
Sailfish: Towards Improving the Latency of DAG-based BFT

Nibesh Shrestha
n.shrestha@supraoracles.com

Supra Research

Rohan Shrothrium
rohan@kurulabs.xyz

Kuru Labs

Aniket Kate
aniket@purdue.com

Purdue University / Supra Research

Kartik Nayak
kartik@cs.duke.edu

Duke University

Abstract—Directed Acyclic Graph (DAG) based BFT protocols
balance consensus efforts across different parties and maintain
high throughput even when some designated parties fail. How-
ever, existing DAG-based BFT protocols exhibit long latency to
commit decisions, primarily because they have a leader every
2 or more “rounds”. Recent works, such as Shoal (FC’23) and
Mysticeti, have deemed supporting a leader vertex in each
round particularly difficult, if not impossible. Consequently,
even under honest leaders, these protocols require high la-
tency (or communication complexity) to commit the proposal
submitted by the leader (leader vertex) and additional latency
to commit other proposals (non-leader vertices).

In this work, we present Sailfish, the first DAG-based BFT
that supports a leader vertex in each round. Under honest
leaders, Sailfish maintains a commit latency of one reliable
broadcast (RBC) round plus 1δ to commit the leader vertex
(where δ is the actual transmission latency of a message) and
only an additional RBC round to commit non-leader vertices.
We also extend Sailfish to Multi-leader Sailfish, which facili-
tates multiple leaders within a single round and commits all
leader vertices in a round with a latency of one RBC round plus
1δ. Our experimental evaluation demonstrates that our proto-
cols introduce significantly lower latency overhead compared
to existing DAG-based protocols, with similar throughput.

1. Introduction

Byzantine fault-tolerant state machine replication (BFT
SMR) protocols form the core underpinning for blockchains.
At a high level, a BFT-SMR enables a group of n parties to
agree on a sequence of values, even if a bound of up to f
of these parties is Byzantine (arbitrarily malicious). Owing
to the need for efficient blockchains in practice, there has
been a lot of recent progress in improving the key efficiency
metrics namely, latency, communication complexity, and
throughput under various network conditions. Assuming the
network is partially synchronous, existing SMR protocols
can commit with a latency overhead of 3δ (where δ rep-
resents the actual network delay) [11], [12], [22] and also
achieve linear communication complexity [37], [51] under
optimistic conditions (such as an honest leader).

Most of these protocol designs rely on a designated
leader who is the party responsible for proposing transac-
tions and driving the protocol forward while other parties

agree on the proposed values and ensure that the leader
keeps making progress. From an efficiency standpoint, this
approach results in two key drawbacks. First, there is an
uneven scheduling of work among the parties. While the
leader is sending a proposal, the other parties’ processors
and their network are not used, leading to uneven resource
usage across parties. Second, in typical leader-based pro-
tocols progress stops if the leader fails and until it is
replaced. Several techniques proposed in the literature can
potentially mitigate these concerns. These include the use of
erasure coding techniques [2], [41] or the data availability
committees [26], [27], [49] to disseminate the data more
efficiently.

Recently, a novel approach known as DAG-based BFT
has emerged [5], [18], [28], [33], [34], [46], [47]. These
protocols enable all participating parties to propose in paral-
lel, maximizing bandwidth utilization and ensuring equitable
distribution of workload. Additionally, because each party
is responsible for disseminating its own transactions, the
protocol continues to progress in constructing the DAG
even if a party fails during a round. Consequently, these
protocols have demonstrated improved throughput compared
to their leader-based counterparts under moderate network
sizes [19], [46]. However, existing DAG-based protocols
incur a high latency compared to their “leader-heavy” coun-
terparts [12], [22], [30], [37], [51]. Is high latency inherent
for such DAG-based protocols? Addressing this question is
the key goal of this paper.

All existing DAG-based protocols progress in rounds. In
each round, every party can create a potential DAG vertex
containing transactions, with edges pointing to vertices from
previous rounds. These protocols rely on committing a des-
ignated “leader vertex” and order other non-leader vertices
in the DAG. Therefore, the frequency with which leaders are
designated and how fast the leader vertices are committed
directly influences the commit latency.

Supporting a leader vertex in each round. State-of-the-
art protocols designate leaders once every two or more
rounds, and in fact, deem supporting a leader vertex in
each round particularly difficult. In their words, Shoal [45]
writes, “Our attempts to solve the problem by delving into
the inner workings of the protocol and exploring complex
quorum intersection ordering rules have not been fruitful.
Intuitively, this is because ... ”. Similarly, Mysticeti [4]

TABLE 1: Comparison of DAG-based BFT protocols, after GST

RBC
Used

LV Commit
Latency

NLV Commit(1)
Latency

Communication
Complexity

Leader
Frequency

Multiple
Leaders

NLV Latency (2)

Under Failure

Bullshark [46], [47] Das et al. [21] 8δ +8δ O(n3) 1/2 ✗ +(8∆ + 8δ)
Shoal [45] Das et al. [21] 8δ +4δ O(n3) 1 ✓ +(8∆ + 4δ)
Cordial Miners [34] None 3δ +3δ O(n4) 1/3 ✗ +6∆
Mysticeti [4] None 3δ +3δ O(n4) 1/3 ✓ +6∆

Sailfish Das et al. [21] 5δ +4δ O(n3) 1 ✓ +(8∆ + 2δ)
Sailfish Abraham et al. [1] 3δ +2δ O(n4) 1 ✓ +(4∆ + 2δ)

LV implies leader vertex. NLV implies non-leader vertex. We use the erasure-coded reliable broadcast from Das et al. [21] which incurs 4
communication steps and O(n2) communication complexity to propagate O(n)-sized message. Bullshark (and Shoal) can also use RBC protocol of

Abraham et al. [1] to achieve a commit latency of 4δ for leader vertices and additional 4δ (2δ for Shoal) for non-leader vertices. (1) This column lists
the additional latency to commit non-leader vertices that share a round with the previous leader vertex; the commit latency of these vertices is the

maximum among non-leader vertices between two leader rounds. (2) The column lists the increase in latency to commit non-leader vertices when a
single Byzantine failure occurs between honest leaders.

states, “Unfortunately, it is not trivial to increase the number
of slots, as the commit rule of Bullshark relies on the fact
that every proposer slot has a link to every other proposer
slot, something that is not possible even if there is a single
proposer per round, let alone n”. Here, a slot implies a
leader in our context.

Sailfish designates a leader in every round, thus helping
improve the consensus latency. We fundamentally address
the challenges described by prior works by introducing the
notion of a no-vote-certificate that allows a leader to either
link to the leader vertex of the previous round or prove, via a
no-vote-certificate, that sufficient parties did not vote for the
vertex. This ensures the leader vertex cannot be committed
by any other party, making it safe to ignore the vertex.

Improving latency for committing vertices. Sailfish re-
lies on disseminating vertices using reliable broadcast
(RBC) [9]. A leader vertex is committed when a 2f + 1
quorum of parties acknowledges the delivery of the leader
vertex (where f is the maximum number of Byzantine
faults). Due to this, the leader vertex can be committed with
a latency of 1RBC plus 1δ. With support for a leader in every
round, this enables us to commit the non-leader vertices with
just an additional RBC. When employing the optimal latency
RBC [1], Sailfish incurs only 3δ to commit the leader vertex,
effectively matching the best latency achieved by classical
approaches [12].

