
CCM-SIV: Single-PRF Nonce-Misuse-Resistant
Authenticated Encryption

Patrick Kresmer and Alexander Zeh

Research and Development Center
Infineon Technologies AG, Munich, Germany

{patrick.kresmer, alexander.zeh}@infineon.com

Abstract. We propose a new nonce-misuse-resistant authenticated en-
cryption scheme, which instantiates the SIV paradigm of Rogaway and
Shrimpton. In contrast to the GCM-SIV approach proposed by Gueron
and Lindell, we do only use a single type of cryptographic primitive,
which can be advantageous in restricted embedded devices. Furthermore,
we use three independent and fixed subkeys derived from a single master
key. Similar to the CCM mode, our scheme uses a combination of the
CTR mode for the symmetric encryption and a MAC based on the CBC
construction and is therefore called CCM-SIV. We provide a detailed se-
curity proof for our scheme. Furthermore, we outline its extension to a
nonce-based key derivation as the AES-GCM-SIV approach.

Keywords: AEAD, AES-GCM, AES-GCM-SIV, AES-CCM, Nonce

1 Introduction

To efficiently achieve authenticity, integrity and confidentiality on the communi-
cation channels, authenticated encryption with associated data (AEAD) schemes
are used. A famous and widely deployed AEAD system is the Galois-Counter
Mode-of-Operation of the AES block cipher (AES-GCM, [15]). The security of
the scheme heavily relies on the uniqueness of the nonces, since they are used as
a “randomizing” input for the AES-GCM encryption. If they happen to be not
unique, the security of AES-GCM is completely broken, since the plaintext and
secret hashing keys can be recovered (see, e.g., [2, 12]).

GCM-SIV [7] is based on the same building blocks as AES-GCM, but it
combines them through the SIV composition method [19]. The SIV paradigm
endows the resulting scheme with “nonce-misuse-resistance”. A nonce-based key
derivation for GCM-SIV [7] was proposed by Gueron et al. [14] (and denoted
as AES-GCM-SIV) and by Iwata and Minematsu in [10]. The original security
bounds of GCM-SIV were re-considered by Iwata and Seurin [11] and led to an
update of [6] in July 2017 and [8].

AES Counter with CBC-MAC (AES-CCM, [4]) is, as AES-GCM, a speci-
fied cipher suite for IPsec [9], TLS [1] and relies also on the uniqueness of the
nonces. AES-CCM combines the CBC-MAC and the well-known counter (CTR)
mode and uses a single type of PRF (in contrast to AES-GCM where a second

function for the Galois field multiplication is required). Clearly, operations of
AES-GCM can be parallelized and, e.g., Intel’s PCLMULQDQ instruction [5]
allows impressive fast realizations.

Our goal is to deploy nonce-misuse resistant AEAD schemes in restricted em-
bedded systems with fault-tolerant requirements [17], where operating elements
are often realized dual (or triple) modular redundant. In this context, it is bene-
ficial that AES-CCM (resp. CCM-SIV) does not require a second cryptographic
primitive. A reference implementation of CCM-SIV can be found on gitlab [13].

Contribution. We propose a new nonce-misuse-resistant authenticated encryp-
tion scheme called CCM-SIV based on the CTR mode of operation and a ded-
icated CBC-based MAC. Our scheme only uses a single type of cryptographic
primitive as the main building block and derives three independent subkeys from
a single masterkey by a deterministic pseudo random number generator (PRNG).
We provide a detailed security proof of our scheme. The following main theorem
summarizes our result:

Theorem 1. [Security of CCM-SIV.] Let Π̃ denote the nonce-misuse-resistant
authenticated encryption (nAE) scheme CCM-SIV defined by Algorithm 8 and
A be a probabilistic polynomial time (PPT) adversary, who wins the nAE game
defined in Figure 11 with non-negligible advantage. Then there exists a wrapping
PPT adversary B playing the PRF game, who calls A as a subroutine and is
able to distinguish the underlying PRF E from a truly random function with
non-negligible advantage. Particular, it holds that

advnAE
Π̃

(A) ≤ 2 · advPRF
E (B) + ε · (qe + qd)

2

2
+
q2e · pmax

2 · 2x +
qd
2x
,

where ε is the security bound of the underlying ε-almost XOR universal hash
function family used in the tag generation, qe the number of the (polynomially
bounded) encryption queries of A, qd the number of the (polynomially bounded)
decryption queries of A and x the block size of E. In the PRF security game,
B sends his encryption queries to the oracle, which is either the PRF EK with
K

$← K or a truly random function.

In Section 2 we introduce the notation used throughout this paper and we recall
the SIV paradigm. Section 3 provides the reader with a detailed description of
the CCM-SIV key generation, authenticated encryption and authenticated de-
cryption. The security analysis of our new nonce-misuse resistant AEAD scheme
CCM-SIV represents the main part of this paper and is done in four steps in
Section 4. Section 6 gives a short summary and conclusion.

2 Notation

For a number x ∈ N+, the set {0, 1}x denotes the set of all bit strings of size x
and {0, 1}∗ denotes the countable set of all possible bit strings. The script letters
A,B,D are used for algorithms, whereas all other script letters such as X are

2

used to denote sets, e.g. X = {0, 1}x. Upper-case letters such as X are used for
a single data block, for example X ∈ X , where X = {0, 1}x and x is the block
size. Upper-case letters such as E,F,H are used for functions. EK denotes the
AES block cipher under key K. Messages, that consist of multiple blocks are
denoted with bold letters, e.g. X = (X1, X2, . . . , Xm) for an m-block message,
where each X1, X2, . . . Xm ∈ X and X ∈ Xm. Bold letters are also used for
elements in {0, 1}∗. The symbol X≤mmax denotes the set of all messages, that
consists of at most mmax data blocks. Lower-case letters are used for different
purposes such as indices, size values or functions. For a data block X ∈ X and
X = {0, 1}x, |X| denotes the bit-size x of X, whereas |X | denotes the num-

ber of all possible values for X (i.e. |X | = 2x). The vector symbol ~X is used for
vector-valued messages, which may contain several different elements of different
lengths, e.g. ~X = (A,B, C) with A,B ∈ {0, 1}∗ and C ∈ X . The concatena-
tion of two bit strings X,Y ∈ {0, 1}∗ is written as X ‖ Y . Pr [event | cond]
denotes the probability that event occurs conditioned to the case, that cond
has occurred. X

$← X means, that X is chosen uniformly and independently
from the set X . We use “truly random” as a synonym for uniformly distributed
and independent values. Funsa,b→c denotes the set of all possible functions map-

ping {0, 1}a × {0, 1}b → {0, 1}c. The adversary’s advantage advG
Π(A) denotes

the absolute difference of the probability that an adversary A wins a security
game G and the probability that an adversary A loses a security game G. In
the security game G, the adversary A communicates with an oracle O, that
is either the scheme Π itself (pseudo-random oracle) or its idealized mathe-
matical model (truly random oracle). Winning the game means, the adversary
guesses the correct oracle version. Pr

[
AF ⇒ PR

]
denotes the probability, that

an adversary A guesses “pseudo-random” after talking to a function F , whereas
Pr
[
AFunsx→y ⇒ R

]
denotes the probability, that she guesses “random” after talk-

ing to a uniformly chosen function out of the set Funsx→y.

The SIV construction [18], respectively construction A4 of Namprempre et
al. [16] is a general paradigm of combining a secure IV-based symmetric en-
cryption scheme with a vector-input PRF to obtain a secure nonce-based and
nonce-misuse-resistant authenticated encryption scheme. Both primitives have
two distinct and independent keys K1 and K2. The main idea is to use the au-
thentication tag T as the IV for the IV-based symmetric encryption. Since the
MAC consists of a PRF, its output is uniformly and independently distributed
as long as the inputs to the PRF are all distinct. This means, the tag looks like a
randomly chosen value and hence it meets the requirements for an IV. Figure 1(a)
and 1(b) illustrate the SIV encryption and decryption. For the calculation of the
tag T , the inputs for the PRF are the additional data A, the plaintext P and
the nonce N . Clearly, A and P must be inputs to the PRF, because we want
to provide authenticity/integrity for both. The nonce must also be an input to
the PRF. Even if the same message (A,P) is sent twice, the ciphertext-tag pair
must be distinct. This obviously cannot be the case, if the nonce requirement is
violated. Since the PRF and the symmetric encryption scheme are deterministic
functions, if the same triple (A,P , N) is encrypted twice, then the tag, the IV

3

PRFK1

ENCK2

PA N

C T

IV

(a) SIV Encryption

DECK2

PRFK1

C NA T

6=

⊥P

IV

(b) SIV Decryption

Fig. 1: For the encryption (a), first, the tag T is calculated with a vector-input
PRF over the additional data A, the plaintext P and the nonce N , and then the
tag is used as the synthetic IV for the symmetric encryption of the plaintext. The
ciphertext C is decrypted (b) by using the received tag T as the synthetic IV and
then the vector-input PRF is evaluated over the additional data, the resulting
plaintext and the nonce. If both tags are not equal, an invalidity symbol ⊥ is set.

and the ciphertext are also the same. Consequently, when the same nonce is used
twice, then an attacker learns, if the same message was encrypted or not, but
nothing beyond that.

