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Abstract. In 2014, the orthogonalized integer representation was pro-

posed independently by Ding et al. using genetic algorithm and Fukase et

al. using sampling technique to solve SVP. Their results are promising. In

this paper, we consider sparse orthogonalized integer representations for

shortest vectors and propose a new enumeration method, called orthog-

nalized enumeration, by integrating such a representation. Furthermore,

we present a mixed BKZ method, called MBKZ, by alternately apply-

ing orthognalized enumeration and other existing enumeration methods.

Compared to the existing ones, our methods have greater efficiency and

achieve exponential speedups both in theory and in practice for solving

SVP. Implementations of our algorithms have been tested to be effective

in solving challenging lattice problems. We also develop some new tech-

nique to reduce enumeration space which has been demonstrated to be

efficient experimentally, though a quantitative analysis about its success

probability is not available.

Key words: Lattice-based, SVP, sparse representations, enumeration,

BKZ

1 Introduction

A lattice L is a discrete additive subgroup of Rm. It is generated by n linearly

independent vectors b1, . . . ,bn in Rm, and the integer n is the dimension of L.

The discreteness of lattices implies that there exists a nonzero vector with the

shortest Euclidean norm in each lattice. There are two famous computational

problems in lattices:

− Shortest Vector Problem (SVP): Given a basis of lattice L, find a shortest

nonzero vector in the lattice.

− Closest Vector Problem (CVP): Given a basis of lattice L and a target

vector, find a lattice vector that is closest to the target.
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Over the past two decades, these two hard problems SVP and CVP have

been of prime importance to the lattice cryptography. There are two main types

of algorithms for solving SVP and CVP. One is the exponential space algo-

rithms, and the other is algorithms with polynomial space. The first exponential

algorithm much attracted cryptographic community is the randomized sieve al-

gorithm proposed in 2001 by Ajtai, Kumar and Sivakumar [3]. The sieve method

reduces the upper bound of the time to 2O(n) at the cost of 2O(n) space. It has

been developed into some improved sieves including heuristic methods in recent

years [26, 27, 34]. Another important work is the deterministic algorithm with

Õ(22n) time and Õ(2n) space given by Micciancio and Voulgaris [24]. The lat-

est progress is the randomized algorithm with O(2n) time using the discrete

Gaussian sampling method [1], which is the first randomized algorithm(without

heuristic assumption) faster than the deterministic algorithm of [24].

For the class of polynomial-space algorithms, two popular techniques are

used, one is lattice reduction, including the famous LLL alogrithm [21], HKZ

reduction [18] and BKZ reduction [31]. The other important technique is enu-

meration technique which is an exact algorithm to find shortest vectors in a

reduced space. These two techniques are complementary in the following sense.

Usually, a reduction cannot output shortest vectors in high dimensional lattices,

it is used to find vectors that are sufficiently short to ensure an enumeration

search to work efficiently. Whereas the enumeration technique works as a sub-

routine and applies to sublattices of lower dimension repeatedly to greatly im-

prove the output quality of reductions. The first polynomial-space algorithm

was provided by Kannan [18] in 1980s. This theoretical enumeration algorithm

is based on LLL-reduced basis and HKZ reduction and achieves worst-case time

complexity of 2O(n logn). A more accurate analysis on Kannan’s algorithm was

given by Helfrich [16], with the complexity of d
d
2+o(d); the complexity bound was

further improved to d
d
2e+o(d) by Hanrot and Stehlé in [13] (d is the dimension

of the lattice and e represents the base of natural logarithm). Another popular

polynomial-space algorithm is the Schnorr-Euchner enumeration based on the

BKZ reduction, and its enumeration complexity is estimated by Gama, Nguyen

and Regev in [11] as
∑n
l=1 q

(n−l)l/22O(n)(q is a constant depending on the basis).

Although the complexity of the Schnorr-Euchner enumeration seems higher than

that of Kannan’s, it is in fact a widely used practical method. For example, it is a

fundamental tool in the popular mathematical library NTL [33]. It is noted that

many security assessments [22, 25, 28, 32] and SVP searching methods [14, 20] of

lattice cryptosystems are based on BKZ implementation of NTL. Therefore, a

further improvement to the enumeration technique is of significant importance

for SVP searching. Gama, Nguyen and Regev proposed an improved enumera-

tion using the extreme pruning technique and the speedup is exponential [11].

Chen and Nguyen used the technique to design BKZ 2.0 which improves the
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BKZ algorithm [7]. Further recent improvements of BKZ include methods based

on progressive strategy [4] and result predictions [23].

The main purpose of our paper is to propose a new enumeration method

called the othogonalized enumeration. Our design is motivated by the integer

sparse representation of the shortest vector with respect to the Gram-Schmidt

basis. It is observed that for a BKZ-reduced basis, the norms of the othogonalized

basis tend to decrease quickly as the component index gets large. This indicates

that for a shortest lattice vector, its (rounding) coefficients with respect to the

othogonalized basis are likely to be zero when their indices are not big enough.

The idea of using sparse representation of shortest vectors with respect to the

Gram-Schmidt basis can be traced back to Schnorr’s Random Sampling Algo-

rithm [30]. This idea was expanded independently by Ding , Zhu, and Wang [8] in

a genetic algorithm and by Fukase and Kashiwabara [10] in a sampling algorithm.

Genetic algorithm was initiated by Holland [17] in 1975, and it has been used

to solve optimization problems such as timetabling, scheduling, and engineering

problems [6, 9, 12]. The essence of the method is to transform a shortest lattice

vector into a new integer vector corresponding to the Gram-Schimdt orthogonal

basis. The new integer vector is sparse in the sense that most of its components

are zero. Moreover, this kind of sparse integer vectors have some special prop-

erties such as those nonzero components are mostly ±1 and they are located at

the lower segment. With the help of the sparse representations, vectors act like

chromosomes to start a genetic algorithm which performs searching of short-

est lattice vectors successfully. Fukase and Kashiwabara [10] extended Schonrr’s

random sampling technique by considering integer sparse representation (also

known as natural number representation); they combined this technique with

restricting reduction techniques to solve SVP challenge in dimensions that are

much higher than ever.

Our contributions. Our main contribution is to give a more efficient enumer-

ation utilizing the sparse integer representation of shortest vectors. Firstly, we

study the orthogonalized integer representation of the shortest vector. This rep-

resentation enables us to describe a very natural enumeration method which is

called the orthognalized enumeration. This enumeration takes a new input pa-

rameter k as a measure to control the number of nodes needed for enumeration.

To be more specific, the main purpose of our method is to reduce the number of

enumeration trials by considering some relationship between the sparse integer

(rounding coefficients) vector y = (y1, ..., yn) under the Gram-Schmidt basis B∗

and the (coefficients) vector x = (x1, ..., xn) with respect to the lattice basis B

of a shortest lattice vector to be searched. By choosing a theoretical estimated

threshold k and setting yi = 0 (1 ≤ i ≤ n − k) with high probability, we are

able to cut the searching space for the shortest vector v into (xn−k+1, ..., xn).

