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Abstract. We investigate the security properties of the three deterministic random bit
generator (DRBG) mechanisms in the NIST SP 800-90A standard [2]. This standard received
a considerable amount of negative attention, due to the controversy surrounding the now
retracted DualEC-DRBG, which was included in earlier versions. Perhaps because of the
attention paid to the DualEC, the other algorithms in the standard have received surprisingly
patchy analysis to date, despite widespread deployment. This paper addresses a number
of these gaps in analysis, with a particular focus on HASH-DRBG and HMAC-DRBG. We
uncover a mix of positive and less positive results. On the positive side, we prove (with a
caveat) the robustness [16] of HASH-DRBG and HMAC-DRBG in the random oracle model
(ROM). Regarding the caveat, we show that if an optional input is omitted, then – contrary
to claims in the standard — HMAC-DRBG does not even achieve the (weaker) property
of forward security. We also conduct a more informal and practice-oriented exploration of
flexibility in implementation choices permitted by the standard. Specifically, we argue that
these DRBGs have the property that partial state leakage may lead security to break down
in unexpected ways. We highlight implementation choices allowed by the overly flexible
standard that exacerbate both the likelihood, and impact, of such attacks. While our attacks
are theoretical, an analysis of two open source implementations of CTR-DRBG shows that
potentially problematic implementation choices are made in the real world.

1 Introduction

Secure pseudorandom number generators (PRNGs) underpin the vast majority of cryptographic
applications. From generating keys, nonces, and IVs, to producing random numbers for chal-
lenge responses, the discipline of cryptography — and hence system security — critically relies
on these primitives. However, it has been well-established by a growing list of real-world fail-
ures [43], [36], [21], [8], that when a PRNG is broken, the security of the reliant application often
crumbles with it. Indeed, with much currently deployed cryptography being effectively ‘unbreak-
able’ when correctly implemented, exploiting a weakness in the underlying PRNG emerges as a
highly attractive target for an attacker. As such, it is of paramount importance that standardized
PRNGs are as secure as possible.

The NIST Special Publication 800-90A Recommendation for Random Number Generation Us-
ing Deterministic Random Bit Generators (NIST SP 800-90A) [2] has had a troubled history. The
first version of this standard included the now infamous DualEC-DRBG, which was long suspected
to contain a backdoor inserted by the NSA [40]. This suspicion was reportedly confirmed by docu-
ments included in the Snowden leaks [33], leading to a revision of the document that removed the
disgraced algorithm.

Perhaps because of the focus on DualEC-DRBG, the other algorithms standardized in the docu-
ment have received surprisingly little attention and analysis. These PRNGs — which respectively
use a hash function, HMAC, and a block cipher as their basic building blocks — are widely used.
Indeed, these are the only approved PRNGs for cryptographic software or hardware seeking FIPS
certification [19, 42]. While aspects of these constructions have been analyzed [11, 23, 22, 39, 24, 37]
and some implementation considerations discussed [7], these works tend to make significant simpli-
fying assumptions and / or treat only certain algorithms rather than the constructions as a whole.
There has not to date been a deeper analysis of these standardized DRBGs, either investigating
the stronger security properties claimed in the standard or taking into account the (considerable)
flexibility in their specification.

The constructions provided in the NIST SP 800-90A are somewhat nonstandard. Even the term
DRBG is rare, if not absent from the literature, which favors the term PRNG. Similarly the NIST
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DRBGs — which return variable (and sizable) length outputs upon request, and support a variety
of optional inputs and parameters — do not fit cleanly into the usual security models for PRNGs.
With only a limited amount of formal analysis in the literature to date, coupled with the fact
that the standardization of these algorithms did not follow from a competition or widely publicly
vetted process, this leaves pseudorandom number generation in large parts of software relying on
relatively unanalyzed algorithms.

In particular, the standard claims that each of the NIST DRBGs is ‘backtracking resistant’
and ‘prediction resistant’. The former security property is the familiar forward security notion
for PRNGs first formalized by Bellare et al. [5], which guarantees that in the event of a state
compromise output produced prior to the point of compromise remains secure. The latter property
ensures that if the state is compromised and subsequently reseeded with sufficient entropy then
security will be recovered. Somewhat surprisingly, to the best of our knowledge neither of these
properties have been formally investigated and proved. In fact, the NIST DRBG algorithms which
are responsible for initial state generation and reseeding do not seem to have been analyzed at all
in prior work.

The goal of this paper is to address some of these gaps in analysis.

1.1 Contributions

We conduct an investigation into the security of the NIST SP 800-90A DRBGs, with a focus on
HASH-DRBG and HMAC-DRBG. We pay particular attention to flexibilities in the specification of
these algorithms, which are frequently abstracted away in previous analysis. We set out to analyze
the algorithms as they are specified and used, and so sometimes make heuristic assumptions in our
modeling (namely, working in the random oracle model (ROM) and assuming an oracle-independent
entropy source). We felt this more constructive than modifying the constructions solely to derive
a proof under weaker assumptions, and explain the rationale behind all such decisions.

Robustness proofs. The notion of robustness, introduced by Dodis et al. [16], captures both
backtracking and prediction resistance and is the ‘gold-standard’ for PRNG security. For our
main technical results, we analyze HASH-DRBG and HMAC-DRBG within this framework. As a
(somewhat surprising) negative result, we show that implementations of HMAC-DRBG for which
optional strings of additional input are not always included in next calls (see Section 3) are not
forward secure. This is contrary to claims in the standard that the NIST DRBGs are backtracking
resistant. This highlights the importance of formally proving security claims which at first sight
may seem obviously correct, and of paying attention to implementation choices.

As positive results, we prove that HASH-DRBG and HMAC-DRBG (called with additional input)
are robust in the ROM. The first result is fully general, while the latter is with respect to a class
of entropy sources which includes those approved by the standard.

A key challenge is that the NIST DRBGs do not appear to have been designed with a security
proof in mind. As such, seemingly innocuous design decisions turn out to significantly complicate
matters. The first step is to reformulate robustness for the ROM. Our modeling is inspired by
Gazi and Tessaro’s treatment of robustness in the ideal permutation model [20]. We must make
various adaptations to accommodate the somewhat unorthodox NIST DRBGs, and specifiying the
model requires some care. It is for this reason that we focus on HASH-DRBG and HMAC-DRBG in
this work, since they map naturally into the same framework. Providing a similar treatment for
CTR-DRBG would require different techniques, and is an important direction for future work.

At first glance, it may seem obvious that a PRNG built from a random oracle will produce
random looking bits. However, formally proving that the constructions survive the strong forms
of compromise required to be robust is far from trivial. While the proofs employ fairly standard
techniques, certain design features of the algorithms introduce unexpected complexities and some
surprisingly fiddly analysis. Throughout this process, we highlight points at which a minor design
modification would have allowed for a simpler proof.

Implementation flexibilities. We counter these formal and (largely) positive results by offering
a more informal discussion of flexibilities in the standard. We argue that when the NIST DRBGs
are used to produce many blocks of output per request — a desirable implementation choice in
terms of efficiency, and permitted by the standard — then the usual security models may overlook
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important attack vectors against these algorithms. Taking a closer look, we propose an informal
security model in which we suppose an attacker compromises part of the state of the DRBG — for
example through a side-channel attack — during an output generation request. Reconsidered within
this framework, we find that each of the constructions admits vulnerabilities which allow an attacker
to recover unseen output. We find a further flaw in a certain variant of CTR-DRBG which allows an
attacker who compromises the state to also recover strings of additional input — which may contain
secrets — previously fed to the DRBG. While our attacks are theoretical in nature, we follow this
up with an analysis of the open-source OpenSSL and mbed TLS CTR-DRBG implementations,
which shows that the implementation decisions we highlight as potentially problematic are taken
by implementors in the real world. We conclude with a number of reflections and recommendations
for the safe use of these DRBGs.

Related work. A handful of prior works have analyzed the NIST DRBGs as deterministic pseu-
dorandom generators (PRGs). That is to say, they prove that the output generation algorithm
of the DRBG produces pseudorandom bits when applied to an ideally random initial state e.g.,
S0 = (K0, V0, cnt0) for uniformly random K0, V0 in the case of CTR-DRBG and HMAC-DRBG. This
is a substantial simplification; in the real world, these state components must be derived from
the entropy source using the setup algorithm. Campagna [11] and Shrimpton and Terashima [39]
provide such a treatment of CTR-DRBG, while Hirose [22] and Ye et al. [24] give proofs for
HMAC-DRBG. This latter work also provides a formal verification of the mbedTLS implementation
of HMAC-DRBG. None of these works model initial state generation or reseeding; as far as we are
aware, ours is the first work to analyze these algorithms for HASH-DRBG and HMAC-DRBG. With
the exception of [22], they do not model the use of additional input. Moreover, pseudorandomness
of output is a much weaker security model than robustness and does not allow any form of state
compromise. Kan [23] considers the assumptions underlying the security claims of the DRBGs. To
our knowledge, this is the only previous work to consider HASH-DRBG. However, the analysis is
rather informal and non-standard.

In [37], Ruhault claims a potential attack against the robustness of CTR-DRBG. However, the
specification of the BCC function in that work (a CBC-MAC-like function which is used by the
CTR-DRBG df algorithm) is different to that provided by the standard. Namely, in [37] BCC is
defined to split the input IV ‖S into n 128-bit blocks ordered from right to left as [Bn, . . . , B1].
However, in the standard these blocks are ordered left to right [B1, . . . , Bn]. This leads to the
blocks being processed in a different order by BCC. The attack from [37] does not work when the
correct BCC function is used, and does not seem possible to fix.

2 Preliminaries

Notation. The set of binary strings of length n is denoted {0, 1}n. We write {0, 1}∗ to denote the
set of all binary strings, and {0, 1}≤n to denote the set of binary strings of length at most n-bits; we
include the empty string ε in both sets. We convert binary strings to integers, and vice versa, in the
standard way. We let x⊕ y denote the exclusive-or (XOR) of two strings x, y ∈ {0, 1}n, and write
x||y to denote the concatenation of two strings x and y. We write left(x, β) (resp. right(x, β)) to
denote the leftmost (resp. rightmost) β bits of string x, and select(x, α, β) to denote the substring
of x consisting of bits α to β inclusive. We let [j1, j2] denote the set of integers between j1 and
j2 inclusive. For an integer j ∈ N, we write (j)c to represent j encoded as a c-bit binary string.

The notation x
$← X denotes sampling an element uniformly at random from the set X . We let

N = {1, 2, . . . } denote the set of natural numbers, and let N≤n = {1, 2, . . . , n}.

Entropy and Cryptographic Components. In Appendix A we recall the standard definitions
of worst-case and average-case min-entropy, along with the usual definitions of pseudorandom
functions (PRFs) and block ciphers.

Pseudorandom number generators with input. A pseudorandom number generator with in-
put (PRNG) [16] produces pseudorandom bits and offers strong security guarantees (see Section 5)
when given continual access to an imperfect source of randomness. We define PRNGs formally
below, and then discuss our choice of syntax.
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Definition 1. A pseudorandom number generator with input (PRNG) is a tuple of algorithms
G = (setup, refresh, next), with associated parameter set (αmin, αmax, αadd, αout), defined as follows:

– setup : salt× ∪αmaxi=αmin
({0, 1}i)×N → S takes as input a salt X ∈ salt where salt denotes the

salt space of the PRNG, an entropy sample I ∈ ∪αmaxi=αmin
{0, 1}i, and a nonce N ∈ N where N

denotes the nonce space of the PRNG, and returns an initial state S0 ∈ S, where S denotes
the state space of the PRNG.

– refresh : salt×S ×∪αmaxi=αmin
({0, 1}i)→ S takes as input a salt X ∈ salt, a state S ∈ S, and an

entropy sample I ∈ ∪αmaxi=αmin
{0, 1}i, and returns a state S′ ∈ S.

– next : salt × S × N≤αout × {0, 1}≤αadd → {0, 1}≤αout × S takes as input a salt X ∈ salt, a
state S ∈ S, a parameter β ∈ N≤αout , and a string of additional input addin ∈ {0, 1}≤αadd ,
and returns an output R ∈ {0, 1}β, and an updated state S′ ∈ S.

If a PRNG always has X = ε or addin = ε (indicating that, respectively, a salt or additional input
is never used), then we omit these parameters.

Discussion. Our definition follows that of Dodis et al. [16], with a number of modifications. The
key differences are: (1) we extend the PRNG syntax to accommodate additional input, nonces
and a parameter indicating the number of output bits requested, all of which are part of the
NIST DRBG interface; (2) following Shrimpton et al. [38], we define setup to be the algorithm
which constructs the initial state of the PRNG from a sample drawn from the entropy source,
and assume that the salt X is generated externally and supplied to the PRNG; and (3) we allow
entropy samples and outputs to take any length in a range indicated by the parameters of the
PRNG, rather than being of fixed length. We provide a full discussion of these modifications in
Appendix A. The SP 800-90A standard uses the term deterministic random bit generator (DRBG)
instead of the more familiar PRNG. We use these terms interchangeably.

3 The NIST SP 800-90A Standard

3.1 Overview of the Standard

The standard defines three DRBG mechanisms, HASH-DRBG, HMAC-DRBG, and CTR-DRBG,
based on a hash function, HMAC, and a block cipher respectively.

Algorithms and mapping into Definition 1. The standard specifies a tuple of
(Instantiate,Reseed,Generate) algorithms for each of the DRBGs. These algorithms map directly
into the (setup, refresh, next) algorithms in the PRNG model of Definition 1. For consistency with
the usual PRNG syntax, we refer to the NIST DRBG algorithms as (setup, refresh, next) through-
out. The NIST DRBGs are not specified to take a salt; as such when mapping into the syntax
of Definition 1 we always take X = ε and Seed = ∅, and omit these parameters from the subse-
quent definitions. We discuss the lack of a salt further in Section 5. The standard also defines an
update algorithm for CTR-DRBG and HMAC-DRBG, and derivation functions for HASH-DRBG and
CTR-DRBG, which are called as subroutines by the other algorithms. These algorithms are used to
derive new state variables, and incorporate provided data into them. Additionally, the CTR-DRBG
derivation function is used to pre-process entropy samples and additional inputs, typically into a
string of shorter length, prior to their use by other DRBG algorithms. A pseudocode presentation
of the component algorithms of each of the DRBGs is given in Figure 11, and is discussed in more
detail in Section 4. A set of sample parameters for typical instantiations of the DRBGs is given in
Appendix G.2. The full list of allowed instantiations is given in the standard.

DRBG functions. The setup, refresh, and next algorithms underly (respectively) the Instantiate,
Reseed and Generate functions of the DRBG. When called, these functions check the validity of
the request (e.g., that the number of requested bits does not exceed αout), and return an error
if these checks fail. If not, the function fetches the internal state of the DRBG, along with any
other inputs required by the algorithms (such as entropy inputs, a nonce, and so on), and the

1 We do not directly analyze the refresh algorithm and derivation function for CTR-DRBG, and so defer
the presentation of these algorithms to Appendix G.
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underlying algorithm is applied to these inputs. The resulting outputs are returned to the caller
and / or used to update the internal state, and the successful status of the call is indicated to
the caller. Here we abstract away this process to avoid cluttering our exposition. To this end, we
assume that all required inputs are provided to the algorithm in question (without modeling how
these are fetched), and assume that all inputs and requests are valid, omitting the success / error
notifications. We use calling a function and invoking the underlying algorithm interchangeably. A
DRBG mechanism also includes an Uninstantiate function which erases the internal state and
a Health Test function, which is used to test if the other functions in an implementation are
performing correctly. We do not model these functions in this work.

The DRBG State. The standard defines the working state of a DRBG to be the set of stored
variables which are used to produce pseudorandom output. The internal state is then defined
to be the working state plus administrative information, which indicates the security strength of
the instantiation and whether prediction resistance is supported (see below). We typically omit
administrative information as this shall be clear from the context. By the ‘state’ of the DRBG
(denoted S), we mean the working state unless otherwise specified.

Entropy sources and instantiation. The DRBGs must have access to an approved entropy
source2 during initial state generation via setup. The DRBG uses the function Get entropy input

to request an entropy sample I of length within the range [αmin, αmax] (see Definition 1), and
containing a given amount of entropy (discussed further below). For all DRBG mechanisms except
CTR-DRBG implemented without a derivation function, the Instantiate function must also ac-
quire a nonce to be used during instantiation. Nonces must either contain γ∗/2-bits of min-entropy,
or not be expected to repeat more than such a value would. Examples of suitable nonces given in
the standard include strings drawn from the entropy source, time stamps, and sequence numbers.
Once the initial state has been constructed, the DRBG is said to be instantiated. A DRBG im-
plementation can support multiple simultaneous instantiations, which are differentiated between
using state handles. Here we assume that each DRBG supports a single instantiation, and so omit
handles.

Reseeding. If the DRBG has continual access to an entropy source, then the DRBG is said
to support prediction resistance. In this case, entropy samples drawn from the source may be
periodically incorporated into the DRBG state via refresh. We assume that a DRBG instantiation
always supports prediction resistance, and omit the parameters indicating this from the state and
function calls. Reseeds may be explicitly requested by the consuming application, or triggered
by a request in a next call (in which case, a refresh is performed before the state is passed to
next). Additionally, a DRBG instantiation specifies a parameter reseed interval, which indicates
the maximum number of output generation requests before a reseed is forced. For all allowed
instantiations (with the exception of CTR-DRBG instantiated with 3-KeyTDEA), reseed interval
may be at most 248. The number of next calls since the last refresh is recorded by a state component
called a reseed counter (cnt). In keeping with the usual modelling of PRNGs, we assume here that
reseeds are always explicitly requested; this is without loss of generality.

Security strength. An instantiation of a NIST DRBG is parameterized by a security strength
γ∗ ∈ {112, 128, 192, 256}. The standard requires that all entropy samples used in initial state
generation and reseeding contain at least γ∗-bits of entropy.3

Output generation. Outputs of varying lengths up to αout-bits may be requested by the caller via
the parameter β, which forms part of the input to the next function. For all allowed instantiations
(with the exception of CTR-DRBG instantiated with 3-KeyTDEA), αout may be as large as 219.

Additional input. The standard gives the option for strings of additional input (denoted addin)
to be provided to the DRBG by the caller during next calls. These inputs may be public or
predictable (e.g., device serial numbers and time stamps), or may contain secrets. If these inputs

2 Either a live entropy source as approved in SP 800-90B [41], or a (truly) random bit generator as per SP
800-90C [3].

3 In contrast, the notion of robustness for PRNGs [16] (see Section 5), requires that a PRNG is secure
when reseeded with sets of entropy samples which collectively have γ∗-bits of entropy. Looking ahead to
Section 6, we analyze HASH-DRBG with respect to this stronger notion.
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do contain entropy, they may provide a buffer in the event of a system failure or compromise. Here,
we assume that an instatiation is either always or never called with additional input during next
calls. The standard also allows optional additional input to be included in refresh calls, and during
setup (in the form of a personalization string). We omit these here for simplicity.

4 Algorithms

We now describe the component algorithms of the NIST DRBGs (Figure 1).

4.1 HASH-DRBG.

HASH-DRBG is built from an (unkeyed) cryptographic hash function H : {0, 1}≤ω → {0, 1}`. The
working state is defined S = (V,C, cnt), where the counter V ∈ {0, 1}L and constant C ∈ {0, 1}L
are the security critical state variables. The standard does not explicitly state the role of C; however
its purpose would appear to be preventing HASH-DRBG falling into a sequence of repeated states.
We discuss this further in Appendix B.

Algorithms. Both the setup and refresh algorithms of HASH-DRBG derive a new state by applying
the derivation function HASH-DRBG df to the entropy input and (in the case of refresh) the previous
counter. Output generation via next proceeds as follows. If additional input is used in the call, it
is hashed and added into the counter V (lines 3 - 5). Output blocks are then produced by hashing
the counter in CTR-mode (lines 7 - 10). At the conclusion of the call, the counter V is hashed
with a distinct prefix prepended, and the resulting string — along with the constant C and reseed
counter cnt — are added into V to update the counter (lines 12 - 13).

4.2 HMAC-DRBG

HMAC-DRBG is built from the function HMAC : {0, 1}` × {0, 1}≤ω → {0, 1}`. The working state
is of the form S = (K,V, cnt), where the key K ∈ {0, 1}` and counter V ∈ {0, 1}` are the security
critical state variables.

Algorithms. The setup and refresh algorithms of HMAC-DRBG both use the update subroutine
to incorporate an entropy sample I into K and V . For setup, these variables are initialized to
K = 0x00 . . . 00 and V = 0x01 . . . 01 prior to this process. The next algorithm for HMAC-DRBG
proceeds as follows. If additional input is used, this is incorporated into K and V via the update
function (lines 3 - 4). Output is then generated by iteratively computing V ← HMAC(K,V ), and
concatenating the resulting strings (lines 6 - 8). At the conclusion of the call, both key and counter
are updated via the update function (line 10).

4.3 CTR-DRBG

CTR-DRBG is built from a block cipher E : {0, 1}κ×{0, 1}` → {0, 1}`. The working state is defined
S = (K,V, cnt), where the key K ∈ {0, 1}κ and counter V ∈ {0, 1}` are the security critical state
variables. Ideally, CTR-DRBG would be initialized with an ideally random state S0 = (K0, V0, cnt0)
where K0←$ {0, 1}κ, V0←$ {0, 1}`, and cnt0 = 1. As discussed in Section 1, we do not analyze
setup and refresh for CTR-DRBG; these algorithms are shown in Appendix G.

Algorithms. There are two variants of CTR-DRBG depending on whether a derivation function
is used. A pseudocode description of this function is given in Appendix G. The next algorithm for
CTR-DRBG proceeds as follows. First, any additional input is incorporated into the state via the
update function (line 8). If a derivation function is used, the string of additional input is conditioned
into a (κ+`)-bit string with the CTR-DRBG df prior to this process (line 5). If a derivation function
is not used, the additional input string is restricted to be at most (κ + `)-bits in length. Output
blocks are then iteratively generated using the block cipher in CTR-mode (lines 11 - 13). At the
conclusion of the call, both K and V are updated via an application of the update function (line
15).
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HASH-DRBG df
Require: input string, (num bits)32
Ensure: req bits

temp← ε ;m← dnum bits/`e
For i = 1, . . . ,m

temp← temp ‖H((i)8 ‖ (num bits)32 ‖ input string)
req bits← left(temp, num bits)

Return req bits

HASH-DRBG setup
Require I,N

Ensure: S0 = (V0, C0, cnt0)

seed material← I ‖N
V0 ← HASH-DRBG df(seed material, L)

C0 ← HASH-DRBG df(0x00 ‖V0, L)

cnt0 ← 1

Return (V0, C0, cnt0)

HASH-DRBG refresh
Require: S = (V,C, cnt), I

Ensure: S′ = (V ′, C′, cnt′)

seed material← 0x01 ‖V ‖ I
V ′ ← HASH-DRBG df(seed material, L)

C′ ← HASH-DRBG df(0x00 ‖V ′, L)

cnt′ ← 1

Return (V ′, C′, cnt′)

HASH-DRBG next
Require: S = (V,C, cnt), β, addin

Ensure: R,S′ = (V ′, C′, cnt′)

1. If cnt > reseed interval

2. Return reseed required

3. If addin 6= ε

4. w ← H(0x02 ‖V ‖ addin)

5. V ← (V + w) mod 2L

6. data← V ; tempR ← ε ;n← dβ/`e
7. For j = 1, . . . , n

8. r ← H(data)

9. data← (data+ 1) mod 2L

10. tempR ← tempR ‖ r
11. R← left(tempR, β)

12. H ← H(0x03 ‖V )

13. V ′ ← (V +H + C + cnt) mod 2L

14. C′ ← C ; cnt′ ← cnt+ 1

15. Return R, (V ′, C′, cnt′)

CTR-DRBG update
Require : provided data,K, V

Ensure : K,V

temp← ε ;m← d(κ+ `)/`e
For j = 1, . . . ,m

V ← (V + 1) mod 2` ;Z ← E(K,V )

temp← temp ‖Z
temp← left(temp, (κ+ `))

temp← temp⊕ provided data
K ← left(temp, κ)

V ← right(temp, `)

Return K,V

HMAC-DRBG update
Require : provided data,K, V

Ensure: K,V

K ← HMAC(K,V ‖ 0x00 ‖ provided data)

V ← HMAC(K,V )

If provided data 6= ε

K ← HMAC(K,V ‖ 0x01 ‖ provided data)

V ← HMAC(K,V )

Return (K,V )

HMAC-DRBG setup
Require I, N

Ensure S0 = (K0, V0, cnt0)

seed material← I ‖N
K ← 0x00 . . . 00

V ← 0x01 . . . 01

(K0, V0)← update(seed material,K, V )

cnt0 ← 1

return (K0, V0, cnt0)

HMAC-DRBG refresh
Require: S = (K,V, cnt), I

Ensure: S′ = (K′, V ′, cnt′)

seed material← I

(K0, V0)← update(seed material,K, V )

cnt0 ← 1

Return (K0, V0, cnt0)

HMAC-DRBG next
Require: S = (K,V, cnt), β, addin

Ensure: R,S′ = (K′, V ′, cnt′)

1. If cnt > reseed interval

2. Return reseed required

3. If addin 6= ε

4. (K,V )← update(addin,K, V )

5. temp← ε ;n← dβ/`e
6. For j = 1, . . . , n

7. V ← HMAC(K,V )

8. temp← temp ‖V
9. R← left(temp, β)

10.(K′, V ′)← update(addin,K, V )

11. cnt′ ← cnt+ 1

12. Return R, (K′, V ′, cnt′)

CTR-DRBG next
Require: S = (K,V, cnt), β, addin

Ensure: R,S′ = (K′, V ′, cnt′)

1. If cnt > reseed interval

2. Return reseed required

3. If addin 6= ε

4. If derivation function used then

5. addin← CTR-DRBG df(addin, (κ+ `))

6. Else if len(addin) < (κ+ `) then

7. addin← addin ‖ 0(κ+`−len(addin))

8. (K,V )← update(addin,K, V )

9. Else addin← 0κ+`

10. temp← ε ;n← dβ/`e
11. For j = 1, . . . , n

12. V ← (V + 1) mod 2` ; r ← E(K,V )

13. temp← temp ‖ r
14. R← left(temp, β)

15. (K′, V ′)← update(addin,K, V )

16. cnt′ ← cnt+ 1

17. Return R, (K′, V ′, cnt′)

Fig. 1: Component algorithm for HASH-DRBG, HMAC-DRBG and CTR-DRBG.
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5 Robustness in the Random Oracle Model

Security claims. As discussed in Section 1, the stronger security properties of backtracking and
prediction resistance claimed in the standard have never been formally investigated. To address
this, we analyze HASH-DRBG and HMAC-DRBG in the robustness framework of [16]. This models
a powerful attacker who is able to compromise the state and influence the entropy source of the
PRNG, and encapsulates both backtracking and prediction resistance. We first define the notions
of robustness and forward security for PRNGs [16], then introduce the notion of robustness in
the ROM.