An inherent drawback of this construction is, that the symmetric encryp-
tion has to wait for the IV, before it can start the encryption. The SIV en-
cryption is inherently sequential: First, the PRF has to be computed and after
that, the encryption of the plaintext can start. This means, the plaintext has to
be temporarily stored somewhere or loaded twice. During the SIV decryption
(Figure 1(b)), the decryption of the ciphertext C can immediately start. The
required IV is the received tag T . As soon as on block of ciphertext is decrypted,
the corresponding plaintext block is fed into the PRF. The output of the PRF
is compared to the received tag T . If they are not equal, the invalidity symbol
⊥ is outputted instead of the plaintext.

3 CCM-SIV

The name “CCM-SIV” suggests, that the scheme is a straightforward SIV-
variant of the CCM mode-of-operation [20]. However, the only building blocks
that CCM-SIV has in common with standard CCM is, that it also uses a com-
bination of CTR mode for symmetric encryption and a MAC based on the
CBC construction. The CCM-SIV scheme, which is proven to be a secure nonce-
misuse-resistant authenticated encryption scheme in Section 4, is shown in Fig-
ure 2 and 3. It consists of a combination of a special PRF based on CBC and
the CTR mode for the IV-based encryption/decryption. The CCM-SIV authen-

4

A1 • • • Aa ‖ 0r

EK1
EK1

P1

EK1

• • • Pp ‖ 0s

EK1

|A| ‖ |P |

EK1

N

EK2

TI1

EK3

P1

C1

Ip• • •

EK3

Pp

Cp

Fig. 2: CCM-SIV encryption. The tag T is calculated using a dedicated vector-
input PRF based on the CBC construction over an encoded input consisting
of the padded additional data (A1, . . . , Aa) , the padded plaintext (P1, . . . , Pp)
and a length block. The tag is then used as the synthetic IV for the CTR mode
encryption of the plaintext.

ticated encryption (Figure 2) takes as input three 128 bit keys K1,K2,K3, a
blocks of additional data A = (A1, . . . , Aa), p blocks of plaintext data P =
(P1, . . . , Pp), a 128 bit nonce N and outputs the corresponding p ciphertext
blocks C = (C1, . . . , Cp) and a 128 bit message authentication tag T . The CCM-
SIV authenticated decryption (Figure 3) takes as input again three 128 bit keys
K1,K2,K3, a blocks of additional data A = (A1, . . . , Aa), p blocks of ciphertext
C = (C1, . . . , Cp), a 128 bit nonce N , a 128 bit message authentication tag T
and outputs either the corresponding p blocks of plaintext P = (P1, . . . , Pp)
for a valid message, or the invalidity symbol ⊥ for invalid messages. The three
required keys K1,K2,K3 for the underlying cryptographic primitives can be de-
rived from a single master key K with a deterministic Pseudo Random Number
Generator (PRNG) based on the AES block cipher [3, Section 4.4.4]. The key
generation is shown in the first function of Algorithm 1.
The constant values 0, 1, 2 (encoded as 128 bit unsigned integers) are encrypted
using the master key K, to obtain the three required keys. In contrast to AES-
GCM-SIV, these subkeys are fixed during the lifetime of a master key K. The
key derivation has to be done only once after the negotiation of the master key
K. If K is chosen uniformly at random, then EK is a secure PRF. As long as the
inputs to EK are distinct, the corresponding outputs are uniformly distributed
and independent. This is the case for constant values 0, 1, 2.

5

A1 • • • Aa ‖ 0r

EK1
EK1

P1

EK1

• • • Pp ‖ 0s

EK1

|A| ‖ |P |

EK1

N

EK2

6=T

⊥

C1

EK3

I1

Cp

EK3

Ip• • •T

Fig. 3: CCM-SIV decryption. First, the ciphertext (C1, . . . , Cp) is decrypted by
using the received tag T as the IV for CTR mode. The MAC is then calculated
the same was as in the CCM-SIV encryption. The calculated tag is compared to
the received tag T to check for validity.

Algorithm 1 CCM-SIV

1: function KeyGeneration()

2: K
$← K

3: K1 ← EK(0)
4: K2 ← EK(1)
5: K3 ← EK(2)
6: return K = (K1,K2,K3)

7: function EncryptionK(A,P , N)
8: T ← EK2(CBCK1(e(A,P))⊕N)
9: C ← CTRT

K3
(P)

10: return (C, T)

11: function DecryptionK(A,C, N, T)
12: P ← CTRT

K3
(C)

13: T ′ ← EK2(CBCK1(e(A,P))⊕N)
14: if T = T ′ then
15: return P
16: else
17: return ⊥

6

Authentication. The authentication is done by first applying an encoding
function e on the input (A,P). This function appends r zeros to the last block
Aa of the additional data and s zeros to the last block Pp of the plaintext. If any
of these are already are multiple of the block size, then no zeros are appended.
Similarly to AES-GCM-SIV, the encoding function adds another block called the
length block. This block contains the concatenation of the original bit-length |A|
with the original bit-length |P |, both encoded as 64 bit unsigned integers yielding
a full 128 bit block. To obtain the message tag T , the set of blocks A1, . . . , (Aa ‖
0r), P1, . . . , (Pp ‖ 0s), (|A| ‖ |P |) is applied to the CBC construction using key
K1. The output of the CBC construction is XORed with the nonce N and finally
encrypted with a single block cipher invocation using key K2.

Encryption/Decryption. The encryption/decryption is done in CTR mode by
using the tag T as the IV. Here, the first counter block1 I1 is simply initialized
with the tag T . Only the least significant 32 bit are used as the counter field.

This block (i.e. the IV) is simply initialized with the 128 bit tag T . For every
subsequent counter block I2, I3, . . . , the least significant 32 bits are incremented
using mod232 arithmetic. The maximum plaintext length for the CTR mode is
therefore 232 blocks, because then the 32 bit counter will wrap around, causing
the two-time-pad problem. Note, that if the last plaintext block Pp is smaller
than the blocksize, not the full keystream EK(Ip) is needed to encrypt/decrypt
Pp resp. Cp. In the figures, the truncation of EK(Ip) to |Pp| bits is omitted
for reasons of simplicity. The latter two functions in Algorithm 1 describe the
CCM-SIV authenticated encryption and authenticated decryption. These two
functions are an instantiation of the general SIV paradigm shown in Figures 1(a)
and 1(b) from the beginning of this section. Even though the CCM-SIV scheme
is a constructed mixture of standard CCM, the SIV paradigm and the AES-
GCM-SIV scheme - which are all proven secure - a proper security proof needs
to be done for this mixture.

4 The Security of CCM-SIV

Based on the assumption, that the raw CBC-construction described by Algo-
rithm 2 is a secure PRF for prefix-free messages [3, Section 6.4.1] and that the
CTR mode-of-operation is a secure IV-based symmetric encryption scheme [7],
the security proof of CCM-SIV is done in four steps:

1. The prefix-free PRF family CBC-E is an ε-almost XOR universal hash func-
tion family (ε-AXU) for messages, that are a multiple of the block size x.
Since we cannot guarantee prefix-free messages, a less conservative model
than a PRF is introduced here. It is shown, that the XOR-distance between
two outputs of the CBC construction is almost truly random.

2. An injective encoding on the input yields an ε-AXU family for additional
data and plaintext of any bit size.

1The first counter block is denoted as I1, because there is no I0 needed for the CTR
encryption of the MAC, as it is the case for standard CCM.

7

Since messages are not always multiples of the block size, this step provides
a solution to handle messages of any bit-length. Furthermore, vector-valued
messages are introduced here.

3. The composition of this bit-wise ε-AXU, a XOR operation and a single block
PRF yields a secure vector-input PRF over the additional data, the plaintext
and the nonce.
This step returns to the original notion of a PRF by composing several
building blocks. Now, we have a PRF for vector inputs, that can be of any
bit-size.

4. Combining the CTR mode-of-operation with the vector-input PRF from Step
3 yields a secure nonce-misuse-resistant authenticated encryption scheme.
In this last step, the vector-input PRF from Step 3 and the CTR mode-of-
operation are combined according to the SIV paradigm. It is proven, that
this composition provides confidentiality, authenticity and integrity, even if
the same nonce repeats.