To further improve latency, we introduce Multi-leader
Sailfish to support multiple leaders within the same round.
We categorize these leaders as the main leader and sec-
ondary leaders. The main leader’s role is the same as in
Sailfish: its leader vertex must link to all leader vertices from
previous round or include a no-vote-certificate for some
missing leader vertices. Multi-leader Sailfish allows multiple
leaders to be committed with a latency of 1RBC plus 1δ.

Evaluation. We implement and evaluate the performance of
Sailfish, comparing it with state-of-the-art DAG-based pro-
tocols. In our evaluation, we observe that Sailfish achieves
approx. 25% lower latency than Bullshark [46], [47] and
approx. 20% lower than Shoal [45], with slightly better
throughput. This improvement stems from Sailfish’s support
for a leader vertex in each round and its ability to commit

the leader vertex with one RBC plus 1δ, and an additional
RBC to commit the non-leader vertices.

We also evaluate the performance of Multi-leader Sail-
fish. Our results indicate that in failure-free cases, the aver-
age latency of the protocol reduces with the increase in the
number of leaders in a round as more vertices are committed
with a latency of one RBC plus 1δ.

Organization. In Section 2, we discuss the technical
overview. In Section 3, we present the system model and
preliminaries. Sections 4 and 5 present the core Sailfish
protocol and the Multi-leader Sailfish protocol respectively.
Section 6 presents an evaluation of both of these protocols.
Finally, we discuss related works in Section 7.

2. Technical Overview

In the following, we first discuss the core structure
involved in a DAG-based protocol, then describe the latency
of the state-of-the-art protocols compared to ours, and then
explain the key challenges and our contributions.

Typical structure of DAG-based BFT. A DAG-based
BFT progresses through a series of rounds. In each round
r, each party makes a proposal, represented as a DAG
vertex. The vertex includes references to at least 2f + 1
vertices proposed in round r−1. These references form the
edges of the DAG. The edges and paths formed from these
edges are used for committing vertices in the DAG. Many
DAG-based protocols [33], [45], [46] rely on a reliable
broadcast protocol (RBC) to disseminate the vertices; this
ensures non-equivocation and guaranteed delivery. Depend-
ing on whether a communication-optimal [21] or latency-
optimal [1] RBC protocols are used, the RBC would incur
a latency of 4δ and 2δ respectively.

Partially synchronous DAG-based protocols rely on des-
ignated parties called leaders to commit vertices. In these
protocols, the vertices proposed by the leaders (leader ver-
tices) are committed whereas non-leader vertices are ordered
as part of the causal history of leader vertices.

Latency in state-of-the-art partially synchronous DAG-
based BFT protocols. The state-of-the-art partially syn-
chronous DAG-based protocols are Bullshark [46], [47],

2

Shoal [45], Cordial miners [34] and Mysticeti [4]. We elab-
orate on the results obtained by these protocols in Table 1.

In Bullshark, each round employs an RBC to dissemi-
nate the proposal, and a leader is assigned every 2 rounds.
The round after the leader round serves to “vote” the leader
vertex; hence called the voting round. Thus, committing the
leader vertex requires two RBC rounds. On the other hand,
non-leader vertices that share a round with previous leader
require a minimum of 4 RBCs.1

Shoal introduced a “pseudo-pipelining” technique to re-
duce the commit latency of non-leader vertices by employ-
ing multiple instances of the Bullshark sequentially, ensuring
that a leader vertex is present in every round. However, their
protocol relies on Bullshark to commit some vertex before
initiating a new instance with a leader in the next round. If
Bullshark fails to commit, Shoal requires an additional two
RBCs to initiate a new instance, which undermines its ability
to guarantee a leader vertex in every round. While Shoal
uses leader reputation [13] to elect good leaders and ensure
a leader vertex in each round, we view reputation system
as orthogonal to consensus with its own set of limitations
(detailed in Section 7); it is crucial to study these protocols
purely from the consensus standpoint. Furthermore, Shoal
inherits 2 RBCs latency for committing the leader vertex.

Cordial Miners recently improved the latency of DAG-
based BFT protocols by using best-effort broadcast (BEB)
instead of RBC. They achieved a commit latency of 3δ for
leader vertices and 6δ for non-leader vertices that coincide
with the leader round, with the leader round repeating
every 3 rounds. Building on this, Mysticeti [4] adds support
to accommodate multiple leaders within a single round
and commit multiple leaders from the same round during
the optimistic cases (with no guarantee these vertices be
committed). However, when the Byzantine parties “selec-
tively” send their proposals only to some honest parties,
Mysticeti incurs additional latency to download to missing
vertices. Additionally, both protocols maintain a commu-
nication complexity of O(n4) per round (where n is the
number of parties).

Challenges and Key Contributions
In this work, we focus on DAG-based BFT protocols

that use RBC. One crucial advantage of these protocols is
their ability to offer a range of communication complexities
and commit latencies by leveraging existing RBCs from the
literature. To the best of our knowledge, existing DAG-based
protocols do not truly support a leader vertex in every round,
and those relying on RBC necessitate a minimum of 2 RBCs
to commit the leader vertex. To address these concerns, we
introduce Sailfish, the first DAG-based BFT protocol that
achieves support for a leader vertex in each round while
achieving a latency of 1RBC plus 1δ time to commit the
leader vertex, along with an additional RBC to commit the
non-leader vertices. When employing the optimal latency
RBC [1], Sailfish incurs only 3δ to commit the leader

1. These non-leader vertices are committed when the next leader vertex
is committed, resulting in a commit latency of 4 RBCs.

vertex, effectively matching the best latency achieved by
classical approaches [12] and DAG-based BFT not relying
on RBC [4], [34]. When using a communication-optimal
RBC [21], our protocol incurs 5δ latency to commit the
leader vertex. Compared to the state-of-the-art DAG-based
BFT that rely on RBC, Sailfish improves the latency for
committing leader vertices by at least 1δ (when using [1])
and 3δ time (when using [21]). Additionally, compared to
DAG-based protocols relying on BEB, Sailfish improves the
latency to commit the non-leader vertices by at least 1δ
(when using [1]).

The key technical challenge. In DAG-based protocols, a
crucial safety invariant that needs to be maintained is: when
a round r leader vertex vk is committed by an honest party,
the leader vertex of any round r′ > r should have a path to
vk. In earlier protocols, vk is committed when a sufficient
(f + 1 or more) round r+ 1 vertices have a path to vk and
the safety invariant is achieved by having a leader vertex in
every two or more rounds. As a round r+2 vertex has paths
to 2f + 1 round r+ 1 vertices, a round r+ 2 leader vertex
will trivially have a path to vk. Similarly, the leader vertex
of round r′ > r + 2 will have a path to vk. However, the
round r + 1 leader vertex lacks paths to other round r + 1
vertices. Consequently, even if vk is committed, the round
r + 1 leader vertex cannot establish a path to it via other
round r+1 vertices. The only way it can form a path to vk
is by awaiting its delivery. However, waiting for vk to be
delivered poses liveness concerns. Alternatively, if the round
r+1 leader vertex is proposed (after a timeout), it can lack
a path to vk even when other parties have committed vk,
violating the safety requirement. This is the key challenge
when supporting a leader vertex in each round.