For every (xn−k+1, ..., xn) and its corresponding (yn−k+1, ..., yn), we can com-
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pute the unique values of xi,∀i = 1, ..., n− k. This means that, our enumeration

only searches k-dimensional subspace instead of that for n-dimensional space

in those previous methods (e.g., full enumeration, linear enumeration, extreme

enumeration etc). Another difference between our technique and other existing

enumeration methods is that the integer sparse representation technique in our

approach makes the number of nodes for enumeration to be strictly bounded

above by the parameter k. Because of these features, our method is ideal for use

in high dimension case or in the case with limited computing resources by ad-

justing the parameter k according to the actual problem’s dimension or available

computing resources. Furthermore, we propose a new BKZ method called MBKZ

by alternately using orthognalized enumeration and traditional enumeration in

this paper. By using the Monte-Carlo Simulation, we estimate the expectation

of number of nodes under different enumeration methods, and the result shows

that exponential speedup can be achieved by our new method, MBKZ. Imple-

mentation of our methods have been tested to solve challenging SVP problems

with dimension up to 121, the experimental results are also consistent with our

theoretical estimation.

We also develop an interesting technique to reduce the searching space of

enumeration with non-negligible probability. Although a quantitative analysis

about the success probability is not available at this moment, it works very well

in experiments.

The rest of the paper is organized as follows: In Section 2, we provide some

necessary backgrounds on lattice and describe the orthogonalized integer rep-

resentations. In Section 3, we introduce our basic orthogonalized enumeration,

and estimate the success probability. Section 4 introduces the details of MBKZ.

A further improvement of enumeration is given in Section 5. Finally a conclusion

is given in Section 6.

2 Preliminaries

Lattice. A lattice L is defined as the set of all integral combinations of n lin-

early independent vectors b1, . . . ,bn in Rm(m ≥ n), these linearly independent

vectors are a basis of L:

L(b1, . . . ,bn) = {
n∑
i=1

xibi, xi ∈ Z}.

The integer n is the dimension of L and vol(L) is the volume or determinant of

L. A basis of L is not unique, but all bases have the same number of elements

and the same volume vol(L). When m = n, the lattice is called full-rank.

Shortest vector. A non-zero vector with the smallest Euclidean norm in a

lattice L is called a shortest vector of L. The length of a shortest vector is also
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called the first minimum and written as λ1(L). Let ‖v‖ denote the Euclidean

norm of a vector v ∈ Rm, then λ1(L) = minv∈L\{0} ‖v‖.
Gram-Schmidt orthogonalization. The Gram-Schmidt orthogonalization is a

method for orthogonalizing a set of vectors in an inner product space, most

commonly the Euclidean space Rn. For a basis B = [b1, . . . ,bn], the Gram-

Schmidt process generates an orthogonal set B∗ = [b∗1, . . . ,b
∗
n] as follows:

b∗i = bi −
i−1∑
j=1

µijb
∗
j . (1)

where µij =
〈bi,b

∗
j〉

〈b∗j ,b∗j〉 , for 1 ≤ j < i ≤ n.

The Gram-Schmidt procedure projects each bi to the space orthogonal to

the space spanned by b∗1, . . . ,b
∗
i−1, and keeps the determinant unchanged,

det(B) =
∏n
i=1 ‖b∗i‖.

BKZ. BKZ is a lattice reduction technique with blockwise algorithms [31]. It

applies successive elementary transformations to an input basis, and outputs a

BKZ-reduced basis whose vectors are shorter and more orthogonal. More specifi-

cally, for a blocksize β ≥ 2 and a basis B = (b1, . . . ,bn) of a lattice, it firstly ap-

plies LLL to B and then applies enumeration to each lattice L[j,min(j+β−1,n)] gen-

erated by the block B[j,min(j+β−1,n)] = [πj(bj), πj(bj+1), · · · , πj(bmin(j+β−1,n))],
where πj(x) =

∑n
i=j

〈x,b∗i〉
〈b∗i,b∗i〉b

∗
i is the orthogonal projection on span(b1, · · · ,bj−1)⊥.

As a result, an integer vector v = (vj , · · · , vmin(j+β−1,n)) is found such that

‖πj(
∑min(j+β−1,n)
i=j vibi)‖ = λ1(L[j,min(j+β−1,n)]). After finding vectors that are

shorter than any base vectors, LLL is called to update the basis. These steps

would be repeated several times until no vector shorter than the basis vectors

can be found in each block, and the final basis is the output. It is observed that

the output basis seems to obey ‖b∗i‖/‖b∗i+1‖ ≈ q with q depending on the

quality of BKZ, see also [11]. All of the lattice bases B discussed in this paper

are BKZ-reduced bases unless specified otherwise.

In the rest of our discussion, we shall use the same set of heuristics as that

in [11]. These heuristics are listed as follows:

Gaussian Heuristic. The Gaussian Heuristic is used to estimate the number

of vectors in a lattice. It assumes that the number of points in a set is related

to its volume. Given a lattice L and a (measurable) subset S ⊆ Rm , the

number of points in L ∩ S is approximately vol(S)/vol(L).
Heuristic 2. The distribution of the coordinates of the shortest vector v, when

written in the normalized Gram-Schmidt basis (b∗1/‖b∗1‖, ...,b∗n/‖b∗n‖)
of the input basis, looks like those of a uniformly distributed vector of norm

‖v‖.
Heuristic 3. The distribution of the normalized Gram-Schmidt orthogonal-

ization (b∗1/‖b∗1‖, ...,b∗n/‖b∗n‖) of a random reduced basis (b1, . . . ,bn)

looks like that of a uniformly distributed orthogonal matrix.
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Orthogonalized Integer Representations. A lattice vector v can be repre-

sented as a combination of basis vectors v = Bx. According to the orthogonalized

integer representation [8, 10], x can be transformed into an integer vector y with

respect to B∗ through the following manner: the basis B = [b1, . . . ,bn] and its

Gram-Schimdt orthogonalization B∗ = [b∗1, . . . ,b
∗
n] are related by B = B∗R

where R = [Rij ] with Rij =


µij if 1 ≤ j < i ≤ n
1, if 1 ≤ i = j ≤ n
0 if 1 ≤ i < j ≤ n.

For any vector v ∈ L(B),

assume that v = Bx with = (x1, . . . , xn). We define y to be the rounding integer

vector of Rx. More precisely, we first define a vector t = (t1, . . . , tn) ∈ Rn as

ti =


0 for i = n,

n∑
j=i+1

µj,ixj for i < n.

and compute y = (y1, . . . , yn) ∈ Zn as,

yi = bx∗i e = bxi + tie = xi + btie, for 1 ≤ i ≤ n.

Since xi ∈ Z, we have established a one-to-one correspondence between x

and y, and also a one-to-one correspondence between v and y:

y
y=x+bte←−−−−−→ x

v=Bx←−−−→ v.

We shall call y the orthogonalized integer representations in the rest of this

paper.