4.1 Step 1: The raw CBC construction is an ε-AXU

In this step we prove, that the CBC-E construction is an ε-almost XOR universal
hash function family for messages, that are a multiple of the block size x of the
underlying PRF E.

Algorithm 2 CBC-E construction.

Require: K
$← K

1: function CBC-EK(X) . X consists of m blocks.
2: Y ← 0
3: for i← 1 to m do
4: Y ← EK(Y ⊕Xi)

5: return Y

The proof builds upon the fact, that the raw CBC construction CBC-E described
by Algorithm 2 is a secure PRF family for prefix-free inputs, that are a multiple
of the block size x [3, Section 6.4.1]. The set of all input messages is called
prefix-free, if no message is a proper prefix of another message:

Definition 1. [Proper Prefix] A message X = (X1, . . . , Xm) is a proper prefix
of a message X′ = (X ′1, . . . , X

′
m′) with 1 ≤ m < m′ ≤ mmax, if for every

1 ≤ i ≤ m it holds that Xi = X ′i.

Following Boneh [3, Section 6.4.1], Definition 2 states that CBC-EK is indistin-
guishable from a truly random function, if the messages are prefix-free and K
is chosen uniformly from the key space K. The related security game PF-PRF
works as follows: The PPT adversary A queries her oracle O with at most q
prefix-free messages X1, . . . ,Xq ∈ X≤mmax , where the oracle is either CBC-EK
with K

$← K or a truly random function with the same output size x. A wins
the game, if she is able to distinguish both oracle versions with non-negligible

8

probability. The wrapping PPT algorithm B plays the PRF game attacking the
underlying PRF EK , where he queries at most mmax message blocks for every
A-query. B’s oracle is either the PRF EK with a freshly chosen K

$← K or a
truly random function with the same output size x. B wins the PRF game, if he
is able to distinguish both oracle versions with non-negligible probability:

Definition 2. [CBC-E’s security as a PRF] Let A be a PPT algorithm, who
is able to distinguish CBC-E from a random function in the PF-PRF game
with non-negligible advantage. Then there exists a PPT adversary B, who dis-
tinguishes E from a random function in the PRF game with non-negligible ad-
vantage. Particularly, it holds that

advPF-PRF
CBC-E (A) ≤ advPRF

E (B) +
q2m2

max

2 · 2x . (1)

Based on the assumption, that the AES block cipher E is secure, such an A
cannot exist, since this would contradict (1).

Given a secure PRF family for prefix-free inputs that are a multiple of the
block size x such as CBC-E, we now show that this has a property called dif-
ference unpredictability, uniform difference property or simply ε-Almost XOR
Universality.

Definition 3. [ε-Almost XOR Universal Hash Function Family.] An ε-Almost
XOR Universal Hash Function Family (ε-AXU) is a function family H : K ×
{0, 1}∗ → X with H = {HK : {0, 1}∗ → X | ∀K ∈ K}, X = {0, 1}x, K = {0, 1}k,
such that for all X,X ′ ∈ {0, 1}∗,X 6= X ′, all HK and all δ ∈ X it holds that

Pr [HK(X)⊕HK(X ′) = δ] ≤ ε

with 0 < ε < 1. Or in other words, if the probability, that the XOR-difference of
two hash values is δ, is at most ε.

The related XUHF game defined in Figure 4 works as follows: In the beginning,
the challenger chooses a key K uniformly from the key space K and then sets
the oracle to HK . The adversary sends two distinct messages X1,X2 ∈ X≤mmax

together with a guess δ ∈ X for the XOR-difference of the hash values. The
challenger checks, if HK(X1)⊕HK(X2) = δ and sets the flag win in this case.
Obviously, A wins the game if win = 1 and loses the game if win = 0. A’s
advantage in this game is defined to be Pr [win = 1] or short Pr [win]. Upper-
bounding this advantage then yields a measure for the security as an ε-AXU:

Definition 4. [ε-AXU security.] Let H be a function family as in Definition 3.
Then H is a computationally secure ε-Almost XOR UHF family (ε-AXU), if
there exists a negligible ε, such that for all PPT adversaries A playing the XUHF
game defined in Figure 4 it holds that

advXUHF
H (A) ≤ ε.

The following Lemma proves, that CBC-E is also an ε-AXU family:

9

K
$← K

O ← HK

win← 0

if O(X1)⊕O(X2) = δ
win← 1

Challenger A

win

X1,X2 ∈ X≤mmax

δ ∈ X

Fig. 4: The challenger chooses a function family instance HK by uniformly
choosing a key K from the set K. Then the adversary A outputs two distinct
messages X1,X2 and a guess δ for the XOR-difference. The challenger evalu-
ates HK on X1,X2 and sets the flag win to 1, if δ was right.

Lemma 1. [CBC-E’s security as an ε-AXU.] Let A be a PPT adversary, who
wins the XUHF game defined in Figure 4 with non-negligible advantage. Then
there exists a wrapping PPT adversary B, who distinguishes CBC-E from a ran-
dom function in the PF-PRF game with non-negligible advantage. Particularly,
it holds that

advXUHF
CBC-E(A) ≤ advPF-PRF

CBC-E (B) +
1

2x
.

Proof. The proof works by describing a wrapping adversary B, which tries to
win the PF-PRF game by making use of a hypothetical adversary A, which is
playing the XUHF game. Figure 5 shows the framework for B. Adversary A

b
$← {R, PR}

if b = PR:
K

$← K
O ← CBC-EK

if b = R:
O $← Funsmx→x

Challenger B
A

b′

X̂1, X̂2

O(X̂1),O(X̂2)

X1,X2, δ

Fig. 5: The wrapping algorithm B tries to win the PF-PRF game on the outside
by using the XUHF-adversary A as a subroutine. B sets the flag guess b′ to either
PR or R, depending on whether O(X̂1) and O(X̂2) collide or not.

10

is playing the XUHF game and therefore outputs two distinct messages X1,X2

together with an expected XOR-difference δ. Adversary B’s goal is to distinguish
between CBC-E and a random choice out of Funsmx→x. For this, B may do the
following: First, he appends δ to X1 and a zero block to X2. With this, the
modified messages X̂1 = X1‖δ and X̂2 = X2‖0x will cause a detectable collision

in O(X̂1) and O(X̂2), if O = CBC-EK and δ was correctly guessed by A. This
is because δ = CBC-EK(X1)⊕ CBC-EK(X2) and therefore

CBC-EK(X̂1) ⊕ CBC-EK(X̂2)

= EK(CBC-EK(X1)⊕ δ) ⊕ EK(CBC-EK(X2)⊕ 0x)

= EK(CBC-EK(X2)) ⊕ EK(CBC-EK(X2)⊕ 0x)

= 0

The problem with this is, that B cannot simply pass X1‖δ and X2‖0x to his
challenger, since this message pair might not be prefix-free. So B has to make
the pair prefix-free first. For this, we can make use of the extension property of
CBC-E [3, Section 7.2.2]:

Definition 5. [Extension Property.] A PRF Family F : K × X≤mmax → X
with F = {FK : X≤mmax → X | ∀K ∈ K}, X = {0, 1}x and K = {0, 1}k is
“extendable” or has an “extension property”, if

FK(X) = FK(X′)⇒ FK(X‖A) = FK(X′‖A)

for all X,X′ ∈ X≤mmax , X 6= X′, all A ∈ X and all K ∈ K.

Obviously, CBC-E is extendable: Consider two distinct messagesX andX ′ with
CBC-EK(X) = CBC-EK(X ′) and some A ∈ X . Then

CBC-EK(X‖A) = CBC-EK(CBC-EK(X)⊕A)

= CBC-EK(CBC-EK(X ′)⊕A)

= CBC-EK(X ′‖A).

To make the two queriesX1‖δ andX2‖0x prefix-free, adversary B uses the exten-
sion property in the following way (the pseudo code for the wrapping adversary
B is given in Algorithm 3).

Algorithm 3 Pseudo Code for B.

1: receive X1,X2, δ from A
2: choose any A s.t. A /∈X1,X2 and A 6= δ
3: X̂1 ←X1‖δ‖A
4: X̂2 ←X2‖0x‖A
5: send X̂1, X̂2 to challenger
6: if O(X̂1) = O(X̂2) then
7: return b′ ← PR

8: else
9: return b′ ← R

11

Upon receiving queries X1,X2 from A and appending δ and 0x, B chooses a
block A that is not an element of X1 or X2 and is neither δ nor 0x. Such an A
must exist in an asymptotic setting, because the PPT adversary A outputs at
most a polynomially bounded number of blocks and the number of possible block
values grows exponentially in x. This A is appended to both messages, yielding
a prefix-free pair X̂1 = X1‖δ‖A and X̂2 = X2‖0x‖A. Adversary B then queries
his challenger with this prefix-free pair. If the two messages X1‖δ and X2‖0x
would have caused a collision CBC-EK(X1‖δ) = CBC-EK(X2‖0x), then due to

the extension property of CBC-E, the extended messages X̂1 = X1‖δ‖A and

X̂2 = X2‖0x‖A must also cause a collision CBC-EK(X̂1) = CBC-EK(X̂2).