Towards having a leader vertex in each round. Our
solution to the above challenge is as follows: in our protocol,
we mandate the round r + 1 leader vertex to have a path
to vk or contain a proof that shows a sufficient number of
honest parties did not vote for vk. When such a proof exists,
we can guarantee vk cannot be committed; it is thus safe
for the round r + 1 leader vertex to lack a path to vk.

The requirement for the round r + 1 leader vertex to
wait for vk or the proof marginally increases the timeout
duration a party has to wait in a round compared to existing
protocols, potentially impacting latency under failures. To
address this concern, we conduct a thorough analysis of
the latency. Our analysis indicates that despite the increased
timeout, our latencies outperform the state-of-the-art in the
presence of a single Byzantine failure between honest lead-
ers (see Table 1).

Towards improving the commit latency to 1RBC plus
1δ for leader vertices. In a typical RBC protocol [9], [21],
[39], the sender first sends its value to all other parties, fol-
lowed by multiple rounds of message exchanges among the
parties. When the sender is honest, the first value received
from the sender is the value that is eventually delivered.
We rely on this observation and decide based on the first
received values of the round r + 1 vertices, i.e., we do not

3

require the RBC of round r + 1 vertices to be delivered
to commit the round r leader vertex. However, when the
sender is faulty, the first value received from the sender
can be different from the final delivered value. In order to
account for such Byzantine behavior, our protocol commits
the round r leader vertex only when 2f + 1 round-(r + 1)
vertices have paths to the round r leader vertex. Out of the
2f + 1 first messages for the round r + 1 vertices, at least
f +1 are sent by honest parties which will be delivered by
all honest parties.

This approach ensures the safety invariant while en-
abling our protocol to commit the leader vertex with a
latency of 1 RBC plus 1δ, and an additional RBC to commit
the non-leader vertices. We further note that this optimiza-
tion is unique to our protocol and does not apply to the other
protocols as it can cause liveness concerns. We provide the
intuition behind this reasoning in detail in Section 4.

Towards supporting multiple leaders in a round. In order
to improve the latency for multiple vertices, we extend
Sailfish to support multiple leaders within a single round. We
categorize these leaders as the main leader and secondary
leaders. The primary role of the main leader remain identical
to that of Sailfish: its leader vertex must either establish
a path to all leader vertices from the previous round or
contain a proof that some missing leader vertices cannot be
committed; thus maintaining the safety invariant. We term
this extended version Multi-leader Sailfish.

The commit rule closely resembles that of Sailfish, with
some additional constraints. In an ideal scenario where all
leaders are honest, the respective leader vertices can be
committed with a latency of one RBC plus 1δ.

3. Preliminaries

We consider a system P := P1, . . . , Pn consisting of n
parties out of which up to f = ⌊n−1

3 ⌋ parties can be Byzan-
tine. The Byzantine parties may behave arbitrarily. A party
that is not faulty throughout the execution is considered to
be honest and executes the protocol as specified.

We consider the partial synchrony model of Dwork et
al. [25]. Under this model, the network starts in an initial
state of asynchrony during which the adversary may arbitrar-
ily delay messages sent by honest parties. However, after an
unknown time called the Global Stabilization Time (GST),
the adversary must ensure that all messages sent by honest
parties are delivered to their intended recipients within ∆
time of being sent. We use δ to characterize the actual
(variable) transmission latencies of messages and observe
that δ ≤ ∆ after GST. Additionally, we assume the local
clocks of the parties have no clock drift and arbitrary clock
skew.

We make use of digital signatures and a public-key
infrastructure (PKI) to prevent spoofing and replays and
validate messages. We use ⟨x⟩i to denote a message x
digitally signed by party Pi using its private key.

Byzantine reliable broadcast. We use Byzantine reliable
broadcast (RBC) as a building block. In an RBC, a des-

ignated sender Pk invokes r bcastk(m, r) to propagate its
input m in some round r ∈ N. Each party Pi then outputs
the message m via r deliveri(m, r, Pk) where Pk is the
designated sender and r is the round number in which sender
Pk sent the message m. The reliable broadcast primitive
satisfies the following properties:
- Agreement. If an honest party Pi outputs

r deliveri(m, r, Pk), then every other honest party
Pj eventually outputs r deliverj(m, r, Pk).

- Integrity. For every round r ∈ N and party Pk ∈ P , an
honest party Pi outputs r deliveri at most once regardless
of m.

- Validity. If an honest party Pk calls r bcastk(m, r) then
every honest party eventually outputs r deliver(m, r, Pk).

3.1. Problem Definition
Following Bullshark [46], we focus on the Byzantine

Atomic Broadcast (BAB) problem as defined below:

Definition 1 (Byzantine atomic broadcast [33], [46]). Each
honest party Pi ∈ P can call a bcasti(m, r) and output
a deliveri(m, r, Pk), Pk ∈ P . A Byzantine atomic broadcast
protocol satisfies reliable broadcast properties (agreement,
integrity, and validity) as well as:
- Total order. If an honest party Pi outputs

a deliveri(m, r, Pk) before a deliveri(m′, r′, Pℓ), then
no honest party Pj outputs a deliverj(m′, r′, Pℓ) before
a deliverj(m, r, Pk).

4. The Sailfish Protocol

This section presents Sailfish, a protocol that supports a
leader vertex in each round and improves the latency to
commit both leader and non-leader vertices. Specifically,
Sailfish incurs one RBC plus 1δ to commit the leader vertex
and an additional RBC to commit the non-leader vertex.

Round based execution. Our protocol progresses through
a sequence of numbered rounds. Rounds are numbered by
non-negative integers starting with 1. Each round r consists
of a designated leader, denoted by Lr, which is selected via
a deterministic method based on the round number.

Basic data structures. At a high level, the communication
among parties is represented in the form of DAG. In each
round, each party proposes a single vertex containing a
(possibly empty) block of transactions along with references
to at least 2f+1 vertices proposed in an earlier round. Those
references serve as the edges in the DAG. The proposed ver-
tices are propagated using RBC to ensure non-equivocation
and guarantee all honest parties eventually deliver them.

The basic data structures and utilities for DAG construc-
tion are presented in Figure 1. Each party maintains a local
copy of the DAG and different honest parties may observe
different views of the DAG. However, due to the reliable
broadcast of the vertices, each party will eventually converge
on the same view of the DAG. The local view of DAG for
party Pi is represented as DAGi. Each vertex is associated

4

Local variables:
struct vertex v: ▷ The struct of a vertex in the DAG

v.round - the round of v in the DAG
v.source - the party that broadcast v
v.block - a block of transactions
v.strongEdges - a set of vertices in v.round− 1 that represent strong edges
v.weakEdges - a set of vertices in rounds < v.round− 1 that represent weak edges
v.nvc - a no-vote certificate for v.round− 1(if any)
v.tc - a timeout certificate for v.round− 1 (if any)

DAGi[]− An array of sets of vertices (indexed by rounds)
blocksToPropose - A queue, initially empty, Pi enqueues valid blocks of transactions from clients
leaderStack ← initialize empty stack

1: procedure path(v, u) ▷ Check if exists a path consisting of strong and weak edges in the DAG
2: return exists a sequence of k ∈ N, vertices v1, . . . , vk s.t.

v1 = v, vk = u, and ∀j ∈ [2, .., k] : vj ∈
⋃

r≥1 DAGi[r] ∧ (vj ∈ vj−1.weakEdges ∪ vj−1.strongEdges)

