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Abstract. In spite of being a popular technique for designing block ciphers, Lai-
Massey networks have received considerably less attention from a security analysis
point-of-view than Feistel networks and Substitution-Permutation networks. In this
paper we study the beyond-birthday-bound (BBB) security of Lai-Massey networks
with independent random round functions against chosen-plaintext adversaries. Con-
cretely, we show that five rounds are necessary and sufficient to achieve BBB security.
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1 Introduction

Background. Block ciphers, being a crucial cryptographic primitive, have been the
subject of study for decades. The Feistel scheme, considered one of the earliest studied block
ciphers, was demonstrated to be pseudorandom and a strong pseudorandom permutation in
the breakthrough work of Luby and Rackoff [LR88] with three and four rounds, respectively.
Since then, numerous studies have focused on analyzing the security of the many-rounds
Feistel scheme. Patarin and related authors have established various birthday and beyond-
birthday security bounds and designed generic attacks for different numbers of rounds
in Feistel schemes in [Pat98, Pat01, Pat03, Pat04, PNB06, PNB07, TP09, VNP10], along
with numerous other related works.

Lai-Massey Scheme. The Lai-Massey scheme, considered another significant block
cipher, was initially used in [LM90] to propose a cipher known as PES (Proposed Encryption
Standard) by Lai and Massey. In essence, the Lai-Massey scheme, operating on the algebraic
group (G, +), is a permutation on G? characterized by multiple rounds. One round of
Lai-Massey consists of the transformation

(z,y) = (o(x + F(z —y)),y + F(z —y)),

where F' is a round function and ¢ is an orthomorphism. Subsequently, this work was
adapted to develop the block cipher IDEA (International Data Encryption Algorithm)
as discussed in [Lai92]. However, Vaudenay [Vau99] was the first one who provided this
scheme to construct (strong) pseudorandom permutations at Asiacrypt’99. Later, other
ciphers inspired by this scheme, including the MESH family [JRPV03], RIDEA [Yil03],
FOX [JV04], the WIDEA family [JM09], and REESSE3+ [SL14], were built.
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2 BBB security of Lai-Massey

Known Results. While there have been some studies on the (strong) pseudorandomness
of the Lai-Massey scheme, it has received comparatively less attention regarding its security
against general attacks, especially in comparison to the Feistel scheme. There are still
many open questions in this area. In [Vau99], it was proven the three- and four-round
Lai-Massey schemes are pseudorandom and strong pseudorandom permutations up to
O (2%) queries, respectively. Later, it was shown in [LLG10] that three and four rounds
are necessary for this matter as they presented two attacks on 2-round pseudorandomness
and 3-round strong pseudorandomness of the scheme with a constant number of queries.

In [YPL11], Yun et al. introduced a new concept called the "quasi-Feistel cipher" and
showed that both the Feistel and Lai-Massey schemes belong to this family. This suggested
that the Lai-Massey scheme offers no significant advantage over the Feistel scheme in this
context.

In subsequent work, [LLZ17], Luo et al. improved existing attacks, introducing a
3-round attack using O (2%) queries for bijective round functions and O (2") queries for
non-bijective round functions. Additionally, they presented an O (2™) query attack for the

4-round Lai-Massey scheme with non-bijective round functions, and an O 2% ) attack for

non-bijective round functions. Notably, they also introduced an O (2%) query attack for

both bijective and non-bijective round functions in the 5-round case. All of these attacks
target the CPA (Chosen Plaintext Attack) security of the scheme. They concluded by
conjecturing that the Lai-Massey scheme has an advantage over the Feistel scheme within
five rounds, as indicated by the higher complexity required for these attacks.
Additionally, the Beyond-Birthday-Bound security of this scheme has been an open
question for many years. In Crypto’l0, Hoang and Rogaway proved that most of the
well-known types of generalized Feistel schemes achieve BBB security with enough number
of rounds [HR10]. Luo et al. adapted this proof idea to analyze the Lai-Massey scheme
[LLH15]. They used the coupling technique to find a general security bound for the

Lai-Massey scheme. However, security bounds of O ((2”)m) were proven for 3r rounds

(refer to Theorem 2 of that paper), indicating the necessity of 6 rounds for this purpose.

1.1 Owur Contributions

In this paper, we close a gap in known results for the BBB security analysis of Lai-Massey
modes. It was known before that four rounds are necessary [LLZ17] and six rounds are
sufficient [LLH15] for achieving beyond-birthday security. We improve both and show that
five rounds are necessary and sufficient for BBB security (when we are using independent
round functions). We note that our proofs are based on a specific choice of orthomorphism.
However, this orthomorphism has been commonly used in the literature, which supports
our assumption.

Attack. Our first contribution is a chosen-plaintext distinguishing attack on four-round
Lai-Massey (LM4) with independent round functions, which uses only O(2"/2) queries
when the round function has width n bits. Our attack is inspired by the birthday attack on
four-round Feistel [Pat01] and relies on observing that the probability of certain collisions
is doubled in LM4 when compared to a random permutation.

New Proofs. Our second contribution is a proof that a distinguisher making g chosen-
plaintext queries to five-round Lai-Massey (LM5) with independent round functions cannot
have a significant distinguishing advantage until ¢ € ©(2%"/3). The security analysis pre-
sented some non-trivial challenges, owing to the somewhat complicated inter-dependencies
of the internal variables. We overcome this using a novel technique where we first sample
some equality patterns, use these to fix the internal equations, and then proceed to sample
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the internal values. We complete the proof using Jha and Nandi’s formalisation [JN18] of
Patarin’s H-Coefficient Technique [Pat08].

1.2 Related Work

Until now, the security bounds and generic attacks outlined in [LLH15] and [LLZ17]
represent the best-known results in the literature. Yet, various other works, explore
different attacks on the scheme and block ciphers built on it. These include integral attacks
[WZF05], fault attacks [LYSL13], differential cryptanalysis [FJ14], all-subkeys recovery
attacks [IS14], and, more recently, quantum attacks [MGWH22] on this scheme.