Once he has sent the modified messages X̂1, X̂2 to his challenger and received
O(X̂1),O(X̂2), B checks if O(X̂1) collides with O(X̂2). If this is the case, he
outputs PR. Otherwise, he outputs R. Since we are assuming that A guesses the
right δ for CBC-EK(X1) ⊕ CBC-EK(X2) with non-negligible probability, the
constructed adversary B is then also able to distinguish CBC-E from a random
function with non-negligible probability because of the following collision:

EK(EK(CBC-EK(X1)⊕ δ)⊕A)

= EK(EK(CBC-EK(X1)⊕ CBC-EK(X1)⊕ CBC-EK(X2))⊕A)

= EK(EK(CBC-EK(X2)⊕ 0)⊕A (2)

To relate the advantages of A and B, first observe that

advPF-PRF
CBC-E (B) =

∣∣∣∣Pr
[
BFunsmx→x ⇒ R

]
− Pr

[
BCBC-E ⇒ R

]∣∣∣∣

=

∣∣∣∣1− Pr
[
BFunsmx→x ⇒ PR

]
−
(

1− Pr
[
BCBC-E ⇒ PR

])∣∣∣∣
≥ Pr

[
BCBC-E ⇒ PR

]
− Pr

[
BFunsmx→x ⇒ PR

]
. (3)

If B is interacting with a uniform choice out of Funsmx→x, the values O(X̂1)

and O(X̂2) are uniformly distributed in X and therefore

O(X̂1) = O(X̂2)

holds with probability 1/|X | and thus

Pr
[
BFunsmx→x ⇒ PR

]
=

1

2x
. (4)

A’s guessed difference δ is correct with probability advXUHF
H (A). If B is inter-

acting with CBC-E, a correct δ causes the collision in (2). Hence B outputs PR

with at least this probability:

Pr
[
BCBC-E ⇒ PR

]
≥ advXUHF

H (A). (5)

Combining (3), (4) and (5) concludes the proof:

advPF-PRF
CBC-E (B) ≥ advXUHF

H (A)− 1

2x
.

ut

12

4.2 Step 2: Injective encoding for bit-wise vector-valued inputs

The function family CBC-E : K × X≤mmax → X with X = {0, 1}x was proved
to be a secure ε-AXU family for messages, that are a multiple of the block size
x and at most mmax blocks long. This step constructs a secure ε-AXU family
CBC-E∗ : K ×A× P → X , that takes as input an additional data part A ∈ A
and a plaintext P ∈ P, whereA = P = {0, 1}∗, but with the following restriction
on the maximum length of A and P :

⌈ |A|
x

⌉
+

⌈ |P |
x

⌉
+ 1 ≤ mmax. (6)

Without loss of generality, additionally assume that |A|, |P | ≤ 2x/2 bit, so that
both the bit-length of A and the bit-length of P can be expressed as x/2 bit
integer values.

Algorithm 4 Injective Encoding Function e.

1: function e(A,P)
2: r ← x− |Aa|
3: s← x− |Pp|
4: L← |A| ‖ |P | : L ∈ {0, 1}x
5: X ← A ‖ 0r ‖ P ‖ 0s ‖ L
6: return X = (X1, . . . , Xm)

Fix an input tuple (A,P) according to the restrictions described above and

let K
$← K, then CBC-E∗K(A,P) is constructed as follows: CBC-E∗K(A,P) =

CBC-EK(e(A,P)), with an injective encoding function e : {0, 1}∗ × {0, 1}∗ →
X≤mmax . The encoding function e is defined by Algorithm 4 and CBC-E∗ is
illustrated in Figure 6. The additional data A consists of a blocks A1, . . . , Aa,

A1 • • • Aa ‖ 0r

EKEK

P1

EK

• • • Pp ‖ 0s

EK

|A| ‖ |P |

EK Y

Fig. 6: The CBC-E∗ function is the composition of the injective encoding func-
tion e and the standard CBC construction. The additional data and the plaintext
are padded with zeros and a length block containing the bit lengths of A and P
is appended to the data, before applying the CBC construction.

where the last block Aa might be incomplete, i.e. |Aa| ≤ x. The same holds
for P = (P1, . . . , Pp) with |Pp| ≤ x. The injective encoding function e fills Aa
with r zeros, such that |(Aa ‖ 0r)| = x and fills Pp with s zeros, such that
|(Pp ‖ 0s)| = x. These two parts are concatenated together with a length block

13

L that contains the bit-length of A and the bit-length of P , both encoded as
x/2 bit values. The final output X then contains m blocks with

m = a+ p+ 1 ≤ mmax

and hence is a proper input for CBC-E. The following corollary states, that
CBC-E∗ is also a secure ε-AXU family.

Corollary 1. [CBC-E∗’s security as an ε-AXU family.] If the CBC-E function
family shown in Algorithm 2 is a secure ε-AXU family for messages that are
a multiple of the block size x and that are at most mmax blocks long, then the
composition CBC-E∗(A,P) = CBC-E(e(A,P)) is also a secure ε-AXU family
for distinct messages (A,P) that fulfills (6).

Proof. First, let us verify that e is indeed an injective function, i.e. it never maps
two distinct messages (A,P), (A′,P ′) to the same output X = X ′. Consider
two distinct messages (A,P), (A′,P ′) and their corresponding output X and
X ′. We assume that X = X ′. Then it must hold that L = L′, since these are
the last blocks in X resp. X ′. Hence |A| = |A′| and |P | = |P ′|. From this
follows, that r = r′ and s = s′. The only parts of X and X ′, that are left,
are A and P itself. Therefore, they must be equal if X = X ′. This contradicts
the assumption, that (A,P), (A′,P ′) are distinct. Therefore, e is an injective
function, which preserves the distinctness between two messages. Furthermore,
e never outputs messages that are longer than mmax blocks due to its restriction
on A and P . By Lemma 1, applying the CBC-E construction on distinct inputs
with a maximum length of mmax blocks yields a secure ε-AXU family. ut

4.3 Step 3: Construction of a PRF for MAC calculation

For the construction of a PRF over a nonce N ∈ X , additional data A ∈ {0, 1}∗
and plaintext P ∈ {0, 1}∗, this step follows the same approach as Gueron and
Lindell used for GCM-SIV [7]. There, the PRF is constructed by the composition
FK2

(HK1
(e(A,P)) ⊕ N), where FK2

: X → X is a PRF instance using an

encryption key K2
$← K, HK1

: X≤mmax → X is an ε-AXU instance using

a hashing key K1
$← K and e : {0, 1}∗ × {0, 1}∗ → X≤mmax is the injective

encoding function from the previous step. For CCM-SIV, the ε-AXU family
H is CBC-E∗ and the PRF F is the AES block cipher E. The composition
EK2(CBC-EK1(e(A,P))⊕N) is denoted as F ∗K1,K2

and illustrated in Figure 7.

Formally, F ∗ : K2 × A × P × N → T with A = P = {0, 1}∗, N = T =
K = X and F ∗ = {F ∗K1,K2

: A × P × N → T | ∀K1,K2 ∈ K}. The message
X = (X1, . . . , Xm) in Figure 7 is the output of the injective encoding function
e and contains the additional data A, the plaintext P and the length block L.
For a blocks of additional data A and p blocks of plaintext P , it holds that
m = a + p + 1 ≤ mmax. The output of CBC-EK1 is XORed with the nonce
N and then encrypted by EK2 to obtain the tag T . To analyze the security of
this composition as a vector-input PRF for bit-wise inputs, Figure 8 defines the

14

X1 X2

EK1

• • • Xm

EK1
EK1

N

EK2

T

Fig. 7: The secure PRF family F ∗ over the nonce N and a message
(X1, . . . , Xm) is accomplished by a composition of CBC-EK1

as an ε-AXU, a
XOR operation and a PRF EK2 .

b
$← {R, PR}

if b = PR:
K1,K2

$← K
O ← F ∗K1,K2

if b = R:
O $← Funs∗,∗,x→x

Challenger A

b′

~Q1, . . . , ~Qq

O(~Q1), . . . ,O(~Qq)

Fig. 8: The oracle is either the PRF F ∗K1,K2
with K1,K2 chosen uniformly and

independent or a uniform choice out of Funs∗,∗,x→x. The adversary A sends at

most q vector valued queries ~Q1, . . . , ~Qq to the oracle and outputs a flag guess b′

at the end.