3: procedure strong path(v, u) ▷ Check if exists a path consisting of only strong edges from v to u in the DAG
4: return exists a sequence of k ∈ N, vertices v1, . . . , vk s.t.

v1 = v, vk = u, and ∀j ∈ [2, .., k] : vj ∈
⋃

r≥1 DAGi[r] ∧ vj ∈ vj−1.strongEdges

5: procedure set weak edges(v, r) ▷ Add edges to orphan vertices
6: v.weakEdges← {}
7: for r′ = r − 2 down to 1 do
8: for every u ∈ DAGi[r

′] s.t. ¬path(v, u) do
9: v.weakEdges← v.weakEdges ∪ {u}

10: procedure get vertex(p, r)
11: if ∃v ∈ DAGi[r] s.t. v.source = p then
12: return v
13: return ⊥
14: procedure get leader vertex(r)
15: return get vertex(Lr, r)

16: procedure a bcasti(b, r)
17: blocksToPropose.enqueue(b)

18: procedure broadcast vertex(r)
19: v ← create new vertex(r)
20: try add to dag(v)
21: r bcasti(v, r)

22: procedure order vertices()
23: while ¬leaderStack.isEmpty() do
24: v ← leaderStack.pop()
25: verticesToDeliver ← {v′ ∈

⋃
r>0 DAGi[r] | path(v, v′)

∧ v′ ̸∈ deliveredV ertices}
26: for every v′ ∈ verticesToDeliver in some deterministic

order do
27: output a deliveri(v′.block, v′.round, v′.source)
28: deliveredV ertices← deliveredV ertices ∪ {v′}

Figure 1: Basic data structures for Sailfish. The utility functions are adapted from [33], [46].

with a unique round number and a unique sender (source).
When Pi delivers a round r vertex, it is added to DAGi[r].
DAGi[r] contains up to n vertices.

Each vertex consists of two sets of outgoing edges —
strong edges and weak edges. The strong edges of round r
vertex v consist of at least 2f +1 vertices from round r−1
while the weak edges of the vertex consist of up to f vertices
from rounds < r−1 such that there is no path from v to these
vertices. A path from vertex vk to vℓ following the strong
edges is called a strong path. Compared to Bullshark [46],
we add two additional fields in the structure of the vertex
– (i) v.nvc, which stores a no-vote certificate (consisting of
a quorum of no-vote messages in a round), and (ii) v.tc,
which store timeout certificate (consisting of a quorum of
timeout messages in a round). We explain the purpose of
these fields shortly.

DAG construction protocol. The DAG construction proto-
col is presented in Figure 2. In each round r, each party Pi

proposes one vertex v. A round r vertex proposed by Lr

is referred to as the round r leader vertex while the other
round r vertices are non-leader vertices. In order to propose
a vertex in a round r, Pi waits to receive at least 2f+1 round
r− 1 vertices along with the round r− 1 leader vertex until
a timeout occurs in round r−1. In the event that Pi receives
2f + 1 round r − 1 along with round r − 1 leader vertex,
Pi can immediately enter round r and propose a round r
vertex (see Line 36). We note that including a reference to

the round r − 1 leader vertex serves as a “vote” towards
the round r − 1 leader vertex. These votes are later used
to commit the leader vertex. Thus, waiting for the leader
vertex until a timeout helps honest parties to vote for the
leader vertex and helps commit the leader vertex with a
small latency when the leader is honest (after GST).

If Pi did not receive the round r−1 leader vertex before
the timeout, it multicasts ⟨timeout, r−1⟩i to all other parties
(see Line 38). In addition, an honest party Pj in round
r′ ≤ r − 1 also multicasts ⟨timeout, r − 1⟩j messages if
it receives f + 1 distinct round r − 1 timeout messages
(see Line 40). Upon receiving 2f + 1 round r − 1 timeout
messages (denoted by T Cr−1), Pi can enter round r and
propose a round r vertex as long as it has received at least
2f + 1 round r − 1 vertices (see Line 36). In our protocol,
we require a round r vertex to either have a strong path to
the round r−1 leader vertex or include T Cr−1 in v.tc. This
is a constraint that we place on all vertices. We will clarify
the purpose of this constraint shortly.

When Pi proposes a round r vertex without a strong
path to the round r−1 leader vertex, it also sends a no-vote
message to Lr indicating that Pi did not vote for round r−1
leader vertex. Upon entering round r, Pi starts a timer which
is set to some τ time. We will shortly provide more details
on the value of τ .

We place an additional constraint on the leader vertex.
A round r leader vertex needs to either have a strong path

5

Local variables:
round← 1; buffer← {}

29: upon r deliveri(v, r, p) do
30: if v.source = p ∧ v.round = r ∧ |v.StrongEdges| ≥ 2f + 1∧ is valid(v) then
31: if ¬try to add to dag(v) then
32: buffer← buffer ∪ {v}
33: else
34: for v′ ∈ buffer : v′.round ≤ r do
35: try to add to dag(v′)

36: upon |DAGi[r]| ≥ 2f + 1 ∧ (∃v′ ∈ DAGi[r] : v
′.source = Lr ∨ T Cr is received) for r ≥ round do

37: advance round(r + 1)
38: upon timeout do
39: multicast ⟨timeout, round⟩i
40: upon receiving f + 1 ⟨timeout, r⟩∗ such that r ≥ round do
41: multicast ⟨timeout, r⟩i
42: upon receiving T Cr such that r ≥ round do
43: multicast T Cr
44: procedure create new vertex(r)
45: v.round← r
46: v.source← Pi

47: v.block ← blocksToPropose.dequeue()
48: v.strongEdges← DAGi[r − 1]
49: set weak edges(v, r)
50: if ̸ ∃v′ ∈ DAGi[r − 1] : v′.source = Lr−1 then
51: n.tc← T Cr−1

52: if Pi = Lr then
53: v.nvc← NVCr−1

54: return v

55: procedure try to add to dag(v)
56: if ∀v′ ∈ v.strongEdges ∪ v.weakEdges : v′ ∈⋃

k≥1 DAGi[k] then
57: DAGi[v.round]← DAGi[v.round] ∪ {v}
58: if |DAGi[v.round]| ≥ 2f + 1 then
59: try commit(v.round− 1, DAGi[v.round])
60: buffer← buffer \ {v}
61: return true
62: return false

63: procedure advance round(r)
64: if ̸ ∃v′ ∈ DAGi[r − 1]| : v′.source = Lr−1 then
65: send ⟨no-vote, r − 1⟩i to Lr

66: if Pi = Lr then
67: wait until ∃v′ ∈ DAGi[r − 1] : v′.source = Lr−1 or

NVCr−1 is received
68: round← r; start timer
69: broadcast vertex(round)

Figure 2: Sailfish: DAG construction protocol for party Pi

to the round r − 1 leader vertex or contain a quorum of
round r − 1 no-vote messages (denoted by NVCr−1). The
NVCr−1 serves as a proof that a quorum of parties did not
“vote” for the round r − 1 leader vertex. Hence, the round
r − 1 leader vertex cannot be committed and it is safe to
lack a strong path to the round r − 1 leader vertex.