Furthermore, there has been some growing attention to this scheme in non-classical
settings [ZWSW23, CS22] in recent years. Additionally, there have been some works in
the recent years to generalize the idea of the Lai-Massey scheme. Shamsabad and Dehanvi
[SD20] generalized the ideas of this scheme into a new cipher, called the Generalized Lai-
Massey scheme (GLM). Independently, Grassi [Gra22] proposed the generalized Amaryllises
construction as a generalization of the Lai-Massey scheme, in which the linear combination
in the Lai-Massey scheme is replaced by a non-linear one.

1.3 Outline

The subsequent sections of this paper are structured as follows. In Section 2, we provide
essential preliminaries, including notation, security notions, and the proof technique we
are using in our main proof. Section 3 introduces our new attack on the four-round
scheme. The proof of BBB security for the five-round scheme, employing the H-Coefficient
Technique, is presented in Section 4. Finally, Section 5 provides a concise summary and
conclusion of our research findings.

2 Preliminaries

Notation. In our notation, the set {1,2,...,m} is denoted as [m]. Tuples of the form
(z1,22,...,24) are represented as x?, with each element z; in the tuple denoted by z|;.
An orthomorphism o on an algebraic group (G,+) is characterized as a permutation
x — o(x) such that the transformation 7(z) := o(z) — z is also a permutation on G.
Random selection from a finite set S is denoted by S <—s S. The execution of an algorithm
A with an oracle accessing the function F is denoted as AF(). A pair of tuples (x4, y?)
is considered function-compatible if, whenever x; = z;, it follows that y; = y;; if the
reverse holds as well, we term the tuple permutation-compatible. Lastly, the expression
N(N —=1)...(N —r+1) is denoted as (N),.

2.1 Security Notions

We will employ the H-Coefficient Technique to analyze the security of the Lai-Massey
scheme. This method relies on the outcomes of the interaction between the distinguisher
and the oracle. Therefore we need some mathematical tools to formalize this interaction,
and for this purpose, we use probabilistic functions.

Definition 1 (Probabilistic Function). A probabilistic function with an input space X
and an output space ) is a function f: R x X — ) for some finite set R, called random
coin space. We also simply write (abusing notation) f: X 5 ) suppressing the notation
for random coin space.

Now we can use definition 1 to establish the definitions of joint response and joint
query functions. Here, we model the query-asking part of the distinguisher as a joint query
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function, asking queries to the oracle interactively and the oracle is modeled as a joint
response function, providing answers to the distinguisher’s queries.

Definition 2 (Joint Response Function). A g¢-joint (X, ) response function is a proba-
bilistic function F : X9 = Y7 such that for all random coin 7, the mapping z? — F(r, 29)|;
is functionally independent of z;41,...,z,.

Definition 3 (Joint Query Function). A probabilistic function A : Y? 5 X9 is called
g-joint (X,)) query function if for all random coin r, the mapping y? — A(r,y?)|; is
functionally independent of y;, ..., y,.

One can observe that there exist functions A; and Fy, i € [g], such that for all y?,
A(r,y?)|; = Ai(r,y* 1) and for all 29, F(r',29)|; = Fi(r', 2%).

Next, we aim to define transcripts. A transcript is the outcome of the interaction
between the distinguisher and the oracle, representing two tuples of queries and their
corresponding responses.

Definition 4 (Transcript). Let A and F be (X, )) joint query function and joint response
function respectively. Let A; and F; be defined as before. We define the transcript random
variable as 7(AF) = (X9,Y9) where X;’s and Y;’s are defined recursively as follows:

Xi=AR Y)Y, =F;(R,X"),1<i<q
and R and R’ are random coins of A and F respectively.

Now, let’s consider a scenario where the response function provides additional informa-
tion S when interacting with the adversary. This, in a sense, enhances the distinguisher’s
advantage in compromising the oracle’s security. We will formalize this concept through
extended transcripts, which we will later use in subsection 2.2 to define the H-Coefficient
Technique.

Definition 5 (Extended Transcript). An S-extended (X,)) joint response function is a
probabilistic function F = (F,S) : X9 i>7yq x §. For any (X,)) joint query function A,
we define the (extended) transcript of AF as

7(AF) = 7(AF) = (7(AF, 5(X) i= (r(A")), S(R, X))

where R denotes the random coin of F and 7(AF) = (X?,Y?). We call S adjoined random
variable to F.

We now possess the necessary tools for the formal definition of the distinguisher. At
a high level, a distinguisher is a combination of a joint query function and a decision
function. The joint query function interacts with the joint response function and generates
some (extended) transcripts. Then, the decision function outputs some decision values
based on the result of the interaction.

Definition 6 (Distinguisher). Let F and G be two (X, )) joint response functions and A
be an (X,)) joint query system with random coin space R. Let b: R x X% x Y7 — {0,1}
be a binary function (also called decision function) We call the pair (A, b), denoted as Ay,
a distinguisher.

e the algorithm A interacts with a joint response function and obtains a transcript
7= (29,y9).

e The function b finally makes a decision based on the transcript and the random coin
initially sampled by A.
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Furthermore, the advantage of A; over response functions F and G is defined as
A4, (F;G) = |PrA} — 1] — PrlAF — 1] (1)
Before introducing the H-Coefficient Technique, a few points should be noted:

o We consider adversaries with unbounded time, subject to limitations on the complexity
associated with the oracle calls.

e As we want to provide some upper bounds for the advantage of any distinguisher
over the two response functions, we assume that the decision-making function b is
optimum and hence A 4, (F; G) = A((R, 7(AY)); (R, 7(A%))). As a result, we can
ignore the b notation.

e One can easily show that nondeterministic distinguishers have no advantage in
comparison to the deterministic ones. Therefore we assume that the distinguishers
are deterministic throughout the paper.

e We assume non-redundancy in distinguisher queries, meaning the response to one
query cannot be derived from the responses to previous queries.

e Our ultimate goal is to analyze the PRP security of the Lai-Massey scheme. This
involves determining upper bounds on the distinguishing advantage of any distin-
guisher over the Lai-Massey scheme and a random permutation when asking for
encryption queries. We introduce the notation Advg ™ (0p) = max 4ca(o,) Aa(F; ),
where A(fp) represents the set of adversaries with data complexity at most 6p, and
7 stands for the random permutation joint response function. In this context, the

only data complexity we consider is the number of queries.