15

related security game PRF∗. In this game, the adversary A outputs q distinct
vector valued queries ~Q1, . . . , ~Qq, of which each ~Qi with 1 ≤ i ≤ q is of the

form ~Qi = (Ai,Pi, Ni). The challenger sets the oracle to either a PRF instance
F ∗K1,K2

with K1,K2 chosen uniformly and independently from the key space,
or to a truly random function. The symbol Funs∗,∗,x→x denotes the set of all
functions mapping {0, 1}∗×{0, 1}∗×X → X . A’s advantage is defined the same
way as in the PRF game:

advPRF∗

F∗ (A) =

∣∣∣∣Pr
[
AFuns∗,∗,x→x ⇒ R

]
− Pr

[
AF∗ ⇒ R

]∣∣∣∣.

If this term can be upper-bounded by a negligible function for all PPT ad-
versaries A, then F ∗ is considered to be a secure vector-input PRF over the
additional data A, the plaintext P and the nonce N .

Lemma 2. [F ∗’s security as a PRF.] Let F ∗ be the composition of an ε-AXU
family and a PRF family E as described above, and let A be a PPT adversary,
who wins the PRF∗ game defined in Figure 8 with non-negligible advantage. Then
there exists a wrapping PPT adversary B, who distinguishes E from a random
function in the PRF game. Particularly, it holds that

advPRF∗

F∗ (A) ≤ advPRF
E (B) + ε · q

2

2
.

Lemma 2 states, that an efficient adversary A breaking F ∗ cannot exist, because
otherwise we would be able to construct an efficient adversary B breaking E and
this would be a contradiction to the assumption, that AES is secure.

Proof (Proof of Lemma 2.). Figure 9 shows the framework for B and Algorithm 5
his pseudo code. The adversary B chooses the key K1 for CBC-E by himself.
When he receives the ith query ~Qi from A, he encodes Ai,Pi using the injective
encoding function e, applies CBC-EK1

, XORs the resulting hash value with the
nonce Ni and sends the result to his PRF challenger.

Algorithm 5 Pseudo Code for B.

1: K1
$← K

2: for all queries ~Qi from A with 1 ≤ i ≤ q do
3: Xi ← CBC-EK1(e(Ai,Pi))⊕Ni

4: send Xi to challenger
5: send O(Xi) to A
6: return same b′ as A

Depending on b, the challenger either applies EK2
or a truly random function

and sends back O(Xi). B then simply passes O(Xi) to A. At the end, B outputs
the same flag b′ as A. By definition, B’s advantage in the PRF game and A’s
advantage in the PRF∗ game are

advPRF
E (B) =

∣∣∣∣Pr
[
BFunsx→x ⇒ R

]
− Pr

[
BE ⇒ R

]∣∣∣∣, (7)

advPRF∗

F∗ (A) =

∣∣∣∣Pr
[
AFuns∗,∗,x→x ⇒ R

]
− Pr

[
AF∗ ⇒ R

]∣∣∣∣. (8)

16

b
$← {R, PR}

if b = PR:
K2

$← K
O ← EK2

if b = R:
O $← Funsx→x

Challenger B
A

b′

X1, . . . , Xq ∈ X

O(X1), . . . ,O(Xq)

~Q1, . . . , ~Qq

Fig. 9: The wrapping algorithm B tries to win the PRF game on the outside by
using the PRF∗-adversary A as a subroutine. B outputs the same flag guess b′

as A.

If b = PR, B perfectly simulates the function F ∗K1,K2
, because in this case

O(Xi) = EK2(CBC-EK1(e(Ai,Pi))⊕Ni) def
= F ∗K1,K2

with K1,K2 chosen uniformly and independently from K. Since B outputs the
same flag b′ as A, it holds that

Pr
[
BE ⇒ R

]
= Pr

[
AF∗ ⇒ R

]
. (9)

Subtracting (8) and (7), applying the triangle inequality and using (9) yields

advPRF∗

F∗ (A)− advPRF
E (B)

≤
∣∣∣∣
∣∣∣Pr
[
AFuns∗,∗,x→x ⇒ R

]
− Pr

[
AF∗ ⇒ R

]∣∣∣

−
∣∣∣Pr
[
BFunsx→x ⇒ R

]
− Pr

[
BE ⇒ R

]∣∣∣
∣∣∣∣

≤
∣∣∣∣Pr
[
AFuns∗,∗,x→x ⇒ R

]
− Pr

[
BFunsx→x ⇒ R

]∣∣∣∣. (10)

If b = R, B perfectly simulates a uniform choice out of Funs∗,∗,x→x, if and only
if O(X1), . . . ,O(Xq) are all independent and uniformly distributed. This is only

the case, if the inputs X1, . . . , Xq for the function O $← Funsx→x are all distinct.
Let coll denote the event, that there exists at least one pair of indices i, j with
i 6= j and i, j ∈ {1, . . . , q} such that

Xi = Xj ⇔ CBC-EK1
(e(Ai,Pi))⊕Ni = CBC-EK1

(e(Aj ,Pj))⊕Nj .

If coll does not occur, then all inputs to O $← Funsx→x are distinct and B per-
fectly simulates a uniform choice out of Funs∗,∗,x→x. This is, because the output

17

distribution of O $← Funsx→x is uniformly distributed. Using this conditional
probability space, the absolute difference in (10) can be rewritten as

∣∣∣∣Pr
[
AFuns∗,∗,x→x ⇒ R

]
− Pr

[
BFunsx→x ⇒ R

]∣∣∣∣

=

∣∣∣∣Pr
[
AFuns∗,∗,x→x ⇒ R | coll

]
Pr [coll] + Pr

[
AFuns∗,∗,x→x ⇒ R | coll

]
Pr
[
coll
]

− Pr
[
BFunsx→x ⇒ R | coll

]
Pr [coll]− Pr

[
BFunsx→x ⇒ R | coll

]
Pr
[
coll
]∣∣∣∣

= Pr [coll]

∣∣∣∣Pr
[
AFuns∗,∗,x→x ⇒ R | coll

]
− Pr

[
BFunsx→x ⇒ R | coll

]∣∣∣∣
≤Pr [coll] . (11)

The last inequality is because the absolute difference between two probabilities
is at most 1. Combining (10) and (11) yields

advPRF∗

F∗ (A)− advPRF
E (B) ≤ Pr [coll] . (12)

It remains to upper-bound Pr [coll]. For this, we are interested in the probability,

that any two distinct A queries ~Qi 6= ~Qj result in two same B queries Xi = Xj .
We have to consider two cases:

1. (Ai,Pi) = (Aj ,Pj) and Ni 6= Nj : The probability that any two distinct
queries collide can be written as

Pr [CBC-EK1(e(Ai,Pi))⊕Ni = CBC-EK1(e(Aj ,Pj))⊕Nj]
= Pr [CBC-EK1(e(Ai,Pi))⊕ CBC-EK1(e(Aj ,Pj)) = Ni ⊕Nj]
= 0,

because Ni ⊕Nj 6= 0 if Ni 6= Nj .
2. (Ai,Pi) 6= (Aj ,Pj) and Ni = Nj : Since CBC-E is an ε-AXU family, the

probability that any two distinct queries collide can be written as

Pr [CBC-EK1(e(Ai,Pi))⊕Ni = CBC-EK1(e(Aj ,Pj))⊕Nj]
= Pr [CBC-EK1(e(Ai,Pi))⊕ CBC-EK1(e(Aj ,Pj)) = Ni ⊕Nj]
= Pr [CBC-EK1(e(Ai,Pi))⊕ CBC-EK1(e(Aj ,Pj)) = 0]

≤ ε,

because the probability that the XOR-difference between two outputs of an
ε-AXU family takes a specific value is at most ε.

Note, that there are less than q2/2 possible pairs ~Qi, ~Qj . By the union bound it
follows that

Pr [coll] ≤ ε · q
2

2
.

18

Applying this to (12) proves the lemma:

advPRF∗

F∗ (A) ≤ advPRF
E (B) + ε · q

2

2
.

ut

4.4 Step 4: Combining the PRF with an ivE according to SIV

The previous step established a secure vector-valued PRF F ∗ over the additional
data, the plaintext and the nonce. This PRF is used to provide authenticity and
integrity in CCM-SIV. In this step, we prove that combining this PRF with a
secure IV-based symmetric encryption scheme for confidentiality yields a secure
nonce-misuse-resistant authenticated encryption scheme.

Algorithm 6 CTR-E Encryption.

1: function CTR-EI
K3

(P)
2: I1 ← I
3: for i← 1 to p do
4: Ci ← EK3(Ii)⊕ Pi

5: Ii+1 ← inc32(Ii) . Increments least significant
32 bit of Ii (modulo 232).