3 Enumeration

In this section, we first recall Full Enumeration and Extreme Prunging Enumer-

ation. We shall present our main contribution, the Orthogonalized Enumeration,

in the latter part of this section.

3.1 Full Enumeration

Given a Gram-Schmidt orthogonalized basis B∗ and an upper bound R, the full

enumeration method [31] enumerates xn, xn−1..., x1 of x successively under the

following constraints:

x2n‖b∗n‖2 ≤ R2,

(xn−1 + µn,n−1xn)2‖b∗n−1‖2 ≤ R2 − (xn)2‖b∗n‖2,

(xi +

n∑
j=i+1

µj,ixj)
2‖b∗i‖2 ≤ R2 −

n∑
j=i+1

lj .
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Here li = (xi +
∑
j>i xjµj,i)

2‖b∗i‖2. We include this enumeration algorithm in

appendix A for the sake of completeness.

The number of nodes that need to be searched is determined by the size

of enumeration tree. The total number of tree nodes Ne is estimated as Ne ≈∑n
l=1Hl [11], with the summand Hl being the estimated number of nodes at

level l:

Hl =
1

2
· Vl(R)∏n

i=n+1−l ‖b∗i‖
≈ q(n−l)l/22O(n).

where Vl(R) = Rl · πl/2

Γ (l/2+1) and ‖b∗i‖/‖b∗i+1‖ ≈ q. It is noted that when

l = n/2, Hl gets the maximum value as qn
2/82O(n).

3.2 Extreme Pruning Enumeration

Extreme Pruning Enumeration improves Full Enumeration by replacing the

bound R by a serial of bounding functions R1, ..., Rn. Two strategies of choosing

bounding functions are often used. One is linear pruning with success probability

about 1/n, and the other is extreme pruning with success probability extremely

small.

The number of nodes in enumerating tree of an extreme pruning is:

Next = 1/2

n∑
t=1

VR1,··· ,Rt∏n
i=n+1−t ‖b∗i‖

,

where VR1,··· ,Rt
= Vt(Rt) · Pr

u∼Ballt
(∀j ∈ [1, t],

∑j
i=1 u

2
i ≤

R2
j

R2
t
).

Analysis given by [11] shows that (1) with well-chosen bounding functions,

the linear pruning can reduce the number of nodes searched by a factor of 1.189n

over the full enumeration; and (2) furthermore, a well-chosen extreme pruning

can achieve a speedup of 1.414n compared to the full enumeration.

3.3 Orthogonalized Enumeration Algorithm

The idea of the orthogonalized enumeration is to make use of orthogonalized

integer representations, which has been used in solving SVP in many methods

including sampling [10] and genetic algorithm [8]. However, to the best of our

knowledge, a new efficient enumeration method based on orthogonalized integer

representations has not ever been designed. It is therefore one of the purpose of

this paper to develop the orthogonalized enumeration in order to make a further

improvement for enumeration.

For the orthogonalized enumeration, we introduce a new input k to control

the number of nodes enumerated. This is one of the main differences between

our method and existing enumeration methods. By choosing a proper k and
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setting yi = 0 (1 ≤ i ≤ n − k) with high probability, an enumeration is per-

formed among (xn−k+1, ..., xn). For every (xn−k+1, ..., xn) and its corresponding

(yn−k+1, ..., yn), we can compute the unique values of xi,∀i = 1, ..., n− k under

the condition that yi = 0,∀i = 1, ..., n−k. In Algorithm 1, we present a detailed

description of Orthogonalized Enumeration.

Besides the difference in searching space, our strategy of choosing nodes to

be searched by orthogonalized enumeration is also different from others. Instead

of scoping a range where xi may lie in the existing enumeration methods, we

decrease the scope of search into several nodes. In particular, enumeration for

each xi is conducted among the following two types of special values: zero point

and balance point. Zero point represents the value that makes |x∗i b∗i | smallest

and balance points are values that make |x∗i b∗i | closest to the average value

computed based on heuristic 2 and heuristic 3. It is clear that the zero point

is always unique but there are two balance points, namely the positive one and

the negative one. Note that the average value obtained by heuristics might be

erroneous, we set the tolerance bound to be 0.4 (the distance between |x∗i b∗i |
and the average value has an upper bound 0.5). If a balance point cannot make

|x∗i b∗i | close enough (according to the tolerance bound) to the average value, we

extend the balance point to the values that make |x∗i b∗i | the second closest to

the average value. This enumeration strategy ensures that there are at most 5

choices for each xi (n− k < i < n) and 3 choices for xn during the enumeration,

the latter because negative balance points are not considered for choosing xn
due to symmetry. This leads to a conclusion that a process of orthogonalized

enumeration will search at most 3 · 5k−1 nodes. This is an important routine

used by Algorithm 1 and is detailed in CPV (COMPUTE POSSIBLE VALUE)

Procedure.

Next, we give some explanation of the terms used in Algorithm 1. The vari-

able d is a vector to store the average values. Variables sv and slen are a vector

and an integer that store the shortest vector and its norm respectively. The n×n
matrix un and two vectors ylen, uvec are used to store intermediate results dur-

ing the depth first search of the enumeration process to avoid repeated calcula-

tion. In addition, the n× 5 matrix poss v and vectors poss v cnt,poss v ind

work together to store the choices for enumeration and decide which one is the

next to search. More specifically, Procedure 1 puts the choices in poss v and the

number of the choices in poss v cnt, while poss v ind indicates which choice

is the next to go.

Algorithm 1 – Orthogonalized Enumeration Algorithm

Input: BKZ-reduced basis: B, an upper bound of ‖v‖2: Rb, k

Output: the shortest vector v with ‖v‖2 < Rb
Continued on next page
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Algorithm 1 – continued from previous page

1: For the input basis B, compute Gram-Schmidt orthogonalization of it

as B∗ and µi,j as the elements of the lower-triangular matrix where

bi = b∗i +
∑i−1
j=1 µi,jb

∗
j .

2: Compute the d := [d1, ..., dn] = [R0.5
b n−0.5/‖b∗1‖, ..., R0.5

b n−0.5/‖b∗n‖].
// the average values

3: sv1×n := 0, slen := 0 // sv stores the shortest vector and slen stores

its norm

4: unn×n := 0,ylen1×n := 0,uvec1×n := 0 // store intermediate results

5: poss vn×5 := 0,poss v cnt1×n := 0,poss v ind1×n := 0 // store the

choices for enumeration and point out which one is the next for search

6: for xn = ddne, bdnc, 0 do

7: uvecn := xn
8: unn,i := xn · µn,i ∀i = 1, ..., n− 1

9: ylenn := x2n‖b∗n‖2 // a depth first search starts after recoding these

values

10: for t = n− 1, ..., 1 do

11: if poss v cntt = 0 then

12: (poss vt, poss v cntt) := CPV(t, k, dt, unt+1,t)