2.2 H-Coefficient Technique

Patarin first explained this technique in his Ph.D. thesis written in French. Later, he
formally described it in SAC 2008 [Pat08]. Before that, Vaudenay mentioned this tool
publicly in his decorrelation theory [Vau03], referring to Patarin’s thesis. Later, Jha and
Nandi published an in-depth survey [JN18] on this technique. They provided H-technique-
based proofs for various popular symmetric-key designs across different paradigms, and we
will use the notations from their survey.

Here, we introduce an extended version of this tool to analyze the security of the
Lai-Massey scheme. The H-Coefficient technique examines attainable transcripts to find
some upper bounds on the maximum advantage any distinguisher can achieve. At a high
level, we categorize the set of all possible transcripts into two groups: good and bad
transcripts, with the former demonstrating favorable characteristics.

Lemma 1 (Extended H-Coefficient Techinque). Suppose that F := (F,S) and G := (G, S")
are two S-extended (X,)) response systems. Let Q0 denote the set of all attainable
transcripts, i.e., the support of Pra. Suppose there is a set Qpaq C 2 such that for all

(l’quqa S) ¢ Qbad;
PriF(z9) = y1,5 = s

Pr{G(zt) = y9,5" = ]
for some € > 0. Then, for any (X,)) adversary A,

A4(F,G) < Pr{(r(A%,8") € Qad] +e.

>1—¢€

We will employ Lemma 1 to prove our main results. The key idea is to define F as the
response function of the oracle accessing the Lai-Massey scheme and G as the response
function corresponding to a random permutation. We will use this technique to derive
bounds for Adv{;5(¢) based on the number of encryption queries.
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Figure 1: Diagram of the Lai-Massey scheme with internal variables labelled as used in
the text. Left: 4-round Lai-Massey. Right: 5-round Lai-Massey.

3 Lai-Massey Mode and New Attack

Here, we formally describe the Lai-Massey scheme and present our attack on its four-round
variant.

3.1 Formal Description

As previously mentioned, the Lai-Massey scheme is a modification of the block cipher
IDEA. Suppose that (G, +) is a group. The scheme is a permutation on G? and consists
of r rounds. Using independent random functions F}, Fs, ..., F,. and an orthomorphism
o on G, the input (xg,y0) € G? of the scheme undergoes sequential processing through
the 7 rounds. In each i-th round, where 1 < i < r, the scheme generates a new tuple
(x;,9;) € G? from (x;_1,y;_1) in the following way:

xi = o(xi—1 + Fi(xi—1 — yi-1))s (2)
Yi = Yi—1 + Fi(xi—1 — yi-1)- (3)
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The r-th and final round is similar to the previous rounds, with the modification that the
o is omitted when determining the value of x,, leading to the modified expression

Ty 1= Tp—1 + F'r'(x'r—l - yr—l)- (4)

The tuple (z,,y,) obtained after the r-th round is the output of the scheme.

In this paper, we consider G as the set of n-bit binary strings, denoted as {0,1}",
with the group operation @. Thus, the + and — operations in (2), (3), and (4) are both
replaced by @ operations. Additionally, we take the orthomorphism

o(z) = o(z¥, 2) = (f 2l @ 2,

where ¥ and z® respectively denote the left and right halves of z. This definition of &
is commonly employed in the literature and is a standard choice for an orthomorphism
on n-bit binary strings. One can easily deduce a few convenient properties of this o as
outlined below in Lemma 2.

Lemma 2. For the o defined above and any x,z’, we have

o Ha) =o(z) @,
o(zr ') =o(x)®o(z)).

o(o(z))

Throughout the paper, we represent the tuple of x; and y; values for various scheme
inputs as L] and R}, respectively. The tuple of outputs of Fy is denoted as X/. Additionally,
we use Ly and Ry; to represent the i-th values for x; and y;, respectively. Similarly, X,
denotes the i-th output of F;.

3.2 Our Attack

In this subsection, we explain our attack on the four-round scheme in detail. One can
notice that this attack can be easily changed to compromise the security of the three-round
scheme too.

Our attacks use O (25) chosen plaintexts. The main idea is to identify a random
variable for which the expected value within the Lai-Massey scheme significantly differs
from its expected value in a random permutation. Patarin originally introduced this idea in
[Pat91] and applied it in [Pat01] to design generic attacks on multi-round Feistel schemes.
This idea was also independently rediscovered in [AV96]. These results indicate that the
four-round scheme does not provide any advantage over the three-round scheme when it
comes to CPA attacks.

Before explaining the attack, we present the following lemma to describe the dependen-
cies between the values in the four-round scheme.

Lemma 3. Let U; and V; be the i-th inputs of Fy and F3 respectively. We can write the
internal values within the scheme in terms of L{, RE, LY, R1, U and V1 in the following
way:

Li; = 07" (Lo; ® Roi & Uy), (5)
Ry =0 (Lo ® Roy) ® o(Uy), (6)
Loi= o (U; & Vi), (™)
Ry = o M (U;) ® o(Va), (8)
Xoi =o(Vi)®U; @ 0~ (Lo; ® Ryy), )
X3 =0 ' (U;) ®V; ®o(Ly; ® Ray). (10)
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Lemma 3 follows from the proof of Lemma 4 in Section 4.3, so we skip the proof
here. Now, we can describe how our attack operates. We introduce a distinguisher .4
(an algorithm) with access to an oracle O, which can be either the four-round scheme
oracle, F(.), or a random permutation, II(.), and the goal is to determine which oracle it
is interacting with. This algorithm works as described in Algorithm 1.