Upon delivering a round r vertex v, each party Pi checks
if these constraints are met via is valid(v) function. In
particular, is valid(v) checks whether v consists of either
a strong path to round r − 1 leader vertex or T Cr−1 (and
NVCr−1 for the round r leader vertex). In addition, Pi also
checks if vertex v consists of at least 2f + 1 strong edges
to round r − 1 vertices. Once these checks are satisfied,
vertex v is added to DAGi[r] via try add to dag(v) which
succeeds when Pi has delivered all the vertices that have a
path from vertex v in the DAG. If try add to dag(v) fails,
the vertex is added to the buffer for a later retry. In addition,
when try add to dag(v) succeeds, the vertices in the buffer
are re-attempted to be added to the DAGi.

Jumping rounds. Apart from advancing the rounds sequen-
tially, our protocol allows honest parties in round r′ < r to
“jump” to a higher round r when they observe 2f+1 round
r−1 vertices along with round r−1 leader vertex or receive
a T Cr−1. If Lr is the lagging party, it additionally needs to
wait to receive either NVCr−1 or round r− 1 leader vertex
in order to propose round r leader vertex. When jumping
rounds from r′ to r, parties do not propose vertices between
those rounds.

Committing and ordering the DAG. In our protocol, only

Local variables:
committedRound← 0

70: upon receiving a set S of ≥ 2f +1 first messages for round r+1
vertices do

71: try commit(r,S)

72: procedure try commit(r,S)
73: v ← get leader vertex(r)
74: votes← {v′ ∈ S | strong path(v′, v)}
75: if votes ≥ 2f + 1 then
76: commit leader(v)

77: procedure commit leader(v)
78: leaderStack.push(v)
79: r ← v.round− 1
80: v′ ← v
81: while r > committedRound do
82: vs ← get leader vertex(r)
83: if strong path(v′, vs) then
84: leaderStack.push(vs)
85: v′ ← vs
86: r ← r − 1
87: committedRound← v.round
88: order vertices()

Figure 3: Sailfish: The commit rule for party Pi

the leader vertices are committed. The non-leader vertices
are ordered (in some deterministic order) as part of the
causal history of a leader vertex when the leader vertex is
(directly or indirectly) committed as shown in order vertices
function (see Line 22).

The commit rule is presented in Figure 3. An honest
party Pi directly commits a round r leader vertex vk when it

6

observes 2f+1 “first messages” (of the RBC) for round r+1
vertices with strong paths to the round r leader vertex, i.e.,
Pi does not need to wait for the RBC of round r+1 vertices
to terminate. This is because when the sender of the RBC is
honest, the first observed value (i.e., the first message of the
RBC) is the value that will eventually be delivered. Among
the 2f + 1 round r + 1 vertices, at least f + 1 vertices are
sent by honest parties which will eventually be delivered
such that the delivered value is equal to the first received
value (in the first message of RBC). This is sufficient to
ensure NVCr will not exist and any round r′ > r leader
vertex (if it exists) will have strong paths to the round r
leader vertex; thus ensuring the safety of a commit.

In addition to the above commit rule, our protocol also
allows party Pi to directly commit a round r leader vertex
vk if it delivers (via RBC) 2f + 1 round r + 1 vertices
that have strong paths to vk (see Line 59). This commit
rule is helpful in scenarios when the RBC delivers a vertex
without having received the first message of the RBC. Such
scenarios arise when the sender of the RBC is faulty or
during an asynchronous period.

Upon directly committing vk in round r, Pi first indi-
rectly commits leader vertices vm in smaller rounds such
that there exists a strong path from vk to vm (based on its
local copy of the DAG) until it reaches a round r′ < r in
which it previously directly committed a leader vertex. In
this protocol, we ensure that when a round r leader vertex vk
is directly committed by some honest party, leader vertices
for any round r′ > r have a strong path to vk. This ensures
vk will be (directly or indirectly) committed by all honest
parties.

Remark on timeout parameter τ . The value of timeout
parameter τ depends on two factors (i) the underlying RBC
primitive used to propagate the vertices, and (ii) how an
honest party Pi entered round r.

Several RBC primitives [1], [2], [9], [39] have been
proposed in the literature with various tradeoffs in communi-
cation complexity, number of steps required, setup assump-
tions, etc. For a comprehensive list of RBC primitives, we
refer to the recent work by Alhaddad et al. [2]. The value of
parameter τ should be long enough to ensure that when an
honest party enters round r, it can deliver the round r leader
vertex broadcast by an honest leader along with 2f+1 round
r vertices before its timeout occurs. In particular, when Pi

enters round r, the parameter τ should accommodate the
time it takes for other honest parties to enter the common
round r, including Lr (if honest) and deliver their round r
vertices before the timeout occurs for Pi.

The timeout parameter τ also depends on whether party
Pi entered round r via T Cr−1 or not. When T Cr−1 exists
and Lr does not deliver round r−1 leader vertex, Lr has to
collect NVCr−1 before proposing a round r leader vertex
which may require up to 2∆ time. Accordingly, party Pi

has to wait for 2∆ additional time in round r when entering
round r via T Cr−1 compared to when it enters round r via
receiving round r − 1 leader vertex.

The RBC primitive of Das et al. [21] has 4 communi-

cation steps and delivers a value within 4∆ time (see Prop-
erty 1). In addition, it also ensures that when an honest
party delivers a value at time t, all honest parties deliver
the value by t + 2∆ (see Property 2). Accordingly, party
Pi sets its parameter τ to 6∆ when it enters round r after
delivering round r − 1 leader vertex and to 8∆ when it
enters round r via T Cr−1. We note that different honest
parties may set different values for τ depending on how
they entered a round.

Intuition behind including a timeout certificate on the
vertex. As mentioned above, we place a constraint on all
the vertices: a valid round r+1 vertex should either have a
strong path to round r leader vertex or include a T Cr. This
is to prevent Byzantine parties from driving the protocol too
fast and prevent an honest leader vertex from getting directly
committed (even after GST). Note that our protocol requires
2f + 1 round r + 1 vertices with strong paths to round r
leader vertex for the round r leader vertex to be directly
committed. In addition, our protocol also supports parties to
“jump” to a higher round r′ > r when they observe 2f +1
round r′−1 vertices including the round r′−1 leader vertex
or T Cr′−1. If T Cr were not included in the vertex, the f
Byzantine parties can propose round r+ 1 vertices without
strong paths to the round r leader vertex. And, as soon as
f + 1 honest parties propose round r vertices (with strong
paths to the round r leader vertex), the protocol can move
to round r+1 while f honest parties are lagging behind in
some lower round r′′ ≤ r. Relying on the same technique,
the protocol can proceed to round r′ > r. The adversary can
then deliver 2f + 1 round r′ vertices along with round r′

leader vertex to the f lagging honest parties; causing them
to enter round r′+1 such that these f lagging honest parties
do not propose a round r+1 vertex. This prevents the round
r leader vertex from being committed.

After GST, when Lr is honest, honest parties do not
timeout in round r. Therefore, Byzantine parties cannot
propose round r + 1 vertex without voting for the round
r leader vertex, ensuring it gets directly committed.

Explicit round-synchronization. Our protocol consists
of an explicit round-synchronization via multicasting of
timeout messages and T Cr when Lr is faulty. This is to
ensure all honest parties can receive T Cr and 2f +1 round
r vertices within 2∆ time and send ⟨no-vote, r⟩ to Lr+1.
This allows Lr+1 to collect a NVCr in a timely manner
and allows all honest parties to receive the round r + 1
leader vertex before they timeout in round r + 1.