13: poss v indt := 1 // poss v cnt =0 means CPV procedure has

not been called, so update poss v, poss v cnt and poss v ind by

calling the procedure CPV

14: else

15: poss v indt := poss v indt + 1 // poss v cnt 6= 0 means CPV

has been called, poss v ind should be increased for the next choice

16: end if

17: uvect := poss vt,poss v indt
18: unt,i := unt+1,i + uvect · µt,i ∀i = 1, ..., t− 1

19: ylent := ylent+1 + (uvect + unt+1,t)
2‖b∗t‖2 // recording to avoid

repeated calculation

20: if t = 1 then

21: if Rb > ylen1 then

22: if slen = 0 or slen > ylen1 then

23: slen := ylen1
24: sv := uvec

25: end if

26: end if // when t = 1, the enumeration of a node is done, check

if it has a shorter norm, and always store the shortest one in sv

and its norm in slen

27: for i = t, ..., n− 1 do

Continued on next page



10

Algorithm 1 – continued from previous page

28: if poss v indi < poss v cnti then

29: t := i, break

30: else

31: poss v cnti := 0

32: end if

33: end for // find the first i where poss v indi < poss v cnti
from deep to shallow and reset all poss v cnt on the road to

switch to another branch

34: t := t+ 1 // offset the decrease in step 10

35: end if

36: end for

37: end for

38: v = sv

39: return v

Procedure 1 – CPV

Input: t, k, dt, unt+1,t

Output: a set c and its cardinality.

1: c := ∅
2: c← c ∪ {b−unt+1,te} // add the zero point

3: if t ≥ n− k + 1 then

4: c← c ∪ {bdt − unt+1,te} // add the positive balance point

5: if |dt − unt+1,t − bdt − unt+1,te| > 0.4 then

6: if dt − unt+1,t > bdt − unt+1,te then
7: c← c ∪ {bdt − unt+1,te+ 1}
8: else

9: c← c ∪ {bdt − unt+1,te − 1}
10: end if

11: end if// add the second positive balance point if the first one is not

close enough

12: c← c ∪ {b−dt − unt+1,te} // add the negative balance point

13: if | − dt − unt+1,t − b−dt − unt+1,te| > 0.4 then

14: if −dt − unt+1,t > b−dt − unt+1,te then
15: c← c ∪ {b−dt − unt+1,te+ 1}
16: else

17: c← c ∪ {b−dt − unt+1,te − 1}
18: end if

Continued on next page
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Procedure 1 – continued from previous page

19: end if// add the second negative balance point if the first one is not

close enough

20: end if// for those where t < n-k+1, only the zero point is included

21: return c, card(c)

3.4 Running Time and Success Probability Analysis

The running time of enumeration algorithm is given by:

Tnode ·N,

Where Tnode is the average amount time used in processing one node, and

N is the number of nodes needed to search. As we can see in Algorithm 1 and

Procedure 1, enumerations are restricted to (xn−k+1, ..., xn) while other xis are

directly computed. The expected number of nodes N can be computed as follows.

Let AvgNi be the average number of choices searched for xi, then AvgNi ≤ 5.

Therefore

N = 3 ·
n−1∏

i=n−k+1

AvgNi ≤ 3 · 5k−1.

For a lattice basis B = [b1, . . . ,bn] and its Gram-Schimdt orthogonalization

B∗ = [b∗1, . . . ,b
∗
n], let x∗ = (x∗1, ..., x

∗
n) be the coefficients of a shortest vector

v with respect to B∗ and set vi = x∗ib
∗
i = x∗i ‖b∗i‖ · b∗i/‖b∗i‖, we have

v =

n∑
i=1

x∗ib
∗
i =

n∑
i=1

vi.

We note that y = (y1, ..., yn) = (bx∗1e, ..., bx∗ne) is the orthogonalized inte-

ger representation of v. Under the Heuristic 2 and Heuristic 3, we can assume

that (‖v1‖, ..., ‖vn‖) is distributed uniformly. Thus the success probability of

orthogonalized enumeration with parameter k in an n-dimensional lattice can

be estimated as:

Psucc(n, k) = Pr
v∼Balln(‖b1‖)

(
∀j ∈ [1, n], b‖vj‖/‖b∗j‖e ∈ τj

)
where τj = {0} for j ∈ [1, n− k], and for j ∈ [n− k + 1, n], we have:

τj =


{bdje, b−dje, 0} if max(|dj − bdje|, | − dj − b−dje|) ≤ 0.4,

{bdjc, ddje, b−dje, 0} if | − dj − b−dje| ≤ 0.4 < |dj − bdje|,
{bdje, b−djc, d−dje, 0} if |dj − bdje| ≤ 0.4 < | − dj − b−dje|,
{bdjc, ddje, b−djc, d−dje, 0} if min(|dj − bdje|, | − dj − b−dje|) > 0.4.
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By using Monte-Carlo Simulation, we obtain relationships between the lattice

dimension n (ranging from 40 to 130) and success probability Psucc(n, k) of the

orthogonalized enumeration for each k = 8, 9, · · · , 20. The results are displayed

in Figure 1.

Figure 1. Relationships between n and Psucc(n, k) for each k = 8, 9, · · · , 20, the Hori-

zontal Axis is for n and the Vertical Axis for Probability

3.5 A Comparison of Orthogonalized Enumeration and Existing

Enumerations

The number N and probability Psucc(n, k) for the orthogonalized enumeration

obtained in the previous section gives us expected number of nodes needed to

search an n dimensional basis using the orthogonalized enumeration, namely

N/Psucc(n, k). It is remarked that a large k is not always a good choice for

maximizing enumeration efficiency. There is a proper range for k that is suitable

for enumeration with certain dimension n. For example, k ≤ 10 when n = 90,

k ≤ 13 when n = 100 and k ≤ 16 when n = 110. By studying behavior with

a proper k we can get the expected number of nodes needed to search an n

dimensional basis using the orthogonalized enumeration, denoted as North. We

also estimate the expected numbers of nodes when using full enumeration, linear

pruning enumeration and extreme pruning enumeration, and denote them Nfull,

Nlinear, Nextreme. We depict the comparison in Figure 2.

Compared to full enumeration, linear pruning enumeration and extreme prun-

ing enumeration achieve a speedup of 1.189n and 1.414n by using a well-chosen

strategy, while our experimental data shows that the orthogonalized enumera-
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Figure 2. Relationship between Dimension n and Expected Number of Nodes Needed

for Different Enumeration Methods, the Horizontal Axis for n and and the Vertical

Axis for Expected Number of Nodes

tion can further improve the full enumeration by a factor of 1.512n. The ex-

treme pruning enumeration uses a nice technique to prune the searching space

of (x1, ..., xn−k) to a very small extent and that makes it an extremely effective

method. In orthogonalized enumeration, the segment (x1, ..., xn−k) is fixed and

needs no work. So the orthogonalized enumeration has a much smaller searching

space which is limited by k. Our introduction of the parameter k also provides

flexibility to control the searching process. These features make the orthogonal-

ized enumeration a more efficient method than previous methods and one of our

biggest innovations.