Distribution sampler. We model the gathering of entropy inputs from the entropy source via a
distribution sampler [16]. Formally, a distribution sampler D : {0, 1}∗ → {0, 1}∗×{0, 1}∗×R≥0×
{0, 1}∗ is a stateful and probabilistic algorithm which takes as input its current state σ ∈ {0, 1}∗
and outputs a tuple (σ′, I, γ, z), where σ′ ∈ {0, 1}∗ denotes the updated state of the sampler,
I ∈ {0, 1}∗ denotes the entropy sample, γ ∈ R≥0 is an entropy estimate for the sample, and
z ∈ {0, 1}∗ denotes a string of side information about the sample. We say that a sampler D is
(q+
D, γ

∗)-legitimate if (1) for all j ∈ [1, qD + 1]:

H∞(Ij |I1, . . . , Ij−1, Ij+1, . . . , IqD+1, γ1, . . . , γqD+1, z1, . . . , zqD+1) ≥ γj ,
where σ0 = ε and (σj , Ij , γj , zj)←$D(σj−1); and (2) it holds that γ1 ≥ γ∗. Condition (2) extends
the definition of [16] to model the sample (which recall must contain γ∗ bits of entropy) with
which the DRBG is initially seeded during setup. It is straightforward to see that to any sequence
of Get entropy input() calls made by the DRBG, we can define an associated sampler4.

5.1 Robustness and Forward Security in the Random Oracle Model

Our positive results about HASH-DRBG and HMAC-DRBG will be in the random oracle model
(ROM). As such, the first step in our analysis is to adapt the security model of Dodis et al. [16] to
the (ROM).

Robustness and forward security. Consider the game Rob shown in Figure 2. The game is
parameterized by an entropy threshold γ∗. We expect security when the entropy in the system is
at least this value. Mapping the NIST DRBGs into this model, we take γ∗ equal to the security
strength of the implementation. At the start of the game, we choose a random function H←$H
where H denotes the set of all functions of a given domain and range. All of the PRNG algorithms
have access to H which we indicate in superscript (e.g., setupH). Unlike the modelling of robustness
in the ideal permutation model of Gazi et al. [20] we do not give the sampler D access to H for
reasons we discuss below. To the best of our knowledge this is the first work to consider robustness
in the ROM, and our security model may be useful to analyze other PRNGs beyond HASH-DRBG
and HMAC-DRBG. We have additionally modified game Rob from [16] to: (1) accommodate our
PRNG syntax (including the use of additional input, discussed below); (2) remove the Next oracle,
which was shown in [14] to be without loss of generality; and (3) generate the initial state via the
setupH algorithm (as opposed to initializing the PRNG with an ideal random state) similarly to [38].

The game is implicitly parameterized by the nonce distribution N used by G, where we write
N ← N to denote sampling a nonce. Since nonces may be predictable (e.g., if a sequence number
is used) we assume N is public and that the nonce sampled by the challenger at the start of an
execution of Rob is given to A. Similarly, we assume the attacker provides the strings of additional
input which may be provided in next calls. These are conservative assumptions, since any entropy
in these values can only make the attacker’s job harder. We assume that an attacker either always
or never includes additional input in RoR queries.

We define game Fwd to be a restricted variant of game Rob, in which the attacker A can make
no Set queries and makes a single Get query after which they may make no further queries. With

4 The SP 800-90B standard defines the entropy estimate of sample I as simply H∞(I), as opposed to
conditioning on other samples and associated data. However, the tests specified in SP 800-90B estimate
entropy using multiple samples drawn from the source. As such, it seems reasonable to assume that
entropy sources satisfy the conditional entropy requirement used above.
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this in place, the robustness advantage of a legitimate distribution sampler (q+
D, γ

∗)-legitimate D
and adversary A is

Advrob
G,γ∗(A,D) = 2 · |Pr

[
RobA,DG,γ∗ ⇒ 1

]
− 1

2
| ,

and the forward security advantage of (A,D) is defined

Advfwd
G,γ∗(A,D) = 2 · |Pr

[
FwdA,DG,γ∗ ⇒ 1

]
− 1

2
| .

In both cases, we say that A is a (qH, qR, qD, qS)-adversary if it makes qH queries to the random
oracle H, qR queries to its RoR oracle, qD queries to its Ref oracle, and qS queries to its Get / Set
oracles. It is straightforward to see that any PRNG which is robust is also forward secure.

Variants. Games Rob and Fwd in the standard model are defined identically to the corresponding
notions in the ROM, except we no longer sample a random oracle H←$H at the start of the game
and remove oracle access to H from all algorithms. In much of our analysis we make a simplifying
assumption that the attacker always requests outputs of some fixed length β in RoR queries. We
indicate this by adding β in subscript e.g., RobA,DG,γ∗,β . This is to avoid further complicating security
bounds with parameters indicating the length of the output requested in each RoR query. The
analogous results for the fully general game Rob can be recovered as a straightforward extension
of our proofs.

The problem of salting. It is well-known that deterministic extraction from imperfect sources
is impossible in general, which is why the PRNG in game Rob is initialized with a random salt X
which crucially is chosen independently of the input distribution. Unfortunately (for our analysis)
none of the NIST DRBGs are specified to take a salt. Moreover, HMAC-DRBG and HASH-DRBG
have no state components or inputs which can be reframed as a salt without adding substantial
assumptions. Indeed, any salt derived from the entropy source will not satisfy the required inde-
pendence criteria. For example, this rules out reframing the constant C which is a state component
of HASH-DRBG as a salt. Likewise, the standard allows the nonce used by setup to be sampled
from the source, rendering this unsuitable also. While we omit the optional personalization string
(input to setup) and optional additional input (input to refresh) from our analysis for simplicity,
we stress that since these are provided by the caller and are arbitrary these would not in general
be suitable had they been included. For example, there is nothing to prevent the caller using past
PRNG outputs, which clearly depend on the source, as additional input.

At this point we are faced with two choices. We either: (1) allow the sampler D to query the
random oracle H (similarly to the notion of oracle-dependent samplers in the ideal permutation
model of [20]). To construct a security proof in this case we must either modify the NIST DRBGs
to accommodate a random salt or restrict our analysis to implementations for which the nonce /
personalization string and additional input are sufficiently independent of the entropy source to
be framed as a salt. Or: (2) do not allow D to query the random oracle. In this case, the oracle
H which security analysis is with respect to is chosen randomly and independently of the entropy
source, and so serves the same purpose as a random salt. We have opted to take the latter approach
for a number of reasons. Firstly, we wish to analyze the NIST DRBGs as they are specified and
used. As such modifying the construction or greatly restricting the number of implementations we
can reason about as per (1) solely to facilitate the analysis seems counterproductive. Secondly, as
pointed out in [39], generating a salt is challenging in practice, due to the necessary independence
from the entropy source. Moreover, given the litany of tests which approved entropy sources in SP
800-90B are subjected to, it seems reasonable to assume that no source which passes these tests
will be so biased as to be problematic.

5.2 Preserving and Recovering Security in the ROM

A key insight of [16] is that the complex notion of robustness can be decomposed into two simpler
notions called preserving and recovering security. The former models the PRNGs ability to maintain
security if the state is secret but the attacker is able to influence the entropy source. The latter
models the PRNGs ability to recover from state compromise after sufficient (honestly generated)
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RobD,AG,γ∗

H←$H ; b←$ {0, 1} ;N ← N
σ ← ε ;X←$ salt
(σ, I, γ, z)←$D(σ)

S ← setupH(X, I,N)

c← γ∗ ; γ ← (γ1, z1, N)

b∗←$ARef,RoR,Get,Set,H(X, γ)

Return (b = b∗)
proc. H(X)

Return H(X)

Ref

(σ, I, γ, z)←$D(σ)

S ← refreshH(X,S, I)

c← c+ γ

Return (γ, z)

RoR(β, addin)

(R0, S)← nextH(X,S, β, addin)

If c < γ∗

Return R0

c← 0

Else R1←$ {0, 1}β
Return Rb

Get

Return S

c← 0
Set(S∗)

S ← S∗

c← 0

Fig. 2: Security game Rob for a PRNG G = (setup, refresh, next).

entropy has entered the system. Here we will utilize the variants of these from [38], which extended
the original definitions and added a new game Init modelling initial state generation.

Consider the games Pres, Rec, and Init shown in Figure 35. All games are defined with respect
to a masking function, which is a randomized function M : S ∪ {ε} → S where S denotes
the state space of the PRNG6. Here we have adapted the notions of [38] in the natural way to
accommodate: (1) a random oracle; and (2) our PRNG syntax. We give the masking function
access to the random oracle, indicated by MH. We make two further modifications. Firstly in Init,
we require S∗0 to be indistinguishable from MH(ε) as opposed to MH(S∗0 ) as in [38]. Secondly, during
the computation of the challenge in Pres and Rec, we apply the masking function to the state Sd
which was input to nextH as opposed to the state S∗ output by nextH. In both cases, this is to
accommodate the somewhat complicated state distribution of HASH-DRBG (see Section 6). For all

Gmx
y ∈ {InitA,DG,M,γ∗ ,PresA,G,M,β ,RecA,DG,M,γ∗,β} we define

Advgm
x (y) = 2 · |Pr

[
Gmx

y ⇒ 1
]
− 1

2
| ,

where A is said to be a qH adversary if they make qH queries to their H oracle. With this in place,
the following theorem — which says that Init, Pres and Rec security collectively imply Rob security
in the ROM — is an adaptation of the analogous results from [38], [20]. As a bonus, employing
a slightly different line of argument with two series of hybrid arguments means our proof holds
for arbitrary masking functions, lifting the restriction from [38] that masking functions possess a
property called idempotence. We provide a proof in Appendix D.

Theorem 1. Let G = (setupH, refreshH, nextH) be a PRNG with input, built from a hash function
H which we model as a random oracle. Suppose that each invocation of refreshH and nextH makes
at most qref and qnxt queries to H respectively. Let MH : S ∪ {ε} → S be a masking function for
which each invocation of H makes at most qM H queries. Then for any (qH, qD, qR, qS)-adversary A
and (q+

D, γ
∗)-legitimate sampler D in game Rob against G, there exists a (qH + qD · qref + qR · qnxt)-

adversary A1 and (qH + qD · qref + qR · (qnxt + qM))-adversaries A2,A3 such that

Advrob
G,γ∗,β(A,D) ≤ 2 ·Advinit

G,M,γ∗(A1,D) + 2qR ·Advpres
G,M,β(A2) + 2qR ·Advrec

G,M,β,γ∗(A3,D) .

Tightness. Unfortunately due to a hybrid argument taken over the qR RoR queries made by
A, Theorem 1 is not tight. This is exacerbated in the ROM, since the attacker in each of the qR
hybrid reductions must make enough H queries to simulate the whole of game Rob for A. This
hybrid argument accounts for the qR coefficients in the bound and in the attacker query budgets.
This seems inherent to the proof technique and is present in the analogous results of [16, 38, 20].
Developing a technique to obtain tighter bounds is an important open question.

5 To avoid further complicating our analysis, the notions given here are for the variant of Rob in which
A always requests outputs of β-bits in RoR queries. It is straightforward to extend our analysis to
accommodate variable length outputs.

6 We extend the definition of [38] to include the empty string ε, and discuss the reasons for this in
Section 6. We assume that ε does not lie in the state space of the PRNG; if this is not the case then
any distinguished symbol may be used instead.
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InitA,DG,M,γ∗

H←$H ; b←$ {0, 1} ;N ← N
σ0 ← ε ;X←$ salt
For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

If (b = 0) then S∗0 ← setupH(X, I1, N)

Else S∗0 ←$ MH(ε)

b∗←$AH(X,S∗0 , (Ii)
qD+1

i=2 , (γi, zi)
qD+1

i=1 , N)

Return (b = b∗)

PresAG,M,β

H←$H ; b←$ {0, 1}
X←$ salt
(S′0, I1, . . . , Id, addin)←$AH(X)

S0←$ MH(S′0)

For i = 1, . . . , d

Si ← refreshH(X, Ii, Si−1)

If (b = 0) then (R∗, S∗)← nextH(X,Sd, β, addin)

Else R∗ ← {0, 1}β ;S∗ ← MH(Sd)

b∗←$AH(X,R∗, S∗)

Return (b = b∗)

RecA,DG,M,γ∗,β

H←$H ; b←$ {0, 1}
σ ← ε ;X←$ salt ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d, addin)←$AH,Sam(X, (I1, (γk, zk))
qD+1

i=1 )

If µ+ d > (qD + 1) or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
For i = 1, . . . , d

Si ← refreshH(X, Iµ+i, Si−1)

If (b = 0) then (R∗, S∗)←$ nextH(X,Sd, β, addin)

R∗ ← {0, 1}β ;S∗←$ MH(Sd)

b∗←$A(X,R∗, S∗, (Ik)k>µ+d)

Return (b = b∗)

Sam()

µ = µ+ 1

Return Iµ

proc. H(X)

Return H(X)

Fig. 3: Security games Init, Pres and Rec for a PRNG G = (setup, refresh, next) and M : S ∪ {ε} → S.

MH(S)

If S = ε

V ′←$ {0, 1}L
C′ ← HASH-DRBG dfH(0x00||V, L)

cnt′ ← 1

Else (V,C, cnt)← S

H←$ {0, 1}`
V ′ ← (V + C + cnt+H) mod 2L

C′ ← C ; cnt′ ← cnt+ 1

S′ ← (V ′, C′, cnt′)

Return S′

MHMAC(S)

K′, V ′←$ {0, 1}`
If S = ε

cnt′ ← 1

Else (K,V, cnt)← S

cnt′ ← cnt+ 1

S′ ← (K′, V ′, cnt′)

Return S′

Fig. 4: Masking function for proofs of Theorem 2 and Theorem 4.

6 Analysis of HASH-DRBG

We now present our analysis of the robustness of HASH-DRBG, in which the underlying hash
function H : {0, 1}≤ω → {0, 1}`. Our proof is with respect to the masking function MH shown
in the left hand side of Figure 4. To avoid further complicating security bounds, we assume that
HASH-DRBG is never called with additional input and that β-bits are requested in each RoR query.
It is straightforward to generalize the result to include variable output lengths, and we expect the
proof for HASH-DRBG called with additional input to be very similar. Since HASH-DRBG is not
specified to take a salt, we omit this parameter in the subsequent exposition.

Challenges. Certain design aspects of HASH-DRBG significantly complicate the proof, and ne-
cessitated adaptations in our security modeling (Section 5).

– Notice that the distributions of states returned by setupH and refreshH are quite different from
the distribution of states S′ where (R,S′)← nextH(S, β). To accommodate this, we extend the
domain of M to include the empty string ε to indicate that an idealized state of the first form
should be returned. Juggling these different state distributions complicates proofs, in particular
introducing multiple cases into the proof of Pres security.

– Consider the distribution of S′ = MH(S) for S ∈ S, which serves to idealize the distribution
of the state S′ = (V ′, C ′, cnt′) as updated following an output generation request. It would be
convenient to argue that V ′ is uniformly distributed over {0, 1}L. However, since V ′ is chosen
uniformly from the window [V + C + cnt, V + C + cnt + (2` − 1)] where S = (V,C, cnt) and
L > ` (see below), this is clearly not the case. Since the range in which the updated state S′

may lie is dependant on the previous state S in this way, we adapted games Pres and Rec so
that it is S which is masked instead of S′. For the same reason, bounding the probability that
A guesses the previous state S when given S′ requires some care.
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– More minor issues, such as: (1) not properly separating the domain of queries made by setupH

to produce the counter V from those made to produce the constant C; and (2) the way in which
L is not a multiple of ` for the approved hash functions; make certain steps in the analysis
more fiddly than they might have been.

Parameter settings. We provide a general treatment here to which any parameter setting
may be slotted in, subject to two restrictions which are utilized in the proof. Namely, we assume
that L > ` + 1 and n < 2L, where n = dβ/`e denotes the number of output blocks produced
by nextH to satisfy a request for β-bits. We additionally require that L < 232 and m < 28 where
|V |= |C|= L and m = dL/`e is the number of blocks hashed by setupH / refreshH to produce a new
counter. This is because these values have to be encoded as a 32-bit and 8-bit string respectively
by HASH-DRBG df. All hash functions approved in the standard fall well within these parameters.
(Indeed, for all of these L > 2`, n < 3277� 2L, and m ≤ 3.)

Proof of robustness. With this in place, we present the following theorem bounding the robust-
ness of HASH-DRBG. The proof follows from a number of lemmas which we discuss below, combined
with Theorem 1. (When calculating the query budgets for Theorem 1, it is readily verified that for
HASH-DRBG qnxt = n+ 1, qref = 2m, and qM = m.)

Theorem 2. Let G be HASH-DRBG built from a hash function H : {0, 1}≤ω → {0, 1}` which we
model as a random oracle. Let L denote the state length of the instantiation where L > ` + 1, let
m = dL/`e, and suppose that HASH-DRBG is not called with additional input. Let MH denote the
masking function shown in the left-hand panel of Figure 4. Then for any (qH, qD, qR, qS)-attacker
A in the robustness game against G, and any (q+

D, γ
∗)-legitimate sampler D, it holds that

Advrob
G,M,β,γ∗(A,D) ≤ qR · qH + 2q′H

2γ∗−2
+
qR · qH · (2n+ 1)

2`−2
+
qR · ((d− 1)(2qH + d) + q2

H) + 2

2L−2
.

Here n = dβ/`e and d denotes the maximum number of consecutive Ref queries. Moreover, q′H =
(qH + 2m · qD + (n+ 1) · qR) and qH = q′H +m · qR.

Init security. We begin by bounding the Init security of HASH-DRBG. The qH · 2−γ
∗

term arises
following the standard argument that the initial state variable V0 will be indistinguishable from a
truly random bit string unless the attacker can guess the entropy sample I1 which was hashed to
produce it. The additional 2−L term arises since the queries made to compute the counter V0 are
not fully domain separated from those made to compute the constant C0. Indeed, if it so happens
that I1||N = 0x00||V0 where I1 and N denote the entropy input and nonce (an event which —
while very unlikely — is not precluded by the parameter settings in the standard), then the derived
values of V0 and C0 will be equal, allowing the attacker to distinguish the real state from MH(ε)
with high probability. A small tweak to the design of setup (e.g., prepending 0x01 to I||N before
hashing) would have avoided this. The full proof is given in Appendix E.

Lemma 1. Let G = HASH-DRBG and masking function MH be as specified in Theorem 2. Then
for any adversary A in game Init against G making qH queries to the random oracle H, and any
(q+
D, γ

∗)-legitimate sampler D, it holds that

Advinit
G,M,γ∗(A,D) ≤ qH · 2−γ

∗
+ 2−L .

Pres security. At the start of game Pres, the attacker outputs (S′0, I1, . . . , Id). The game sets
(V0, C0, cnt0)←$ MH(S′0), and iteratively computes Sd via Si = refreshH(Si−1, Ii) for i ∈ [1, d].
The proof begins by arguing that unless the attacker can guess the counter V0 or any of the
counters V1, . . . , Vd−1 passed through during reseeding, then (barring certain accidental collisions)
the updated state Sd = (Vd, Cd, cntd) is indistinguishable from a masked state. The proof then
shows that, unless the attacker can guess Vd, the resulting output / state pair are indistinguishable
from their idealized counterparts. We must consider a number of cases depending on whether the
tuple (S′0, I1, . . . , Id) output by A is such that: (1) S′0 ∈ S or S′0 = ε; and (2) d ≥ 1 or d = 0; since
these induce different distributions on S0 and Sd respectively.
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Lemma 2. Let G = HASH-DRBG and masking function MH be as specified in Theorem 2. Then
for any adversary A in game Pres against G making qH queries to the random oracle H, it holds
that

Advpres
G,M,β(A) ≤ qH · (n+ 1)

2`−1
+

(d− 1)(2qH + d)

2L
,

where n = dβ/`e and A outputs d entropy samples at the start of the challenge.

Rec security. The first step in the proof of Rec security argues that iteratively reseeding an
adversarially chosen state S0 with d entropy samples which collectively have entropy γ∗ yields a
state Sd = (Vd, Cd, cntd) which is indistinguishable from MH(ε). This represents the main technical
challenge in the proof, and uses Patarin’s H-coefficient technique, which we recall in Appendix A.

Our proof is based on the analogous result for sponge-based PRNGs in the ideal permutation
model (IPM) of Gazi et al. [20], essentially making the same step-by-step argument. However,
making the necessary adaptations to analyze HASH-DRBG is still non-trivial. As well as working
in the ROM as opposed to the IPM, we must adapt the proof to take into account the constant C
which is a state component of HASH-DRBG, as well as the more involved reseeding process, which
concatenates and truncates the responses to multiple H queries to derive each updated counter V ′.

At a high level, we say that an execution of the game is bad if A makes sufficient H queries
to compute Vd himself. Any such set of queries requires A to guess the entropy samples used for
reseeding, and so contributes the qH · 2−γ

∗
term. The proof then argues that if a transcript is

not bad then, barring accidental collisions (accounting for the remaining terms in the bound), the
final updated state component Vd will be uniformly distributed over {0, 1}L, and so in turn, Sd is
equivalent to MH(ε). With this in place, an analogous argument to that made in the proof of Pres
security, implies that an output / state pair produced by applying nextH to this masked state, are
indistinguishable from their idealized counterparts.

Lemma 3. Let G = HASH-DRBG and masking function MH be as specified in Theorem 2. Then
for any adversary A in game Rec against G making qH queries to the random oracle H, and any
(q+
D, γ

∗)-legitimate sampler D, it holds that

Advrec
G,M,β,γ∗(A,D) ≤ qH

2γ∗−1
+
qH · n
2(`−1)

+
(d− 1) · (2qH + d) + 2q2

H

2L
.

Here n = dβ/`e, and d denotes the index output by A.

7 Analysis of HMAC-DRBG

We now present our analysis of HMAC-DRBG. We give both positive and negative results, showing
that the security guarantees of HMAC-DRBG differ depending on whether the DRBG is called with
additional input.

7.1 Negative Result: HMAC-DRBG Without Additional Input is not Forward Secure

We present an attack which breaks the forward security of HMAC-DRBG if additional input is not
always included in next calls. This contradicts the claim in the standard that the NIST DRBGs are
backtracking resistant. Since Rob security implies Fwd security, this rules out a proof of robustness
in this case also.

The attack. Consider the update call which is performed after output block generation in the
next algorithm of HMAC-DRBG (Section 3). Notice that if addin = ε then the final two lines of
update are not executed. As such, one may verify that the updated state S∗ = (K∗, V ∗, cnt∗) is of
the form V ∗ = HMAC(K∗, r∗) where r∗ is the final output block produced in the call7. An attacker
A in game Fwd who makes a RoR query to request `-bits of output followed immediately by a Get
query to learn S∗ can easily test this relation. If it does not hold, they know the challenge output
is truly random.

