simply forward the adversary’s guessed bit to our challenger to break IND-CPA
of E.

At the moment when A outputs his decryption query, that we can view
as vectors (Y ,π) of E-ciphertexts and P-proofs, we need to build an adaptive
prover A′ that we can hand to the extractor K along with a tarnscript of an
execution that produced exactly (Y ,π). A′ simulates a copy of A, giving it as
input the public key pk that we got from our challenger. Random oracle queries
of A we forward to K and return the result. When our simulated A makes a
challenge query, if the execution so far has been identical to the one of the
“main” run of A against our reduction, A′ submits the challenge ciphertext E
that we got earlier as a Simulate call to K to get a π′ and returns (E, π′) to A. If
the current execution of A does not match the main one (because K has forked
A′ before the challenge query), A′ takes m0,m1, draws a fresh bit β′, encrypts
mβ′ to get E′ and asks this as a Simulate call to K, then returns the ciphertext
and proof to the adversary.

We construct a transcript for K from the S-queries of A in the main execution
including the one Simulate query that A′ would have used to get the proof for
the challenge ciphertext. We can now run K on this transcript and on A′ and
obtain the witnesses to Y , allowing us to answer the decryption queries of the
main run of A and complete the reduction.

C.2 Proof of Theorem 3

The rest of this subsection is devoted to a proof of Theorem 3. Assuming that
DDH is hard, we know that ElGamal encryption is IND-CPA and therefore,
ElGamal+SSE-PoK is NM-CPA by Theorem 2.

We first give the simulator S. S is called by the game if β = 1, i.e. the R
board is visible but the adversary expects to see the result matching the L board.

The Simulator. The first task of S is to retrieve the secret keys xT of all trustees.
S gets the keys of all honest trustees as part of its input. For corrupt trustees, S
launches a new instance of the adversary once for each such trustee and uses the
adaptive PoK property of this administrator’s proof of knowledge of his secret
key to extract said key. These proofs must exist on the board as the game would
otherwise have aborted at the end of the setup phase. Note that S only has to
run the simulated instances until the end of the setup phase and that until this
point, the game itself (which is outside the control of S) only simulates honest
trustees, which S can do as well as it has their state in its input.
S can now decrypt all the adversary’s ballots and obtain the result rL of the

left board. S picks one honest trustee T ′, computes the correct decryption shares
DT for all other trustees (as S has their secret keys) and solves the equation
GrL = βR/

∏
T ∈T DT for DT ′ . S forges a proof that this decryption share is

correct w.r.t. YT ′ and posts this share and proof; all other honest trustees tally
correctly.
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Indistinguishability. Let G0 be the ballot privacy game in the case that β = 0
and G1 be the same game when β = 1. We wish to show that G0 and G1 are
computationally indistinguishable.

Let GA be G0 where all proofs made by honest parties are made using the
ZK simulator. G0 and GA are computationally indistinguishable: we can switch
the proofs from real to simulated, one by one. If the adversary can detect any
of these steps then we can use him to construct an adversary that breaks the
zero-knowledge property of an adaptive proof.

Let GB be GA with the following change: let T ′ be one of the honest trustees.
When T ′ is asked to tally, we extract all the adversary’s secret keys in the same
manner as the simulator. Then we decrypt all the adversary’s ballots to get his
votes and use these and the honest votes, which we know already, to compute
the correct tally r. We compute the ciphertext of the result (RR, SR) and all
decryption shares for trustees T 6= T ′ using the secret keys and set DT ′ = SR ·
G−r/

∏
T 6=T ′ DT . The adversary has no choice over the decryption shares that

he outputs: if he creates anything other than the correct share, which is uniquely
determined by the public key of the trustee in question and the ciphertext of the
result, then he cannot provide an adaptive proof as the underlying statement
is false. As we have not changed any values output to the adversary, only the
method by which they were computed, GB is indistinguishable from GA.

Let GC be GB with the change that we put the right instead of the left ballots
on the board for honest voters. To show that the adversary cannot tell GB from
GC we use a hybrid argument and a reduction to NM-CPA of the encryption
scheme used in our proposed Helios, “ElGamal with individual strong proofs”.

Number all ciphertexts made by the game on behalf of honest voters in the
order that they are created. Suppose that an adversary can tell the difference
when the i-th ciphertext is switched from “left” to “right”. Let R be the following
reduction to the indistinguishability with one parallel decryption query variation
of the NM-CPA game, for the encryption scheme “ElGamal encryption with
individual 0/1 proofs”.

– Obtain a public key Y from the challenger and set the public key of our
designated trustee T ′ such that the election public key becomes Y . That is,
we set YT ′ = Y/

∏
T 6=T ′ YT . The distribution of this key is uniform, as the

key was in all previous games so the adversary cannot detect a difference
here.

– Simulate the game GB (using “left” votes) until i− 1 ciphertexts have been
created.

– To create the i-th ciphertext, use the challenge oracle on the left and right
plaintexts determined by the corresponding votes.

– Continue simulating the game but use the “right” votes from now on.
– In the tallying phase, all honest adminstrators except T ′ tally normally.

Submit all the adversary’s ciphertexts (with their individual proofs) for all
questions to the decryption oracle in one parallel decryption query. This
gives the adversary’s votes; together with the honest votes compute the
“left” result rL. T ′ creates his decryption share DT ′ as in GB in order to
produce the result rL.
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– Forward the adversary’s guess at the secret bit to the NM-CPA challenger.

If the challenger chose the left message, the i-th ciphertext the adversary
sees is a “left” one, otherwise it is a “right” one. All other elements are handled
the same way as in GB so R breaks NM-CPA with the same advantage as the
adversary distinguishes the hybrids.

Once all ciphertexts are switched to “right” ones, this is exactly game GC .
We can now switch back all simulated proofs to real ones, except the one in the
decryption share of T ′. This is again undetectable by the adversary. Once this
is done, the adversary is playing against game G1 as we act identically to the
simulator S.

This completes the proof that G0 and G1 are indistinguishable.
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