4 MBKZ

4.1 Description of the Algorithm

The main idea of Mixed BKZ (MBKZ) is to alternately use orthognalized enu-

meration and traditional enumeration (full enumeration, linear pruning enumer-

ation, extreme pruning enumeration etc) in solving SVP. In MBKZ we set the

blocksize of orthognalized enumeration to n in order to make good use of the fact

that the number of nodes needed in the orthognalized enumeration is limited by

k. The detail of MBKZ can be found in Algorithm 2. We also slightly modify

the orthognalized enumeration algorithm in Algorithm 3 to make MBKZ more

effective.

The design of MBKZ is due to the following reason. According to [7], proba-

bility enumeration can speedup the search but the output may not be a shortest

vector or even may not return any vector. As a result, in BKZ 2.0, randomizing
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technique is used to ensure that the enumeration process produces a shorter

vector in acceptable time. This is a useful technique, but according to [4], it also

brings unavoidable overheads since the bases are not good after being random-

ized and an extra reduction process needs to be called to reduce the randomized

bases before enumeration. Even though no quantitative analysis about the pro-

portion of the extra overheads is given, it is non-negligible in practice. While in

MBKZ, we use a new technique to avoid randomizing bases and also ensure enu-

meration success probability. Experimental data shows that this new technique

is more effective and it makes MBKZ a more efficient method compared to the

previous ones. We shall explain the main idea of MBKZ in detail next.

In BKZ process, enumeration is called to successively search a better vector v

which is a combination of (bi, ...,bj) to replace bi for all i from 1 to n−1, where

j = min(i+ β − 1, n) with β the blocksize. However, the searching of orthognal-

ized enumeration is conducted among the last k dimensions (bj−k+1, ...,bj) and

β is set to n, so these mean that we are always searching the shortest vector v

to replace bi among the same space (bn−k+1, ...,bn) for all i. All nodes needed

to enumerate for replacing bi are usually included by those enumerated for re-

placing bi−1 if no changes have been made to the basis after the enumeration for

bi−1. Therefore if the enumeration for bi−1 fails, we can reuse the intermediate

results to search bi to avoid repeating enumeration process. As a result, we can

run orthognalized enumeration when i = 1, store a best result for each depth and

decide which bi should be replaced after enumeration. This idea is incorporated

in Algorithm 3.

Now we provide some explanations to the terms used in Algorithm 2. The

variable sv is an n×n matrix to store n shortest vectors that are linear combina-

tions of n, n−1, ..., 1 base vectors respectively and the vector slen records norms

of these n vectors. z, jj, kk, h are some indexes for the original BKZ algorithm,

z indicates the number of successive enumerations which fails to find a shorter

vector, BKZ terminates when z = n−1. The variable jj shows the starting index

of the block for the next enumeration and kk shows the end index of the block.

h is a parameter to bound data size and is used when updating basis by LLL.

We introduce a new parameter cnt to switch between traditional enumeration

and orthognalized enumeration in MBKZ.

Algorithm 2 – The Mixed Block Korkin-Zolotarev Algorithm

Input: A basis B = (b1, ...,bn), a blocksize β ∈ 2, ..., n, the Gram-Schmidt tri-

angular matrix µ, ‖b∗1‖2, ..., ‖b∗n‖2 and orthognalized enumeration parameter k

Output: A MBKZ − β reduced basis (b1, ...,bn)

1: svn×n := 0, slen1×n := 0 // different from those in algorithm 1, sv and slen

expand n times to store n vectors with small norm which is respectively a li-

Continued on next page
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Algorithm 2 – continued from previous page

near combination of n,n-1,...,1 base vectors

2: z := 0, jj := 0, cnt := 0 // z and jj are two indexes for the original BKZ al-

gorithm and cnt is a new index for MBKZ

3: LLL(b1, ...,bn, µ) // LLL is called

4: while z < n− 1 do

5: jj := jj mod (n− 1) + 1 // jj is the index which shows where the block

starts and loops among [1,n-1]

6: if jj = 1 then

7: cnt := cnt+ 1 // cnt decides whether a Traditonal Enum or a Orthogna-

lized Enum should be called and changes when jj=1

8: end if

9: if cnt mod 2 = 0 and jj = 1 then

10: kk := n, h := n, v := (1, 0, ..., 0) //in Orthognalized Enum the blocksize

is set to the maximum, v stores the vector obtained from enumeration

11: (sv, slen) = Orth Enum for MBKZ(µ[jj,kk], ‖b∗jj‖2, ..., ‖b∗kk‖2, k)

//get n vectors with small norm from the enumeration

12: for i = jj, ..., kk do

13: if sleni < ‖b∗i‖2 then

14: v := svi, jj := i, break;

15: end if

16: end for//check successively from 1 to n and find the first vector shorter

than the current base vectors

17: else

18: kk := min(jj + β − 1, n), h := min(kk + 1, n) // Traditonal Enum dem-

ands a normal blocksize, kk and h is reset for Traditonal Enum

19: v = Traditonal Enum(µ[jj,kk], ‖b∗jj‖2, ..., ‖b∗kk‖2) // get a short

vector in the block

20: end if

21: if v 6= (1, 0, ..., 0) then

22: z := 0

23: update basis by LLL(b1, ...,
∑kk
i=jj vibi,bj , ...,bh, µ)

24: else

25: z := z + 1

26: reduce the next block by LLL(b1, ...,bh, µ)

27: end if//z is the index which represents the end condition of BKZ, when

a shorter vector is found, z is set to 0, and when no shorter vector can

be found for n-1 trials, the algorithm ends

28: end while
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Algorithm 3 – Orth Enum for MBKZ

Input: µ, ‖b∗1‖2, ..., ‖b∗n‖2, k

Output: svn×n, slen1×n
1: Compute the d := [d1, ..., dn] = [n−0.5‖b∗1‖/‖b∗1‖, ..., n−0.5‖b∗1‖/‖b∗n‖].
2: svn×n := 0, slen1×n := 0 //different from those in algorithm 1, sv and slen

expand n times to store n vectors with small norm which is respectively a lin-

ear combination of n,n-1,...,1 base vectors

3: unn×n := 0,ylen1×n := 0,uvec1×n := 0

4: poss vn×5 := 0,poss v cnt1×n := 0,poss v ind1×n := 0

5: for xn = ddne, bdnc, 0 do

6: uvecn := xn
7: unn,i := xn · µn,i ∀i = 1, ..., n− 1

8: ylenn := x2n‖b∗n‖2
9: for t = n− 1, ..., 1 do

10: if poss v cntt = 0 then

11: (poss vt, poss v cntt) := CPV(t, k, dt, unt+1,t)

12: poss v indt := 1

13: else

14: poss v indt := poss v indt + 1

15: end if

16: uvect := poss vt,poss v indt
17: unt,i := unt+1,i + uvect · µt,i ∀i = 1, ..., t− 1

18: ylent := ylent+1 + (uvect + unt+1,t)
2‖b∗t‖2

19: if slent = 0 or slent > ylent then

20: slent := ylent
21: svt := (0, ..., 0, uvect, ..., uvecn)

22: end if//in algorithm 1, we only concentrate on slen1 and ylen1 beca-

use we are aimed to find the shortest vector. While in a MBKZ algorith-

m, enumeration is called many times to continuously update every base

vectors from the first to the last, so recording shortest ylent and their

norm slent is meaningful

23: if t = 1 then

24: for i = t, ..., n− 1 do

25: if poss v indi < poss v cnti then

26: t := i, break

27: else

28: poss v cnti := 0

29: end if

30: end for

31: t := t+ 1 // offset the decrease in step 9

Continued on next page
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Algorithm 3 – continued from previous page

32: end if

33: end for

34: end for

35: return sv, slen

4.2 Running Time and Success Probability Analysis of

Orthognalized Enumeration in MBKZ

Based on our previous discussion, the success probability of the orthognalized

enumeration in MBKZ, denoted as Psucc MBKZ(m, k), should be computed as

follow.