4.1. Efficiency Analysis

Commit latencies. The commit latency of the leader vertex
is the time taken to propagate round r vertices (via RBC),
and one communication step required to receive the first
messages for 2f + 1 round r + 1 vertices i.e., one RBC,
plus 1δ. When employing the RBC protocol due to Das et
al. [21], the commit latency of the leader vertex is 5δ. The
non-leader vertices require an additional RBC (i.e. 4δ) to be
committed.

7

Round r-1 r r+1

P1

P2

P3

P4

Figure 4: Depicts the view of one of the parties committing blocks
from rounds r and r − 1. When the party observes 2f + 1
votes on the round r leader vertex, it commits that vertex and
deterministically orders non-leader vertices from earlier rounds
(bold vertices). We assume round r−1 leader vertex was committed
earlier. Note that performing this commit requires only the receipt
of round r + 1 vertices; they do not need to be RBC-delivered.
Moreover, since the round r leader does not refer to P4’s round
r − 1 vertex, it is not ordered as yet.

We note that the Bullshark (and Shoal) cannot support a
commit with a latency with one RBC, plus 1δ. This is due to
the following reasons. First, Bullshark waits for only f + 1
round r + 1 vertices with strong paths to round r leader
vertex to commit the round r leader vertex. Out of these
round r + 1 vertices, up to f could be sent by Byzantine
parties. If we rely only on the first received value of the
RBC (based on the first message), the final delivered value
could be different when its sender is faulty. In this case,
the final delivered vertices may not have strong path to the
round r leader vertex for up to f vertices. A single round
r + 1 vertex from an honest party with a strong path to
the round r leader vertex is insufficient to ensure the safety
of a commit. On the other hand, if Bullshark were to be
modified to commit upon receiving 2f + 1 round r + 1
vertices with strong paths to round r leader vertex, it may
fail to commit any leader vertices. This is because Bullshark
does not require a round r+1 vertex to include T Cr when
it does not have a strong path to round r vertex leader. As
explained above, this allows Byzantine parties to drive the
protocol fast and prevent a commit (even after GST).

Latency analysis under failures. Note that τ of our proto-
col is 6∆ in the round following an honest leader and 8∆
in the round following a Byzantine leader. The additional
timeout is required because the round r leader vertex needs
to wait for NVCr−1 when Lr−1 is faulty. In contrast,
Bullshark (and Shoal) requires τ of 6∆ in all scenarios
(when using the RBC primitive of Das et al. [21]).

Despite our protocol having a slightly larger τ compared
to Bullshark (and Shoal), the commit latency does not
worsen when a single Byzantine failure occurs between
two honest leaders. This is because both our protocol and
Bullshark (and Shoal) require honest parties to wait for 6∆
in the round corresponding to the Byzantine leader. In the

subsequent round, the honest leader can obtain NVC and
propose responsively, meaning the increased value of τ does
not increase latency in practice (when messages arrive in
δ < ∆ time). In fact, our protocol incurs less latency despite
the need to wait for T C and NVC, primarily due to having
a leader every round and smaller commit latency.

As a concrete example, we consider the commit latency
of the non-leader vertices of round r − 1 when Lr is
Byzantine and both Lr−1 and Lr+1 are honest. For both
our protocol and Bullshark (and Shoal), honest parties need
to wait for 6∆ time in round r. Let t be the time when the
first honest party enters round r. Since honest parties may
enter round r within 2∆ of each other, all honest parties
receive T Cr by time t+ 8∆+ δ and Lr+1 receives NVCr

by t + 8∆ + 2δ. As Lr+1 is honest, its leader vertex can
be committed in the next 5δ time; committing round r − 1
non-leader vertices in 8∆+11δ time (compared to 9δ when
Lr is honest.)

In the case of Bullshark (and Shoal), apart from 6∆ wait
in round r, honest parties would need to wait for round r+1
vertices from some honest parties that entered round r late
(since honest parties enter a round within 2∆ of each other).
Moreover, in their case, the round r + 2 leader vertex is
the next vertex to be committed in round r + 3. In total,
the latency to commit round r − 1 non-leader vertices is
8∆+ 16δ (compared to 12δ when Lr is honest, in the case
of Shoal). Thus, under a single Byzantine failure between
honest leaders, our protocol still performs better compared
to both Bullshark and Shoal.

However, when there is a sequence of two or more faulty
leaders in between honest leaders, honest parties need to
wait for τ of 8∆ time, and hence our protocol would slightly
underperform compared to Bullshark (and Shoal) in terms
of latency.

Communication complexity. The size of each vertex is
O(n) since it consists of references to up to n vertices and,
may contain T C and NVC. The size of these certificates
is O(1) assuming threshold signatures [8] (O(n) without
threshold signatures). In each round, each party propagates
a single vertex via RBC. The RBC protocol of Das et
al. [21] incurs O(n2) communication to propagate O(n)-
sized messages. Thus, the total communication complexity
is O(n3) per round. Similarly, all-to-all multicast of timeout
certificates incurs O(n2) communication assuming threshold
signatures (or O(n3) without threshold signatures). Thus,
the overall communication complexity is O(n3) per round
(when using [21]).

We note that a single vertex can contain O(n) transac-
tions without increasing its size. This results in amortized
linear communication complexity per round.

We present detailed security analysis in Appendix B.

5. Multi-leader Sailfish

In Sailfish, the latency to commit the leader vertex is
shorter than that for non-leader vertices. To improve the
latency for multiple vertices, we extend Sailfish to support

8

multiple leaders within a single round. In the best-case
scenario, when all these leaders are honest, the respective
leader vertices can be committed with a latency of one RBC
plus 1δ.

Multiple leaders in a round. In this protocol, multiple
leaders are chosen within a round based on the round num-
ber. One of these leaders serves as the main leader, while
the others are designated as secondary leaders. The vertex
proposed by the main leader is referred to as the main leader
vertex, and the vertices proposed by the secondary leaders
are termed secondary leader vertices. The responsibilities of
the main leader in Multi-leader Sailfish are consistent with
those in Sailfish: either the main leader vertex must have a
strong path to all leader vertices from the previous round
or the main leader must collect a no-vote certificate for any
missing leader vertices.

To determine the multiple leaders in a given round,
we define a deterministic function, get multiple leaders(r),
which returns an ordered list of leaders for round r. The
first leader in this list serves as the main leader, while
the subsequent leaders are designated as secondary leaders.
Analogous to Sailfish, the main leader for round r is denoted
as Lr. We use MLr to denote the ordered list of leaders
provided by get multiple leaders(r). MLr[x] denotes the
xth element in the list. Additionally, MLr[: x] represents
the first x leaders, while MLr[x+ 1 :] denotes the leaders
in the list excluding the first x leaders.

DAG construction protocol. The basic data structures are
identical to Sailfish. In order to accommodate multiple lead-
ers in a round, we modify how parties advance rounds. The
modified protocol is presented in Figure 5.

Recall that in Sailfish, each party Pi waits for the round
r leader vertex until a timeout. If the leader vertex is not
delivered before the timeout, Pi sends ⟨timeout, r⟩ message.
Upon receiving either the round r leader vertex or T Cr

(along with 2f + 1 round r vertices) Pi advances to round
r + 1. When Pi advances to round r + 1 via T Cr, it sends
⟨no-vote, r⟩ to Lr+1. Additionally, Lr must collect NVCr

before proposing a round r + 1 leader vertex.
In Multi-leader Sailfish, Pi sends ⟨timeout, r⟩ only when

it does not deliver the round r main leader vertex before
the timeout; it does not send timeout messages when the
secondary leader vertices are not delivered.