7 This observation is implicit in the proof of pseudorandomness by Hirose [22]; however, the connection
to forward security is not made in this work.
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To concretely bound A’s advantage we define game Fwd$, which is identical to game Fwd
against HMAC-DRBG in the standard model except the PRNG is initialized with an ‘ideally dis-
tributed’ state S0 = (K0, V0, cnt0) where K0, V0←$ {0, 1}` and cnt0 ← 1, as opposed to deriving S0

from the entropy source via setup. We note that the attacker’s job can only be harder in Fwd$, since
they cannot exploit any flaws or imperfections in the setup procedure. The proof of the following
theorem is given in Appendix F.

Theorem 3. Consider an implementation G of HMAC-DRBG built from the function HMAC :
{0, 1}` × {0, 1}≤ω → {0, 1}`. Suppose that additional input is not always included in next calls to
G. Then there exist efficient adversaries A,B such that for any sampler D it holds that

Advfwd-$
G,γ∗ (A,D) ≥ 1− 2 · Advprf

HMAC(B, 2)− 2−(`−1) .

Moreover, A makes one RoR query and one Get query. B runs in the same time as A, and makes
two queries to their real-or-random function oracle.

7.2 Positive Result: Robustness of HMAC-DRBG with Additional Input in the ROM

We prove that HMAC-DRBG is robust when additional input is used, with respect to a restricted
(but realistic) class of samplers. We model the function HMAC : {0, 1}`×{0, 1}≤ω → {0, 1}` as a
keyed random oracle, whereby each fresh query of the form (K,X) ∈ {0, 1}`×{0, 1}≤ω is answered
with an independent random `-bit string.

Rationale. While a standard model proof of Pres security is possible via a reduction to the PRF-
security of HMAC, how to achieve the same for Init and Rec is far from clear. These results require
showing that HMAC is a good (statistical or computational) randomness extractor. In games Init
and Rec, the key for HMAC is either chosen by or known to the attacker, and so we cannot appeal to
the PRF-security of HMAC. Entropy samples are non-uniform, so a dual-PRF assumption does not
suffice either. As such, some idealized assumption on HMAC or the underlying hash / compression
function seems inherent.

The extraction properties of HMAC (under various assumptions) were studied in [15], which
considers a single-use version of extraction which is weaker than what is required here. These
results typically model the compression function underlying HMAC as a random function. This is
a reasonable heuristic when the key for HMAC is suitable for use as a salt. However for HMAC
with an adversarially chosen key (as is the case in game Rec) the heuristic seems more of a stretch.
Moreover, the results of [15] which avoid the ROM require high entropy inputs containing e.g.,
2`-bits of min-entropy, much greater than the `-bits mandated by the standard, and so are not
generally applicable to real-world implementations of HMAC-DRBG.

By opting to model HMAC as a keyed RO, we can analyze HMAC with respect to the entropy
levels of inputs specified in the standard (and at levels which are practical for real-world applica-
tions). This is a fairly standard assumption, having been made in various other works [27, 36, 4] in
which HMAC is used with a known key, or applied to entropy samples with insufficient entropy for
extraction. In [17], HMAC was proven to be indifferentiable from a random oracle for all commonly
deployed parameter settings (although since robustness is a multi-stage game, the indifferentiability
result cannot be applied generically here [35]).

Discussion. A standard model proof for HMAC-DRBG would certainly be a stronger and more
satisfying result. However as discussed above, idealizing HMAC or the underlying hash / compres-
sion function seems inherent; a result under weaker idealized assumptions is an important open
problem. Despite this, we feel our analysis is a significant forward step from existing works. Ours is
the first analysis of the full specification of HMAC-DRBG; prior works omit reseeding and initializa-
tion, assuming HMAC-DRBG is initialized with a state for which K,V ←$ {0, 1}`. In reality these
are constructed from the entropy source, so this is far removed from HMAC-DRBG in a real system.
Our work is also the first to consider security properties stronger than the pseudorandomness of
output. We hope our result is a valuable first step to progress the understanding of these widely
deployed (yet little analyzed) algorithms, and provides a useful starting point for further work to
extend.

Sampler. We prove robustness with respect to the class of samplers {D}γ∗ defined to be the set of
(q+
D, γ

∗)-legitimate samplers for which γi ≥ γ∗ for i ∈ [1, qD+1]. (In words, each sample I contains
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γ∗-bits of entropy). This is a simplifying assumption. However, we stress that this is the entropy
level per sample required by the standard. As such, this is precisely the restriction imposed on
allowed entropy sources. It seems likely that an H-coefficient proof of Rec security similar to that
of Lemma 3 would yield a fully general result.

Proof of robustness. With this in place, we present the following theorem bounding the ro-
bustness of HMAC-DRBG. The proof follows from a number of lemmas which we discuss below,
combined with Theorem 1 (for which it is straightforward to verify that for HMAC-DRBG, qref = 4
and qnxt = n + 8 where n = dβ/`e). Our proof is with respect to the masking function MHMAC

shown in Figure 4. We note that, unlike for the HASH-DRBG case, MHMAC does not make any calls
to HMAC (qM = 0).

Theorem 4. Let G be HMAC-DRBG built from the function HMAC : {0, 1}`×{0, 1}≤ω → {0, 1}`
which we model as a keyed random oracle. Let MHMAC be the masking function shown in the
righthand panel of Figure 4. Then for any (qH, qD, qR, qS)-attacker A in the robustness game against
HMAC-DRBG who always outputs addin 6= ε, and any (q+

D, γ
∗)-legitimate sampler D ∈ {D}γ∗ , it

holds that

Advrob
G,M,β,γ∗(A) ≤ qR · (q̄H · ε1 + ε2) · 2−(2`−1) + q̄H · 2−(`−2)

+ qR · (q̄H · (n+ 3) + ε3) · 2−(`−2)

+ (q̄H · (2qR + (1 + 2−2`)) · 2−(γ∗−1) + 2−(2`−1) .

Here ε1 = 12d+ 10 + (4d− 2) · 2−γ∗ , ε2 = (d · (10d+ 4n+ 18 + (d− 1) · 2−(γ∗−1)) + 6n+ 16), and
ε3 = n(n + 1). Moreover, n = dβ/`e, d denotes the maximum number of consecutive Ref queries,
and q̄H = (qH + 4 · qD + (n+ 8) · qR).

Discussion. As a concrete example, if HMAC-DRBG is instantiated with
HMAC-SHA-512 then ` = 512. In this case, the bound is dominated by the O(q̄H · qR) · 2−(γ∗−1)

term where γ∗ denotes the strength of the instantiation and qR and qH correspond respectively to
the number of RoR and HMAC queries made in game Rob. Supposing qD ≤ qR (e.g., there are
fewer Ref than RoR calls) and n is small, then q̄H · qR ≤ c · qR · (qH + qR) for some small constant
c. As such, if HMAC-DRBG is instantiated at strength γ∗ = 256, it achieves good security margins
up to fairly large qH, qR. Instantiated at lower strengths the margins are less good; however, this
is likely an artefact of the proof technique rather than indicating an attack.

Init security. The proof of Init security argues that unless the attacker A guesses the input I1
with which HMAC-DRBG is seeded, or an intermediate key / counter computed during setup, then
— barring an accidental collision in the inputs to the second and fourth HMAC queries made by
setup, contributing 2−2` to the bound — the resulting state is identically distributed to MHMAC(ε).
A union bound over these guessing and collision probabilities then yields the lemma.

Lemma 4. Let G = HMAC-DRBG and masking function MHMAC be as specified in Theorem 4.
Then for any adversary A in game Init against HMAC-DRBG making qH queries to the random
oracle HMAC, and any (q+

D, γ
∗)-legitimate sampler D ∈ {D}γ∗ , it holds that

Advinit
G,M,γ∗(A,D) ≤ qH · ((1 + 2−2`) · 2−γ

∗
+ 2−(`−1)) + 2−2` .

Pres and Rec security. At a high level, the proofs of Pres and Rec security proceed by bounding:
(1) the probability that A guesses one of the points queried to the random oracle HMAC during
the challenge computation; and (2) the probability of a collision amongst these points. The proof
argues that if neither of these events occur, then the challenge output / state are identically
distributed to their idealized counterparts. However, this process is surprisingly delicate. Firstly,
the domains of queries are not fully separated, so multiple collisions must be dealt with. Secondly,
the guessing and collision probabilities of points from the same domain differ throughout the game.
For example, queries of the form (K,V ) are made during output generation and in state updates.
In the former case, the attacker knows the ‘secret’ counter since this doubles as an output block,
whereas in the latter this is unknown. This rules out a modular treatment, and complicates the
bound. This is another example of where a small modification to separate queries would simplify
analysis.
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Lemma 5. Let G = HMAC-DRBG and masking function MHMAC be as specified in Theorem 4.
Then for any adversary A in game Pres against HMAC-DRBG who makes qH queries to the random
oracle HMAC and always outputs addin 6= ε, it holds that

Advpres
G,M,β(A) ≤ (qH · (8d+ 6) + ε) · 2−2` + (qH · (n+ 2) + n(n+ 1)) · 2−` ,

where ε = d · (6d+ 2n+ 8) + 3n+ 8. Here n = dβ/`e, and A outputs (S′0, I1, . . . , Id, addin) at the
start of the challenge.

Lemma 6. Let G = HMAC-DRBG and masking function MHMAC be as specified in Theorem 4.
Then for any adversary A in game Rec against HMAC-DRBG making who makes qH queries to
the random oracle HMAC and always outputs addin 6= ε, and any (q+

D, γ
∗)-legitimate sampler

D ∈ {D}γ∗ , it holds that

Advrec
G,M,β,γ∗(A,D) ≤ (qH · (4d+ 4 + (4d− 2) · 2−γ

∗
) + ε′) · 2−2`

+ (qH · (n+ 4) + n(n+ 1)) · 2−` + qH · 2−(γ∗−1) ,

where ε′ = (d · (4d + 2n + 10 + (d − 1) · 2−(γ∗−1)) + 3n + 8). Here n = dβ/`e, and d denotes the
index output by A.

8 Overlooked Attack Vectors

The positive results of Sections 6 and 7 are reassuring. However, the flexibility in the standard
to produce variable length and large outputs (of up to 219 bits) in each next call means that two
implementations of the same DRBG may be very different depending on how such limits are set.
While this is reflected in the security bounds of the previous sections (in terms of the parameter n
denoting the number of output blocks computed per request), we argue that the standard security
definitions of forward security and robustness may overlook attack vectors against the (fairly non-
standard) NIST DRBGs. The points made in this section do not contradict the results of the
previous sections; rather we argue that in certain (realistic) scenarios — namely when the DRBG
is used to produce many output blocks per next call — it is worth taking a closer look at which
points during output generation a state may be compromised.

next(X,S, β, addin)

If cnt > reseed interval

Return reseed required

(S0, data0)← init(X,S, β, addin)

If addin← ε then addin← 0
n

tempR ← ε ;n← dβ/`e
For i = 1, . . . , n

(ri, Si, datai)← gen(X,Si−1, datai−1)

tempR ← tempR ‖ ri
R← left(tempR, β)

S′ ← final(X,Sn, β, addin)

Return (R,S′)

Fig. 5: Iterative next algorithm for a DRBG
with associated decomposition C = (init, gen, final).

Boxed text included for CTR-DRBG only.

Iterative next algorithms. The next algorithm of
each of the NIST DRBGs has the same high-level struc-
ture (modulo slight variations which we highlight be-
low, and which again exemplify how small design fea-
tures complicate a modular treatment of these DR-
BGs). On input (S, β, addin), the reseed counter cnt
is first checked to ensure it does not exceed the re-
seed interval. Next, any additional input provided in
the call is incorporated into the state, and in the case
of HASH-DRBG one of the state variables is copied into
an additional variable in preparation for output gener-
ation (i.e., setting data = V on line 6 of the left-hand
column of Figure 1). Output blocks are then produced
by iteratively applying a function to the state variables
(or in the case of HASH-DRBG, the copy of the state
variable). Once sufficiently many blocks have been pro-
duced to satisfy the request, these blocks are concate-
nated and truncated to β-bits to form the returned output R, and a final state update is performed
to produce the updated state S′.

We would like to track the evolution of each state variable during a next call relative to the
production of different output blocks, in order to reason precisely about the points at which these
state components may be compromised. As such, it shall be useful to formalize this structure.
To this end, we say that a DRBG has an iterative next algorithm if next may be decomposed
into a tuple of subroutines C = (init, gen, final). Here init : salt × S × N≤αout × {0, 1}≤αadd →
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HASH-DRBG init
Require: S = (V,C, cnt), β, addin

Ensure: S = (V,C, cnt), data

If addin 6= ε

w ← H(0x02 ‖V ‖ addin)

V ← (V + w) mod 2L

data← V

Return (V,C, cnt), data

HASH-DRBG gen
Require S = (V,C, cnt), data

Ensure: r, S = (V,C, cnt), data

r ← H(data)

data← (data+ 1) mod 2L

Return r, (V,C, cnt), data

HASH-DRBG final
Require: S = (V,C, cnt), β, addin

Ensure: S = (V,C, cnt)

H ← H(0x03 ‖V )

V ← (V +H + C + cnt) mod 2L

cnt← cnt+ 1

Return (V,C, cnt)

HMAC-DRBG init
Require : S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

If addin 6= ε

(K,V )← update(addin,K, V )

Return (K,V, cnt)

HMAC-DRBG gen
Require (K,V, cnt)

Ensure r, S = (K,V, cnt)

V ← HMAC(K,V ) ; r ← V

Return r, (K,V, cnt)

HMAC-DRBG final
Require : S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

(K,V )← update(addin,K, V )

cnt← cnt+ 1

Return (K,V, cnt)

CTR-DRBG init
Require: S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

If addin 6= ε

If derivation function used then

addin← CTR-DRBG df(addin, (κ+ `))

Else if len(addin) < (κ+ `) then

addin← addin ‖ 0(κ+`−len(addin))

(K,V )← update(addin,K, V )

Return (K,V, cnt)

CTR-DRBG gen
Require: S = (K,V, cnt)

Ensure: r, S = (K,V, cnt)

V ← (V + 1) mod 2` ; r ← E(K,V )

Return r, (K,V, cnt)

CTR-DRBG final
Require: S = (K,V, cnt), β, addin

Ensure: S = (K,V, cnt)

(K,V )← update(addin,K, V )

cnt← cnt+ 1

Return (K,V, cnt)

Fig. 6: Algorithms C = (init, gen, final) for HASH-DRBG, HMAC-DRBG and CTR-DRBG.

S ×{0, 1}∗ updates the state with additional input prior to output generation, and optionally sets
a variable data ∈ {0, 1}∗ to store any additional state information necessary for output generation.
Algorithm gen : salt × S × {0, 1}∗ → {0, 1}` × S × {0, 1}∗ maps a state S and optional string
data to an output block r ∈ {0, 1}`, an updated state S′, and string data′ ∈ {0, 1}∗. Finally
final : salt × S × N≤αout × {0, 1}≤αadd → S is used to update the state post output generation.
The next algorithm is constructed from these component parts as shown in Figure 5. (We note
that for CTR-DRBG, we include an additional step (shown in boxed text) after the application of
init in the case that addin = ε, to set addin = 0n. This is in preparation for addin later forming an
input to the CTR-DRBG update function.) Looking ahead, when we discuss state leakage ‘within
a next call’ we mean full or partial leakage of one of the pairs (S0, data0), . . . , (Sn, datan) passed
through during the iterative output generation process.

The component algorithms for each of the NIST DRBGs are shown in Figure 6; it is readily
verified that substituting these into the framework of Figure 5 is equivalent to the next algorithm
shown in Figure 1. (For CTR-DRBG and HMAC-DRBG, data is not set during output generation
(e.g., data = ε), and so we omit it from the discussion of these DRBGs. Similarly since none of the
NIST DRBGs are specified to take a salt, we omit this parameter.) A diagrammatic depiction of
output generation for the DRBGs is shown in Figures 7 - 9.

Variable length outputs. Within this iterative structure, the gen subroutine acts as an internal
deterministic PRG, called multiple times within a single next call to produce output blocks. How-
ever, as we shall see, the state updates performed by the gen subroutine do not provide forward
security after each block. (This is similar to an observation by Bernstein [7] which appeared concur-
rently to the production of the first draft of this work, and criticizes the inefficiency of CTR-DRBG’s
update function. We stress that our modelling of the attack scenario and systematic treatment of
how the issue affects each of the NIST DRBGs is novel.) This may not seem unreasonable if the
DRBG produces only a handful of blocks per request; however since the standard allows for up to
219 bits of output to be requested in each next call, there are situations in which the possibility of
a partial state compromise occurring during output generation is worth considering.

Attack scenario: side channels. We consider an attacker who learns some information about
the state variables being computed on during output generation. However, we assume the attacker
is not able to perform a full memory compromise by which they would learn e.g., the output blocks
r1, . . . , rn buffered in the internal memory, and in which case the security of all output in the call
is lost.

A key attack vector by which an attacker might compromise such information is via a side
channel attack. Notice that when multiple output blocks are generated in a single next call, there
is a significant amount of computation going on ‘under the hood’ of the algorithm. For instance,
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Fig. 7: Evolution of state S = (V,C, cnt) within a next call of HASH-DRBG.

using CTR-DRBG with AES-128 to generate the maximum 219 bits of output corresponds to 212 =
4096 AES-128 computations using a single key K0, which remains constant through the iterative
output generation process. Given that it is well known that AES invites leaky implementations
[6, 32, 9, 28, 30, 26], to assume that such an attack will never be executed may be rather optimistic.
Since forward security and robustness only allow the attacker to compromise the state after it has
‘properly’ updated (via the final process) at the conclusion of a next call, analysis with respect to
these models tells us nothing about the impact of this.

Use case: buffering output. Bernstein [7] raises an important point about efficiency. Due to
the extra block cipher calls incurred by the update process used to update the state of CTR-DRBG
at the conclusion of the call (see right-hand column of Figure 6), an appealing usage choice is
to generate a large output upfront in a single request, and buffer it to later be used for different
purposes. Indeed, the SP 800-90A standard says of the performance of CTR-DRBG: “For large
generate requests, CTR-DRBG produces outputs at the same speed as the underlying block cipher
algorithm encrypts data”, thereby highlighting the efficiency of this approach. The case is similar
for HMAC-DRBG and HASH-DRBG.

Our attack model is intended to investigate the soundness of this buffering approach for sce-
narios in which partial state compromise during output generation via a side channel — which
can only be exacerbated by such usage — is a realistic concern. Notice that when a DRBG is used
in this way, some portions of the buffered output may be used for public values such as nonces
whereas other portions of the output from the same call may be used for e.g., secret keys. To
reflect this, our model assumes that the attacker learns an output block sent in the clear as e.g.,
a nonce, in conjunction to the partial state information gleaned via a side channel. The attacker’s
goal is to recover unseen output blocks used as security critical secrets, breaking the security of
the consuming application.

init

addin

K
V V 0

K0

HMAC

r1
1

HMAC HMAC . . .

. . .

HMAC

rn−1
1r3

1r2
1 rn1

final

addin

K ′

V ′

Fig. 8: Evolution of state (K,V, cnt) within a next call of HMAC-DRBG.
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Fig. 9: Evolution of state S = (K,V, cnt) within a next call of CTR-DRBG. Here addin∗ = addin if addin 6= ε and 0κ+`

otherwise.
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8.1 Attack Model

We now describe our attack model. Our presentation is intentionally fairly informal, and is intended
to demonstrate key potential attacks rather than being an exhaustive treatment. We found that a
more formal and / or code-based model using abstract leakage functions (in line with the literature
on leakage-resilient cryptography e.g., [29, 18, 1]), added significant complexity to the exposition,
without clarifying the presentation of the attacks or providing further insight. We therefore opted
for a more informal written definition of the attack model which is nonetheless sufficiently precise
to capture e.g., exactly what the attacker may learn, what he is challenged to guess, and so on.

Attack setup and goals. Consider Figure 5 depicting the structure of a next call for the NIST
DRBGs decomposed into the subroutines C = (init, gen, final). Letting S denote the state at the
start of the call, then this process defines a series of intermediate states / output blocks generated
‘under the hood’ of next during the course of the request:

(S, (S0, data0), r1, (S1, data1), . . . , rn, (Sn, datan), S′) ,

with the algorithm finally returning (R,S′) = (r1 ‖ . . . ‖ rm, S′). (For simplicity, we assume the
requested number of bits is a multiple of the block length; it is straightforward to generalize the
model to remove this assumption.)

We consider an attacker A who is able to compromise a given component of an arbitrary
intermediate state Si (or in the case of HASH-DRBG, the additional state information datai) for
i ∈ [0, n], in addition to an arbitrary output block rj for j ∈ [1, n] produced in the same call. We
assume the indices (i, j) are known to A8. We then assess the attacker’s ability to achieve each of
the following ‘goals’:

– (1) Recover unseen output blocks produced prior to the compromised block within the call
{rk}k<j ;

– (2) Recover unseen output blocks produced following the compromised block within the call
{rk}k>j ; and

– (3) Recover the state S′ as updated at the conclusion of the call. This allows the attacker to
run the generator forwards and recover future output.

(1) Past output (2) Future output (3) Updated Additional

within call within call state S′ input

CTR-DRBG // compromised K X X X X∗

HMAC-DRBG // compromised K × X X ×

HASH-DRBG // compromised V X X ×∗∗ ×

Fig. 10: Table summarizing our analysis. The leftmost three columns correspond to Section 8.1. The rightmost column
corresponds to Section 8.5. A X indicates that we demonstrate an attack. A × indicates that we believe the DRBG is not
vulnerable to such an attack, with justification given. ∗ corresponds to an attack if CTR-DRBG is implemented without a
derivation function. ∗∗ indicates an exception in the case that cnt = 1 at the point of compromise.

Extended attack window if additional input not used. If additional input is not used in
a next call, then init returns the state unchanged for each of the NIST DRBGs, corresponding to
S0 = S in the above exposition. In this case, all attacks which apply when S0 is compromised in
our model can also be executed by an attacker who compromises the relevant component of the
state S prior to the next call. This creates a greater window of opportunity in which this state
may be compromised, as it will be set in memory following the conclusion of the previous call. As

8 Here we assume the portion of public output contains a full output block, for which the attacker knows
the index. This is a reasonable assumption, given that a TLS client or server random will contain at least
one whole block, and at least 12 bytes of a second block (if 4 bytes of timestamp are used). Moreover,
these values would be generated early in a call to the DRBG, and so have a low index j. However, both
assumptions can be relaxed at the cost of the attacker performing more work to brute-force any missing
bits and / or the index.
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we shall see, not using additional input in a next call simplifies all attacks described, making state
compromise in this case especially troubling.

Security analysis. We analyzed each of the NIST DRBGS with respect to our attack model,
and summarize the key weaknesses found in Figure 10. We found that each of the NIST DRBGs
exhibited vulnerabilities, with CTR-DRBG faring especially badly.

8.2 Security of CTR-DRBG with a Compromised Key

CTR-DRBG//A(Ki, rj , i, j)

V j ← E−1(Ki, rj)

V 0 ← (V j − j) mod 2`

For k = 1, . . . , n

V k ← (V k−1 + 1) mod 2`

rk ← E(Ki, V k)

(K′, V ′)← update(addin,Ki, V n)

cnt′ ← cnt+ 1

S′ ← (K′, V ′, cnt′)

Return ({rk}k<j , {rk}k>j , S′)

HMAC-DRBG//A(Ki, rj , i, j)

V j ← rj

For k = j + 1, . . . , n

V k ← HMAC(Ki, V k−1)

rk ← V k

(K′, V ′)← update(addin,Ki, V n)

cnt′ ← cnt+ 1

S′ ← (K′, V ′, cnt′)

Return (⊥, {rk}k>j , S′)

HASH-DRBG//A(datai, rj , i, j)

data0 ← (datai − i) mod 2L

For k = 1, . . . , n

rk ← H(datak−1)

datak ← (datak−1 + 1) mod 2L

Return ({rk}k<j , {rk}k>j ,⊥)

Fig. 11: Adversaries for attacks in Section 8.1.

The invertibility of the block cipher used by CTR-DRBG – and the fact that each output block
is an encryption of the secret counter V — makes leakage of the secret key component of the state
especially damaging.

Attack against CTR-DRBG with a compromised key. Consider the attacker A shown in the
left-hand panel of Figure 11. We claim that for all i ∈ [0, n] and j ∈ [1, n], if additional input is not
used (addin = ε) then A achieves goals (1),(2) (recovery of all unseen output blocks produced in
the next call) and (3) (recovery of the next state S′) with probability one. If additional input is
used (addin 6= ε) then the same statement holds for (1), (2), and the attacker’s ability to satisfy
(3) is equal to his ability to guess addin.