Psucc MBKZ(m, k) = Psucc(m, k)

η∏
i=m+1

(1− Psucc(i, k))

where η is the largest j such that Psucc(j, k) 6= 0. To be more precise, Psucc MBKZ(m, k)

is the probability of successfully finding a better vector to replace bn−m+1 in the

process of orthognalized enumeration. Without using the orthognalized enumera-

tion, this task requires executing a traditional enumeration on an m dimensional

lattice. Figure 3 shows graphs of Psucc MBKZ(m, k) for each k = 8, 9, · · · , 20.

Figure 3. Relationship between m and Psucc MBKZ(m, k) with k = 8, 9, ..., 20, the

Horizontal Axis for m and the Vertical Axis for Probability

We compute an expected number of nodes that orthognalized enumeration

needs with different k, denoted as North,k, by using the method described in Sec-

tion 3.4. To compare orthognalized enumeration and other enumeration meth-

ods, we compute expected numbers of nodes needed for different methods inside
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MBKZ. Let φfull(m), φlinear(m) and φextreme(m) denote expected numbers of

nodes for finding a better vector in m dimension using full enumeration, lin-

ear pruning enumeration and extreme pruning enumeration respectively, then

the expected numbers of nodes needed by the three traditional enumerations

(to substitute the orthognalized enumeration with the parameter k), denoted as

Nfull,k, Nlinear,k and Nextreme,k, are given by

Nfull,k =
∑
m

(Psucc MBKZ(m, k) · φfull(m))

Nlinear,k =
∑
m

(Psucc MBKZ(m, k) · φlinear(m))

Nextreme,k =
∑
m

(Psucc MBKZ(m, k) · φextreme(m)).

See Figure 4 for the graphs for each k = 8, 9, · · · , 20.

Figure 4. Number of Nodes Needed for Different Enumeration Methods, the Horizontal

Axis for k and the Vertical Axis for Expected Number of Nodes

According to the description and discussion given earlier in this section, the

design for the orthognalized enumeration in MBKZ brings another speedup of

O(n) compared to the original orthognalized enumeration. We have conducted

experiments with bases from the SVP challenge site [29] for dimensions up to

140, the results are consistent with our analysis.

Based on our observation through experiments, we have several remarks to

make:

1. Orthognalized enumeration can exponentially speedup traditional enumera-

tion, however it is uncertain about which bi will be replaced. That is why

combining orthognalized enumeration and traditional enumeration method

works better and MBKZ can improve previous BKZ methods sharply. It
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is remarked that when using orthognalized enumeration independently as

an enumeration process in BKZ algorithm, results may not be good enough

since k should be set large enough in this situation, in order to keep the prob-

ability of updating b1 non-negligible. This may introduce extra overhead in

enumeration.

2. The output of MBKZ generally has better quality compared to that of BKZ

or BKZ 2.0 with the same blocksize (this is the blocksize of traditional enu-

meration used in MBKZ and is different from that of orthognalized enumer-

ation used in MBKZ, the latter is always n), a shortest vector for dimensions

100− 120 can be directly found by MBKZ with the blocksize about 40− 42.

However, BKZ or BKZ 2.0 require a much larger blocksize to work, for ex-

ample, the blocksize in BKZ 2.0 should be set to 75 to solve challenges with

dimensions 90− 112 according to [7].

3. When we choose linear pruning or extreme pruning as the traditional enu-

meration method in MBKZ, randomizing technique is not as necessary as

that in BKZ 2.0, because the orthognalized enumeration and traditional

enumeration methods have different searching spaces and are continuously

updating them independently. Though it is hard to make quantitative anal-

ysis, this is thought to be an effective way to reduce duplicate searching and

improve the effectiveness further.

4.3 Experiments

It should be noted that MBKZ is a deterministic method, if given the same

starting basis and the same set of parameters, the same results will be obtained

eventually. We make program codes for MBKZ and all starting lattice bases

used for the following experiments publicly available. These experiments about

MBKZ can be repeated 1 .

4.3.1 Comparison between Orthognalized Enumeration and

Traditional Enumeration during MBKZ

MBKZ runs by alternately using orthognalized enumeration and traditional enu-

meration, so an important question is that which enumeration plays the biggest

role to find a shorter vector, the following experiment result (conducted on a 121-

dimensional basis with seed 0) shows the updated base vector with the smallest

index after an orthognalized enumeration or after n times traditional enumera-

tions. Results are illustrated in Figure 5.

1 Program Codes for MBKZ and Experiment Data are available at:

https://github.com/zhengzx/MBKZ
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Figure 5. Comparison between Orthognalized Enumeration and Traditional Enumer-

ation during MBKZ, the Horizontal Axis for the Number of Enumerations are called

and the Vertical Axis for the Updated Base Vectors’ Smallest Index

4.3.2 SVP Challenge

SVP Challenge [29] provides sample lattices for testing algorithms that solve

SVP in Euclidean lattices. Many algorithms have been used for solving SVP

of the sample lattices. For examples, Kashiwabara and Teruya solved challenges

with dimension up to 150 by RSR algorithm [10] using more than 1000 cores and

394 cpu-days, Aono and Nguyen finished challenges with dimension up to 130 by

BKZ 2.0 algorithm [7], Wang and Aono et al. achieved challenges with dimension

up to 123 by progressive BKZ algorithm [4]. We also conduct experiments in

SVP Challenge to test MBKZ and solve several challenges including dimension

99, 105, 113, 121, see Table 1 for detail. It is remarked that our computational

resource is quite limited.

4.3.3 Comparison of MBKZ with Other Methods

We also conduct experiments on different methods including BKZ, BKZ 2.0 and

MBKZ under the following conditions.