To handle multiple leaders, various strategies can be em-
ployed for advancing through rounds. For instance, party Pi

could wait for all leaders in MLr or T Cr (along with 2f+1
round r vertices) before advancing to round r + 1. Upon
advancing to round r + 1, Pi sends ⟨no-vote, p, r⟩ for all
p ∈ MLr from which Pi did not deliver the corresponding
round r leader vertex. In the ideal scenario, when all leaders
in MLr are honest and after GST, all honest parties will
responsively receive all round r leader vertices and move to
round r + 1. However, a single faulty leader can cause the
protocol to await its leader vertex, thereby slowing down
the protocol.

Alternatively, each party Pi could choose to wait solely
for the round r main leader vertex or T Cr (along with 2f+1

round r vertices) before progressing to round r + 1. Sub-
sequently, Pi would send ⟨no-vote, p, r⟩ for all p ∈ MLr

from which Pi did not receive the round r leader vertex by
the time it advances to round r + 1. While this approach
prioritizes the fastest leaders in MLr for voting, it may
result in slow leaders not being voted on, potentially causing
the the slow leaders to not achieve the best possible latency.

We adjust the constraint on the main leader vertex as
follows: The round r+ 1 main leader vertex must establish
strong paths to all leader vertices corresponding to leaders
in MLr[: x] (for some x > 0) and include a quorum of
⟨no-vote, p, r⟩ (referred to as NVCp

r), where p = MLr[x+
1] (see Line 98). If the main leader vertex has strong paths
to all leader vertices corresponding to leaders in MLr, it is
not required to include NVCr for any round r leaders. The
constraint on other round r+ 1 vertices remain unchanged;
specifically, the round r+1 vertex must include T Cr only if
it lacks a strong path to the round r main leader vertex. The
is valid() function is also appropriately updated to ensure
that these constraints are met.

Committing and ordering the DAG. Similar to Sailfish,
only the leader vertices are committed, and the non-leader
vertices are ordered (in some deterministic order) as part of
the causal history of a leader vertex when the leader vertex
is (directly or indirectly) committed, as illustrated in the
order vertices function (refer to Line 144).

In this protocol, an honest party Pi directly commits a
round r leader vertex vk corresponding to MLr[x] when it
observes 2f + 1 “first messages” (of the RBC) for round
r + 1 vertices with strong paths to the vertex vk and
when all round r leader vertices corresponding to leaders in
MLr[: x−1] have been directly committed. If vk fails to be
directly committed, party Pi refrains from committing the
leader vertices corresponding to the leaders in MLr[x+1 :],
even if there are 2f + 1 round r + 1 vertices with strong
paths to the leader vertices corresponding to the leaders in
MLr[x+ 1 :]. We will shortly explain why it is necessary
to skip committing leader vertices corresponding to leaders
in MLr[x+ 1 :] in this case. The commit rule is presented
in try commit() function (see Line 126).

In addition to the above commit rule, Multi-leader Sail-
fish also enables party Pi to directly commit round r leader
vertex vk corresponding to MLr[x] when it delivers (via
RBC) 2f + 1 round r + 1 vertices that have strong paths
to vk and when all round r leader vertices corresponding to
leaders in MLr[: x− 1] have been directly committed.

Upon directly committing the main leader vertex vm in
round r, Pi first indirectly commits leader vertices corre-
sponding to MLr′ [: y] (for some y > 0) in an earlier
round r′ < r such that there exists strong paths from
vm to all leader vertices corresponding to MLr′ [: y].
Subsequently, this process of indirectly committing leader
vertices of earlier rounds is repeated for leader vertices
that have strong paths from leader vertex corresponding to
MLr′ [1] (i.e., the main leader vertex of round r′) until
it reaches a round r∗ < r in which it previously directly
committed a leader vertex (see Line 126). When round r′

9

89: upon timeout do
90: if ̸ ∃v′ ∈ DAGi[r] : v

′.source = Lround then
91: multicast ⟨timeout, round⟩i
92: procedure advance round(r)
93: ML← get multiple leaders(r − 1)
94: for p ∈ML do ▷ iterate over ML in order
95: if ̸ ∃v′ ∈ DAGi[r − 1]| : v′.source = p then
96: send ⟨no-vote, p, r − 1⟩i to Lr

97: if Pi = Lr then
98: wait until ∃v′ ∈ DAGi[r−1] : v′.source = p ∀p ∈ML[: x]

or NVCp
′

r−1 is received, where p′ =ML[x+ 1]

99: round← r; start timer
100: broadcast vertex(round)

101: procedure create new vertex(r)
102: v.round← r
103: v.source← Pi

104: v.block ← blocksToPropose.dequeue()
105: v.strongEdges← DAGi[r − 1]
106: set weak edges(v, r)
107: if ̸ ∃v′ ∈ DAGi[r − 1] : v′.source = Lr−1 then
108: v.tc← T Cr−1

109: if Pi = Lr then
110: ML← get multiple leaders(r − 1)
111: for p ∈ML do
112: if ̸ ∃v′ ∈ DAGi[r − 1]| : v′.source = p then
113: v.nvc← NVCpr−1

114: break
115: return v

116: procedure try commit(r,S)
117: CLS ← []
118: ML← get multiple leaders(r)
119: for p ∈ML do
120: v ← get vertex(p, r)
121: votes← {v′ ∈ S | strong path(v′, v)}
122: if votes ≥ 2f + 1 then
123: CLS ← CLS || v
124: else break
125: commit leaders(CLS)

126: procedure commit leaders(cls)
127: leaderStack.push(cls)
128: v′ ← cls[0]
129: r ← v′.round− 1
130: while r > committedRound do
131: CMV ← []
132: ML← get multiple leaders(r)
133: for p ∈ML do
134: v ← get vertex(p, r)
135: if strong path(v′, v) then
136: CMV ← CMV || v
137: else break
138: if CMV ≠ [] then
139: v′ ← CMV[1] ▷ main leader vertex for round r

140: leaderStack.push(CMV)
141: r ← r − 1
142: committedRound← cls[0].round
143: order vertices()

144: procedure order vertices()
145: while ¬leaderStack.isEmpty() do
146: CMV ← leaderStack.pop()
147: for v ∈ CMV do ▷ iterate over CMV in order
148: verticesToDeliver ← {v′ ∈

⋃
r>0 DAGi[r] | path(v, v′) ∧ v′ ̸∈ deliveredV ertices}

149: for every v′ ∈ verticesToDeliver in some deterministic order do
150: output a deliveri(v′.block, v′.round, v′.source)
151: deliveredV ertices← deliveredV ertices ∪ {v′}

Figure 5: Multi-leader Sailfish

leader vertices corresponding to leaders in MLr′ [: y] are
directly committed, we ensure that any future main leader
vertex has a strong path to these round r′ leader vertices.
This ensures that these leader vertices will be (directly or
indirectly) committed by honest parties who missed directly
committing these leader vertices.

The order vertices() function is also appropriately mod-
ified to handle multiple leaders in a round (see Line 144).