To see this, notice that each block of output produced in the next call is computed as rk =
E(K0, V 0 + k) for k ∈ [1, n], where K0, V 0 denote the key and counter as returned by init at
the start of output generation. Since the key does not update through this process, it holds that
whatever intermediate key Ki attacker A compromises, this is the key used for output generation.
It is then trivial for A to decrypt the output block rj received in his challenge to recover the secret
counter, thereby possessing all security critical state variables. However if addin 6= ε, then A must
guess this string in order to compute S′.

Discussion. The fact that the attack recovers all unseen output from a given next call is especially
damaging, since high value output blocks used as e.g., secret keys will be recovered irrespective of
their position relative to the public block learnt by the attacker. This increases the exploitability
of the compromised CTR-DRBG. In comparison, the infamously backdoored DualEC-DRBG only
allowed recovery of output produced after the block learnt by the attacker, impacting its practical
exploitability [12].

8.3 Security of HMAC-DRBG with a Compromised Key

Attack against HMAC-DRBG with a compromised key. Consider the attacker A shown in
the middle panel of Figure 11, who compromises the key component of an intermediate state of
HMAC-DRBG. We claim that for all i ∈ [0, n] and j ∈ [1, n], if addin = ε then A achieves goals
(2) and (3) with probability one. If addin 6= ε then the same statement holds for (2), and the
attacker’s ability to satisfy (3) is equal to his ability to guess addin.

To see this, let K0, V 0 denote the state variables at the beginning of output generation. Output
blocks are iteratively produced by computing rk = HMAC(K0, V k−1) for k ∈ [1, n], and setting
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rk = V k. Since the key does not update during this process, the keyKi compromised by the attacker
will be equal to the key K0 used for output generation. Since the output block rj which A receives
in his challenge is equal to the secret counter V j , A now knows all security critical state variables
of intermediate state Sj . A can then run HMAC-DRBG forward to recover all output produced
following the compromised block in the call, and the updated state S′ (subject to guessing addin).

Security of past output in a compromised next call. On a more positive note, it would
appear that even if an attacker learns the entirety of an intermediate state Si for i ∈ [0, n] in
addition to an output block rj for j ∈ [1, n], then it is still infeasible to achieve goal (1) and
recover the set of output blocks {rk}k<j produced prior to the compromised block within the call.

To see this, let V 0 denote the value of the counter at the start of output generation. Notice
that for each j ∈ [1, n], output block rj takes the form:

rj = V j = HMACj(K0, V 0) ,

where HMACi(K, ·) denotes the ith iterate of HMAC(K, ·). As such, recovering prior blocks rk

for k < j given K0 and V j corresponds to finding preimages of HMAC(K0, ·). Since the key is
known to the attacker, we clearly cannot argue that this is difficult based on the PRF-security of
HMAC. However, modeling HMAC as a random oracle (Section 7), it follows that inverting HMAC
for sufficiently high entropy V 0 is infeasible. Formalizing this intuition under a standard model
assumption remains an interesting open question.

8.4 Security of HASH-DRBG with a compromised counter.

It is straightforward to see that if A learns the counter value V i in the HASH-DRBG state, or the
iterating copy of the counter in datai for any i ∈ [0, n], j ∈ [1, n], then A achieves goals (1) and
(2) with probability one. Moreover, knowledge of the counter is sufficient to execute the attack; no
output block is needed. The case in which datai is compromised is shown in the rightmost panel
of Figure 11. However, unlike CTR-DRBG and HMAC-DRBG, without also learning the constant C
goal (3) does not seem to be possible in general. We omit the details here due to space constraints,
and provide a full discussion in Appendix C.

8.5 Security of Additional Input

We present an additional attack against an implementation of CTR-DRBG which does not use a
derivation function. This attack can (under certain conditions) allow an attacker who compromises
the state of the DRBG to also recover the strings of additional input fed to the DRBG during
output generation requests. This is particularly concerning given that the standard allows these
strings to contain secrets and sensitive data, provided they are not protected at a higher security
strength than the instantiation.

Use of a derivation function. Consider the CTR-DRBG next algorithm (Section 3). If the deriva-
tion function is not used and additional input is included in a call, then the raw string of input
is XORed directly into the CTR-DRBG state during the application of the update function (lines
8 and 15). One can verify from the pseudocode description of CTR-DRBG df in Appendix G that
to derive a (κ + `)-length string from a T -bit input requires N block cipher computations where
N = d(κ+ `)/`e · (d(T + 72)/`e+ 2), and κ and ` denote the key and block size of the block cipher
respectively. This computation is required for every next call which includes additional input, on
top of each reseed and the initial state generation, and so represents a significant overhead9.

Recovery of additional input. We describe the attack with respect to the ‘ideal’ conditions.
Take an implementation of CTR-DRBG instantiated with AES-128 in which a derivation function is
not used (the case for other approved block ciphers is totally analogous). Suppose that an attacker
A has compromised the internal state S = (K,V, cnt)10, and that the state compromise is followed

9 A set of slides on the NIST DRBGs by Kelsey from 2004 [25] includes the comment “Block cipher
derivation function is expensive and complicated. . . When gate count or code size is an issue, nice to be
able to avoid using it!”

10 Here we mean the usual definition of PRNG state, as opposed to the ‘intermediate’ states considered in
the previous section.
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by a next call in which additional input addin is used. Moreover, suppose addin has the form
addin = X1 ‖X2 where X1 ∈ {0, 1}128 is known to the attacker and X2 ∈ {0, 1}128 consists of 128
unknown bits. We assume X2 includes a secret value such as a password which will be the target
of the attack.

At the start of the next call, the state components K,V are updated with addin via (K0, V 0)←
update(addin,K, V ). It is straightforward to verify that

K0 ‖V 0 = K∗ ‖V ∗ ⊕ addin = (K∗ ⊕X1) ‖ (V ∗ ⊕X2) ,

where K∗ ‖V ∗ = E(K,V + 1) ‖E(K,V + 2). Since A has compromised (K,V ), they can compute
(K∗, V ∗). Moreover, since X1 is known to A, it follows that the updated key K0 = (K∗ ⊕X1) is
known to A also.

During output generation, output blocks are produced by encrypting the iterating counter
under K0. Therefore, the kth block of output is of the form:

rk = E(K0, V 0 + k) = E(K0, (V∗ ⊕X2) + k) ,

where the variables in bold are known to A. As such, each block of output produced is effectively
an encryption of the target secret X2 under a known key.

Given a single block of output rk, A can instantly recover the target secret X2 — consisting
of 128-bits of unknown and secret data — as X2 = (E−1(K0, rk) − k) ⊕ V ∗. Moreover, it is
straightforward to verify thatA has sufficient information to compute the state as updated following
the next call. As such, A can continue to execute the same attack against subsequent output
generation requests for as long as the key component of the state evolves predictably.

Extensions. In Appendix C we describe how to extend the attack to more general cases, and
discuss how use of the derivation function prevents it.

9 Open Source Implementation Analysis

In Section 8, we showed that certain implementation decisions — permitted by the overly flexible
standard — may influence the security guarantees of the NIST DRBGs. To determine if these
decisions are taken by implementers in the real world, we investigated two open source imple-
mentations of CTR-DRBG, in OpenSSL [34] and mbed TLS [10]. We found that between the two
libraries these problematic decisions have indeed been made.

Large output requests. As detailed in Section 8, generating many blocks of output in a sin-
gle request increases both the likelihood and impact of our attacks. In OpenSSL, the next call of
CTR-DRBG is implemented in the function drbg_ctr_generate in the file drbg_ctr.c. Interest-
ingly — and contrary to the standard — this function does not impose any limit on the amount
of random bits which may be requested per call. As such, an arbitrarily large output may be gen-
erated using a single key, exacerbating the attacks of Section 8.2. More generally, exceeding the
output generation limit increases the likelihood of the well-known distinguishing attack against a
block cipher in CTR-mode which uses colliding blocks to determine if an output is truly random.

By comparison, the implementation of CTR-DRBG in mbed TLS limits the number of output
blocks per next call to 64 blocks of 128-bits. In the context of our attacks, this is much better for
security than the 4,096 blocks allowed by the standard. Also this implementation forces a reseed
after 10,000 calls to next, which is substantially lower than the 248 calls that are allowed by the
standard.

Derivation function. In Section 8.5, we showed that choosing to implement CTR-DRBG with-
out the derivation function may allow the attacker to recover potentially sensitive data fed to
the DRBG in the event of state compromise. We found that the OpenSSL implementation of
CTR-DRBG allows the generator to be called simultaneously without the derivation function and
with additional input. Specifically, by setting the flags field of the RAND_DRBG_FLAG_CTR_NO_DF

structure to RAND_DRBG_FLAG_CTR the caller may suppress calls to the derivation function, pre-
sumably for performance purposes. As such, the attack described in Section 8.5 may be possible
in real world implementations.

Summary. Despite the high level and theoretical nature of our analysis, an investigation of real
world implementations shows that the problematic implementation decisions which we highlight
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here are in fact decisions that implementers may make. While none of these decisions leads to
an immediate vulnerability, both the implementation and usage of the functions may exacerbate
other problems such as side channel or state compromise attacks. We hope that highlighting these
issues will help implementers make informed decisions about how best to use these algorithms in
the context of their implementation.

10 Conclusion

We conducted an in-depth and multi-layered analysis of the NIST SP 800-90A standard, with
a focus on investigating unproven security claims and exploring flexibilities in the standard. On
the positive side, we formally verify a number of the claimed — and yet, until now unproven —
security properties in the standard. However, we argue that taking certain implementation choices
permitted by the overly flexible standard may lead to vulnerabilities.

Design and prove simultaneously. Certain design features of the NIST DRBGs complicate
their analysis, and a small tweak in design would facilitate a far simpler proof. This emphasizes
the importance of developing cryptographic algorithms alongside security proofs, and — more
importantly — not standardizing algorithms with unproven security properties.

Flexibility in algorithm specifications. The attacks of Section 8 are both facilitated, and
exacerbated, by certain implementation choices allowed by the overly flexible standard. In Section 9,
we confirmed that implementers do make these choices in the real world. This may be a warning
to standard writers to avoid unnecessary flexibility, as it may lead to unintended vulnerabilities.

Usage recommendations. Fortunately, because these vulnerabilities stem from implementation
choices, we may offer recommendations to make the use of these algorithms more secure. First
off, if the algorithms are being run in a setting where side channel attacks are a concern then
CTR-DRBG should not be used. Additional input should be (safely) incorporated during output
generation wherever possible and the DRBG should be reseeded with fresh entropy as often as
is practical. While the standard allows outputs of sizeable length to be requested, users should
not ‘batch up’ calls by making a single call for all randomness required for an application and
separating this into separate values. Finally, the CTR-DRBG derivation function should always be
used.

Future work. Analyzing the robustness of CTR-DRBG is an important direction for further work.
The key challenge with this seems to be proving that the derivation function is a good randomness
extractor. Unfortunately, since the underlying CBC-MAC-based extractor (BCC in Appendix G)
is applied multiple times to the same entropy sample, existing results on the extraction properties
of CBC-MAC [15, 38] cannot be applied. A proof of robustness in the IPM [20] may be possible.
More generally, the design flexibilities we critique above are related to efficiency savings. PRNG
design which achieves an optimal balance between security and efficiency is a key direction for
future work. For example, redesigning the CTR-DRBG derivation function to avoid computational
overhead would make its use more palatable. The gap between the specification of these DRBGs
which allows for various optional inputs and implementation choices, and the far simpler manner
in which PRNGs are typically modeled in the literature could indicate that theoretical models are
not adequately capturing real world PRNGs. Extending these models, may help understand the
limits and possibilities of what can be achieved.

Acknowledgements. The authors thank the anonymous reviewers whose many insightful com-
ments and suggestions have greatly improved this paper.
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A Definitions and Discusssion from Section 2

Entropy. For distributions X and Z over sets X and Z respectively, we define the worst-case
min-entropy of X conditioned on Z to be

H∞(X|Z) = − log

(
max

x∈X ,z∈Z
Pr [X = x | Z = z ]

)
,

and define the average-case min-entropy of X conditioned on Z as

H̃∞(X|Z) = − log

(∑
z∈Z

max
x∈X

Pr [X = x | Z = z ] · Pr [Z = z ]

)
.

Cryptographic components. We let Func(Dom,Rng) denote the set of all functions f :

Dom → Rng. The pseudorandom function (PRF) distinguishing advantage of an adversary A
against a keyed function F : Keys×Dom→ Rng given q oracle queries is defined

Advprf
F (A, q) = |Pr

[
AF(K,·) ⇒ 1 : K

$← {0, 1}κ
]
−

Pr
[
Aπ(·) ⇒ 1 : π

$← Func(Dom,Rng)
]
| ,

where the superscript denotes a functionality that A is given oracle access to. A function E :
{0, 1}κ × {0, 1}` → {0, 1}` is called a block cipher if E(K, ·) is a permutation on {0, 1}` for each
K ∈ {0, 1}κ. We let D(K, ·) denote the inverse (or decryption) of E(K, ·), so D(K,E(K,m)) = m
for all m ∈ {0, 1}`,K ∈ {0, 1}κ.

The H-Coefficient technique. Patarin’s H-coefficient technique [31] has proved to be a highly
useful tool for analyzing indistinguishability experiments. We recall the formulation of this method
from [13] below, and refer the reader to that work for a full discussion of the approach. The
proof technique consider two experiments, which we denote Real and Ideal, and a deterministic and
computationally unbounded adversary A who tries to distinguish the two. We define a transcript
which captures A’s view of the experiments, say that a transcript is valid if it could be produced
by an execution of one of the experiments, and let T0 and T1 denote the distributions of valid
transcripts corresponding to the real and ideal experiments respectively. We additionally define a
set of Bad transcripts, and view all other valid transcripts as being Good. The following theorem
then allows us to bound the advantage A has in distinguishing the real and ideal experiments as
follows:

Theorem 5. Suppose that there exist δ, ε ∈ [0, 1] such that for all transcripts τ ∈ Good it holds
that

Pr [ T0 = τ ]/Pr [ T1 = τ ] ≥ 1− ε ,

and moreover it holds that Pr [ T1 ∈ bad ] ≤ δ. Then the probability

|Pr [A ⇒ 1 in Real ]− PrA ⇒ 1 in Ideal ≤ ε+ δ .

Discussion of security model. Our PRNG definition (Definition 1) follows that of Dodis et
al. [16], with a number of modifications. Following Shrimpton et al. [38], we define setup to be the
algorithm which constructs the initial state of the PRNG from samples drawn from the entropy
source. We assume that the salt X is generated externally and supplied to the PRNG. In contrast,
in [16] the initial state is defined to be a uniform bit string which is supplied to the PRNG, and
setup is used to generate the salt. These modifications allow us to better model real-world PRNGs
which must construct their initial state from the entropy source. We further modify the syntax of
setup from [38] to have it take an entropy sample and nonce as input, as per the specification of
the NIST DRBGs. In contrast in [38], setup takes no input, but may have access to the entropy
source. Finally, we extend the definitions of refresh and next from [16] to allow: (1) entropy samples
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I to be bit strings of arbitrary length |I|∈ [αmin, αmax], as opposed to some fixed length αmax;
(2) variable length outputs up to length αout to be requested via the parameter β; and (3) the
option to include strings of additional input addin ∈ {0, 1}≤αadd in next calls. As we shall see in
Section 3, this is necessary to capture the interface of the corresponding algorithms for the NIST
DRBGs.

B Discussion on Section 3.

In this section, we offer further discussion of the standard, which was omitted from Section 3 due
to space constraints.

The counter of HASH-DRBG. The constant C is added into the counter V during each state
update, but is itself only updated following a reseed. The standard does not explicitly state the
purpose of C; however slides by Kelsey from 2004 [25] mention how HASH-DRBG will “Hash with
constant to avoid duplicating other hash computations”. As such, it would appear that the purpose
of the constant is to ensure that if a previous counter V is duplicated at some point in a different
refresh period, then the inclusion of the (almost certainly distinct) counter in the subsequent state
update prevents the previous sequence of states being repeated.

C Discussion from Section 8

Security of the updated state. As discussed in Section 8.4, learning V i or datai for any i ∈ [0, n]
is sufficient to compute all output produced in the call, by allowing the attacker to recover the value
of the initial counter V 0 which was hashed to produce the output blocks. However, interestingly —
and unlike the other NIST DRBGs — this is insufficient to recover the updated state S′ in general.
At the end of the next call, the new counter is computed as

V ′ = (V 0 + H(0x03||V 0) + C + cnt) mod 2L ;

however, for all but the first next call, it seems to be infeasible to extract the constant C from the
known counter V 0 without inverting the hash function. (The exception with the first next call is
because C is derived deterministically from the initial counter V during the setup process. Provided
additional input is not used in the call, this is the counter A will be able to recover during the
attack, allowing them to compute C themselves.) That said, if additional input is not used and an
attacker compromises counters V 0 and V 0′ used for output generation from two consecutive next
calls, then A can easily recover C by calculating

C = (V 0′ − H(0x03||V 0)− (cnt+ 1)) mod 2L ,

where cnt denotes the reseed counter at the point of the call, thus facilitating the recovery of
the updated state, and subsequent output. The same attack is possible if additional input is used
conditional on A being able to guess its value.

C.1 Discussion from Section 8.5

Extensions to additional input recovery attack. In Section 8.5 we described the ideal con-
ditions for the attack. However the attack is still possible if X1 is not known to the attacker.
Supposing X1 has γ-bits of entropy, then repeating the above process for each possible candidate
for X1 will recover the correct secret X2 among a list of 2γ candidates. If the data in X2 is of a
distinctive structure, or multiple output blocks can be recovered from the compromised next call,
this can help A quickly eliminate candidates. Either way, the entropy of X2 is reduced to γ-bits,
a loss which — given X2 contains up to 128-bits of unknown data for the instantiations permitted
by the standard — may be substantial.

Security benefit of the derivation function. The attack exploits the way in which the structure
of addin is preserved by XOR. When the derivation function is used to condition the data, this
structure is sufficiently destroyed that the above attack no longer works. Indeed, even if the attacker
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could compromise the raw derivation function output it is difficult to see how to recover the
underlying additional input string more efficiently than by exhausting its entropy in a brute-force
attack. Likewise for HASH-DRBG and HMAC-DRBG, in which additional input is hashed as it is
incorporated into the state, it would appear that recovery of such strings requires a brute-force
attack.

D Proofs from Section 6

Proof of Theorem 1. Let (A,D) be an attacker / sampler pair in game RobD,AG,γ∗,β against G. We
shall construct a hybrid argument based upon the attacker’s RoR queries, where by assumption A
makes qR such queries. We say that a RoR query is uncompromised if c ≥ γ∗ at the point of the
query; otherwise we say it is compromised. We further divide uncompromised RoR queries into
those which are preserving and those which are recovering. We say a RoR query is recovering if
c < γ∗ at some point between the previous RoR query (or if there have been no previous RoR
queries, the start of the game) and the current one inclusive. For a recovering RoR query, we
call the most recent query for which c ← 0 the most recent entropy drain (mRED) query. If an
uncompromised query is not recovering, then it is said to be preserving.

Let game G∗0 be equivalent to game RobA,DG,γ∗,β with challenge bit b = 0. Let (A,D) be an
attacker / sampler pair in G∗0. We begin by defining game G0, which is identical to G∗0 except we
replace the line S ← setupH(X, I,N) with S←$ MH(ε). We bound the gap between these games
with a reduction to the Init security of G. Let (A1,D) be an attacker / sampler pair in game Init,
where A1 proceeds as follows. When A1 receives his challenge state S∗ and associated entropy
samples, estimates, side information, and nonce ((Ii)

qD+1
i=2 , (γi, zi)

qD+1
i=1 , N), he passes (X, (γ, z,N))

to A. A1 begins to simulate game Rob with challenge bit b = 0 for A, using the challenge state S∗

as the initial state for the simulated game. In particular, A1 uses the remaining entropy samples
and estimates to simulate A’s Ref calls and uses his own H oracle to answer A’s H queries and
to simulate the refreshH and nextH algorithms. At the end of the game, A1 outputs whatever bit
A does. Notice that if A received a real state in his challenge then this perfectly simulates G∗0;
otherwise it perfectly simulates G0. Moreover, notice that A1 makes at most (qH +qR ·qnxt+qD ·qref)
queries to H (this total follows from the qH queries which A makes to H and which A1 forwards to
his own oracle, plus the qref (resp. qnxt) H queries which A1 makes to simulate the qD (resp. qR)
Ref (resp. RoR) queries. It follows that

|Pr [A ⇒ 1 in G∗0 ]− Pr [A ⇒ 1 in G0 ]|≤ Advinit
G,M,γ∗(A1,D) .

We now define a series of modified games, where for each i ∈ [0, qR − 1], Gi+1 is identical to game
Gi except in the event that the (i + 1)st RoR query is uncompromised. In this case, then instead
of computing the output / state via (R,S′) ← nextH(X,S, β, addin) where S denotes the current
state of the PRNG the challenger instead returns R←$ {0, 1}β to A regardless of the challenge bit
and sets the state of the PRNG to MH(S) (e.g., the mask of the state which was input to next to
satisfy the output request). This new state is used to run the rest of the game. We also introduce
an intermediate game G(i+ 1

2 ) defined such that if the (i + 1)st RoR query is preserving then the

challenger acts as in Game (i+ 1), whereas if the (i+ 1)st RoR query is recovering the challenger
acts as in Game i. We bound the gaps between these pairs of games in the following lemma.

Lemma 7. For any (qH, qD, qR, qS)-adversary A and sampler D and for all i ∈ [0, qR − 1], there
exist (qH + qD · qref + qR · (qnxt + qM))-adversaries Ai2, Ai3 such that

|Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+1)

]
|≤ Advpres

G,M,β(Ai2) + Advrec
G,M,β,γ∗(Ai3,D) .

Proof: For each i ∈ [0, qR − 1], the triangle inequality implies that

|Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+1)

]
|

≤ |Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+ 1

2 )

]
|

+ |Pr
[
A ⇒ 1 in G(i+ 1

2 )

]
− Pr

[
A ⇒ 1 in G(i+1)

]
| .
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We begin by showing that there exists an adversary Ai2 such that

|Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+ 1

2 )

]
|≤ Advpres

G,M,β(Ai2) .

We may assume without loss of generality that the (i+ 1)st query is preserving, otherwise games
Gi and are G(i+ 1

2 ) are identical. Attacker Ai2 proceeds as follows. Ai2 runs A as a subroutine, using
his H oracle as well as the code of the sampler D to simulate game Gi up to and including the
ith RoR query. In more detail: on input salt X, Ai2 first computes (σ1, I1, γ1, z1)←$D(σ0), and
passes (X, (γ1, z1, N)) to A where N ← N . Ai2 simulates A’s H oracle by querying his own H
oracle and returning the response. For a Ref query, Ai2 uses the code of the sampler to compute
(σ′, I, γ, z)←$D(σ) and returns (γ, z) to A, but does not yet update the state. For Get, Set, and
RoR queries, Ai2 takes the state S which immediately followed the last non-Ref query (or sets
S = MH(ε) if this is the first non-Ref query and so no such state exists) and uses refreshH to refresh
that state with all entropy samples which would have been incorporated due to Ref queries since
the previous call. ultimately producing state S′. For Get / Set queries, Ai2 returns / overwrites
the state S′ as required. For the first (i − 1) RoR queries, if the query is uncompromised then
Ai2 samples R←$ {0, 1}β and sets the state of the generator to S′′ = MH(S′). If the query is
compromised then Ai2 simply computes (R,S′′)← nextH(X,S′, β, addin). In both cases, A returns
R to A and continues running the game with state S′′. A simulates the ith RoR query (which must
be uncompromised, since we have assumed the (i+ 1)st query is preserving) as just described, but
does not mask the state S′. (Since the (i+ 1)st RoR query is preserving, we know that there can
be only Ref queries between the ith and (i + 1)st RoR queries. Looking ahead, Ai2 will insert his
challenge in the (i+ 1)st RoR query, and S′ will be masked as part of the challenge computation.)

To simulate the (i+1)st RoR query with associated additional input addin, Ai2 passes the state
S′ which immediately followed the ith RoR query (or S′ = ε if i = 0 and so no such state exists),
as well as addin and all entropy inputs I1, . . . , Id which were output by the simulated sampler in
response to Ref queries made in between the ith and (i + 1)st RoR queries, to his challenger. Ai2
receives (R∗, S∗) in response and returns R∗ to A. Ai2 continues running the game with state S∗

and the simulated algorithms refreshH and nextH. At the end of the game, Ai2 outputs whatever bit
A does.