Algorithm 1 Algorithm to distinguish the four-round scheme from a random permutation

Sample m different values (z1, 2, ..., 2;m) from {0,1}" uniformly at random
fori+ 1tom do

(yiy7) + O(wi, 2:)
end for
NG 1<i<j<m, yi ®y; @z =y} Dy ©xj}
Let p be the expected value of N when O is a random permutation, i.e., p =
E[N | O =II(.)]; Return random permutation if N < 2y, and four-round scheme
otherwise.

Theorem 1. The attack described in Algorithm 1 can distinguish the four-round scheme
from a random permutation using m € O (2%) encryption queries.

Proof. We aim to show that the expected value of N during A’s interaction with the
four-round Lai-Massey scheme is approximately twice as much as when it interacts with a
random permutation and both of these values can get significant if A asks up tom € O (2%)
queries.

To demonstrate this, consider the interaction of the distinguisher with the four-round
scheme oracle, i.e., the execution of AF(). Here, the i-th scheme input is Lo; = Ro; = 3,
and the i-th output is Ly; =y} and Ry; = y?. Now, first, recalling the identity o= (z) =
o(z) ® z from Lemma 2, observe that

Lyi ® Ry ® x; = L3; & R3; ® x;
=0(La) ® Ry @0 H(X3i) Dy
=o(c Ui V)®o (Ui) ®o(Vi) ® o (Xa) ® s
=o(U)®o ' (Vi) Do " (X3) ® ;. (11)

So we aim to determine the values U;, V;, and X3; in (11) and identify an equivalent
condition for the equality y! ® y? & x; = le &) yJ2 @ z; to hold. Based on (5), we have

LM :afl(xl@%@Ul) :O'il(Ui). (12)

Furthermore, by using the definition of Ly;, we can write

L1 = 0(Lo; ® Fi(Lo; ® Roi)) = o(z; © F1(0)). (13)
Combining (12) and (13), we obtain
Us; = o(o(z; ® F1(0))) = o Hz; ® F1(0)). (14)

From (11) and (14) we get
Ly ® Ry ®xi=0U) @0 ' (Vi) ®o H(Xs) @y
=z F0)so ' (Vi) @o ' (Xz)
=Fi(0)® o " (V; ® X3). (15)
From (15) we see that Ly, ®Ry; Bx; = Laj P RajSx; if and only if Vi@ X5, = V; @ X3;. This

demonstrates that, within the execution of AF('), the equality yll D yi2 Pz, = yJ1 ® y]2 @ x;
holds in two cases:
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1. when V; = Vj, the outputs of the F3 function are also equal due to identical inputs,
leading to X3; = X3;, and the equality holds;

2. In the second case, when V; # Vj, but the function outputs can still accidentally
satisfy the given equality.

Therefore, the expected value of N during the execution of AF() is roughly double that
during the execution of A™(). Now we may use the Chernoff bound to prove our theorem.
In the case of a random permutation, we have

pﬁN>;”oznu}<m{N—M>;m0=Hm}<zwm—g>(M>

Where the second inequality comes directly from the Chernoff bound, as 0 < % <1. As
per the four-round scheme, one can write

Pr[N>2u|(’):F(.)}:1—Pr{N§§,uO:F(.)]

> 1-pr| V=@l 2 1)

2u
>1-2- —— 1
> exp(—2) (17)
Where the last inequality is derived from the Chernoff bound and the fact that the expected
value of N when the distinguisher interacts with the four-round scheme is roughly 2 - .
Combining (16) and (17), we have

‘Pr [AH(') outputs four-round scheme} — Pr [AF(') outputs four-round scheme] ‘

‘PT{N>§MOH(-)}PT{N>§,L"|OF(')H

M H
>1-2- -——)—-2- - 1
> 12 exp(—45) 2 exp(— ) (18)
Since each equality holds with a probability of approximately 27", we can choose m €
O (25) to ensure that p is a sufficiently large constant, so that (18) achieves sufficiently

large constant values, which proves our result. O

4 Main Result and Proof

In this section, we present some proofs demonstrating that the five-round scheme is secure
up to complexity 2% when the underlying functions are pseudorandom.

The main idea is to use the H-Coefficient Technique and release the inputs of Fy, F3
and Fj for extended transcripts. Before explaining the proof in detail, we express all
information in terms of the transcript values and the inputs of the aforementioned internal
functions.

4.1 Internal Values and Compatibility Conditions

Let the i-th-query inputs of Fs, F3, Fy be denoted as U;, V;, W; respectively. These val-
ues represent the extended parameters within the extended transcripts, serving as the
foundational elements upon which we will establish all other values. Let X;; denote the
i-th-query output of F;. We first recall the following defining equations:

Lyi := o(L—1yi ® Xs),



10 BBB security of Lai-Massey

Ry == R(y—1y; ® Xui,

Ui := L1 ® Ry,
Vi i= Lo; ® Ry;,
Wi = L3; ® Rs;.

By rearranging the above equations through repeated applications of Lemma 2, we obtain
the following lemma.

Lemma 4. If for some i, in addition to the input blocks Lo; and Ry;, and the output
blocks Ls; and Rs;, we know the inner function inputs U;, V;, and W;, we can determine
all the outputs of F' for the i-th query by the following equations:

XufU Y(Loi) @ o(Ro; ® Uy),
o (Lo; ® Ros) & U; ® o(V;),
o N U)oV @ o(Wy),
X4i =o(Lsi® Rs;) @0 (Vi) & W;,
X5 = 0(Lsi) ® 0 Y (Rs; & Wy).