Basis. All methods start with the same 121-dimension BKZ-10 reduced ba-

sis (separately conducted on basis with seed 1, 2, 3 to avoid accidental circum-

stances).
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Table 1. MBKZ’s Results in Solving SVP Challenge
Dimension Previous Norm Our Results CPU Used Cpu Frequency

2635 (seed 997) 3 CPUs respectively

99 2642 (seed 0) 2606 (seed 998) running in seed 2.5 GHz

2604 (seed 999) 997,998 and 999

2655 (seed 997) 3 CPUs respectively

105 2659 (seed 0) running in seed 2.5 GHz

2643 (seed 997) 997,998 and 999

3 CPUs respectively

113 2804 (seed 0) 2739 (seed 999) running in seed 2.5 GHz

997,998 and 999

2921 (seed 72) 100 CPUs respectively

121 — running in seed 2.93 GHz

2910 (seed 62) 0,1,...,99

Blocksize. The blocksize of MBKZ is set to β = 40. And for BKZ and BKZ

2.0, one of the most efficient progressive strategies, the step-by-step progres-

sive strategy, is used where BKZ (BKZ 2.0) with β = 20, 21, ..., n − 1 is called

successively.

Other Parameters and Implementations. The parameter k in MBKZ is set

to 12, the pruning parameter for progressive BKZ is 0.15 and the pruning pa-

rameter for progressive BKZ 2.0 is set to 20% according to [7]. All methods are

based on the C++ NTL library [33]. Progressive BKZ is implemented based on

the function BKZ FP combing with a step-by-step progressive strategy. For

progressive BKZ 2.0, since an source code of BKZ 2.0 is not publicly available,

we implement it by consulting the pseudo-code in [11, 7] and source codes in

NTL library [33] and Progressive BKZ library [5].

Operating System. Linux version 2.6.18 with CPU frequency 2.93 GHz.

Results. As shown in Figure 6,7,8, BKZ and BKZ 2.0 fail to find a shorter

vector than MBKZ in all three experiments, even combined with the step-by-

step progressive strategy. BKZ and BKZ 2.0 have similar trends, faster in the

middle and slower at the start and at the end, while MBKZ’s has a relatively

uniform speed from start to the end. To obtain a short enough vector, a large

blocksize and a good basis are both necessary for BKZ and BKZ 2.0, and that is

what progressive strategy is used for. However, an enumeration in a high dimen-

sional lattice is expensive and demands for a low-probability pruning strategy.

BKZ and BKZ 2.0 using traditional enumeration methods with a low-probability

pruning strategy may get trapped in a local optimum easily. Therefore there is

a need to to change search space by either increasing blocksize or randomizing

blocks so that the process of finding a shorter vector can be continued. The

increasing blocksize strategy has been studied in [4]. The randomizing blocks

strategy is likely to introduce extra overhead because the results are uncertain.

In contrast, the orthognalized enumeration in MBKZ can be somehow regarded
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as a ‘positive randomizing blocks strategy’, it changes search space for tradi-

tional enumerations and ensures the output basis is a better one at the same

time. Combining with the advantages of orthognalized enumeration over tradi-

tional enumerations, it is seen that MBKZ is a more efficient method compared

to the existing ones.

Figure 6. Comparison between Progressive BKZ, Progressive BKZ 2.0 and MBKZ on

Basis with Seed 1, the Horizontal Axis for Time and the Vertical Axis for ‖b1‖

Figure 7. Comparison between Progressive BKZ, Progressive BKZ 2.0 and MBKZ on

Basis with Seed 2, the Horizontal Axis for Time and the Vertical Axis for ‖b1‖

Figure 8. Comparison between Progressive BKZ, Progressive BKZ 2.0 and MBKZ on

Basis with Seed 3, the Horizontal Axis for Time and the Vertical Axis for ‖b1‖
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5 Further Improvements

In this section, we describe an interesting technique to reduce the searching

space of enumeration with non-negligible probability. The main ingredient is to

use some special linear transformations to compute some of the coefficients of

a possible shortest vector, thus enumerations can be performed in a reduced

space to archive greater speedup in all enumeration methods. Even though an

exact quantitative success probability analysis for the method is not currently

available, experimental results are promissing.

5.1 Description of Method

The main idea of the method is to utilize the property of basis transformation.

Let v =
∑
xibi represent the shortest vector in L(B). Let

U =


1 0 0 . . . 0 0 a1
0 1 0 . . . 0 0 a2
...

...
...

...
...

...
...

0 0 0 . . . 0 1 an−1
0 0 0 . . . 0 0 1


and for a new basis B′ = UB. Write B′ = [b′1, ...,b

′
n] = [b1 + a1bn, ...,bi +

aibn, ...,bn], we see that

v =
∑

x′ib
′
i =

n−1∑
i=1

x′i(bi + aibn) + x′nbn =

n−1∑
i=1

x′ibi + (

n−1∑
i=1

aix
′
i + x′n)bn

and hence

x′i = xi, for i = 1, 2, · · · , n− 1,

x′n = −
n−1∑
i=1

aixi + xn

Let us make two extremely strong assumptions first for recovering (x1, ..., xn−1):

Extremely Strong Assumption 1. We know x′n exactly.

Extremely Strong Assumption 2. ai = ωi and ω > 2|xi| for i = 1, 2, · · · , n.
Based on these two extremely strong assumptions, the following Algorithm

4 calculates (x1, ..., xn−1) :

Algorithm 4 – The xi Recovery Algorithm

Input: x′n, ai = ωi

Continued on next page
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Algorithm 4 – continued from previous page

Output: (x1, ..., xn−1)

1: s := x′n
2: for i = n− 1, ..., 1 do

3: if s > 0 then

4: xi := bs/aic
5: else

6: xi := ds/aie
7: end if

8: s := s mod ai
9: end for

10: for i = 1, ..., n− 2 do

11: if |xi| > ω/2 then

12: if xi > 0 then

13: xi = xi − ω, xi+1 := xi+1 + 1

14: else

15: xi = xi + ω, xi+1 := xi+1 − 1

16: end if

17: end if

18: end for

19: return (x1, ..., xn−1)

5.2 Success Probability Analysis

The result is neat and interesting, but problems are that an exact x′n may not

be available and ai is too big. So we revisit our assumptions to make them more

practical:

Assumption 1. We can estimate |x′n| with an acceptable error.

Assumption 2. ai = 0 for i = 1, · · · ,m − 1, and ai = ωi−m+1 for ω > 2|xi|
and i = m, · · · , n.

From the heuristic 2 and heuristic 3, we assume the coordinates x of the

target vector v with respect to the orthogonal basis (b∗n/‖b∗n‖, ...,b∗1/‖b∗1‖)
distributes like a uniform vector where ‖x‖ = ‖v‖. We also assume the same for

x∗ under the basis (b′∗n/‖b′∗n‖, ...,b′∗1/‖b′∗1‖).
Heuristic 4. The distribution of the normalized Gram-Schmidt orthogonal-

ization (b′∗1/‖b′∗1‖, ...,b′∗n/‖b′∗n‖) of B′ = UB where B is a random reduced

basis, U is an upper triangular matrix whose entries on diagonal are all 1, looks

like that of a uniformly distributed orthogonal matrix.

We estimate |x′n| by n−0.5‖b′1‖/‖b′∗n‖ according to the heuristic, let E|x′n|
denote the error of the estimation and Perror(θ) denote the probability that
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E|x′n| ≤ θ:

E|x′n| =
||x′n| − n−0.5‖b′1‖/‖b′∗n‖|

|x′n|
Perror(θ) = Pr(E|x′n| ≤ θ).