Notice that if Ai2’s challenge bit is 0 and he receives the real output and state in his challenge
then this perfectly simulates Gi; otherwise he receives a random output and a masked state, and
this perfectly simulates game G(i+ 1

2 ). It follows that

|Pr [A ⇒ 1 in Gi ]− Pr
[
A ⇒ 1 in G(i+ 1

2 )

]
|

= |Pr
[
Ai2 ⇒ 1 | b = 0

]
− Pr

[
Ai2 ⇒ 1 | b = 1

]
|≤ Advpres

G,M,β(Ai2) .

Moreover, notice that Ai2 makes at most (qH + qD · qref + qR · (qnxt + qM)) queries to H. Here
the additional qR · qM term arises since Ai2 masks at most (qR − 1) PRNG states (one for every
uncompromised RoR query with index j ∈ [1, i]) plus the initial state S0←$ MH(ε). The other
terms arise from Ai2 answering A’s H queries and simulating the refreshH and nextH algorithms.

Next, we show that for all i ∈ [0, qR − 1] there exists an adversary Ai3 such that

|Pr
[
A ⇒ 1 in G(i+ 1

2 )

]
− Pr

[
A ⇒ 1 in G(i+1)

]
|≤ Advrec

G,M,γ∗,β(Ai3,D) .

We may again assume without loss of generality that the (i + 1)st query is recovering otherwise
games G(i+ 1

2 ) and G(i+1) are identical. Attacker Ai3 proceeds as follows. Attacker Ai3 is given salt

X and (I1, (γi, zi))
qD+1
i=1 , N), passes the appropriate values to A, and begins to simulate game Rob.

Ai3 simulates A’s oracles for the first i queries as described above with two differences. Firstly
in response to a Ref query, Ai3 returns the relevant entropy estimate / side information (which
were given to Ai3 at the start of his challenge) to A. Then at the point of the next non-Ref query,
Ai3 queries Sam repeatedly to get all entropy samples which should have been incorporated into
the state during that period and uses these to update the state. (In contrast, in the previous
simulation Ai2 ran the code of the sampler himself.) The second difference is that if the ith RoR
query is uncompromised, A returns R←$ {0, 1}β to A as before but now also sets the state to
S′′ = MH(S′) where S′ denotes the state of the PRNG as updated with entropy samples at the
point of the query. (In the previous simulation Ai2 left this state unmasked.)
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When A makes his (i + 1)st RoR query with associated additional input addin, Ai3 locates
the mRED query (which must exist since we have assumed the (i + 1)st query is recovering). Ai3
submits the state which immediately followed the mRED query to his challenger, along with d set
equal to the number of Ref calls which A made between the mRED query and the (i + 1)st RoR
query, and addin. Ai3 receives (R∗, S∗) in response along with the remaining entropy samples. Ai3
returns R∗ to A, and uses the state S∗ along with the entropy samples to simulate the remainder
of the game. At the end of the game Ai3 outputs whatever bit A does.

Notice that if Ai3’s challenge bit is 0 and so he receives the real output and state in his challenge
then this perfectly simulates G(i+ 1

2 ); otherwise, he receives a random output and a masked state
and this perfectly simulates game G(i+1). It follows that

|Pr
[
A ⇒ 1 in G(i+ 1

2 )

]
− Pr

[
A ⇒ 1 in G(i+1)

]
|

≤ |Pr
[
Ai3 ⇒ 1 | b = 0

]
− Pr

[
Ai3 ⇒ 1 | b = 1

]
≤ Advrec

G,M,γ∗,β(Ai3,D) ,

where an analogous argument to that made above verifies the query complexity of the adversary.
Now in game GqR each one of A’s uncompromised RoR queries is answered with a random bit

string and a masked state. To return to using unmasked states while still returning random outputs
toA, we define a second sequence of hybrid games where game ḠqR is identical to game GqR , and for
each i ∈ [0, qR−1] game Ḡi is identical to game Ḡ(i+1) except if the (i+1)st query is uncompromised.

In this case, for the (i+1)st query the challenger computes (R,S′′)← nextH(X,S′, β, addin) where
S′ denotes the state at the point of the query and returns R←$ {0, 1}β to the attacker, but
continues running the game with the real state S′′ as opposed to using the masked version of that
state MH(S′). We define intermediate games Ḡ(i+ 1

2 ) analogously to G(i+ 1
2 ). An analogous argument

to that used above then implies the following lemma.

Lemma 8. For any (qH, qD, qR, qS)-adversary A and sampler D and for all i ∈ [0, qR − 1], there
exist (qH + qD · qref + qR · (qnxt + qM))-adversaries Āi2, Āi3 such that

|Pr
[
A ⇒ 1 in Ḡi

]
− Pr

[
A ⇒ 1 in Ḡ(i+1)

]
|≤ Advpres

G,M,β(Āi2) + Advrec
G,M,γ∗,β(Āi3,D) .

The proof of the above lemma is identical to that in the previous case, except that now Āi2 and
Āi3 return random outputs in response to all uncompromised RoR queries made by A. Similarly,
we let Ḡ∗0 be identical to game Ḡ0, except we compute the initial state via S0 ← setupH(X, I1, N)
rather than as MH(ε). An analogous argument to that used above again implies that there exists
an adversary Ā1 making at most (qH + qR · qnxt + qD · qref) queries such that

|Pr
[
A ⇒ 1 in Ḡ0

]
− Pr

[
A ⇒ 1 in Ḡ∗0

]
|≤ Advinit

G,M,γ∗(Ā1,D) .

Moreover, notice that game G∗0 is identical to game Rob with challenge bit b = 1. Putting this
altogether, a standard argument implies that there exists adversaries A1, A2, A3 with the claimed
query budgets such that

Advrob
G,M,γ∗,β(A,D) ≤ 2 ·Advinit

G,M,β(A1,D) + 2qR · (Advpres
G,M,β(A2) + 2qR ·Advrec

G,M,β,γ∗(A,D)) ,

thereby completing the proof.

E Proofs from Section 6

Proof of Lemma 1: Init security of HASH-DRBG.
Proof: We argue by a series of game hops, shown in Figure 12. We begin by defining game G0,
which is easily verified to be a rewriting of Init for HASH-DRBG and MH with challenge bit b = 0
in which we lazily sample the random oracle H. We additionally set a flag bad, although this does
not affect the outcome of the game. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

InitA,DG,M,γ∗ ⇒ 1 | b = 0
]
.

Next we define game G1, which is identical to game G0 except we change the way in which the
random oracle H responds to queries. Namely, if H is queried more than once on one of the inputs
(i)8 ‖ (L)32 ‖ I1 ‖N for i ∈ [1,m] upon which it was queried to produce V ∗0 (indicated in the

30



proc. main : G0, G1, G2

σ0 ← ε ;N ← N ;Q ← ∅
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

tempV ← ε ;m← dL/`e
For i = 1, . . . ,m

Q ← Q∪ ((i)8 ‖ (L)32 ‖ I1 ‖N)

tempV ← tempV ‖H((i)8 ‖ (L)32 ‖ I1 ‖N)

V ∗0 ← left(tempV , L)

V
∗
0 ←$ {0, 1}L

tempC ← ε

For i = 1, . . . ,m

tempC ← tempC ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖V ∗0 )

C∗0 ← left(tempC , L)

cnt∗0 ← 1

S∗0 ← (V ∗0 , C
∗
0 , cnt

∗
0)

b∗←$AH(S∗0 , (Ii)
qD+1

i=2 , (γi, zi)
qD+1

i=1 )

Return b∗

proc. main : G3, G4

σ0 ← ε ;N ← N ;Q ← ∅
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

S∗0 ←$ MH(ε)

b∗←$AH(S∗0 , (Ii)
qD+1

i=2 , (γi, zi)
qD+1

i=1 )

Return b∗

proc. H(X)// G0 , G1, G2, G3, G4

Y ←$ {0, 1}`
If H[X] 6=⊥ and X /∈ Q
Y ← H[X]

If H[X] 6=⊥ and X ∈ Q
bad← true
Y ← H[X]

H[X]← Y

Return Y

Fig. 12: Games for proof of Lemma 1 (Init security of HASH-DRBG).

pseudocode by the set Q), then H responds with an independent random string rather than the
value which was previously set. Notice that this event could either occur during the computation of
C∗0 (if it happens that 0x00 ‖V ∗0 = I1 ‖N), or due to a query made byA after receiving the challenge
state. (Notice that due to the prepended counter, the queries made during the computation of V ∗0
(resp. C∗0 ) will never collide with eachother.) These games run identically unless the flag bad is set,
and so the Fundamental Lemma of Game Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Pr [ bad = true in G1 ] .

We let Coll denote the event that 0x00 ‖V ∗0 = I1 ‖N . Notice that if Coll occurs, then bad will be
set with probability one during the computation of C∗0 . Moreover, notice that if Coll does not occur
then bad can only be set as the result of a query made by A. It follows that

Pr [ bad = true in G1 ] = Pr [ bad = true ∧ Coll in G1 ] + Pr [ bad = true ∧ ¬Coll in G1 ]

≤ Pr [ Coll in G1 ] + Pr
[
AH(S∗0 , (Ii)

qD+1
i=2 , (γi, zi)

qD+1
i=1 ) guesses I1 in G1

]
.

Before bounding this probability we first define game G2, which is identical to G1 except we
overwrite the string V ∗0 computed by querying H with an independent random string V ∗0 ←$ {0, 1}L.
In G1, random oracle H responds to each query made to compute V ∗0 with an independent random
string (which is used at no other point in the game), and so it is straightforward to verify that
these games are distributed identically. It follows that Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ], and so we may
complete the upper bound of Pr [ bad = true in G1 ] as follows:

Pr [ Coll in G1 ] + Pr
[
A(S∗0 , (Ii)

qD+1
i=2 , (γi, zi)

qD+1
i=1 ) guesses I1 in G1

]
= Pr [ Coll in G2 ] + Pr

[
A(S∗0 , (Ii)

qD+1
i=2 , (γi, zi)

qD+1
i=1 ) guesses I1 in G2

]
≤ 2−L + qH · 2−γ

∗
.

All probabilities are over the coins of A, D, M and H. The first term in the inequality follows since
V ∗0 ←$ {0, 1}L, and so the probability that Coll occurs is upper bounded by 2−L. The second term
follows since in G2 the challenge state S∗0 returned to A is entirely independent of the input I1. As
such, by the (q+

D, γ
∗)-legitimacy of the sampler, the probability that A can guess I1 with a single

query conditioned on the given information is upper bounded by 2−γ
∗
. Taking a union bound over

A’s qH queries then completes the argument.
Next we first define game G3, which is the same as G2 except we simply compute the challenge

state S∗0 as S∗0 ←$ MH(ε). It is straightforward to verify that S∗0 is computed identically in both
games, and that the redundant H queries from G2 (made to compute V0 which is subsequently
overwritten, and which are removed in G3) do not alter the outcome of the game. It follows that
this is a syntactic change, and so Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ].

31



Next, we define game G4, which is the same as G3 except we return the random oracle to
answer consistently on all points. However, since V ∗0 is chosen independently at random in both
G3 and G4 and so the values upon which the random oracle would ‘lie’ are not set (e.g., Q = ∅)
this does not alter the distribution of the game:

Pr [G3 ⇒ 1 ] = Pr [G4 ⇒ 1 ] .

Now, G4 is identical to a rewriting of game Init with challenge bit b = 1 in which the random
oracle is lazily sampled, and so

Pr [G4 ⇒ 1 ] = Pr
[

InitA,DG,M,γ∗ ⇒ 1 | b = 1
]
.

Finally, putting this altogether, yields

Advinit
G,M,γ∗(A,D) = |Pr

[
InitA,DG,M,γ∗ ⇒ 1 | b = 0

]
− Pr

[
InitA,DG,M,γ∗ ⇒ 1 | b = 1

]
|

≤ |Pr [G0 ⇒ 1 ]− Pr [G4 ⇒ 1 ]

≤ qH · 2−γ
∗

+ 2−L .

Next security of HASH-DRBG: a useful lemma. Consider the game NextAG,M,β shown in Fig-
ure 13, in which we have assumed the PRNG G is not called with additional input. The advantage
of an attacker A against a PRNG G with respect to masking function MH is defined

Advnxt
G,M,β(A) = |Pr

[
NextAG,M,β ⇒ 1 | b = 0

]
− Pr

[
NextAG,M,β ⇒ 1 | b = 1

]
| .

Looking ahead, proving the Next security of a PRNG G with respect to the masking function M
will allow us to treat the proofs of preserving and recovering security in a more modular manner.
We bound the Next security of HASH-DRBG with respect to the masking function M (Figure 4)
in the following lemma. Looking ahead, this will allow us to treat the proofs of preserving and
recovering security for HASH-DRBG in a more modular manner.

NextAG,M,β

H←$H ; b←$ {0, 1}
X←$ salt
S′←$AH(X) ;S ← MH(S′)

If b = 0

(R∗, S∗)←$ nextH(X,S, β)

Else R∗←$ {0, 1}β ;S∗←$ MH(S)

b∗←$AH(X,R∗, S∗)

Return (b = b∗)

Fig. 13: Game Next for a PRNG G and masking function M.

Lemma 9. Let G = HASH-DRBG and masking function MH be as specified in Theorem 2. Then
for any adversary A in game Next against G making qH queries to the random oracle H, it holds
that

Advnxt
G,M,β(A) ≤ qH · n

2`−1
,

where n = dβ/`e and H : {0, 1}≤ω → {0, 1}`.

Proof: We may assume without loss of generality that A never repeats a query to the random
oracle H. Recall that MH(S′) for S′ ∈ S is distributed differently from MH(ε), and so there are two
cases to consider depending on which type of state A outputs at the start of the challenge.

We begin by proving the case in which A outputs S′ 6= ε. We argue by a series of game hops,
shown on the left hand side of Figure 14. We begin by defining game G0, which is a rewriting of
game Next for HASH-DRBG and MH with challenge bit b = 0 in which the random oracle is lazily
sampled. In particular, notice how the procedure for computing masked states via application of
MH is included in the pseudocode at the appropriate point. We additionally set a flag bad, but this
does not affect the outcome of the game. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

NextAG,M,β ⇒ 1 | b = 0
]
.
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Next, we define game G1 which is identical to game G0 except we change the way in which the
random oracle H responds to queries. Namely, if H is queried on a point upon which it was already
queried, it responds with an independent random string as opposed to the value previously set.
These games run identically until the flag bad is set. It follows that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except we now overwrite the values of R∗ and
H1 which were computed by querying H with independent random bit strings R∗←$ {0, 1}β and
H1←$ {0, 1}`. Since in G1 the random oracle responds to each H query made to compute these
variables with an independent random string which is used nowhere other than this in the game,
it follows that these games are identically distributed, and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] ; and

Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound the probability of bad being set in G2. During the computation of the challenge, H
is queried on : (1) data+ j − 1 = V + j − 1 for j ∈ [1, n] during the computation of R∗; and (2)
0x03 ‖V upon which it was queried to generate the value H1 (which is used to produce the final
state variable V ∗). Notice that since the former is shorter in length than the latter, no queries of
the form (1) can collide with the query of form (2). Moreover since n < 2L, none of the queries
of form (1) can collide with eachother. Since we have assumed that A never repeats a query, it
follows that the only way that bad will be set is if an H query made by A in either the initial
querying phase (i.e., before outputting S′), or after receipt of the challenge output / state pair,
collides with one of the values queried by the challenger during the computation of the challenge.
Moreover, notice that all queries which may cause bad to be set require A to guess an element in
the set V = {V, . . . , V + n− 1}. We now bound the probability that A makes such a guess. Since
knowledge of the challenge state S∗ can only increase A’s guessing probability, we may without
loss of generality assume that A makes all of his qH queries to H after receiving his challenge. It
follows that

Pr [ bad = 1 in G2 ] = Pr
[
AH(R∗, S∗) guesses a point in V in G2

]
≤

n∑
j=1

Pr
[
AH(R∗, S∗) guesses V + j − 1 in G2

]
= n · Pr

[
AH(R∗, S∗) guesses V in G2

]
.

Here the first inequality follows from taking a union bound over the n elements in V. The following
equality follows since guessing V + j − 1 mod 2L for some j ∈ [1, n] is equivalent to guessing
V mod 2L.

In particular, notice that — while R∗ is chosen independently at random in G2 and so offers
A no assistance in guessing the required state variables — S∗ = (V ∗, C∗, cnt∗) does leak some
information to A about the value of V . To see this, notice that V is computed as V = V ′ +
C ′ + cnt′ + H0 where H0←$ {0, 1}`, S′ = (V ′, C ′, cnt′) is the state output by A at the start of
the game, and all addition is modulo 2L. The challenge state component V ∗ is then computed as
V ∗ = V + C + cnt+H1 where C = C ′ and cnt = cnt+ 1, and so we may re-write V ∗ in the form

V ∗ = V ′ + 2 · C ′ + (2 · cnt′ + 1) + (H0 +H1) ,

where recall all variables and sums are taken modulo 2L. Now, all the variables on the right hand
side of the above equality except H0 and H1 are known to A; indeed, A selected V ′, C ′ and cnt′

at the start of the game. As such, learning V ∗ reveals (H0 +H1) ∈ [0, 2 · (2` − 1)] to A. It is then
straightforward to verify that guessing V given R∗, S′ = (V ′, C ′, cnt′), and S∗ = (V ∗, C∗, cnt∗)
where recall C∗ = C ′ and cnt∗ = cnt+ 2 — that is to say, A’s view of the experiment at this point
— is equivalent to guessing H0 given (H0 +H1), where H0, H1←$ {0, 1}`. More formally, we write
e.g., S∗ to denote the distribution of state S∗, and for brevity let α = V ′ + 2 · C ′ + (2 · cnt′ + 1).
It follows that for each S′ = (V ′, C ′, cnt′) which may be output by A, it holds that

2−H̃∞(V|R∗,S∗,S′=S′)
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=
∑
R∗,S∗

max
V

Pr [ V = V | R∗ = R∗,S∗ = S∗,S′ = S′ ]× Pr [ R∗ = R∗,S∗ = S∗,S′ = S′ ]

=
∑
R∗,S∗

max
V

Pr [ V = V ∧R∗ = R∗,S∗ = S∗,S′ = S′ ]

=
∑

S∗=(V ∗,C′,cnt′+2)

for V ∗∈[α,α+2·(2`−1)]

max
V

Pr [ (V = V where V = V ′ + C ′ + cnt′ +H0) ∧ (S∗ = S∗ where V ∗ = α+ (H0 +H1) ]

=
∑

z∈[0,2·(2`−1)]

max
H0

Pr [ H0 = H0 ∧ (H0 + H1) = z ]

=
∑

z∈[0,2·(2`−1)]

max
H0

Pr [ (H0 + H1) = z ] · Pr [ H0 = H0 ]

=
∑

z∈[0,2·(2`−1)]

2−` · 2−`

< 2−(`−1) .

All probabilities are over the random choice of H0, H1←$ {0, 1}`. The first equality follows from
the definition of average-case min-entropy. The second equality follows from rearranging. The third
equality follows by rewriting V and S∗ in terms of S′ = (V ′, C ′, cnt′) and noting that, since R∗ is
chosen randomly in G2, it is independent of the distribution of state variables. The next equality
follows since with S′ fixed, the values of V and V ∗ are completely determined by H0 ∈ [1, 2` − 1]
and (H0 + H1) ∈ [1, 2 · (2` − 1)]. The following equality follows by rearranging. The last equality
follows since for each H0 ∈ {0, 1}` and z ∈ [0, 2·(2`−1)], there is at most one H1 ∈ {0, 1}` such that
(H0 +H1) = z. (Here we use the fact that H0, H1 ∈ [0, 2`−1] and by assumption L > `+ 1, and so
no wraparound modulo 2L occurs when computing (H0 +H1).) This upper bounds the probability
that A guesses V given a single guess, and so taking a union bound over A’s qH guesses, it follows
that

Pr [ bad in G2 ] ≤ qH · n
2`−1

.

Next we define G3, which is identical to game G2 except we compute S∗ as S∗ = MH(S) and omit
the redundant random oracle queries which were made to compute the variables R∗ and H0 which
are subsequently overwritten with random bit strings. It is straightforward to verify that these are
syntactic changes, and so Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ].

Next we define game G4, which is identical to G3 except we return H to answer truthfully on
all points; by an analogous argument to that used above these games run identically unless the
flag bad is set. However, since the challenge output / state are generated randomly in both games
and so no random oracle queries are made during the computation of the challenge state, it follows
that bad will never be set and so this change does not alter the distribution of the game. Now G4

is identical to Next with challenge bit b = 1 rewritten with a lazily sampled random oracle, and so
it follows that

Pr [G4 ⇒ 1 ] = Pr
[

NextAG,M,β ⇒ 1 | b = 1
]
.

Putting this altogether we conclude that

Advnxt
HASH-DRBG,M,β(A) = |Pr

[
NextAG,M,β ⇒ 1 | b = 0

]
− Pr

[
NextAG,M,β ⇒ 1 | b = 1

]
|

= |Pr [G0 ⇒ 1 ]− Pr [G4 ⇒ 1 ]

≤ qH · n
2`−1

.

We now consider the case in which A outputs state S′0 = ε at the start of game Next. In this case,
the masking function chooses V ←$ {0, 1}L, sets C = HASH-DRBG dfH(0x00 ‖V ) and cnt = 1, and
returns S = (V,C, cnt). As we shall see, the success probability of an attacker in this case is less
than that in the former case, and so the previous bound holds for both cases.

We argue by a series of game hops, shown on the right hand side of Figure 14. We begin by
defining game G0 which is a rewriting of game Next with challenge bit b = 0 for HASH-DRBG
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and MH with a lazily sampled random oracle. Next we define game G1, which is identical to game
G0 except we change H to respond to each query with an independent random string regardless
of whether the value was previously set. These games run identically until the flag bad is set. An
analogous argument to that used above invoking the Fundamental Lemma of Game Playing implies
that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except we now overwrite the values of C,R∗,
and H1 which were computed by querying H, with independent random bit strings C←$ {0, 1}L,
R∗←$ {0, 1}β , and H1←$ {0, 1}`. As in the proof of the previous case, both games are identically
distributed and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] and ;

Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound this latter probability. During the computation of the challenge, H is queried on:
(1) (i)8 ‖ (L)32 ‖ 0x00 ‖V for i ∈ [1,m] to compute C; (2) V + j − 1 for j ∈ [1, n] to compute the
output R∗; and (3) 0x03 ‖V to compute H1. Since the queries of form (1) cannot collide with
eachother (due to the iterating counter) or with queries of forms (2) and (3) (since queries of type
(1) are of a longer length than those of type (2) and (3)), an analogous argument to that made
above implies that bad will only be set if A manages to guess one of the points queried by the
challenger when computing the challenge. Moreover, all such queries require A to guess a point in
the set V = {V, . . . , V + n − 1}. Since knowledge of the challenge state S∗ = (V ∗, C∗, cnt∗) can
only increase A’s guessing probability, we may without loss of generality assume that A makes all
of his qH queries to H after receiving his challenge. An analogous argument to that above, taking
a union bound, implies that

Pr [ bad in G2 ] ≤ n · Pr
[
AH(R∗, S∗) guesses V in G2

]
.

In particular, notice that possessing the challenge state leaks information to A about the value
of the target V . Namely, V ∗ = V + C + cnt + H1 where H1←$ {0, 1}`, C = C∗, cnt = 1, and
addition is modulo 2L — notice how this differs from the previous case. As such, A knows that V
corresponds to a random value in the interval [V ∗−C∗−1−(2`−1), V ∗−C∗−1]. Given A’s view of
the experiment at this point, which consists of R∗ amd S∗ = (V ∗, C∗, cnt∗), it is straightforward to
verify that guessing V is equivalent to guessing the value of H1←$ {0, 1}`. As such, the probability
that A guesses V with a single guess is equal to 2−`. Taking a union bound over A’s qH guesses
then implies that A’s probability of guessing V is upper bounded by qH · 2−`, and so

Pr [ bad = 1 in G2 ] ≤ qH · n
2`

.

Next we define game G3, which is identical to G2 except we simply compute S∗ as S∗ = MH(S)
and omit the redundant random oracle queries which were made to compute the variables R∗ and
H1. As before, it is straightforward to verify that both games are identically distributed, and so
Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ].

We then define game G4, which is identical to G3 except we no longer overwrite the string C
with a random bit string. An analogous argument to that used above implies that Pr [G3 ⇒ 1 ] =
Pr [G4 ⇒ 1 ].

Next, we define game G5, which is identical to G4 except we return H to answer consistently
on all points. By an analogous argument to that used above, G4 and G5 are identical until the
flag bad is set. Since the only points queried to H during the computation of the challenge output
/ state in these games are during the computation of C, it follows that bad will only be set if A
guesses one of the points queried to generate C. In turn, this may only occur if A guesses the point
V . As such, an analogous argument to that above invoking the Fundamental Theorem of Game
Playing and the fact that V ←$ {0, 1}L, implies that

|Pr [G4 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Pr [ bad = 1 in G5 ]

= Pr [ bad = 1 in G3 ]

≤ qH

2`
.
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Now G5 is identical to Next with challenge bit b = 1 and rewritten with a lazily sampled random
oracle, and so it follows that

Pr [G5 ⇒ 1 ] = Pr
[

NextAG,M,β ⇒ 1 | b = 1
]
.