6: return C = (C1, . . . , Cp)

CCM-SIV uses the CTR mode-of-operation of the block cipher EK (cf. Algo-
rithm 6) as the IV-based symmetric encryption scheme Π. Formally, Π is defined
to be a set of three PPT algorithms (Gen,Enc,Dec) shown in Algorithm 7.

Algorithm 7 ivE scheme Π

1: function Gen()

2: return K3
$← K

3: function EncK3(P)

4: I
$← I

5: C ← CTR-EI
K3

(P)
6: return (C, I)

7: function DecK3(C, I)
8: P ← CTR-EI

K3
(C)

9: return P

The security game ivE for Π works as follows: The adversary A queries the
oracle with at most q plaintext queries P1, . . . ,Pq ∈ X≤pmax , where pmax is
the maximum number of message blocks for a single message. For CCM-SIV
pmax = 232. The oracle is either the encryption function EncK3

with K3
$← K

or a truly random function with the same output size. A wins the game, if she
distinguishes both oracle versions with non-negligible probability. The security
of Π can be reduced to the security of the underlying PRF E [7]:

19

Definition 6. [Π’s security in the ivE game.] Let Π be the ivE scheme defined
by Algorithm 7 and A be an adversary, who wins the ivE game with non-negligible
advantage. Then there exists a wrapping PPT adversary B, who distinguishes E
from a random function in the PRF game with non-negligible advantage. Par-
ticularly, it holds that

advivE
Π (A) ≤ advPRF

E (B) +
q2 · pmax

2 · 2x .

Based on Definition 6 and Lemma 2, we construct a secure nonce-based authen-
ticated encryption (nAE) scheme Π̃ through a composition of Π resp. CTR-E
and F ∗ by using the 3-key instantiation of the SIV paradigm [18], also called

construction A4 by Namprempre et al. [16]. The nAE scheme Π̃ is a triple

(G̃en, Ẽnc, D̃ec) of three PPT algorithms. The key generation algorithm G̃en
generates a triple key K = (K1,K2,K3), where each element K1,K2,K3 is cho-

sen uniformly from K. The authenticated encryption algorithm Ẽnc takes as
input the key K, the additional data A ∈ {0, 1}∗, the plaintext P ∈ {0, 1}∗
and a nonce N ∈ X and outputs the corresponding ciphertext C ∈ {0, 1}∗ of
the same length as P and a message tag T ∈ X . The authenticated decryption
algorithm D̃ec takes as inputs the key K, the additional data A ∈ {0, 1}∗, the
ciphertext C ∈ {0, 1}∗, a nonce N ∈ X and a tag T ∈ X . Without loss of
generality, we assume that P ’s and C’s sizes are a multiple of the block size x.
Algorithm 8 gives the pseudo codes for Π.

Algorithm 8 CCM-SIV scheme Π̃ (formal description)

1: function G̃en()

2: return K
$← K3

3: function ẼncK(A,P , N)
4: T ← F ∗K1,K2

(A,P , N)
5: C ← CTR-ET

K3
(P)

6: return (C, T)

7: function D̃ecK(A,C, N, T)
8: P ← CTR-ET

K3
(C)

9: T ′ ← F ∗K1,K2
(A,P , N)

10: if T = T ′ then
11: return P
12: else
13: return ⊥

Figure 10(a) and 10(b) provide a graphical representation of Ẽnc and D̃ec.

To analyze the security of Π̃, we let A play the nAE security game defined in
Figure 11. In the beginning, the challenger again chooses a flag b uniformly from
the set {R, PR}. But this time, the challenger establishes two types of oracles,
the authenticated encryption oracle Oe and the authenticated decryption oracle
Od. In the pseudo-random case, the challenger runs the key generation G̃en to

20

F ∗
K1,K2

CTR-EK3

PA N

C T

(a) CCM-SIV Ẽnc

CTR-EK3

F ∗
K1,K2

C NA T

6=

⊥P

(b) CCM-SIV D̃ec

Fig. 10: For the encryption (a), the tag T is calculated over the additional data,
the plaintext and the nonce by applying the vector-input PRF F ∗K1,K2

. The tag
T is then used as the IV for the CTR encryption function CTR-EK3

to encrypt
the plaintext. For the decryption (b), the ciphertext is decrypted first by using
the received tag T as the IV for the CTR mode decryption function CTR-EK3

.
Then the tag is calculated over the additional data, the corresponding plaintext
and the nonce by evaluating the vector-input PRF F ∗K1,K2

. If both tags are not
equal, an invalidity symbol ⊥ is set.

generate the required keys (K1,K2,K3) = K. After that, he sets the encryp-

tion oracle to Ẽnc and the decryption oracle to D̃ec. In the random version of
the game, the encryption oracle Oe and the decryption oracle Od should repre-
sent the idealized versions of Ẽnc resp. D̃ec. For Ẽnc, the idealized version is a
function, that takes as input the triple (A,P , N) and outputs a truly random
ciphertext-tag pair (C, T), where C is of the same length as P . In other words,
the encryption oracle Oe should be a random choice out of Funs∗,∗,x→∗,x. To
avoid ambiguities with the idealized version of the ivE scheme Π, the idealized
version of Ẽnc is denoted as the function $(·), such that $

$← Funs∗,∗,x→∗,x.

The idealized version of D̃ec is the function ⊥(·), which rejects every decryp-
tion query by outputting the invalidity symbol ⊥. Throughout the game, the
adversary sends two types of queries. She is allowed to send up to qe encryption
queries ~Qe1, . . . ,

~Qeqe to the encryption oracle Oe, where each encryption query
~Qei with 1 ≤ i ≤ qe is of the form ~Qei = (Ai,Pi, Ni) and she is allowed to send

up to qd decryption queries ~Qd1, . . . ,
~Qdqd to the decryption oracle Od, where each

decryption query ~Qdj with 1 ≤ j ≤ qd is of the form ~Qdj = (Aj ,Cj , Nj , Tj). The
encryption and decryption queries may be sent in any order by the adversary.
At the end, A outputs a flag guess b′. It is assumed, that A’s queries are all
distinct. This is sound, because A learns nothing by querying the same message
twice, because she receives the same output twice. Note, that repeating nonces
are explicitly allowed in the encryption queries, as long as the triples (Ai,Pi, Ni)
are all distinct. This is, because we want to construct a nonce-misuse-resistant

21

b
$← {R, PR}

if b = PR:
K ← G̃en()

Oe ← ẼncK
Od ← D̃ecK

if b = R:
Oe ← $
Od ← ⊥

Challenger A

b′

~Qe
1, . . . ,

~Qe
qe

Oe(~Q
e
1), . . . ,Oe(~Q

e
qe)

~Qd
1, . . . ,

~Qd
qd

Od(~Q
d
1), . . . ,Od(~Q

d
qd
)

Fig. 11: In the pseudo-random case, the encryption oracle Oe is the authenti-
cated encryption scheme Ẽnc and the decryption oracle Od is the authenticated
decryption scheme D̃ec. In the truly random case, the encryption oracle always
outputs a random ciphertext-tag pair and the decryption oracle always outputs
⊥. The adversary A sends at most qe encryption queries and at most qd decryp-
tion queries to the corresponding oracles. At the end, the adversary outputs a
flag guess b′.

authenticated encryption scheme. Another restriction is, that A is not allowed
to sent a decryption query (Aj ,Cj , Nj , Tj), where Cj , Tj were obtained by a
prior encryption query (Ai,Pi, Ni) with Ai = Aj and Ni = Nj . This would lead

to a trivial win, because A is then able to distinguish ⊥ from D̃ec. This is also
sound, because it does not make sense for an attacker in a real world scenario
to decrypt a message, when he already knows the result. The advantage of A
breaking Π̃ in the nAE game is then defines as

advnAE
Π̃

(A) =

∣∣∣∣Pr
[
A$,⊥ ⇒ R

]
− Pr

[
AẼnc,D̃ec ⇒ R

]∣∣∣∣.

This means, if A is not able to distinguish Ẽnc from $ or D̃ec from ⊥ (with
non-negligible probability), then the scheme is considered to be secure. This no-
tion properly covers the security requirements for an authenticated encryption
scheme. The indistinguishably of a ciphertext-tag pair from random values guar-
antees confidentiality. The inability of A to come up with a decryption query,
that decrypts to a valid P instead of ⊥ guarantees unforgeability and hence
authenticity and integrity. Furthermore, the nonce-misuse-resistance property
is taken into account by the game, because the adversary is allowed to repeat
nonces (i.e. nonce-disrespecting adversaries), as long as the triples (Ai,Pi, Ni)
are distinct. The following main lemma relates the insecurity of the CCM-SIV
scheme Π̃ to the insecurities of the underlying building blocks Π and F ∗. Based
on the proof of this lemma, the proof of the main theorem (Theorem 1) will
follow immediately.