The probability distribution obtained by Monte-Carlo simulation is depicted in

Figure 9.

Figure 9. Relationship between θ and Perror, the Horizontal Axis for θ and the Vertical

Axis for Probability

Errors in the estimation of |x′n| causes error of computing xi (note that we

use x′n instead of |x′n| below because of the symmetry of v and −v ):

n−0.5‖b′1‖/‖b′∗n‖ = x′n ± θ|x′n| = −
n−1∑
i=m

ωi−m+1xi + xn ± θ|x′n|

The threshold that the computation of xi is not affected by the error θ,

denoted as th(ω, i), is calculated as ω−(n−1−i) − ω−(n−i) (the maximum and

minimum of th(ω, i) are ω−(n−1−i) and ω−(n−1−i) − 2ω−(n−i) respectively and

we take the average). For ω = 3, 5 and 7, some values of th(ω, i) are given in

Table 2.

Table 2. th(ω, i) for different i with ω = 3, 5 and 7
i = n− 1 i = n− 2 i = n− 3 i = n− 4 i = n− 5 i = n− 6

ω = 3 0.66667 0.22222 0.07407 0.02469 0.00823 0.00274

ω = 5 0.8 0.16 0.032 0.0064 0.00128 0.00026

ω = 7 0.85714 0.11429 0.02286 0.00457 0.00091 0.00018

With Perror(θ) and th(ω, i), we can get the probability Pnf (ω, i) of the com-

putation of (xi, ..., xn−1) without being affected by an error caused by an esti-
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mation of |x′n|, namely, Pnf (ω, i) = Perror(th(ω, i)). Table 3 shows some values

of Pnf for ω = 3, 5 and 7.

Table 3. Pnf (ω, i) for different i with ω = 3, 5 and 7

i = n− 1 i = n− 2 i = n− 3 i = n− 4 i = n− 5 i = n− 6

ω = 3 0.81966 0.50113 0.15408 0.0517 0.01736 0.00573

ω = 5 0.84558 0.34396 0.06726 0.01342 0.0028 0.0006

ω = 7 0.85554 0.24013 0.04787 0.00954 0.00215 0.00038

From values of Pnf (ω, i), we see that the larger ω is, the harder it is to get

more xis due to the error caused by the estimation of |x′n|.
Now we have Pnf (ω, i) which indicates the influence of the error generated

in the estimation of |x′n|. From the analysis earlier, we know that the larger ω

is, the smaller Pnf (ω, i) becomes. Let P|x|(ω,m) be the probability that the as-

sumption 2 holds, where |xi| < ω/2 for m ≤ i ≤ n. The success probability of the

method, denoted as Ps(ω,m), that we can calculate (xm, ..., xn−1) successfully

is expressed as:

Ps(ω,m) = P|x|(ω,m) · Pnf (ω,m)

We are not able to have an analysis about P|x|(ω,m), but qualitative anal-

ysis can be done. Many experiments based on orthogonalized integer repre-

sentations [10, 8] have revealed that the orthogonalized integer representation

y = (y1, ..., yn) of a shortest vector usually has small components yi where

yi = xi + b
∑n
j=i+1 µj,ixje. Notice that for a BKZ-reduced basis we generally

have |µ| < 0.5, so when i is close to n, one gets xi from a small yi subtracting

a small number of terms µj,ixj (usually having small absolute value). However,

when i decreases, b
∑n
j=i+1 µj,ixje tends to be large which implies |xi| to be large

as well. As a result, P|x|(ω,m) tends to have positive correlation with m with a

fixed ω and tends to be larger when conducting with a better reduced basis.

Though an exact quantitative success probability analysis for the method is

not currently available, our experiment shows that the method is practical in a

not-very-well reduced basis and the details of the experiment is discussed in the

next subsection.

5.3 Experiment

An experiment has been conducted to show how this method works, we study

on a 127-dimension reduced basis with seed = 0, ‖b1‖ = 3344.88, 1.05GH(L) =

2993.78 and a number of different Us with various ω ≤ 5 are generated. Each of

these Us is used in the method described above. In our experiment, we take m =

n− 3 and concentrate on the combinations of (xn−3, xn−2, xn−1) of the shortest
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vector. The experimental result is shown in Figure 10. It is interesting to see that

only limited number of combinations of (xn−3, xn−2, xn−1) can be obtained with

an uneven distribution, and one of the combination, (1,−1, 1), occurs much more

frequently than the others. This is of great help when conducting enumerations

on these specific combinations with a high priority to search for the shortest

vector. With these xis possible combinations, enumerations can be conducted

in a reduced space and hence achieve a greater efficiency in all enumeration

methods including orthogonalized enumeration in this paper and other existing

ones.

Figure 10. Combinations of xn−3, xn−2, xn−1 and Probability, the Horizontal Axis for

Different Combinations of xn−3, xn−2, xn−1 and the Vertical Axis for Probability

6 Conclusion

In this paper, we describe a new enumeration algorithm based on orthogonal-

ized integer representations of the shortest vector, and give a success probability

analysis through Monte-Carlo Simulation. Based on our analysis, we can set a

suitable threshold to reduce the enumerated space greatly and achieve an expo-

nential speedup compared to the existing enumeration algorithms based on BKZ

reduction. Another contribution of this work is to present a new BKZ method

named MBKZ. MBKZ involves less enumeration nodes, it also uses a new tech-

nique to reduce the duplicate work caused by probability enumeration and in

the meanwhile, to avoid the overheads brought by randomizing technique. In

addition, MBKZ generally outputs better basis than other BKZ methods with

the same blocksize in practice. Finally, a new technique to reduce enumera-

tion space with non-negligible probability is given, though lack of quantitative
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analysis about its success probability, effectiveness has been demonstrated by

experiments.

Further work will be on a simulation algorithm to predict the performance

of MBKZ in terms of running time and output quality, which will be of great

help in theoretical analysis and conducting experiments in high dimensions.
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A Appendix

Algorithm 5 – The full enumeration algorithm

Input: An integral lattice basis (b1, · · · ,bd), a bound A ∈ Z
Output: All vectors in L(b1, · · · ,bd) that are of squared norm ≤ A

1: Compute the rational µi,j ’s and ‖b∗i ‖2’s

2: x := 0, l := 0, S := ∅
3: i := 1. While i ≤ d, do

4: li := (xi +
∑
j>i xjµj,i)

2‖b∗i ‖2.

5: If i = 1 and
∑d
j=1 lj ≤ A, then S := S ∪ {x}, x1 := x1 + 1

6: If i 6= 1 and
∑
j≥i lj ≤ A, then

7: i := i− 1, xi := d−
∑
j>i(xjµj,i)−

√
A−

∑
j>i lj

‖b∗i ‖2
e.

8: If
∑
j>i lj > A, then i := i+ 1, xi := xi + 1.

9: return S