Putting this altogether, we conclude that

Advnxt
G,M,β(A) = |Pr

[
NextAG,M,β ⇒ 1 | b = 0

]
− Pr

[
NextAG,M,β ⇒ 1 | b = 1

]
|

= |Pr [G0 ⇒ 1 ]− Pr [G5 ⇒ 1 ]

≤ qH · (n+ 1)

2`
≤ qH · n

2`−1
,

where the final inequality follows since qH ≥ 0 and n ≥ 1, thereby proving the bound in this case
also.

Proof of Lemma 2: Pres security of HASH-DRBG.
Proof: Recall that in game Pres, the attacker A outputs a tuple (S′0, I1, . . . , Id) at the start
of his challenge which is then masked to give S0←$ MH(S′0). Our proof will proceed by arguing
that after iteratively computing Si = refreshH(Si−1, Ii) for i = 1, . . . , d, the resulting state Sd is
indistinguishable from MH(S) for some state S ∈ S ∪ {ε} (which will be made explicit during
the proof). This then allows us to reduce the Pres security of HASH-DRBG to the Next security
of HASH-DRBG. Again since the state takes a different distribution after a reseed than after an
output generation request, there are a number of cases to consider.

We may assume without loss of generality that A never repeats a query to H. We begin by
considering the case in which the tuple (S′0, I1, . . . , Id) output by A is such that: (1) d ≥ 1 and
so at least one reseed occurs during the challenge computation; and (2) S′0 6= ε. We argue by a
series of game hops shown in Figure 15. We begin by defining game G0, which is easily verified to
be a rewriting of game Pres for HASH-DRBG and MH with challenge bit b = 0 and with a lazily
sampled random oracle. We have explicitly written out the code of the masking function at the
point at which the state is masked at the start of the game. We additionally set a flag bad in G0,
but this does not affect the outcome of the game. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

PresAG,M,β ⇒ 1 | b = 0
]
.

Next we define game G1, which is identical to G0 except that now if the random oracle H is
queried more than once on any of the points (i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij for i ∈ [1,m], j ∈ [1, d]
upon which it was queried during the iterative reseeds to compute V1, . . . , Vd (indicated in the
pseudocode by the set Q), then H responds with an independent random string as opposed to the
value previously set. These games run identically until the flag bad is set, and so the Fundamental
Lemma of Game Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except we overwrite each of the intermediate
state variables Vj for j ∈ [1, d] generated by querying H with an independent random bit string
Vj ←$ {0, 1}L. Since in G1, the strings returned in response to the H queries made to compute
these variables are chosen independently at random and are used at no other point in the game, it
follows that these games are identically distributed, and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ] ;

and

Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound this latter probability. Notice that bad will be set if any of the qH H queries made
by A collide with one of the points queried by the challenger when computing V1, . . . , Vd. The flag
bad will also be set if there exist distinct j, j′ ∈ [0, d − 1] such that Vj ‖ Ij+1 = Vj′ ‖ Ij′+1. (It is
straightforward to verify that due to differing lengths and / or domain separation, none of the
queries made to compute the constants Cj for j ∈ [1, d], nor the queries made by nextH, will cause
the flag bad to be set.)

Now, the challenge output / state pair are computed as (R∗, S∗)← nextH(Sd, β). Moreover no-
tice that in G2 the state Sd is computed as a function of the randomly chosen counter Vd←$ {0, 1}L
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G0, G1, G2

S′←$AH ; (V ′, C′, cnt′)← S′

H0←$ {0, 1}` ;V ← V ′ + C′ + cnt′ +H0

C ← C′ ; cnt← cnt′ + 1

S ← (V,C, cnt)

data← V ; tempR ← ε ;n← dβ/`e
For j = 1, . . . , n

r ← H(data)

data← (data+ 1) mod 2L

tempR ← tempR ‖ r
R∗ ← left(tempR, β)

R
∗←$ {0, 1}β

H1 ← H(0x03 ‖V )

H1←$ {0, 1}`

V ∗ ← V + C + cnt+H1

C∗ ← C ; cnt∗ ← cnt+ 1

S∗ ← (V ∗, C∗, cnt∗)

b∗←$AH(R∗, S∗)

Return b∗

G3, G4

S′←$AH ; (V ′, C′, cnt′)← S′

H0←$ {0, 1}` ;V ← V ′ + C′ + cnt′ +H0

C ← C′ ; cnt← cnt′ + 1

S ← (V,C, cnt)

R∗←$ {0, 1}β
S∗←$ MH(S)

b∗←$AH(R∗, S∗)

Return b∗

proc. H(X)// G0 , G1, G2, G3, G4

Y ←$ {0, 1}`
If H[X] 6=⊥

bad← true
Y ← H[X]

H[X]← Y

Return Y

G0, G1, G2

ε←$AH

V ←$ {0, 1}L
m← dL/`e ; tempC ← ε

For i = 1, . . . ,m

tempC ← tempC ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖V )

C ← left(tempC , L)

C←$ {0, 1}L

cnt← 1

S ← (V,C, cnt)

data← V ; tempR ← ε ;n← dβ/`e
For j = 1, . . . , n

r ← H(data)

data← (data+ 1) mod 2L

tempR ← tempR ‖ r
R∗ ← left(tempR, β)

R
∗←$ {0, 1}β

H1 ← H(0x03 ‖V )

H1←$ {0, 1}`

V ∗ ← V + C + cnt+H1

C∗ ← C ; cnt∗ ← cnt+ 1

S∗ ← (V ∗, C∗, cnt∗)

b∗←$AH(R∗, S∗)

Return b∗

G3 , G4, G5

ε←$AH

V ←$ {0, 1}L
m← dL/`e ; tempC ← ε

For i = 1, . . . ,m

tempC ← tempC ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖V )

C ← left(tempC , L)

C←$ {0, 1}L

cnt← 1

S ← (V,C, cnt)

R∗←$ {0, 1}β
S∗←$ MH(S)

b∗←$AH(R∗, S∗)

Return b∗

proc. H(X)// G0 , G1, G2, G3, G4, G5

Y ←$ {0, 1}`
If H[X] 6=⊥

bad← true
Y ← H[X]

H[X]← Y

Return Y

Fig. 14: Games for proof of Lemma 9 (Next security of HASH-DRBG). All addition is modulo 2L.
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as opposed to via iterative reseeding. As such, A’s view of the experiment is independent of the
intermediate state variables Vj , Cj for j ∈ [0, d− 1] and so we can without loss of generality imag-
ine deferring the computation of these state variables until after A has finished making all of his
queries to H. We now bound the probability that bad is set during this process.

We first note that bad will be set during the first reseed if A has made a query of the form
(i)8 ‖ (L)32 ‖ 0x01 ‖V0 ‖ I1 where i ∈ [1,m]. Any such query requires guessing V0, and since V0 is
uniformly distributed over the set [V ′0 + C ′0 + cnt′0, V

′
0 + C ′0 + cnt′0 + 2` − 1] it follows that the

probability that A has made such a query is upper bounded by qH

2`
. Assuming that this event

does not occur then bad will be set during the second reseed if either V0 and V1 collide, or A has
already made a query of the correct form containing V1. Since V1←$ {0, 1}L in G2, it follows that
bad is set during this reseed with probability qH+1

2L
(the qH · 2−L arising from A’s queries and the

additional 2−L from the probability that V0 = V1 when V1←$ {0, 1}L). Inductively applying the
same argument yields that for all j ∈ [2, d], the probability that bad is set during the jth reseed is
upper bounded by qH+j−1

2L
. Finally summing over these terms yields

Pr [ bad = 1 in G2 ] ≤ qH

2`
+

(d− 1)(2qH + d)

2L+1
.

Next we define G3 in which we omit the iterative reseed calls and instead directly set Sd←$ MH(ε).
It is straightforward to verify that these games are identically distributed and so Pr [G2 ⇒ 1 ] =
Pr [G3 ⇒ 1 ]. We then define game G4, in which instead of computing R∗ and S∗ via (R∗, S∗) ←
nextH(Sd, β), we instead set R∗←$ {0, 1}β and S∗ ← MH(Sd). We claim there exists an adversary
A′ in game Next against HASH-DRBG such that

|Pr [G3 ⇒ 1 ]− Pr [G4 ⇒ 1 ] ≤ Advnxt
G,M,β(A′) ≤ qH · n

2`−1
,

and moreover A′ makes qH queries to his random oracle. To see this, notice that an attacker A′ in
game Next against HASH-DRBG and MH can perfectly simulate A’s view of the game as follows.
For each of A’s initial queries, A′ simulates A’s random oracle by forwarding all of A’s queries to
his own random oracle and returning the response. When A outputs a state S′0, A′ outputs the
state ε as his challenge state receiving (R∗, S∗) in response. A′ passes these to A and continues
simulating A’s random oracle by querying his own oracle as before. At the end of the game, A′
outputs whatever bit A does. If A′’s challenge bit is equal to 0 then this perfectly simulates game
G3, otherwise it perfectly simulates G4, and so invoking Lemma 9 proves the claim. Moreover since
A makes qH queries, it follows that A′ makes qH queries also.

Finally in games G5 and G6 we reverse the earlier transitions to return to computing Sd via
the process of iterative reseeding, and then in G7 return the random oracle to respond consistently
to all queries. By analogous arguments to those used above, G4 − G6 are identically distributed
and G6 and G7 run identically unless bad is set, and so it follows that

|Pr [G4 ⇒ 1 ]− Pr [G7 ⇒ 1 ]|≤ Pr [ bad = 1 in G5 ] ≤ qH

2`
+

(d− 1)(2qH + d)

2L+1
.

Moreover, notice that G7 is identical to Pres with challenge bit b = 1 and written with a lazily
sampled random oracle, and so

Pr [G7 ⇒ 1 ] = Pr
[

PresAG,M,β ⇒ 1 | b = 1
]
.

Putting this all together, we conclude that

Advpres
G,M,β(A) ≤ |Pr

[
PresAG,M,β ⇒ 1 | b = 0

]
− Pr

[
PresAG,M,β ⇒ 1 | b = 1

]
|

≤ |Pr [G0 ⇒ 1 ]− Pr [G7 ⇒ 1 ]|

≤ qH · (n+ 1)

2`−1
+

(d− 1)(2qH + d)

2L
.

This proves the case in which A outputs S′0 6= ε and d ≥ 1. We now explain why this upper
bound holds in all other cases too. Firstly for the case in which A outputs S′0 = ε at the start of
his challenge and d ≥ 1, the proof is identical except that when computing S0←$ MH(S′0), we set
V0←$ {0, 1}L (and C0 ← HASH-DRBG dfH(0x00 ‖V0), although this does not affect the proof).
The increased entropy in the initial state can only make A’s job harder and so the bound holds
in this case also. Moreover (for both choices of initial state) if d = 0 and so no refresh calls are
made, then in G0 the challenge output / state are computed by applying nextH to the masked
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state S0←$ MH(S′0) where S′0 is the state output by A at the start of his challenge. An analogous
reduction to an attacker in game Next against HASH-DRBG and MH, who passes S′0 to his challenger
and returns the response to A, confirms the upper bound in this case also.

G0, G1, G2

(S′0, I1, . . . , Id)←$AH ; (V ′0 , C
′
0, cnt

′
0)← S′0

H0←$ {0, 1}` ;V0 ← V ′0 + C′0 + cnt′0 +H0

C0 ← C′0 ; cnt0 ← cnt′0 + 1

S0 ← (V0, C0, cnt0) ;m← dL/`e ;Q ← ∅
For j = 1, . . . , d

tempVj ← ε

For i = 1, . . . ,m

Q ← Q∪ {(i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij}
tempVj ← tempVj ‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij)

Vj ← left(tempVj , L) ; Vj ←$ {0, 1}L

tempCj ← ε

For i = 1, . . . ,m

tempCj ← tempCj ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj , L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

(R∗, S∗)← nextH(Sd, β)

b∗←$AH(R∗, S∗)

Return b∗

G3, G4

(S′0, I1, . . . , Id)←$AH ; (V ′0 , C
′
0, cnt

′
0)← S′0

H0←$ {0, 1}` ;V0 ← V ′0 + C′0 + cnt′0 +H0

C0 ← C′0 ; cnt0 ← cnt′0 + 1

S0 ← (V0, C0, cnt0) ;m← dL/`e ;Q ← ∅
Sd←$ MH(ε)

(R∗, S∗)← nextH(Sd, β) // G3 only

R
∗←$ {0, 1}`

S
∗←$ MH

(Sd)

b∗←$AH(R∗, S∗)

Return b∗

G5 , G6, G7

(S′0, I1, . . . , Id)←$AH ; (V ′0 , C
′
0, cnt

′
0)← S′0

H0←$ {0, 1}` ;V0 ← V ′0 + C′0 + cnt′0 +H0

C0 ← C′0 ; cnt0 ← cnt′0 + 1

S0 ← (V0, C0, cnt0) ;m← dL/`e Q ← ∅
For j = 1, . . . , d

tempVj ← ε

For i = 1, . . . ,m

Q ← Q∪ {(i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij}
tempVj ← tempVj ‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Ij)

Vj ← left(tempVj , L) ; Vj ←$ {0, 1}L

tempCj ← ε

For i = 1, . . . ,m

tempCj ← tempCj ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj , L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

R∗←$ {0, 1}`
S∗←$ MH(Sd)

b∗←$AH(R∗, S∗)

Return b∗

proc. H(X)// G0 , G1, G2, G3, G4, G5, G6, G7

Y ←$ {0, 1}`
If H[X] 6=⊥ and X /∈ Q
Y ← H[X]

If H[X] 6=⊥ and X ∈ Q
bad← true
Y ← H[X]

H[X]← Y

Return Y

Fig. 15: Games for proof of Lemma 2 (Pres security of HASH-DRBG). All addition is modulo 2L.

E.1 Recovering Security.

Analysis of HASH-DRBG extractor. Consider the game Ext shown in the left-hand panel of
Figure 16, in which the advantage of an attacker and sampler pair (A,D) is defined

Advext
G,M,γ∗,qD (A,D) = 2 · |Pr [ ExtG,M,γ∗,qD (A,D)⇒ 1 ]− 1

2
| .

In this game, the attacker A is challenged to distinguish a state of his choice which is iteratively
reseeded with entropy samples with a collective entropy of at least γ∗-bits from a masked state
MH(ε). In the following lemma we upper bound the success probability of an attacker in such a
game against HASH-DRBG. We shall then use this result to bound the Rec security of HASH-DRBG.

Notation. We first introduce some notation. We let J denote the set of all queries made by A of
the form

(i)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z

where i ∈ [1,m], Y ∈ {0, 1}L, and Z ∈ {0, 1}≥1 (e.g., points of the form which are queried
to H to derive the V values during reseeds), and notice that all such strings can be decomposed
unambiguously into these component parts. To each query x ∈ J , we call x = (i, Y, Z) its associated
decomposition; as we shall see, these shall be the components of these queries that are important
for the proof.
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Lemma 10. Let G = HASH-DRBG and masking function MH be as specified in Theorem 2. Then
for any adversary A in game Ext against HASH-DRBG making q′H queries to the random oracle H
of which qJ lie in J , and any (q+

D, γ
∗)-legitimate sampler D, it holds that

Advext
G,M,γ∗,qD (A,D) ≤ qJ

2γ∗
+

(d− 1) · (2qJ + d) + 2q2
J

2L+1
.

ExtG,M,γ∗,qD (A,D)

H←$H ; b←$ {0, 1}
σ0 ← ε ;X←$ Seed ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam(X, (I1, (γk, zk))
qD+1

k=1 )

If µ+ d > (qD + 1) or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
S0 ← (V0, C0, cnt0)

If b = 0 then

For j = 1, . . . , d

Sj ← refreshH(X, Ij , Sj−1)

Else Sd←$ MH(ε)

b∗←$AH(Sd, (Ik)k>µ+d)

Return (b = b∗)

Sam()

µ = µ+ 1

Return Iµ

ExtG,M,γ∗,qD (A,D)

H←$H ; b←$ {0, 1}
σ0 ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam(X, (I1, (γk, zk))
qD+1

k=1 )

If µ+ d > (qD + 1) or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
S0 ← (V0, C0, cnt0)

If b = 0 then

For j = 1, . . . , d

tempVj ← ε

For i = 1, . . . ,m

tempVj ← tempVj ‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Iµ+j)
Vj ← left(tempVj , L)

tempCj ← ε

For i = 1, . . . ,m

tempCj ← tempCj ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj , L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

Else Sd←$ MH(ε)

b∗←$AH(Sd, (Ik)k>µ+d)

Return (b = b∗)

Fig. 16: Game Ext for a PRNG G = (setup, refresh, next) (left) and pseudocode for proof of Lemma 10 (right).

Proof: Our proof uses the H-coefficient method as defined in Appendix A. We make the usual
simplifying assumption that A is deterministic and that the sampler D, having been initialized
with coins ω ∈ coinsD where coinsD denotes the coin space of the sampler, is deterministic also.
Without loss of generality, we may assume that A makes precisely qH queries, and never makes a
redundant query. We begin by introducing some notation which will simplify our definition of bad
transcripts. Within a transcript of an execution of game Ext, we let (xι, yι) denote that A queried
xι to H and received yι in response. As with the sponge-extraction lemma of [20], we will modify
game Ext so that A is given some additional information before outputting its challenge bit guess.
However, these extra values are provided only after A has finished making all of its H queries, and
so this extra information cannot influence A’s choice of queries. Namely, we will additionally give
to A :

– The inputs Iµ+1, . . . , Iµ+d which A selected to use in the challenge computation; and
– The coins ω ∈ coinsD which the sampler D was initialized with.

Moreover, we shall further modify game Ext to change the way in which the random oracle H
responds to queries. Namely, if H is queried on a point x ∈ J of the form (∗)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z,
the game computes yi = H((i)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z) for all i ∈ [1,m] and returns y = y1 ‖ . . . ‖ ym
to A. (Here we use ∗ to denote an arbitrary i ∈ [1,m].) However, this is still counted as a single
query made by A. It is straightforward to see that such a change can only increase A’s success
probability since an attacker in the modified game can perfectly simulate the original game by
returning block yi of y to A in response to a query prefixed with index i. Our assumption that A
never makes a redundant query now extends to him querying both (i)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z and
(i′)8 ‖ (L)32 ‖ 0x01 ‖Y ‖Z for i, i′ ∈ [1,m] and i 6= i′, since in the modified game the first query
provides him with the answer to the latter. This modification shall simplify the subsequent proof,
without increasing the attacker’s success probability by too much for the parameter settings we
are interested in. Indeed, in the worst case it gives the attacker m times as many queries, where
for all parameter settings in the standard m ≤ 3.

40



Recall that we write (xι, yι) to indicate that A queried xι to H and received yι in response.
It is straightforward to verify from the pseudocode on the right hand side of Figure 16 that each
execution of game Ext defines a transcript of the form

τ = ((x1, y1), . . . , (xqH
, yqH

), ω, (V0, C0, cnt0), (Vd, Cd, cntd), (Ik, γk, zk)qD+1
k=1 , µ, d) .

We say that a transcript τ is compatible if it may arise from an execution of Ext. We let T0 denote
the distribution of compatible transcripts produced from game Ext with challenge bit b = 0, and
let T1 denote the distribution of all such transcripts for Ext with challenge bit b = 1. With this in
place, we define bad transcripts as follows:

Definition 2 (Bad transcripts for proof of Lemma 10). Let τ be a compatible transcript with
associated set of queries (x1, y1), . . . , (xqH

, yqH
). Then τ is said to be Bad if among those queries

there exists a subset of (not necessarily distinct) queries X = {(u1, v1), . . . , (ud, vd)} such that:

– uι ∈ J for all (ui, vi) ∈ X ; and
– For j ∈ [1, d] it holds that uj has decomposition (∗, Xj−1, Iµ+j) where Xj−1 = left(vj−1, L).

(Here we define left(v0, L) = V0 for notational brevity.)

In words, a compatible transcript τ is Bad if it contains a set of queries which (with respect to
our modification to the random oracle) are equivalent to those made by the challenger to compute
the updated state component Vd. With this in place, our result is derived from the following two
lemmas.

Lemma 11. Let τ ∈ Good be a transcript. Then

Pr [ T0 = τ ]

Pr [ T1 = τ ]
≥ 1− (d− 1) · (2qJ + d)

2L+1
,

where recall that d denotes the index output by A, and indicates the number of refreshH calls which
are made during the computation of the challenge state.

Proof: We begin by noting that when b = 1 the challenge state S∗ is computed as MH(ε) where
recall that MH chooses Vd←$ {0, 1}L, sets Cd = HASH-DRBG dfH(0x00 ‖Vd) and cntd = 1, and
returns Sd = (Vd, Cd, cntd). Now for a random oracle H to be compatible with transcript τ , it must
hold that:

– (1) H(xι) = yι for all ι ∈ [1, qH]; and
– (2) H is consistent with Cd = HASH-DRBG dfH(0x00 ‖Vd).

It follows that

Pr [ T1 = τ ] =Pr [Sd = (Vd, ·, ·) ∧ ω chosen ∧ H satisfies (1) and (2) ]

= 2−L · Pr [ω chosen ∧ H satisfies (1) and (2) ] . (1)

Here the probability is over the choice of H←$H, ω←$ coinsD, and Vd←$ {0, 1}L. (Recall that by
assumption A is deterministic.) The final inequality follows since Vd is sampled independently at
random in the ideal world, and so each Vd is selected with probability 2−L.

We now consider the case that τ ∈ Good and b = 0. We write Sd ← refreshH(S0, Iµ+1, . . . , Iµ+d)

to denote the state returned by computing Si = refreshH(Si−1, Iµ+i) for i = 1, . . . , d. Parsing

(Vd, Cd, cntd) ← Sd, we let q(τ) denote the probability that Sd ← refreshH(S0, Iµ+1, . . . , Iµ+d)
yields the required counter Vd conditioned on ω being the chosen coins and H satisfying properties
(1) and (2). It follows that

Pr [ T0 = τ ] = Pr [Sd = (Vd, ·, ·) ∧ ω chosen ∧ H satisfies (1) and (2) ]

= q(τ)× Pr [ω chosen ∧ H satisfies (1) and (2) ]

= q(τ)× 2L × Pr [ T1 = τ ], (2)

where the final equality follows from substituting in the term from line (1).
It remains to bound q(τ). One may imagine lazily sampling the random oracle H during the

computation of Vd conditioned on it being consistent with the transcript via points (1) and (2)
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as defined above. Let l′ be maximal such that τ contains a set of queries {(u1, v1), . . . , (ul′ , vl′)}
such that uj ∈ J for each j ∈ [1, l′], and it holds that uj has decomposition (∗, Xj−1, Iµ+j) where
Xj−1 = left(vj−1, L). Since we have assumed that τ ∈ Good, it must be the case that l′ ∈ [0, d− 1]
(otherwise τ will be Bad).

For j ∈ [l′, d−1] we let ¬Freshj denote the event that either: (a) there exists a query ui ∈ τ ∩J
such that ui has decomposition (∗, Vj , Z) for some Z ∈ {0, 1}≥1; or (b) the state component Vj
collides with a state component computed in a previous reseed call, Vj ∈ {Vl′ , . . . , Vj−1}. (Note
that if Vj collides with a state variable in the set {V0, . . . , Vl′−1}, then this state will have formed
part of an earlier query in the set {(u1, v1), . . . , (ul′ , vl′)} ⊂ τ ∩ J and so is already accounted for
by (a).) Notice that if Freshj is true for some j ∈ [l′, d − 1], then the queries made to compute
the following state component Vj+1 will all be on previously unqueried points. (We note that due
to the prepended counter, none of the queries made to compute Vj+1 can collide with eachother.
Moreover, due to the separated domains, the queries made to compute the constants Cj for j ∈ [1, d]
can never collide with those made to compute the counters Vj .)

Now, the maximality of l′ implies that the transcript τ contains no queries u ∈ J of the form
(∗)8 ‖ (L)32 ‖ 0x01 ‖Vl′ ‖Z. As such, it follows that the Pr [¬Freshl′ ] = 0. This implies that the
state component Vl′+1 is computed as the result of all fresh H queries, and is therefore uniformly
distributed over {0, 1}L. Now conditioned on Freshl′ , it follows that the probability that ¬Freshl′+1

occurs is upper bounded by (qJ+1)
2L

. (Here, the qJ
2L

accounts for the probability that there exists a
query in τ ∩J satisfying (a), and the additional 1

2L
accounts for the probability that Vl′+1 collides

with Vl′ as per (b). Inductively applying this argument yields that for each k ∈ [1, d − 1 − l′],
it holds that Pr

[
¬Freshl′+k | ∧l

′+k−1
j=l′ Freshj

]
≤ (qJ+k)

2L
. Using this bound, and the fact that

Pr [¬Freshl′ ] = 0 and d− 1− l′ ≤ d− 1, it follows that

Pr
[
∧d−1
j=l′Freshj

]
≥ 1−

d−1−l′∑
k=0

Pr
[
¬Freshl′+k | ∧l

′+k−1
j=l′ Freshj

]
≥ 1−

d−1∑
k=1

(qH + k)

2L

= 1− (d− 1) · (2qJ + d)

2L+1
.