22

Lemma 3. [Π̃’s security in the nAE game.] Let Π̃ be the nAE scheme defined by
Algorithm 8 and A be an adversary, who wins the nAE game defined in Figure 11
with non-negligible advantage. Then there exists a wrapping PPT adversary B
who distinguishes F ∗ from a random function in the PRF∗ game defined in
Figure 8 with non-negligible advantage and a wrapping PPT adversary D who
distinguishes Π from its idealized version in the ivE game with non-negligible
advantage. Particular, it holds that

advnAE
Π̃

(A) ≤ advPRF∗

F∗ (B) + advivE
Π (D) +

qd
2x
. (13)

Lemma 3 states, that Π̃ must be a secure nAE scheme, because otherwise we
would be able to break F ∗ and Π. This would be a contradiction to Lemma 2
and Definition 6, because if advnAE

Π̃
(A) is non-negligible, either advPRF∗

F∗ (B) or

advivE
Π (D) or both must be also non-negligible to fulfill (13).

Proof (Proof of Lemma 3.). The proof contains two reductions. The first re-
duction B is given in Algorithm 9 and the related framework is illustrated in
Figure 12.

Algorithm 9 Pseudo Code for B.

1: K3
$← K

2: for all queries ~Qe
i = (A,P , N) from A with 1 ≤ i ≤ qe do

3: send ~Q = ~Qe
i to challenger

4: T ← O(~Q)
5: C ← CTR-ET

K3
(P)

6: send (C, T) to A

7: for all queries ~Qd
j = (A,C, N, T) from A with 1 ≤ j ≤ qd do

8: P ← CTR-ET
K3

(C)

9: send ~Q = (A,P , N) to challenger
10: T ′ ← O(~Q)
11: if T = T ′ then
12: send P to A
13: else
14: send ⊥ to A

15: return same b′ as A

The adversary A is playing the nAE game. She may output up to qe encryption
queries and up to qd decryption queries in any order. After an encryption query,
she expects the corresponding ciphertext-tag pair, and after a decryption query,
she expects either the corresponding plaintext or the symbol ⊥. The wrapping
algorithm B has two handlers for these two types of A-queries to simulate the
authenticated encryption Ẽnc and the authenticated decryption D̃ec. Since B is
playing the PRF∗ game, his goal is to distinguish between F ∗ and a random
choice out of Funs∗,∗,x→x. For this, B outputs the same flag guess b′ as A at the

23

b
$← {R, PR}

if b = PR:
K1,K2

$← K
O ← F ∗K1,K2

if b = R:
O $← Funs∗,∗,x→x

Challenger B
A

b′

∀ ~Qe
i ,∀ ~Qd

j :

~Q

O(~Q)

~Qe
1, . . . ,

~Qe
qe

~Qd
1, . . . ,

~Qd
qd

Fig. 12: The wrapping algorithm B tries to win the PRF∗ game on the outside
by using the nAE-adversary A as a subroutine. B outputs the same flag guess b′

as A.

end. In the beginning, B chooses the encryption key K3 uniformly from the set
K. Upon receiving an encryption query ~Qei from A, he does the following: First,

he passes the query ~Qei directly to his challenger and uses the output O(~Qei) as
the tag T (as a replacement for the F ∗ evaluation). Then he runs the CTR-E
encryption using the key K3 and the tag T as IV. The resulting ciphertext C
together with T is sent back to A. Upon receiving a decryption query ~Qdj from
A, B does the following: First, he runs the CTR-E decryption using the key K3

and the tag T as the IV, which is part of the decryption query, to obtain the
unverified plaintext P . Then he sends the triple (A,P , N) to his challenger and
uses the output as T ′ (as a replacement for the F ∗ evaluation). If T = T ′, the
unverified plaintext P is considered to be valid and sent back to A. If T 6= T ′,
he sends back the symbol ⊥. By definition, the advantages of A and B are

advnAE
Π̃

(A) =

∣∣∣∣Pr
[
A$,⊥ ⇒ R

]
− Pr

[
AẼnc,D̃ec ⇒ R

]∣∣∣∣, (14)

advPRF∗

F∗ (B) =

∣∣∣∣Pr
[
BFuns∗,∗,x→x ⇒ R

]
− Pr

[
BF∗ ⇒ R

]∣∣∣∣. (15)

If B’s challenger chooses b = PR, then B perfectly simulates Ẽnc and D̃ec, because
O = F ∗ in Algorithm 9. Since B outputs the same b′ as A, it holds that

Pr
[
AẼnc,D̃ec ⇒ R

]
= Pr

[
BF∗ ⇒ R

]
. (16)

Subtracting (15) from (14), applying the triangle inequality and making use of
(16) yields

advnAE
Π̃

(A)− advPRF∗

F∗ (B) ≤
∣∣∣∣Pr
[
A$,⊥ ⇒ R

]
− Pr

[
BFuns∗,∗,x→x ⇒ R

]∣∣∣∣. (17)

24

The second reduction D is trying to break the ivE-security of Π by running A
as a subroutine.

Algorithm 10 Pseudo Code for D.

1: for all queries ~Qe
i = (A,P , N) from A with 1 ≤ i ≤ qe do

2: send Pi = P to challenger
3: (C, T)← O(Pi)
4: send (C, T) to A

5: for all queries ~Qd
j = (A,C, N, T) from A with 1 ≤ j ≤ qd do

6: send ⊥ to A

7: return same b′ as A

The pseudo code for D is given in Algorithm 10 and the corresponding frame-
work is illustrated in Figure 13. The adversary D plays the ivE game with his

b
$← {R, PR}

if b = PR:
K3 ← Gen()
O ← EncK3

if b = R:
O $← Funspx→px,x

Challenger D
A

b′

∀ ~Qe
i :

Pi

O(Pi) = (Ci, Ii)

~Qe
1, . . . ,

~Qe
qe

~Qd
1, . . . ,

~Qd
qd

Fig. 13: The wrapping algorithm D tries to win the ivE game on the outside by
using the nAE-adversary A as a subroutine. D outputs the same flag guess b′ as
A.

challenger and again consists of two handlers for the two different types of A-
queries. Upon receiving an encryption query ~Qei from A, D sends the plaintext

Pi to his challenger as a replacement for Ẽnc and gets back the corresponding
ciphertext-IV pair (Ci, Ii). D simply passes this pair to A and thereby misuses

the IV Ii as the tag T . Upon receiving a decryption query ~Qdj from A, D always
answers with ⊥. At the end, D outputs the same b′ as A. The advantage of D
in the ivE game is defined as

advivE
Π (D) =

∣∣∣∣Pr
[
DFunspx→px,x ⇒ R

]
− Pr

[
DEnc ⇒ R

]∣∣∣∣. (18)

Now consider the conditional probability space b = R. By looking at Algorithm 10
and Figure 13, one can see that A’s encryption queries are answered by a truly

25

random function O $← Funspx→px,x and A’s decryption queries are always an-
swered with ⊥. Hence, D perfectly simulates $,⊥. Therefore, it holds that

Pr
[
A$,⊥ ⇒ R

]
= Pr

[
DFunspx→px,x ⇒ R

]
. (19)

Subtracting (18) from (17), applying the triangle equality and making use of
(19) yields

advnAE
Π̃

(A)− advPRF∗

F∗ (B)− advivE
Π (D)

≤
∣∣∣∣Pr
[
DEnc ⇒ R

]
− Pr

[
BFuns∗,∗,x→x ⇒ R

]∣∣∣∣. (20)

It remains to bound the quantity on the right side of (20). For this, we have to
analyze, under which circumstancesDEnc behaves different from BFuns∗,∗,x→x . Let
us first compare the encryption query handlers in Algorithm 10 and 9. Since D is
interacting with Enc, an encryption query ~Qei = (A,P , N) from A is answered
with (C, T)← EncK3(P). Since B is interacting with Funs∗,∗,x→x, an encryption

query ~Qei = (A,P , N) from A is answered with (C, T), where T is chosen

uniformly by O $← Funs∗,∗,x→x and C ← CTR-ETK3
(P). But this is exactly

EncK3
(P). Therefore, both D and B answer encryption queries from A with the

same probability distribution. Now we have to compare the decryption handlers
in Algorithm 10 and 9. D answers all decryption queries ~Qdj from A with ⊥,
whereas B answers with the plaintext P instead of ⊥, if the two tags T and T ′

accidentally match up. T is chosen by the adversary A, whereas T ′ is calculated
by O $← Funs∗,∗,x→x. Let match denote the event, that at least one such a match
occurs during the decryption queries. Then conditioned to the case match, D
always outputs ⊥ and hence DEnc behaves the same as BFuns∗,∗,x→x . With this,
we can rewrite the right side of (20):
∣∣∣∣Pr
[
DEnc ⇒ R