We can also determine the intermediate round outputs by the following equations:

Lii =0 (Lo ® Ro; ® Us), Ri;=0""(Lo; ® Ro;) ® o(Uy),
Ly =0 YUi® V), Ry = o M (U;) ® o(Va),
Lz = o Y(Vi @ Wy), Ry =o' (Vi) @ (W),
Ly =0 (Ls; @ Rs; ® Wi), Ry; = 0(Ls; ® Rs;) @ o~ H(W7).

Function-compatibility demands that we have X;; = X;; whenever the i-th query and
the j-th query have the same input to F;. Then the following corollary follows directly
from Lemma 4.

Corollary 1. The following conditions are mecessary and sufficient for the internal
functions’ inputs and outputs to be function-compatible:

1. if Lo; ® Ro; = Loj @ Roj, then 071 (Lo;) ® o(Ro; ® U;) = 0~ (Loj) @ o(Roj & Uj);
if Uy = Uj, then 0= (Lo; ® Roi) ® (Vi) = 07 (Loj @ Ro;) @ o(V;);

if Vi =V, then o= (U;) ® o(W;) = o1 (U;) & a(W;);

if Wy = W;, then o= (V;) @ 0(Ls; ® Rs;) = 01 (V;) @ o(Ls; @ Rs;);

Sro e e

if Ls; ® Rs; = Ls; ® Rsj, then U(L5i) &) 0_1(R5i ) Wi) = U(sz) ) 0_1(R5j ® Wj)-

A proof of Lemma 4 is given in Section 4.3.

4.2 BBB Security Proof

We can now prove the BBB security of the five-round scheme. As previously described,
we are going to apply the H-Coefficient Technique and release the inputs associated
with functions Fb, F3, and F;. The main challenge is to find a suitable algorithm for
releasing these values in the ideal scheme because they are not well-defined in this context.
Our approach involves initially releasing some of these values randomly, followed by the
construction of graphs based on the newly established conditions. When we already know
that a solution is unattainable within the system, as indicated by the graphs, we will
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release specific bad extended transcripts. Conversely, in cases where a solution is feasible,
we will choose a solution within the system, resulting in a good transcript.

Before moving to the main theorem and its proof, we should provide precise definitions
for some of the terms used throughout the proof.

Definition 7 (Equality Patterns). As we will see, after revealing some of the random
values, certain equalities are imposed on other random variables. We use the term "equality
patterns" to manage this complexity. Suppose we have a sequence of random variables,
X1, X0, ..o, X

An equality pattern is defined as a partition of the index set {1,2,...,m} into equivalence
classes such that for any two indices i, € {1,2,...,m} belonging to the same equivalence
class C}, we have:

Xi =X, foralli,je C.

This implies that all random variables corresponding to indices within the same class
are restricted to take on the same value, thus establishing a relationship that affects their
joint distribution.

Definition 8 (Condition Graphs). Another set of conditions imposed on the random
variables takes the form X; & X; = W, for fixed values of W;; (these conditions do not
apply to all variables). To incorporate both these conditions and the equality conditions,
we employ the following approach.

First, we define the C} equality classes as described earlier. Let there be [ classes,
denoted as C1,C5,...,C;. We construct a graph with [ vertices, each representing an
equality class in the pattern. For each condition of the form X; & X; = W;;, we add an
edge from the vertex corresponding to class C), to class C, with a weight of W;;, where
Cp and C). are the equality classes associated with X; and X, respectively. This graph
is referred to as the condition graph, which we will later use to analyze the relationships
among the random variables and determine if the system of equations is feasible.

We can now proceed to our main theorem:.

Theorem 2.

AdVIE (q) € O <(g> g7y <g) (272 4278y 4 (Z) (273 4 24”)> .

Proof. We break down the proof into three main parts. First, we describe extended
transcripts and how they are released in the ideal and real schemes. Next, we analyze
the bad transcripts and the probability of them occurring in the ideal scheme. Finally, we
examine the good transcripts and determine lower bounds for the ratio discussed in the
H-Coefficient Technique for them.

Extended Systems. Suppose that we have a (L{, RE, L2, R?) tuple as transcript. Let
F be the response system corresponding to LM5 and II be the system corresponding to a
random permutation. We define a ({0,1}",{0,1}",{0,1}"™)%-extended system by adjoining
the internal values U?, V7 and W1. In the case of F, this is well-defined from the definition
of LM5. In the ideal system II, we sample these values according to Algorithm 2.

Now, we proceed to explain the algorithm in detail. This algorithm operates through
several stages:

o First, it selects U? values. It iterates through all the ¢ values, randomly sampling the
variables when they are not constrained by previous variables due to the conditions
outlined in Corollary 1. If prior values impose constraints on a variable, the algorithm
arbitrarily selects one of these values and chooses the predetermined value to assign
to this variable.
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Algorithm 2 Algorithm for releasing the internal values in LM5 BBB security proof
: for i+ 1toqdo
if there is some j < i s.t. Lo; @ Ro; = Lo; ® Ro; then
U; + U(LOi D Loj) @ Ro; @ Roj D Uj > ACCOI‘dng to the corollary 1
else
U; +s{0,1}"
end if
end for
fori«+ 1togqdo
Vi <5 {0,1}"
W, «s {0,1}™
: end for > These are temporary values
: Form condition graphs Gy and Gy for V and W values respectively
cif (L, RE, L, R, U, Gy, Gw) is not a good tuple then
Release some junk values for V¢ and W4
. else
Release one solution from the system of equations and non-equalities that we have
end if

L S S =

e Subsequently, with the values of U9 fixed, we are left with only two sets of unknown
variables, V7 and W9. We proceed to generate temporary values with uniform
sampling for V¢ and W? and identify the equality patterns among these values.