Now, notice that if ∧d−1
j=l′Freshj is true then Vd is computed as a result of all fresh queries to H, and

so the resulting state component is uniformly distributed over {0, 1}L. As such, the probability
that the required value of Vd (as dictated by the transcript) is hit is equal to 2−L. Putting this all
together, we conclude that

Pr [ T0 = τ ] ≥
(

1− (d− 1) · (2qJ + d)

2L+1

)
× Pr [ T1 = τ ] ,

and so rearranging proves the lemma.

In the following lemma, we bound the probability that a compatible transcript in the ideal
world is Bad.

Lemma 12. Letting Bad denote the set of bad transcripts as defined above, it holds that

Pr [ T1 ∈ Bad ] ≤ qJ
2γ∗

+
q2
J

2L
.

Proof: Since we are now in the random world, the challenge state (Vd, Cd, cntd) is computed
by choosing Vd←$ {0, 1}L, setting Cd = HASH-DRBG dfH(0x00 ‖Vd) and cntd = 1, and returning
Sd = (Vd, Cd, cntd). We let Chain denote the event that a compatible ideal world transcript τ
contains a set of queries such that τ ∈ Bad. We define the notion of a potential chain as follows:

Definition 3. We say that a sequence of (not necessarily distinct) queries X ′ = (u1, v1), . . . , (ud, vd)
constitutes a potential chain if

– (uι, vι) ∈ J for all (uι, vι) ∈ X ; and
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– For j ∈ [1, d] it holds that uj has decomposition (∗, Xj−1, ∗∗) where ∗∗ denotes an arbitrary
string in {0, 1}≥1, and Xj−1 = left(vj−1, L) where left(v0, L) = V0.

In words, a set of queries that form a potential chain are the same as those which form a bad
transcript except we drop the condition that uj contains the correct input Iµ+j in its decomposition.
Moreover, notice that each potential chain defines a candidate sequence of inputs Z = (Z1, . . . , Zd),
and a potential chain results in the transcript becoming Bad if Zj = Iµ+j for j ∈ [1, d].

We may visualize the potential chains in the form of an undirected graph as follows. We set
ω0 = V0 to be the root of the graph. We then use the queries in the transcript to construct
paths of length d from the root by adding an edge between vertices ωj , ωk if there exists a query
(u, v) ∈ τ ∩J , with decomposition (∗, ωj , ∗∗), and left(v, L) = ωk. Notice that the potential chains
correspond to paths of length d starting at the root V0, and that since A gets qH queries and d ≥ 1,
the graph can contain at most qH edges. With this in place, we say that a transcript τ induces the
event Coll if:

– There exists a query (ui, vi) ∈ τ ∩ J such left(vi, L) = vk for some query (uk, vk) where
1 ≤ k < i; or

– There exists a query (ui, vi) ∈ τ ∩ J such that left(vi, L) = uk for some query (uk, vk) where
1 ≤ k ≤ i.

Now notice that if Coll does not occur then no newly added edge can loop back to a previously
added vertex, and so the query graph must be a tree. In this case there can be at most one path
to each leaf from the root. Since each node added to the graph corresponds to a query in τ ∩J of
which A makes qJ such queries, it follows that there can be at most qJ potential chains.

We now bound the probability that Coll occurs. Notice that conditioned on Coll having not
occurred for the first (k − 1) queries in the set τ ∩ J , then the kth query of this form will be
computed as the result of all fresh queries to H. As such, the resulting counter / vertex is uniformly
distributed over {0, 1}L. It is then straightforward to verify that the probability that the kth query

sets Coll is upper bounded by (2k−1)
2L

. Summing over k ∈ [1, qJ ] then yields

Pr [ Coll ] ≤
qJ∑
k=1

(2k − 1)

2L
=
q2
J

2L
.

Now as mentioned above, conditioned on Coll not occurring, a transcript can contain at most qJ
potential chains. We now bound the probability that any of these qJ potential chain forms an actual
chain. Since we are in the ideal world, A’s view of game Ext is completely independent of the inputs
Iµ+1, . . . , Iµ+d right up until the very end of the experiment when these values are revealed to A
and which crucially is after A has finished making its queries to H. Therefore we can without loss
of generality modify the experiment so that we only compute the states Si ← refreshH(Si−1, Iµ+i)
for i ∈ [1, d] after A has made all of his qH queries (but before the unseen inputs Iµ+1, . . . , Iµ+d

and sampler coins ω are revealed to A at the end of the game). We let τ ′ denote the transcript
information available to A up to and including the point in game Ext at which he makes his last
guess; namely

τ ′ = ((x1, y1), . . . , (xq, yq), (V0, C0, cnt0), (Vd, Cd, cntd),

I1, . . . , Iµ, Iµ+d+1, . . . , IqD , (γk, zk)qD+1
k=1 , µ, d) .

Notice in particular that the inputs Iµ+1, . . . , Iµ+d which were used to compute A’s challenge
are not included, since they are still hidden from A at this stage. Moreover since Vd and Cd are
independent of these entropy inputs in the ideal world, they reveal nothing to A about them. Now
letting F denote the set of partial transcripts τ ′ for which Coll is false, it follows that

Pr [ Chain ] ≤ Pr [ Coll ] + Pr [ Chain ∧ ¬Coll ]

≤ q2
J

2L
+
∑
τ ′∈F

Pr [ Chain | τ ′ ] · Pr [ τ ′ ] , (3)

where Pr [ τ ′ ] denotes the probability that the execution Ext produces partial transcript τ ′ (that
is to say: A makes the required set of queries, Vd←$ {0, 1}L, and so on and so forth). Fix τ ′ ∈ F ,
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and let Zτ ′ denote the set of potential chains within the partial transcript τ ′. It follows that

Pr [ Chain | τ ′ ] = Pr [ (Iµ+1, . . . , Iµ+d) ∈ Zτ ′ | τ ′ ]

=
∑

(Z1,...,Zd)∈Zτ′

Pr
[
∧µ+d
i=µ+1Zi = Iµ+i | τ ′

]

≤
∑

(Z1,...,Zd)∈Zτ′

d∏
i=1

Pr
[
Zi = Iµ+i | ∧µ+i−1

i=µ+1 Zi = Iµ+i, τ
′
]

≤
∑

(Z1,...,Zd)∈Zτ′

d∏
i=1

2−γµ+i

≤ qJ · 2−γ
∗
.

Here the second to last inequality follows since the sampler is (q+
D, γ

∗)-legitimate, since τ ′ ∈ F
implies that Zτ ′ contains at most qJ potential chains. Substituting into equation (3) then proves
the lemma.

Proof of Lemma 3: Rec security of HASH-DRBG.
Proof: We argue by a series of game hops, shown in Figure 17. We begin by defining game G0,
which is a rewriting of game Rec for HASH-DRBG with challenge bit b = 0. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

RecA,DG,M,γ∗,β ⇒ 1 | b = 0
]
.

Next we define game G1 which is identical to G0, except that rather than computing Sd via a
sequence of refreshH calls we instead set S←$ MH(ε). We claim that for any attacker / sampler
pair (A,D) making qH queries to H, there exists a pair (B,D) in game Ext against HASH-DRBG,
where B makes qH + n+ 1 queries to H of which at most qH lie in J , such that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Advext
G,M,γ∗(B,D) .

To see this, let B be the adversary who proceeds as follows. B simulates A’s view of the game,
forwarding A’s Sam and H queries to his own oracles and returning the responses to A. When
A outputs a state / index pair (S0, d), B forwards these to his challenger. B receives state Sd in
response along with the remaining entropy samples. B computes (R∗, S∗) ← nextH(Sd, β) using
his own H oracle and returns these along with the entropy samples to A, again using his oracle to
answer all remaining queries. At the end of the game, B outputs whatever bit A does. Notice that
if B’s challenge bit is equal to 0 and so he receives the real state in his challenge then B perfectly
simulates G0; otherwise he perfectly simulates G1. To verify the query budget, notice that B queries
all of A’s qH queries to his own oracle and makes an additional n + 1 queries simulating nextH.
Noting that none of the n+ 1 queries made while simulating nextH lie in J then proves the claim.

Next we define game G2, which is identical to G1 except we now set R∗←$ {0, 1}β and
S∗←$ MH(Sd) rather than computing these values as (R∗, S∗) ← nextH(Sd, β). We claim that
there exists an adversary C in game Next, who makes the same number of H queries as A, such
that

|Pr [G1 ⇒ 1 ]− Pr [G2 ⇒ 1 ] ≤ Advnxt
G,M,β(C) ≤ qH · n

2`−1
.

To see this, let C be the adversary who proceeds as follows. C uses the code of the sampler to
generate all entropy samples, and passes the corresponding entropy estimates / side information to
A. For each of A’s initial queries, C simulates A’s random oracle by forwarding all of A’s queries
to his own random oracle and returning the response. C simulates A’s Sam oracle by returning
the appropriate entropy sample to A. When A outputs a state S0, A2 outputs the state ε as his
challenge state, receiving (R∗, S∗) in response. A2 passes these to A along with the remaining
entropy samples and continues simulating A’s random oracle by querying his own oracle as before.
At the end of the game, C outputs whatever bit A does. If C’s challenge bit is equal to 0 then this
perfectly simulates game G1; otherwise he perfectly simulates G2. As such, invoking Lemma 9 then
proves the claim.

Next we define game G3, which is identical to G2 except we return to computing Sd via iterative
reseeding as opposed to setting Sd←$ MH(ε). An analogous argument to that above implies that
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there exists an adversary B′ making qH queries to H (of which at most qJ lie in J ) such that

|Pr [G2 ⇒ 1 ]− Pr [G3 ⇒ 1 ]|≤ Advext
G,M,γ∗(B′,D) ;

here the slightly lower query budget is because B′ no longer needs to make the n+ 1 queries to H
to simulate nextH. Now G3 is identical to game Rec with challenge bit b = 1, and so

Pr [G3 ⇒ 1 ] = Pr
[

RecA,DG,M,γ∗,β ⇒ 1 | b = 1
]
.

Putting this altogether, we conclude that

Advrec
G,M,γ∗,β(A,D) = |Pr

[
RecA,DG,M,γ∗,β ⇒ 1 | b = 0

]
− Pr

[
RecA,DG,M,γ∗,β ⇒ 1 | b = 1

]
|

≤ |Pr [G0 ⇒ 1 ]− Pr [G3 ⇒ 1 ]

≤ qH

2γ∗−1
+

(d− 1) · (2qH + d) + 2q2
H

2L
+
qH · n
2`−1

.

G0

H←$H ;σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam((γi, zi)
qD+1

i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(V0, C0, cnt0)← S0

For j = 1, . . . , d

tempVj ← ε

For i = 1, . . . ,m

tempVj ← tempVj ‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Iµ+j)
Vj ← left(tempVj , L)

tempCj ← ε

For i = 1, . . . ,m

tempCj ← tempCj ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj , L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

(R∗, S∗)← nextH(Sd, β)

b∗←$AH(R∗, S∗, (Ik)k>µ+d)

Return b∗

G1, G2

H←$H ;σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam((γi, zi)
qD+1

i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
Sd←$ MH(ε)

(R∗, S∗)← nextH(Sd, β) // G1 only

R
∗←$ {0, 1}`

S
∗←$ MH

(Sd)

b∗←$AH(R∗, S∗, (Ik)k>µ+d)

Return b∗

G3

H←$H ;σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d)←$AH,Sam((γi, zi)
qD+1

i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(V0, C0, cnt0)← S0

For j = 1, . . . , d

tempVj ← ε

For i = 1, . . . ,m

tempVj ← tempVj ‖H((i)8 ‖ (L)32 ‖ 0x01 ‖Vj−1 ‖ Iµ+j)
Vj ← left(tempVj , L)

tempCj ← ε

For i = 1, . . . ,m

tempCj ← tempCj ‖H((i)8 ‖ (L)32 ‖ 0x00 ‖Vj)
Cj ← left(tempCj , L) ; cntj ← 1

Sd ← (Vd, Cd, cntd)

R∗←$ {0, 1}`
S∗←$ MH(Sd)

b∗←$AH(R∗, S∗, (Ik)k>µ+d)

Return b∗

Sam()

µ = µ+ 1

Return Iµ

proc. H(X)//G0, G1, G2, G3

Return H(X)

Fig. 17: Games for proof of Lemma 3 (Rec security of HASH-DRBG). All addition is modulo 2L.

F Proofs from Section 7

Proof of Theorem 3.
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Proof: Let A be the adversary who proceeds as follows. A makes a RoR query requesting `-bits
of output and for which addin = ε, receiving R∗ is response. A then makes a Get query to receive
state S∗ = (K∗, V ∗, cnt∗). A then checks if

V ∗
?
= HMAC(K∗, R∗) .

If so, A outputs 0; else he returns 1. It is straightforward to verify from the pseudocode description
of next that if b = 0 and A receives a real output in his challenge then this relation will hold with

probability one. Therefore, Pr
[
A ⇒ 1 in Fwd$,D,A

G,γ∗ | b = 0
]

= 0.

To bound Pr
[
A ⇒ 1 in Fwd$,D,A

G,γ∗ | b = 1
]
, we argue by a series of game hops. Let G0 be

identical to game Fwd$ against G for A with challenge bit b = 1. Let S0 = (K0, V0, cnt0) denote the
initial state of G, where recall that K0, V0←$ {0, 1}`. Notice that the RoR query made by A induces
the challenger to update the state via (R,S∗) ← next(S0, `). Since b = 1, A receives a random
output R∗←$ {0, 1}`; however, A’s subsequent Get query allows him to learn the real state S∗ =
(K∗, V ∗, cnt∗). Now this state is computed as V ′0 ← HMAC(K0, V0), K∗ ← HMAC(K0, V

′
0 ||0x00),

and V ∗ ← HMAC(K∗, V ′0). We now define game G1, which is identical to G0 except we sample
V ′0 , K∗←$ {0, 1}` instead of computing these variables via HMAC(K0, ·). Since K0←$ {0, 1}`, it
is straightforward to verify that both G0 and G1 can be perfectly simulated by an attacker B2 in
the PRF game against HMAC using two RoR queries and who runs in the same time as A. This
combined with the fact that, due to their disjoint domains, the queries made to compute V ′0 and
K∗ can never collide, implies that

|Pr [A ⇒ 1 in G0 ]− Pr [A ⇒ 1 in G1 ] ≤ Advprf
HMAC(B1, 2) .

Now recall that A outputs 1 if the relation V ∗ = HMAC(K∗, V ′0)
?
= HMAC(K∗, R∗) does not hold.

Since K∗, R∗ and V ′0 are all chosen randomly from {0, 1}` in G1, it follows that Pr [A ⇒ 1 in G1 ] =
1− εcoll where

εcoll = Pr
[
V ∗ = V ′ : V ′0 , R

∗,K∗←$ {0, 1}` ;V ∗ ← HMAC(K∗, V ′0), V ′ ← HMAC(K∗, R∗)
]
.

We claim that there exists an attacker B2 in the PRF security game against HMAC such that

εcoll ≤ Advprf
HMAC(B2, 2) + 2−(`−1) .

To see this, consider an attacker B2 in the PRF security game against HMAC who proceeds as
follows. B2 chooses V ′0 , R

∗←$ {0, 1}`, queries these to his RoR oracle receiving V ∗, V ′ in response,
and outputs 1 if V ∗ = V ′ and 0 otherwise. Notice that in the case that B2’s RoR oracle implements
the real HMAC function then this perfectly simulates the experiment determining εcoll and so
Pr [ B2 ⇒ 1 | b = 0 ] = εcoll. Moreover if b = 1 and so B2’s oracle implements a random function,
it follows that

Pr [ B2 ⇒ 1 | b = 1 ] = Pr [V ∗ = V ′ ∧ V ′0 = R∗ ] + Pr [V ∗ = V ′ ∧ V ′0 6= R∗ ]

≤ 2−` + 2−` = 2−(`−1) .

To see this, notice that if V ′0 = R∗ then V ∗ = V ′ with probability one. Since V ′0 , R
∗←$ {0, 1}`, this

implies the first term in the bound. Moreover, if V ′0 6= R∗, then V ∗, V ′ are both the results of fresh
queries to the random function and so are uniformly distributed over {0, 1}`, accounting for the
second term in the bound. Combining the above via a standard argument then implies the claim.

Putting this altogether, and letting B be the attacker who tosses a coin to decide whether to
run adversary B1 or B2, we conclude that

Advfwd-$
G,γ∗ (A,D) = |Pr

[
A ⇒ 1 in Fwd$,D,A

G,γ∗ ⇒ 1 | b = 0
]
− Pr

[
A ⇒ 1 in Fwd$,D,A

G,γ∗ ⇒ 1 | b = 1
]
|

≥ 1− 2 · Advprf
HMAC(B, 2)− 2−(`−1) .

Proof of Lemma 4: Init security of HMAC-DRBG.
Proof: We argue by a series of game hops, shown in Figure 18. We assume without loss of generality
that A never repeats a query to the random oracle HMAC. We begin by defining game G0, which
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proc. main : G0, G1, G2

σ0 ← ε ;N ← N
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

K ← 0x00 . . . 00

V ← 0x01 . . . 01

K′ ← HMAC(K,V ‖ 0x00 ‖ I1 ‖N) ; K
′←$ {0, 1}`

V ′ ← HMAC(K′, V ) ; V
′←$ {0, 1}`

K∗0 ← HMAC(K′, V ′ ‖ 0x01 ‖ I1 ‖N) ; K
∗
0 ←$ {0, 1}`

V ∗0 ← HMAC(K∗0 , V
′) ; V

∗
0 ←$ {0, 1}`

cnt∗0 ← 1

S∗0 ← (K∗0 , V
∗
0 , cnt

∗
0)

b∗←$AHMAC(S∗0 , (Ii)
qD+1

i=2 , (γi, zi)
qD+1

i=1 )

Return b∗

proc. main : G3, G4

σ0 ← ε ;N ← N
For i = 1, . . . , qD + 1

(σi, Ii, γi, zi)←$D(σi−1)

K ← 0x00 . . . 00

V ← 0x01 . . . 01

S∗0 ←$ MHMAC(ε)

b∗←$AHMAC(S∗0 , (Ii)
qD+1

i=2 , (γi, zi)
qD+1

i=1 )

Return b∗

proc. HMAC(X)// G0 , G1, G2, G3, G4

Y ←$ {0, 1}`
If HMAC[X] 6=⊥

bad← true
Y ← HMAC[X]

HMAC[X]← Y

Return Y

Fig. 18: Games for proof of Lemma 4 (Init security of HMAC-DRBG).

is a rewriting of game Init with b = 0 for HMAC-DRBG and MHMAC using a lazily sampled random
oracle. We also set a flag bad, but this does not affect the outcome of the game. It holds that

Pr [G0 ⇒ 1 ] = Pr
[

InitA,DG,M,γ∗ ⇒ 1 | b = 0
]
.

Next we define game G1, which is identical to G0 except we change the way in which the random
oracle HMAC responds to queries. Namely if HMAC is queried on the same value more than once
in G1 then it responds with an independent random string as opposed to the value previously set.
These games run identically until the flag bad is set, and so the Fundamental Lemma of Game
Playing implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Pr [ bad = 1 in G1 ] .

Next we define game G2, which is identical to G1 except during the challenge computation we
overwrite each string returned in response to a query to HMAC with an independent random
bit string drawn from {0, 1}`. Since in G1 each string returned by the random oracle HMAC is
chosen independently at random and used nowhere else in the game, these games are identically
distributed:

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ]| and Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound the probability that bad is set in G2. Such an event may occur due to one of A’s
guesses, or due to a collision in the state variables during the challenge computation. We claim
that

Pr [ bad = 1 in G2 ] ≤ qH · ((1 + 2−2`) · 2−γ
∗

+ 2−(`−1)) + 2−2` .

To see this, let Guess denote the event that A guesses one of the points which was queried to HMAC
by the challenger during the challenge computation. Let Coll denote the probability that bad is set
during the challenge computation as the result of an accidental collision. A union bound implies
that

Pr [ bad = 1 in G2 ] = Pr [ (Guess ∨ Coll) in G2 ] ≤ Pr [ Guess in G2 ] + Pr [ Coll in G2 ] .

Now for Guess to occur, A must guess a point in the set

{(K,V ‖ 0x00 ‖ I1 ‖N), (K ′, V ), (K ′, V ′ ‖ 0x01 ‖ I1 ‖N), (K∗0 , V
′)} .

Now, K,V , and K∗0 are all known to A (the former two being constant, and the latter being given to
A as part of his challenge). However, all other variables are hidden from A. Since K ′, V ′←$ {0, 1}`,
and the legitimacy of the sampler guarantees that I1 has at least γ1 bits of entropy conditioned on
A’s view of the experiment, a union bound over the elements in this set and A’s qH guesses implies
that:

Pr [ Guess ] ≤ qH · ((1 + 2−2`) · 2−γ
∗

+ 2−(`−1)) .
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Moreover, due to the domain separation of the queries, it is straightforward to verify that the
only way that Coll will occur is if K∗0 = K ′ and V ′ = V (in which case, the final query made
by the challenger will not be fresh). Since V ′,K∗0 ←$ {0, 1}`, it follows that this event occurs with
probability at most 2−2`. Combining these observations then implies the claim.

Next we define G3, which is identical to G2 except we compute the challenge state directly
as S∗0 = MHMAC(ε) and remove the now redundant queries to the random oracle HMAC. It is
straightforward to verify that S∗0 is identically distributed in both games, and that this is a syntactic
change. We then define gameG4, which is identical toG3 except we return the random oracle HMAC
to answer consistently if queried more than once on the same point. However, since no HMAC queries
are made by the challenger in these games and we have assumed that A never repeats a query,
HMAC will never be queried more than once on the same point, and so these games are identically
distributed. It follows that Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ] = Pr [G4 ⇒ 1 ]. Moreover, notice that G4

is equivalent to game Init with challenge bit b = 1 and a lazily sampled random oracle, and so

Pr [G4 ⇒ 1 ] = Pr
[

InitA,DG,M,γ∗ ⇒ 1 | b = 1
]
.

Putting this altogether, yields

Advinit
G,M,γ∗(A,D) ≤ |Pr [G0 ⇒ 1 ]− Pr [G4 ⇒ 1 ]|

≤ qH · ((1 + 2−2`) · 2−γ
∗

+ 2−(`−1)) + 2−2` .

Proof of Lemma 5: Pres security of HMAC-DRBG.

G0, G1

1. (S′0, I1, . . . , Id, addin)←$AHMAC ; (K′, V ′, cnt′)← S′0
2. K0, V0←$ {0, 1}` ; cnt0 ← cnt′ + 1

3. S0 ← (K0, V0, cnt0)

4. For j = 1, . . . , d

5. K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij)
6. V ′j−1 ← HMAC(K′j−1, Vj−1)

7. Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij)

8. Vj ← HMAC(Kj , V
′
j−1)

9. cntj ← 1 ;Sj ← (Kj , Vj , cntj)

10. K′d ← HMAC(Kd, Vd ‖ 0x00 ‖ addin)

11. V ′d ← HMAC(K′d, Vd) // *

12. K0
d ← HMAC(K′d, V

′
d ‖ 0x01 ‖ addin)

13. V 0
d ← HMAC(K0

d, V
′
d)

14. tempR ← ε

15. For j = 1, . . . , n

16. V jd ← HMAC(K0
d, V

j−1
d )//∗∗

17. tempR ← tempR ‖V jd
18. R∗ ← left(tempR, β)

19. K′′d ← HMAC(K0
d, V

n
d ‖ 0x00 ‖ addin)

20. V ′′d ← HMAC(K′′d , V
n
d )

21. K∗ ← HMAC(K′′d , V
′′
d ‖ 0x01 ‖ addin)

22. V ∗ ← HMAC(K∗, V ′′d )

23. cnt∗d ← cntd + 1

24. S∗ ← (K∗, V ∗, cnt∗)

25. b∗←$AHMAC(R∗, S∗, addin)

26. Return b∗

G3 , G4, G5

(S′0, I1, . . . , Id, addin)←$AHMAC ; (K′, V ′, cnt′)← S′0
K0, V0←$ {0, 1}` ; cnt0 ← cnt′ + 1

S0 ← (K0, V0, cnt0)

For j = 1, . . . , d

K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij) ; K
′
j−1←$ {0, 1}`

V ′j−1 ← HMAC(K′j−1, Vj−1) ; V
′
j−1←$ {0, 1}`

Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij) ; Kj ←$ {0, 1}`

Vj ← HMAC(Kj , V
′
j−1) ; Vj ←$ {0, 1}`

cntj ← 1 ;Sj ← (Kj , Vj , cntj)

R∗←$ {0, 1}β
S∗←$ MHMAC(Sd)

b∗←$AHMAC(R∗, S∗, addin)

Return b∗

proc. HMAC(X)// G0 , G1, G2, G3, G4, G5

Y ←$ {0, 1}`
If HMAC[X] 6=⊥

bad← true
Y ← HMAC[X]

HMAC[X]← Y

Return Y

Fig. 19: Games for proof of Lemma 5 (Pres security of HMAC-DRBG).