]
− Pr

[
BFuns∗,∗,x→x ⇒ R

]∣∣∣∣

=

∣∣∣∣Pr
[
DEnc ⇒ R | match

]
Pr [match] + Pr

[
DEnc ⇒ R | match

]
Pr
[
match

]

− Pr
[
BFuns∗,∗,x→x ⇒ R | match

]
Pr [match]

− Pr
[
BFuns∗,∗,x→x ⇒ R | match

]
Pr
[
match

]∣∣∣∣

= Pr [match]

∣∣∣∣Pr
[
DEnc ⇒ R | match

]
− Pr

[
BFuns∗,∗,x→x ⇒ R | match

]∣∣∣∣
≤ Pr [match] . (21)

The tag T ′ is uniformly distributed and hence takes the value T with probability
1/2x. For qd distinct decryption queries the union bound gives

Pr [match] ≤ qd
2x
. (22)

26

Combining (20), (21) and (22) proves the lemma:

advnAE
Π̃

(A)− advPRF∗

F∗ (B)− advivE
Π (D) ≤ qd

2x
.

ut

Lemma 3 gives an upper bound for the nAE-security of Π̃ by relating it with the
PRF∗- and ivE-security of the underlying building blocks F ∗ and Π. The main
theorem of the paper (Theorem 1) gives an upper bound for the nAE-security of

Π̃ by relating it with the PRF-security of the underlying PRF E. We now have
everything together to do the proof for Theorem 1 in a straightforward way:

Proof (Proof of Theorem 1). Let B be an adversary incorporating the PRF-
adversary from Lemma 2 and the PRF-adversary from Definition 6. Then substi-
tuting the advantages in Lemma 3 with the bounds in Lemma 2 and Definition 6
yields

advnAE
Π̃

(A) ≤ 2 · advPRF
E (B) + ε · (qe + qd)

2

2
+
q2e · pmax

2 · 2x +
qd
2x
. (23)

ut

The maximum number of allowed plaintext blocks pmax in Theorem 1 is depen-
dent on the bit length of the counter field in the CTR mode encryption. For a
cbit counter (in case of CCM-SIV c = 32 bit), pmax = 2c. So the dominating
term in (23) is

q2e · pmax

2 · 2x =
q2e

2 · 2x−c .

5 Differences to GCM-SIV and Nonce-based Key
Derivation

Our main theorem (Theorem 1) differs from [7, Theorem 4.2] of the 3-key in-
stantiation of the GCM-SIV scheme, where pmax = 2k − 1, the bit length of the
counter is represented as k (instead of c) and the block size is represented as
n (instead of x), by a factor 1/2 in two terms. This is due to the fact that we

upper bound
∑q−1
i=0 i by q2/2 instead of q2.

A modification to a 2-key variant of CCM-SIV is straightforward. Further-
more, an extension to a nonce-based key derivation as proposed in [6, Fig. 2] and
[11, Section 5] to reduce the dominating term q2e · pmax/2 · 2x in Theorem 1 to
QR2 · pmax/2 · 2x (using the PRF-advantage), where Q is the number of distinct
nonces used throughout all encryption queries and R is the maximal number of
repetitions of any nonce in all encryption queries, is realizable.

27

6 Conclusion

We introduced a new nonce-misuse-resistant authenticated encryption scheme
called CCM-SIV, which only uses a single type of PRF as the underlying cryp-
tographic primitive (AES). This makes the scheme compatible with most existing
AES software libraries and hardware accelerators. Since we use three indepen-
dent subkeys, which can be derived from a single master key by a deterministic
pseudo random number generator, no strange internal collisions on the inputs of
the AES block cipher can occur between the MAC generation and the symmetric
encryption parts. Therefore, no modifications have to be applied to circumvent
possible internal collisions. This makes the scheme cryptographically strong and
easy to implement in both hardware and software.

References

1. Bailey, D., McGrew, D.: AES-CCM Cipher Suites for Transport Layer Se-
curity (TLS) (2018), https://tools.ietf.org/html/rfc6655

2. Boeck, H., Zauner, A., Devlin, S., Somorovsky, J., Jovanovic, P.: Nonce-
disrespecting Adversaries: Practical Forgery Attacks on GCM in TLS. In:
Proceedings of the 10th USENIX Conference on Offensive Technologies. pp.
15–25 (2016), http://dl.acm.org/citation.cfm?id=3027019.3027021

3. Boneh, D., Shoup, V.: A Graduate Course in Applied Cryptography. Book
Draft v0.3 (2016)

4. Dworkin, M.J.: SP 800-38C. Recommendation for Block Cipher Modes of
Operation: The CCM Mode for Authentication and Confidentiality. Tech.
rep., NIST (2004)

5. Gueron, S.: Intel® Advanced Encryption Standard (Intel® AES) Instruc-
tions Set - Rev (2012)

6. Gueron, S., Langley, A., Lindell, Y.: AES-GCM-SIV: Specification and Anal-
ysis. IACR Cryptology ePrint Archive (2017)

7. Gueron, S., Lindell, Y.: GCM-SIV: Full Nonce Misuse-Resistant Authenti-
cated Encryption at Under One Cycle Per Byte. In: Proceedings of the 22nd

ACM SIGSAC Conference on Computer and Communications Security. pp.
109–119. ACM (2015), http://doi.acm.org/10.1145/2810103.2813613

8. Gueron, S., Lindell, Y.: Better Bounds for Block Cipher Modes of Operation
via Nonce-Based Key Derivation. Tech. Rep. 702 (2017), https://eprint.
iacr.org/2017/702

9. Housley, R.: Using Advanced Encryption Standard (AES) CCM Mode with
IPsec Encapsulating Security Payload (ESP) (2018), https://tools.ietf.
org/html/rfc4309

10. Iwata, T., Minematsu, K.: Stronger Security Variants of GCM-SIV. IACR
Transactions on Symmetric Cryptology 2016(1), 134–157 (Dec 2016), https:
//tosc.iacr.org/index.php/ToSC/article/view/539

11. Iwata, T., Seurin, Y.: Reconsidering the Security Bound of AES-GCM-SIV.
Tech. Rep. 708 (2017), https://eprint.iacr.org/2017/708

28

https://tools.ietf.org/html/rfc6655
http://dl.acm.org/citation.cfm?id=3027019.3027021
http://doi.acm.org/10.1145/2810103.2813613
https://eprint.iacr.org/2017/702
https://eprint.iacr.org/2017/702
https://tools.ietf.org/html/rfc4309
https://tools.ietf.org/html/rfc4309
https://tosc.iacr.org/index.php/ToSC/article/view/539
https://tosc.iacr.org/index.php/ToSC/article/view/539
https://eprint.iacr.org/2017/708

12. Joux, A.: Authentication failures in NIST version of GCM (Jan 2006)
13. Kresmer, P.: CCM-SIV, Reference C Implementation (2019), https://

gitlab.com/pytrack/ccm-siv

14. Lindell, Y., Langley, A., Gueron, S.: AES-GCM-SIV: Nonce Misuse-
Resistant Authenticated Encryption (2018), https://tools.ietf.org/

html/draft-gueron-gcmsiv-00

15. McGrew, D., Viega, J.: The Galois/Counter Mode of Operation (GCM)
(2004)

16. Namprempre, C., Rogaway, P., Shrimpton, T.: Reconsidering Generic Com-
position. In: Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques. pp. 257–274. Springer (2014)

17. Poledna, S.: Fault-Tolerant Real-Time Systems: The Problem Of Replica
Determinism. Springer (2013)

18. Rogaway, P., Shrimpton, T.: Deterministic Authenticated-Encryption: A
Provable-Security Treatment of the Key-Wrap Problem. In: Advances in
Cryptology–EUROCRYPT. vol. 6 (2007)

19. Rogaway, P., Shrimpton, T.: A Provable-Security Treatment of the Key-
Wrap Problem. In: Advances in Cryptology - EUROCRYPT 2006. pp. 373–
390. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg (May
2006), https://link.springer.com/chapter/10.1007/11761679_23

20. Whiting, D., Housley, R., Ferguson, N.: Counter with CBC-MAC (CCM).
RFC 3610 (September 2003)

29

https://gitlab.com/pytrack/ccm-siv
https://gitlab.com/pytrack/ccm-siv
https://tools.ietf.org/html/draft-gueron-gcmsiv-00
https://tools.ietf.org/html/draft-gueron-gcmsiv-00
https://link.springer.com/chapter/10.1007/11761679_23

	CCM-SIV: Single-PRF Nonce-Misuse-Resistant Authenticated Encryption