« Now that we have established the equality patterns for V¢ and W4 and selected the
U1? values, according to Corollary 1, it becomes easy to see that all the conditions
can be expressed in the form of V; ® V; = Cy; or W; @ W, = C’l{j. This allows us
to construct condition graphs for the V7 and W1 values, denoted as Gy and Gy
respectively. If the tuple (L{, RE, L, R1, U, Gy,Gw) is deemed as not good (we
will define this term later) we release some junk values for V¢ and W9 such that the
input/output pairs of functions do not get compatible. On the other hand, if this
tuple is good, we proceed to sample a set of values for V¢ and W1 that conform to the
established equality patterns, along with the system of equations and non-equalities
that we have formulated for V¢ and W49 values. These values, in combination with
U1 values, are then released.

Analysis of Bad Transcripts. Let us consider a fixed extended transcript, denoted as
(L, RE, LE, R, U1, V1, W1). Our objective is to define bad transcripts to prevent function
incompatibility within the set of functions F}, Fs, F3, Fy, F5. The algorithm we use to
sample internal values dictates that function incompatibility arises if and only if the tuple
(LE, RE, LY, RI, U, Gy, Gw) is not considered good. Bad tuples lead to the release of junk
values, which cause incompatibility. On the other hand, good tuples ensure that the
released values are consistent with a set of specified equalities and non-equalities.

Therefore, we must establish the criteria for a good tuple of values and graphs, and
calculate the probability that a tuple is bad. A tuple is defined as bad if and only if at
least one of the following events occurs:

badl This event occurs if there exist three distinct indices, denoted as i, j, and k (where
i#7j,7#k,and i # k), such that:

Ls; ® Rs; = Ls; @ Rs; = Lsi, ® Ry

Given that the values of L? and R? are uniformly randomly chosen from all possible



Ritam Bhaumik, Mohammad Amin Raeisi 13

bad2

bad3

bad4

badb

permutations of size g over 2n-bit strings, we have:

A\ -1 2°-2 _[q\ .,
Pribadl] < (7). . < (1) .2,
riba ]—(3> o2 1 220 9= \3

This event occurs if there are three distinct indices 4, j, and k (where i # j, j # k,
and i # k) such that
Uy =U; =U.

To calculate the probability of this event, one can observe that no two values among
Lo @ Ryi, Loj © Roj, and Lo @ Ror should be equal. This is because if any of
them were equal, it would imply that their corresponding U values cannot be equal.
Consequently, these U values have independent probability distributions, and the
probability of this particular event occurring is given by

Pribad2] < (g) g7,

This event occurs if the graph Gy contains a loop (an edge connecting a vertex to
itself). In this case, there exist indices ¢ and j that belong to the same equality
group in the V' values, where either U; = U; or both indices ¢ and j are in the same
equality group in W41,

For two chosen indices ¢ and j, the probability that they belong to the same equality
group in V values is 27". Moreover, the probability that U; = U; is also at most
27", Additionally, the probability that ¢ and j fall into the same equality group in
W is 27™. Given the independence in how we select the values for V¢ and W1, we
conclude that:

Prlbad3] < (g) (227,

This event occurs if a loop is present in the Gy, graph.

This case is similar to the previous one. The slight difference is that a loop is present
if, for two indices 7 and j, they are in the same equality group in the W values, and
either V; = V; or Ls; ® Rs; = Ls; @ Rs;. Therefore, we have

Prlbadd] < <;’) 27 <2“+ 22;_11> < <g) S(2-27%).

This event occurs if there is a multi-edge (two edges connecting the same vertices) in
the Gy graph. Such an event may occur in the following situations:

e When U; = U; and both indices ¢ and j belong to the same equality group
within W2, the probability of this scenario occurring is at most (‘21) .72,

e When indices j and k are members of the same equality group within V¢ with
probability 27", and two conditions hold: one involving indices 7 and j (where
either U; = U; with probability at most 27", or 7 and j share the same equality
group within W with probability exactly 27™), and another condition relating
to indices ¢ and k. The independence used in sampling U9, V7 and W1 values
causes the probability of this event to be at most 4 - ¢ - (q;l) .73,

o This case involves the following conditions: indices ¢ and j belong to the same
equality group in V9, as do indices k and [. Additionally, there should be one
condition relating to indices ¢ and k, and another condition for indices j and I.
Hence, the probability of this scenario is at most 4 - (%) - (¢ —2) - (¢ — 3) - 27",
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So overall, we have

Pr(bads] < (g) 27 44 (q;1> 273 4. (g) (q—-2)-(g—3) 274

q —2n q —3n q —4n
< . . . . . .

bad6 This event represents the presence of a multi-edge in the W graph.

Using the same analysis as the previous case, we have
qQ\ . 2"—1 g—1\ . (. 2m—1\?
Pr[bad6] < -27" . 2T 2T ———
riba ]—<2> g1 1 ( 2 > ( o
2
q omn Cn 2 —1
(g —2)-(g—13)-2 (2 L -2
() a2 ey e (e 220

q —2n q —3n q —4n
< -2 12 - -2 48 - -2 .
() ez (5) 2 ()

bad7 This event is a representative of the existence of a P3 (path graph with three vertices)
subgraph in the Gy graph. Such a subgraph can be found in the Gy graph in the
following cases:

e When two conditions are satisfied, one involving indices ¢ and j (where either
U; = Uj or both indices belong to the same equality group within W?), and
the other concerning indices j and k, the probability of this case is at most
(1) 2

e When two conditions are met: one involving indices ¢ and j, and the other
involving indices k and [, with the added requirement that indices 7 and k
belong to the same equality group within V9. The probability for this case is
around 4 - (4) - (¢ —2) - (¢ —3) - 27"

As a result, we have

Pribad7) <4 ¢ (";1) 9y (g) (g-2)-(g—3) -2

q —2n q —3n
<12. -2 48 - L2700,
<2 (5) e 3)

bad8 This event is for the presence of a Ps subgraph in the Gy graph.

Using the same analysis as the previous event, we obtain

<o (1) (27 )
+<g)-(q—2).(q—3).(2_n+22;__11>2.

q —2n q —3n
<12- -2 48 - -2 .
<o () e ()

bad9 This event occurs if there are three distinct indices 4, j, and k such that they are all
members of the same equality group within either V¢ or W4.