Proof: We argue by a series of game hops, shown in Figure 19. We assume without loss of generality
that A never repeats a query to the random oracle HMAC. We first define game G0, which is a
rewriting of game Pres with b = 0 for HMAC-DRBG and MHMAC using a lazily sampled random
oracle. Recall that we assume A outputs addin 6= ε. We also set a flag bad, but this does not affect
the outcome of the game. It holds that

Pr [G0 ⇒ 1 ] = Pr
[

PresAG,M,β ⇒ 1 | b = 0
]
.

Next we define game G1, which is identical to G0 except we change the way in which the random
oracle HMAC responds to queries. Namely in G1 if HMAC is queried on the same value more than
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once, it responds with an independent random string as opposed to the value previously set. These
games run identically until the flag bad is set, and so the Fundamental Lemma of Game Playing
implies that

|Pr [G0 ⇒ 1 ]− Pr [G1 ⇒ 1 ]|≤ Pr [ bad = 1 in G1 ] .

Next, we define game G2 (not shown), which is identical to G1 except during the challenge com-
putation, we overwrite each string returned in response to a query to HMAC with an independent
random bit string drawn from {0, 1}`. Since in G1 each string returned by the random oracle HMAC
is chosen independently at random and used nowhere else in the game, these games are identically
distributed, and so

Pr [G1 ⇒ 1 ] = Pr [G2 ⇒ 1 ]| and Pr [ bad = 1 in G1 ] = Pr [ bad = 1 in G2 ] .

We now bound the probability that bad is set in G2. Notice that bad may be set as the result of
a query by A colliding with a query made by the challenger, or during the computation of the
challenge output / state if two of the points queried to HMAC by the challenger collide.

Let Guess denote the event that one of A’s queries collides with one of the points queried
to HMAC by the challenger. Let Coll denote the probability that bad is set during the challenge
computation as the result of an accidental collision. A union bound implies that

Pr [ bad = 1 in G2 ] = Pr [ (Guess ∨ Coll) in G2 ] ≤ Pr [ Guess in G2 ] + Pr [ Coll in G2 ] .

One may verify from the pseudocode above that 4(d+2)+n HMAC computations are made during
the challenge computation. (That is: four HMAC queries for each of the d refresh calls (lines 4 -
9); four queries for the 2 applications of update prior and post the production of output (lines
10 - 13 and 19 - 22 respectively); and n = dβ/`e queries to produce the output blocks (lines 15
- 17). Notice that each query made by A which would cause Guess to occur requires A to guess
a key and counter pair. Notice that all such keys and counters are chosen uniformly from {0, 1}`
in G2, and moreove these keys and counters are hidden from A except for: (1) the key K∗ which
forms part of the final HMAC query made by the challenger (line 22); and (2) the counters V jd for
j ∈ [1, n] (line 16) which are concatenated and truncated to form the output R∗ ← left(tempR, β).
All of these are revealed (partially in the case of V nd , if β is not a multiple of `) to A as part of
the challenge output / state pair. One may verify from the pseudocode that there are n + 2 such
partially known queries (e.g., the n−1 queries arising from the output generation loop; the queries
in lines 19 and 20 for which the counter V nd is (at least partially) known, and the query on line 22
with known key K∗). The probability that A guesses a given unknown key / counter pair with a
single guess is equal to 2−2`, while the probability that A guesses a given partially unknown pair
is upper bounded by 2−`. Therefore taking a union bound over the 4(d+ 2) +n pairs queried, and
A’s qH guesses, implies that:

Pr [ Guess in G2 ] ≤ qH · ((4d+ 6) · 2−2` + (n+ 2) · 2−`) .
We now bound the probability that Coll occurs. We divide the queries made by the challenger
into three classes as follows. For K,V ∈ {0, 1}` and I ∈ {0, 1}≥1 we have: (1) queries of the form
(K,V ‖ 0x00 ‖ I); (2) queries of the form (K,V ); and (3) queries of the form (K,V ‖ 0x01 ‖ I).
Notice that all queries made by the challenger during the challenge computation fall into one of
these types. Moreover, notice that queries of different types can never collide due to their disjoint
domains. Letting Colli for i ∈ [1, 3] denote that there is a collision amongst the type (i) queries, a
union bound implies that

Pr [ Coll in G2 ] ≤ Pr [ Coll1 in G2 ] + Pr [ Coll2 in G2 ] + Pr [ Coll3 in G2 ] .

We first claim that Pr [ Coll1 in G2 ] = Pr [ Coll3 in G2 ] = (d(d + 3) + 2) · 2−(2`+1). To see this,
notice that the challenger makes a total of (d + 2) type (1) (resp. (3)) queries (d queries during
the iterative reseeds, and a single query in the state update before and after output generation).
Each of these queries consists of a freshly sampled key and counter chosen from {0, 1}`, by which
we mean that the key (resp. the counter) will not be queried as part of any other query of that
type barring an accidental collision. (Looking ahead, an example of queries which are not freshly
sampled are those made to generate output blocks in line 17, for which the same key is used for
each query.) It follows that the probability that any pair of queries collide is upper bounded by
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2−2`. Summing over the at most 1
2 (d + 1)(d + 2) distinct pairs of queries and rearranging then

proves the claim.
Next we claim that Pr [ Coll2 in G2 ] ≤ (d · (2d + 2n + 7) + 3n + 6) · 2−2` + n(n + 1) · 2−`. To

see this, first consider the set of type (2) queries made by the challenger up to the point in the
pseudocode indicated by ∗ inclusive. There are 2d+ 1 queries in this set, and each of these queries
consists of a freshly sampled key and counter chosen randomly from {0, 1}`. Any given pair of
such queries will collide with probability 2−2`; therefore summing over these pairs implies that the
probability of a collision up to point ∗ is upper bounded by d · (2d + 1) · 2−2`. Now consider the
set of type (2) queries made following ∗, and up to the point indicated by ∗∗ inclusive. While each
counter for these queries is sampled uniformly from {0, 1}`, the key K0

d ←$ {0, 1}` remains fixed
across all queries (highlighted in red in the pseudocode). As such, each of the n+ 1 queries in this

set collides with a previous query in the set with probability 2−`; summing over the n(n+1)
2 pairs

of queries of this form (and rounding up by a factor of two for simplicity) contributes n(n+1) ·2−`
to the bound. Moreover, each such query collides with one of the (2d + 1) type (2) queries made
up to point ∗ with probability 2−2`, contributing (2d+ 1) · (n+ 1) · 2−2` to the bound. Following
this there are two more type (2) queries (lines 20 and 22), each consisting of a freshly sampled key
and counter. Since there are 2d+ n+ 2 and 2d+ n+ 3 previous type (2) queries with which these
points may collide, this adds a further (4d+ 2n+ 5) ·2−2` to the bound. Summing over these terms
and rearranging then proves the claim. Putting this altogether and simplifying the expression, we
obtain:

Pr [ bad = 1 in G2 ] ≤ (qH · (4d+ 6) + d · (3d+ 2n+ 10) + 3n+ 8) · 2−2`

+ (qH · (n+ 2) + n(n+ 1)) · 2−` .

Next we first define game G3, which is the same as G2 except we simply compute the challenge /
output state as R∗←$ {0, 1}` and S∗←$ MHMAC(Sd) directly, and omit the now redundant HMAC
queries which were previously made during their computation. It is straightforward to verify that
S∗ is computed identically in both games and that this is a syntactic change, and so

Pr [G2 ⇒ 1 ] = Pr [G3 ⇒ 1 ] .

Next we define game G4, which is identical to G3 except we no longer overwrite the responses to
HMAC queries made by the challenger during the iterative reseeds with random bit strings. Since
the random oracle HMAC responds to each query with an independent random string, regardless
of whether that point has previously been queried, these games are identically distributed and so

Pr [G3 ⇒ 1 ] = Pr [G4 ⇒ 1 ] .

Finally we define game G5, which is identical to G4 except we revert the random oracle HMAC
to answering consistently on all queries. These games run identically until the flag bad is set. In
addition to being set as a result of the attacker’s queries, in games G3−G5 bad may also be set by
the challenger during the iterative reseeds made to compute state Sd in the event of an accidental
collision. As before, we have that

Pr [ bad = 1 in G5 ] = Pr [ bad = 1 in G3 ]

≤ Pr [ Guess in G3 ] +

3∑
i=1

Pr [ Colli in G3 ] .

One may verify from the pseudocode that a total of 4d points are queried to HMAC during the
iterative reseeds, each consisting of a uniformly random key and counter which are independent of
A’s view of the experiment. An analogous argument to that used previously, taking a union bound
over A’s qH queries, then implies that Pr [ Guess in G3 ] ≤ qH · 4d · 2−2`.

Moreover, there are d type (1) and d type (3) queries made during this process, each of
which collides with probability at most 2−2`; it follows that Pr [ Coll1 ] = Pr [ Coll3 ] ≤ d · (d − 1) ·
2−(2`+1). Finally, there are 2d type (2) queries made during this process, each of which collides
with probability 2−2`. It follows that Pr [ Coll2 ] ≤ d · (2d − 1) · 2−2`. Putting this altogether than
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yields

|Pr [G4 ⇒ 1 ]− Pr [G5 ⇒ 1 ]| ≤ Pr [ bad = 1 in G3 ]

≤ (qH · 4d+ d · (3d− 2)) · 2−2`

It is straightforward to verify that G5 is equivalent to game Pres with b = 1 for HMAC-DRBG and
MHMAC using a lazily sampled random oracle. It follows that

Pr [G0 ⇒ 1 ] = Pr
[

PresAG,M,β ⇒ 1 | b = 1
]
.

Putting this altogether and rearranging, we have

Advpres
G,M,β(A) ≤ |Pr [G0 ⇒ 1 ]− Pr [G5 ⇒ 1 ]|

≤ (qH · (8d+ 6) + d · (6d+ 2n+ 8) + 3n+ 8) · 2−2` + (qH · (n+ 2) + n(n+ 1)) · 2−` .

Proof of Lemma 6: Rec security of HMAC-DRBG.

G0, G1

1. σ ← ε ;µ← 1

2. For k = 1, . . . , qD + 1

3. (σk, Ik, γk, zk)←$D(σk−1)

4. (S0, d, addin)←$AHMAC,Sam((γi, zi)
qD+1

i=1 )

5. If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

6. Return ⊥
7. (K0, V0, cnt0)← S0

8. For j = 1, . . . , d

9. K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij)
10. V ′j−1 ← HMAC(K′j−1, Vj−1)

11. Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij)

12. Vj ← HMAC(Kj , V
′
j−1)

13. cntj ← 1 ;Sj ← (Kj , Vj , cntj)

14. K′d ← HMAC(Kd, Vd ‖ 0x00 ‖ addin)

15. V ′d ← HMAC(K′d, Vd) // *

16. K0
d ← HMAC(K′d, V

′
d ‖ 0x01 ‖ addin)

17. V 0
d ← HMAC(K0

d, V
′
d)

18. tempR ← ε

19. For j = 1, . . . , n

20. V jd ← HMAC(K0
d, V

j−1
d )//∗∗

21. tempR ← tempR ‖V jd
22. R∗ ← left(tempR, β)

23. K′′d ← HMAC(K0
d, V

n
d ‖ 0x00 ‖ addin)

24. V ′′d ← HMAC(K′′d , V
n
d )

25. K∗ ← HMAC(K′′d , V
′′
d ‖ 0x01 ‖ addin)

26. V ∗ ← HMAC(K∗, V ′′d )

27. cnt∗d ← cnt∗d + 1

28. S∗ ← (K∗, V ∗, cnt∗d)

29. b∗←$AHMAC(R∗, S∗, addin)

30. Return b∗

G3 , G4, G5

σ ← ε ;µ← 1

For k = 1, . . . , qD + 1

(σk, Ik, γk, zk)←$D(σk−1)

(S0, d, addin)←$AHMAC,Sam((γi, zi)
qD+1

i=1 )

If µ+ d > qD + 1 or
∑µ+d
i=µ+1 γi < γ∗

Return ⊥
(K0, V0, cnt0)← S0

For j = 1, . . . , d

K′j−1 ← HMAC(Kj−1, Vj−1 ‖ 0x00 ‖ Ij) ; K
′
j−1←$ {0, 1}`

V ′j−1 ← HMAC(K′j−1, Vj−1) ; V
′
j−1←$ {0, 1}`

Kj ← HMAC(K′j−1, V
′
j−1 ‖ 0x01 ‖ Ij) ; Kj ←$ {0, 1}`

Vj ← HMAC(Kj , V
′
j−1) ; Vj ←$ {0, 1}`

cntj ← 1 ;Sj ← (Kj , Vj , cntj)

R∗←$ {0, 1}β
S∗←$ MHMAC(Sd)

b∗←$AHMAC(R∗, S∗, addin)

Return b∗

proc. HMAC(X)// G0 , G1, G2, G3, G4, G5

Y ←$ {0, 1}`
If HMAC[X] 6=⊥

bad← true
Y ← HMAC[X]

HMAC[X]← Y

Return Y

Fig. 20: Games for proof of Lemma 6 (Rec security of HMAC-DRBG).

Proof: We argue by a series of game hops, shown in Figure 20. The proof is similar to that of
Lemma 5; we emphasize the differences here. We assume without loss of generality that A never
repeats a query to the random oracle HMAC and require that A outputs addin 6= ε. We begin by
defining game G0, which is a rewriting of game Rec with b = 0 for HMAC-DRBG and MHMAC using
a lazily sampled random oracle. We also set a flag bad, but this does not affect the outcome of the
game. We have that

Pr [G0 ⇒ 1 ] = Pr
[

RecA,γ
∗

G,M,γ∗,β ⇒ 1 | b = 0
]
.

Next we define games G1 and G2. In the former, we modify the random oracle HMAC to respond
with an independent random string to all queries, regardless of whether the value has previously
been set. In G2 (not pictured), we overwrite each string returned in response to a random oracle
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query made by the challenger with an independent random bit string. An analogous argument to
that made in the proof of Lemma 5 implies that

|Pr [G0 ⇒ 1 ]− Pr [G2 ⇒ 1 ]|≤ Pr [ bad = 1 in G2 ] .

We now bound the probability of this event. Defining the events Guess and Colli for i ∈ [1, 3] as
before, a union bound implies that

Pr [ bad = 1 in G2 ] ≤ Pr [ Guess in G2 ] +

3∑
i=1

Pr [ Colli in G2 ] .

To bound the probability that Guess occurs, consider the set of queries made by the challenger,
where we define queries of types (1) - (3) as in the proof of Lemma 5. We first note that each
of the 2(d + 2) + n type (2) queries made by the challenger consists of a random `-bit key and
`-bit counter which are hidden from the attacker, with the exception of: (a) the first and final
type (2) queries (lines 10 and 26 respectively); and (b) queries 2 to n of the j = 1, . . . , n loop
(lines 19- 21), and the first type (2) query during the subsequent state update (line 24). (For the
first query, the counter V0 is chosen by the attacker. For the final query, the key K∗ is given to
the attacker as part of the challenge state. For all other queries, the counter is revealed to the
attacker as part of the output R∗.) The probability that A guesses queries of the first type in a
single guess is 2−2`; for the second type, this is upper bounded by 2−`. Putting this together and
taking union bounds, the probability that A guesses one of the type (2) queries is upper bounded
by qH · ((2d+ 2) · 2−2` + (n+ 2) · 2−`).

Moreover, all of the d type (3) queries and all but the first of the d type (1) queries (line 9)
made during the iterative reseeds in lines 8 - 13 requires A to guess a randomly chosen and hidden
key and counter in addition to an entropy sample, which by the legitimacy of the sampler contains
at least 2−γ

∗
bits of entropy. It follows that the probability that A guesses any given one of these

queries is upper bounded by 2−(γ∗+2`). For the first type (1) query, the key and counter were chosen
by A; however, they must still guess the unknown entropy sample I1 containing at least γ∗ bits of
entropy, and so the probability that A guesses this query is upper bounded by 2−γ

∗
. Finally, the

remaining four type (1) and (3) queries (made as part of the state updates with addin before and
after output generation (lines 14 - 17 and 24 - 26 respectively) each require A to guess a random and
hidden key / counter pair, and so is guessed with probability at most 2−2` — except the first type
(1) query after output generation (line 23), for which the counter is (fully or partially) revealed in
R∗, and so is guessed with probability at most 2−`. Taking union bounds, the probability that A
guesses a type (1) or (3) query is upper bounded by qH · ((3 + (2d− 1) · 2−γ∗) · 2−2` + 2−γ

∗
+ 2−`).

Putting this altogether yields,

Pr [ Guess in G2 ] ≤ qH · ((2d+ 5 + (2d− 1) · 2−γ
∗
) · 2−2` + 2−γ

∗
+ (n+ 3) · 2−`) .

Next we claim that Pr [ Coll1 in G2 ] and Pr [ Coll3 in G2 ] are bounded above by (4d+2+d ·(d−1) ·
2−γ

∗
) ·2−(2`+1). To see this, notice that a collision between a pair of the d type (1) (resp. type (3))

queries made during the iterative reseeds requires both the entropy input, and the key and counter
(which for all but the first type (1) query are freshly sampled random bit strings), to collide. A
union bound then implies that this probability is upper bounded by d(d− 1) · 2−(γ∗+2`+1). For any
of the two type (1) (resp. type (3)) queries made during state updates before and after output
generation, any collision with another query of the same type requires the randomly sampled key
and counter to collide, an event which occurs with probability d · 2−2` for the first such query, and
(d+ 1) · 2−2` for the second, contributing the additional (2d+ 1) · 2−2` term to the bound. For the
type (2) queries, it is straightforward to verify that the same argument as in the proof of Lemma 5
applies in this case also, and so Pr [ Coll2 ] ≤ (d · (2d + 2n + 7) + 3n + 6) · 2−2` + n(n + 1) · 2−`.
Putting this altogether and rearranging, yields

Pr [ bad = 1 in G2 ] ≤ qH·((2d+5+(2d−1)·2−γ
∗
)·2−2`+(d·(2d+2n+11+(d−1)·2−γ

∗
)+3n+8)·2−2`

+ qH · 2−γ
∗

+ (qH · (n+ 3) + n(n+ 1)) · 2−` .

Next, we define gamesG3, G4, andG5. GameG3 is the same asG2, except we compute the challenge
/ output state pair as R∗←$ {0, 1}` and S∗←$ M(Sd), and omit the now redundant HMAC queries
which were previously made during their computation. In G4, we no longer overwrite the responses
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to random oracle queries made by the challenger with random bit strings. Finally, in G5 we return
the random oracle HMAC to answer consistently on all queries. An analogous argument to that
used in the proof of Lemma 5 implies that

|Pr [G2 ⇒ 1 ]− Pr [G5 ⇒ 1 ]|≤ Pr [ bad = 1 in G3 ] .

We now bound this probability. As before, we have that

Pr [ bad = 1 in G5 ] = Pr [ bad = 1 in G3 ]

≤ Pr [ Guess in G3 ] +

3∑
i=1

Pr [ Colli in G3 ] .

Firstly, notice that there are 2d type (2) queries made by the challenger in G3. Each of these
consists of a freshly sampled random key and counter, except for the first query where the counter
is known to A. An analogous argument to that used previously implies that the probability that
A guesses one of these points is upper bounded by qH · ((2d − 1) · 2−2` + 2−`). Each of the d
type (1) (resp. type (3)) queries consists of a random key / counter and entropy sample, except
for the first type (1) query for which the key and counter are known to A. A union bound then
implies that the probability that A guesses one of the type (1) or (3) queries is upper bounded
by qH · ((2d− 1) · 2−γ∗ · 2−2` + 2−γ

∗
). Putting this altogether, implies that:

Pr [ Guess in G3 ] ≤ qH · ((2d− 1 + (2d− 1) · 2−γ
∗
) · 2−2` + 2−γ

∗
+ 2−`) .

We now bound the collision probabilities. There are d type (1) and d type (3) queries made in
G3, each of which collides with another query of its type with probability at most 2−(2`+γ∗); it
follows that Pr [ Coll1 in G3 ] = Pr [ Coll3 in G3 ] ≤ d · (d − 1) · 2−γ∗ · 2−(2`+1). Finally, each of the
2d type (2) queries in G3 collides with probability 2−2`; taking a union bound, it follows that
Pr [ Coll2 in G3 ] ≤ d · (2d− 1) · 2−2`. Putting this all together then yields

Pr [ bad = 1 in G3 ] ≤ qH · (2d− 1 + (2d− 1) · 2−γ
∗
) · 2−2` + (d · (2d− 1 + (d− 1) · 2−γ

∗
)) · 2−2`

+ qH · 2−γ
∗

+ qH · 2−` .

Moreover, it is straightforward to verify that G5 is equivalent game Rec with b = 1 for HMAC-DRBG
and MHMAC with a lazily sampled random oracle. It follows that

Pr [G5 ⇒ 1 ] = Pr
[

RecAG,M,γ∗,β ⇒ 1 | b = 1
]
.

Putting this altogether, we have

Advrec
G,M,γ∗,β(A,D) ≤ |Pr [G0 ⇒ 1 ]− Pr [G5 ⇒ 1 ]|

≤ qH · (2d+ 2 + (2d− 1) · 2−γ
∗
) · 2−(2`−1) + (d · (4d+ 2n+ 10 + (d− 1) · 2−(γ∗−1)) + 3n+ 8) · 2−2`

+ (qH · (n+ 4) + n(n+ 1)) · 2−` + qH · 2−(γ∗−1) .

G Additional Algorithms and Sample Parameters

In this section, we describe the setup and derivation function algorithms for CTR-DRBG which
were omitted from Section 3, and give examples of typical parameter settings.

G.1 Additional Algorithms

The setup algorithm shown here is for CTR-DRBG implemented with a derivation function; the
alternative algorithm is very similar. The derivation function CTR-DRBG df returns an error if
num bits > 512; we omit this check from the pseudocode below for simplicity. Note the order in
which the output blocks are parsed by the subroutine BCC; this is the step in which the description
of the algorithm from [37] differs from the standard11.

11 This step is written in the standard as “Starting with the leftmost bits of data, split data into n blocks
of ` bits each, forming block1 to blockn”.
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setup

Require: I, nonce

Ensure: S0 = (K0, V0, cnt0)

seed material← I ‖nonce
seed material← CTR-DRBG df(seed material, (κ+ `))

K ← 0κ ;V ← 0κ

(K0, V0)← update(seed material,K, V )

cnt0 ← 1

Return (K0, V0, cnt0)

BCC

Require: K, data

Ensure: output block

chain← 0`

n← len(data)/`

block1 ‖ . . . ‖ blockn ← data : |blocki|∈ {0, 1}`
For i = 1, . . . , n

input block ← chaining value⊕ blocki
chaining value← E(K, input block)

output block ← chaining value

Return output block

CTR-DRBG df

Require: input string, num bits ≤ 512

Ensure: req bits

L← (len(input string)/8)32 ;N ← (num bits/8)32
Z ← L ‖N ‖ input string ‖ 0x80

While len(Z) mod ` 6= 0

Z ← Z ‖ 0x00

temp← ε ; i← 0

K ← left(0x000102...1D1E1F, κ)

While len(temp) < κ+ `

IV ← (i)32 ‖ 0`−32

temp← temp ‖BCC(K, (IV ‖Z))

i← i+ 1

K ← left(temp, κ)

X ← select(temp, κ+ 1, κ+ `)

temp← ε

While len(temp) < num bits

X ← E(K,X)

temp← temp ‖X
req bits← left(temp, num bits)

Return req bits

Fig. 21: Algorithms setup, BCC and CTR-DRBG df for CTR-DRBG.

G.2 Examples of Parameter Settings

CTR-DRBG CTR-DRBG HMAC-DRBG HASH-DRBG

with df w/out df

Underlying Primitive AES-128 AES-128 HMAC/SHA-256 SHA-256

Security strength 128 128 256 256

Output block len 128 128 256 256

Max no. of bits / request 219 219 219 219

Minimum len of addin 232 256 232 232

Max no. of requests 248 248 248 248

between reseeds

Fig. 22: Table showing parameter settings for the NIST DRBGs described in Section 3. All quantities are given in bits.
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