We can easily conclude that

Prbad9] < 2- (g) .97,
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We can summarize the previous case studies into the following lemma:

Lemma 5. If we release the extended transcripts as described, we obtain the following
bound for the bad transcripts:

Pr [(7(A™, U9, VI, W) € Qpqq] = Pr[badl U bad2U ... bad9
< (6-(3)-2_2"+-<§)-(28-2_2"—k24-2_3")+-(i>~(96-2_3"4—96-2_“U>.

Analysis of Good Transcripts. Consider a fixed good transcript (L{, R, L2, R, U4, VI, W1),
and let r1,7r9,7r3,74, and r5 represent the number of distinct inputs for the functions

F1, Fy, F5, Fy, and F5, respectively. Let r denote r1 + r2 4+ r3 + 74 + 5. In the real scheme,

the probability of observing this transcript is given by

Pr[F(L§, RY) = (L3, R3),S' = (UL, VI, W) = (27")". (19)

In the ideal scheme, this probability is

1
Pr[H(Lg7R8) = (Lg’ Rg)a S= (qu qu Wq)] = (22n) ' PI‘[S = (Uq’ Vq’ Wq)} (20)
q
To apply the H-Coefficient Technique, it is necessary to find some lower bounds for the
ratio EQ—O One can observe that

(19) 27" (2),
(20) ~ Pr[S = (0%, V4, W)]
(27")" - (22")q
(2_”)7"1 -PI‘[(SQ,SP,) = (Vq,Wq) I S, = Uq]
= (27’”’)7“77‘1 ' (22n)(1 (21)
PI"[(SQ,S3) = (Vq7Wq) ‘ Sl = Uq] ’
To compute the probability Pr[(S2,S3) = (VI,W19) | S; = UY], observe that we first
select the equality pattern, and then we choose one solution for the system of equations
and inequalities. Therefore, it is essential to establish bounds for both the probability
associated with the equality pattern of V¢ and W7 and the number of solutions to the
system of equations and inequalities.
The probability of obtaining a given equality pattern for V4 is (27™)97"s . 2;: L. 27;: 2.

e % Similarly, the probability of obtaining a given equality pattern for W49 is
(27m)a T4 22;1 . 22;2 e -2 ;ff“. Therefore, we have
(21) = @y (@), P
(2-m)a-rs . 22;1 . 2’;;2 A 2"*223+1 - (2-m)a-Ta . 22;1 . 2’;;2 A 2"*224+1

Where P* represents the number of solutions of the system. Thus we have

(2 n)r r1 (2271) . p*

(21) = o -
o S B
_ ( n)r 1 (22n) (2n)7‘3 . (2”)”
( )q e (2 )q - 2n)r3 ’ (2n)r4
(2 ")7’ 1 (22n) P*

= @y @), @0, (22)
(19)

We now aim to compute P* and examine (22) to determine a lower bound for @0
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In the graph Gy, there are r3 vertices and exactly m = 2q — (ro + r4) edges. Initially,
we assign values to single edges. For the first edge, we have 2" choices. For the second
edge, we have a minimum of 2™ — 4 choices because none of the vertices of this edge can
be equal to the previous one. Subsequently, for the third edge, we will have at least 2™ — 8
choices, and so on. Following this, we choose values for the individual vertices. For the
first single vertex, we have at least 2" — 2m choices, and for the second single vertex, we
have at least 2" — 2m — 1 choices, and so forth. Therefore, the total number of solutions
for V9, denoted as Py, is at least:

Py >2m(2" —4)(2" —8) ... (2" —4(m — 1)) - (2" — 2m)yy _2m
=427 42" 2 1) -4 (22— (m— 1)) (2" — 2M) s —2m
=4™ . (2"72), - (2™ = 2m) s _2m. (23)

Applying the same reasoning, we can determine a lower bound for the number of solutions
for W4, which is denoted as Py,

Py > 4™ (27720 (27 = 2m) s o (24)
By combining equations (23) and (24) to establish a lower bound for P*, we obtain

(27) (220 - Py - Py
(2727)9 - (2")ry - (21
(2771)7"77‘1 . (22n)q . 4m+m' . (2n72)m . (2n72)m/
(272m)9 - (2™)2m - (2)2m
B (2—n)4q—(m+m’) . (22n)q . 47n+m’ . (Qn—Z)m . (2n—2)m,
(2727)9 - (2")2m - (27) 2w
= (2—2n)q . (2”)2m . (2n)2'm/

(22) =

q on m+m’ | 4m+m' . 2n72 m - 27172 m
22n (2n)2m . (2n)2m’
Now, consider that increasing m by one multiplies the fraction by (an;mf (T;;glz%l) , which

22N _ gy .0M 3 s 3 q - .
ST 3 (Am2 FIm—a) As m is increased from 0 to 2, this fraction
first increases and then decreases. Therefore, we only need to consider two cases: either
m =m' =0 or m=m'=  because increasing either m or m’ from 0 to Z results in the

2
fraction either increasing or decreasing.

can be simplified to

q
If we set m = m’ = 0, the probability is greater than or equal to 1 — 53), which leads
to the desired result. However, in the case where m = m/ = £, we have

(0)) 21747 22, - (272),
2) 2 ( - ) @, @,

(27)9 . (2M)2(2" — 4)% ... (2" — A4 - 1))
(2")q - (2™)q

N <1<)> (217 (27)(2" = 2)(2" — 4)(2" = 6)... (2" — 2(q — 1)
- 22n

(Qn)q . (2”)q
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(-3 IS

O)(,_ & @
> (1 - 2) (1 St )> | 0

We aim to establish the security of the scheme for up to 2% queries. Consequently, we
can assume that 2™ — ¢ > 2™ — 2% > 27, and thus, we have

e(-8)(-£5)
(B (EE)

Inequality (27) demonstrates that we achieve the desired lower bound in this case as well.
This leads us to the following lemma for the good transcripts:

Lemma 6. We can establish the following lower bound for the previously discussed ratio

Pr{F(LE, RY) = (LL, RY),S' = (UL, Ve, W) _ ((3) s )
= 22n 22n | °

Pr[II(LY, RY) = (L, RY),S = (U1, Ve, W4)]

By combining Lemma 5 and Lemma 6, we can derive the result using the H-Coeflicient
Technique. O

4.3 Proof of Lemma 4

We first express the value X3, in terms of the provided values:

Ui = 0(Loi) ® Ro; ® 0~ (X1;)
— J_I(XU) = J(L()i) @ Ro; ® U;
— Xli = O'il(LOi) D U(ROi) D O'(U1) (28)

Next, we see that

Vi =0(L1;) ® Ry @ o~ 1 (Xa;)
(0(Lo; ® X15)) ® Roi ® X1; ® 0~ (Xas)
=0 ' (Lo;) ® o™ (X1:) ® Roi ® X1, ® 0 (X2)
(Loi) ® 0(X1;) ® Roi @ 0~ (Xa)
“H(Loi) ® (07 (Loi) ® 0(Ro) @ 0(Uy)) & Roi & 0" (Xai)
= 071(L01) ® Loi ® 0 Y(Ro;) @ o Y (U;) ® Ry @ 0~ (Xo)
= 0 (Loi ® Roi) ® o (U;) ® 0 (Xa:).

(28)

Then we can find the value of X5; as

o (X)) =0(Loi @ Ro;) @0 H(Uy) @ V;
= Xo; =0 (Lo ® Roi) ® Ui @ (V). (29)

Based on (28) and (29), we can deduce the values of Ly;, R1;, Lo;, and Ra; too as

Ly = 0(Lo; ® X14)
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28

= o(Lo; ® 0~ (Los) ® 0(Roi) @ o (U;))

= 0(0(Lo; ® Roi ® U;)) = 0~ *(Lo; ® Roi © Uy); (30)
Ri; = Roi © Xy

(2:8) Ro; ® Cfil(LoZ’) S5 U(ROi) S O'(Ui) = Uﬁl(LOi @ ROi) S U(Ui)§ (31)
Loi = 0(L1; ® Xo;)

mﬁmda(LeMm@U) o~ (Loi ® Ros) ® Ui @ 0(V;))

=o(o(Ui® Vi) =0 (Ui & Vi); (32)

Ryi=0""U)® U(Vi)~ (33)

Next we write W; in terms of the known values:

W; = Ls; ® Rs;
= 0(Lo;) ® Ro; ® 0 (X3;)
(32),(33) Uia Vi@ o Y (U) @ o(Vy) @ o~ (Xs:)
o(Ui) & ( i) @ o (Xs)
= O'_l(Xgﬂ) =)@ (V) o W;
o~ wa@%@omﬂ. (34)

Then we can find the values of Lz; and Rg;:

U(LQz @ X31)

© LY oo U @ Vi) @ 0 (U2) & Vi @ o (W)
=o(c(V;oW;) =o NV, & W)); (35)
Rsi =0 " (V;) ® o(W;). (36)

One last observation is

Ls; @ Rs; = La; @ Ry,
= 0(L3;) ® R3; ® 0 *(Xui)
(38),(36)

VioW,®o~ ( D ©o(Wy) @ o H(Xa)
=o(Vi))@o ' (Wi) & o ' (Xu)
= 0N (Xyi) = Ls; ® Rs; ® o(Vi) @ 0~ (W)
- X4 =0(Ls; ® Rs;) Do~ (V;) o W;. (37)

This allows us to calculate
U(LSZ D X47,)

LD (0 (Vi @ Wi) @ 0(Lsi @ Rs) @ 0~ (Vi) @ W)
o(o(Ls; ® Rsi ® W;)) = 0~ (Ls; ® R & Wy); (38)
(Lgn P R{n) Do~ (Wz) (39)

>
\_/

Finally, we can determine the value of X5; as

Xs5i = Rs5; @ Ray
= R5; ® R3; ® Xu4;
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36),(37 _ _

(0L )R5z‘€90 W) @o(W) @ o(Ls ® Rei) @0 1 (Vi) @ W,

= O'(L5i) (&) O'_I(Rgn‘) D O'_l(Wi). (40)
This completes the proof of Lemma 4. O

5 Conclusion

In this work, we analyzed the Lai-Massey scheme as initially introduced in [LM90, Vau99]
and improved the existing security bounds for this scheme. Specifically, we demonstrated
that five rounds are necessary and sufficient for achieving BBB security. Our findings
highlight new open problems in the literature, offering interesting directions for future
research:

e Our results indicate that five rounds suffice for achieving BBB security against
chosen-plaintext adversaries. However, security against chosen-ciphertext adversaries
remains unexplored. An essential open problem is determining the optimal number
of rounds required for achieving BBB security in this context. We note that the idea
of carefully sampling the ideal values and building a condition graph to apply the
H-technique might also be developed for the case of SPRP security. In this scenario,
special attention should be given to the W values, as the adversary may impose
conditions on these values based on the Ls and R5 values, and then construct graphs
for the V values. Previous proofs have not been generalized for the BBB proof of the
scheme, as they simply avoided collision. However, with this idea, one could attempt
to address the SPRP security proof of the scheme as well, which opens the path to
further research.

e Our four-round scheme attack suggests that O (2%) represents the optimal security
bound for PRP security in the LM4 scheme. However, no tight security bounds
are available for a greater number of rounds or different security notions, posing
an open problem in the literature. Addressing this problem not only resolves the
minimum necessary number of rounds for optimal security but also explores whether
the Lai-Massey scheme holds any advantage over the Feistel scheme in terms of
security bounds.

e We designed an attack for a commonly used orthomorphism permutation. A key
question remains: can the ideas we have discussed here be applied to all linear or
even all orthomorphism permutations?
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