Intuition behind skipping leaders in MLr[x+1 :] when
MLr[x] is not directly committed. As mentioned earlier,
if Pi does not directly commit a leader vertex vk corre-
sponding to MLr[x], it also refrains from committing the
leader vertices for the leaders in MLr[x+1 :], even if there
are sufficient votes for these leader vertices. This precaution
is taken because the main leader vertex of a higher round
r′′ > r may still have a strong path to vk. When this
main leader vertex from round r′′ is committed, the leader
vertices corresponding to MLr[: y] (for some y > 0) are
also indirectly committed in order, provided there are strong
paths from the round r′′ main leader vertex to the leader
vertices corresponding to MLr[: y]. If y > x, vk would be
committed before the leader vertices corresponding to the

leaders in MLr[x+1 :]. By skipping the commit of leader
vertices corresponding to MLr[x+1 :], we ensure the total
order property during the indirect commit.

Additional conditions required for committing the sec-
ondary leader vertices. We note two additional conditions
required for committing the secondary leader vertices. First,
to commit leader vertices corresponding to MLr[x+1 :], the
leader vertex corresponding to MLr[x] must be committed
beforehand. When MLr[x] is faulty, all leader vertices cor-
responding to leaders in MLr[x+1 :] fail to be committed,
despite having sufficient votes for these leader vertices. To
address this concern, leader reputation schemes [45], [50]
can be employed to elect multiple leaders with a good
reputation for a given round.

Secondly, recall that parties send ⟨timeout, r⟩ messages
only when the round r main leader vertex is not delivered
in a timely manner. The requirement for a round r vertex to
include T Cr−1 when it lacks a strong path to the round r−1
main leader vertex (say vk) can only prevent the Byzantine
parties from proposing the round r vertex without a strong
path to vk. This ensures that sufficient honest parties vote
for vk in round r and vk is committed by round r, after GST.

10

However, this does not prevent Byzantine parties from “not
voting” for the secondary leader vertices and send round r
vertices with strong path only to vk. With the help of f +1
honest parties who vote for the secondary leader vertices,
the adversary can cause the protocol to advance to a higher
round r′ > r while f honest parties are lagging behind in
some lower round r′′ ≤ r−1. The adversary can then deliver
2f + 1 round r′ vertices along with round r′ main leader
vertex to the f lagging honest parties; causing them to enter
round r′+1 such that these f lagging honest parties do not
propose a round r vertex. This prevents the round r − 1
secondary leader vertices from being directly committed.
This issue can potentially be addressed by introducing a
timeout certificate for each leader in a round and requiring
a round r vertex to include a timeout certificate for each
missing round r − 1 leader vertex; however the solution is
less practical due to added synchronization overhead and
increase in size of a vertex.

In this context, Multi-leader Sailfish ensures that the
round r secondary leader vertices are committed by round
r + 1 only under an “optimistic condition” where at least
2f + 1 parties (including Byzantine parties) “vote” for the
proposed secondary leader vertices. Under normal condi-
tions, these vertices will be committed in the next round
when the round r + 1 leader vertex is committed. We also
note that these conditions apply to Mysticeti [4], although
they did not explicitly state the latter requirement.

5.1. Efficiency Analysis
Commit latencies. We analyze the commit latencies under
the optimistic condition where all parties vote for all pro-
posed leader vertices. If parties wait for all leader vertices
corresponding to MLr, and all leaders in MLr are honest,
the corresponding leader vertices can be committed with a
latency of one RBC plus 1δ. However, a single faulty leader
can cause the protocol to await its leader vertex, resulting
in a latency of O(∆).

Alternatively, when parties wait solely for the round r
main leader vertex before advancing to the next round, the
subsequent main leader needs to collect NVCr for leaders
for which it lacks strong paths to the corresponding leader
vertices, incurring an additional 1δ time. Thus, the commit
latency for the leader vertices is one RBC plus 2δ, while the
non-leader vertices require an additional RBC. Under this
strategy, when using the RBC protocol of Das et al. [21], as
long as x > n−f+4

4 leader vertices are directly committed
in a round, the average latency is still better compared to
Sailfish.

Communication complexity. In Multi-leader Sailfish, un-
like Sailfish, each party can send a no-vote message for
every leader in MLr to the subsequent leader Lr+1. Even
with a linear number of leaders in a round, sending these
no-vote messages incurs only O(n2) bits. Additionally, al-
though NVCr can exist for multiple leaders in round r,
the main leader vertex of round r + 1 has to incorporate a
single NVCr. Therefore, the communication complexity of
Multi-leader Sailfish remains the same as that of Sailfish.

We present detailed security analysis in Appendix C.

6. Evaluation

We evaluate the performance of Sailfish and Multi-leader
Sailfish, comparing their throughput and latency with DAG-
based BFT protocols: Bullshark and Shoal, across different
system sizes and under failure scenarios.

Implementation details. Our implementation modifies the
core consensus logic of the open-source Bullshark [44] to
create Sailfish and Multi-leader Sailfish. We also created a
custom implementation of Shoal (since their implementation
is not publicly accessible) which guarantees a leader in every
round and commits the leader vertex with two RBCs. This
customized Shoal implementation is better as it does not
require reinterpreting the DAG. This implementation focuses
purely on consensus, excluding leader reputation.

In the Bullshark implementation, the system has distinct
clients, workers, and consensus nodes. Each consensus node
includes several workers. Clients send transactions to their
designated worker, which aggregates them into a batch and
forwards it to workers of other consensus nodes. Upon re-
ceiving a batch, a worker sends an acknowledgment back to
the originating worker. Once a worker receives a quorum of
acknowledgments, it sends the batch digest to its associated
consensus node, which then includes this digest in its next
proposal.

10 20 50

Network size (n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

L
a
te

n
cy

(s
)

Bullshark-LV
Bullshark-NLV
Bullshark-Avg

Shoal-LV
Shoal-NLV
Shoal-Avg

Sailfish-LV
Sailfish-NLV
Sailfish-Avg

(a) n vs. consensus latencies.

10 20 50

Network size (n)

1.0

1.5

2.0

2.5

L
a
te

n
cy

(s
)

Bullshark

Shoal

Sailfish

(b) n vs. end-to-end latency.
Figure 6: Performance in the absence of failures across different
system sizes.

Experimental setup. We carried out our evaluations on the
Google Cloud Platform (GCP), distributing nodes evenly
across five distinct GCP regions: us-east1-b (South Car-
olina), us-west1-a (Oregon), europe-north1-a (Hamina, Fin-
land), asia-northeast1-a (Tokyo), and australia-southeast1-a

11

(Sydney). We employed e2-standard-32 instances [42], each
featuring 32vCPUs, 128GB of memory, and up to 16Gbps
network bandwidth [43]. All nodes ran on Ubuntu 20.04,
and we summarize round-trip latencies in Table 2. We used
ED25519 signatures for authentication.

TABLE 2: Ping latencies (in ms) between GCP regions

Destination∗

Source us-e-1 us-w-1 eu-n-1 as-ne-1 au-se-1

us-east1-a 0.75 66.14 114.75 160.28 197.98
us-west1-a 66.15 0.66 158.13 89.56 138.33

europe-north1-a 115.40 158.38 0.69 245.15 295.13
asia-northeast1-a 159.89 90.05 246.01 0.66 105.58

australia-southeast1-a 197.60 139.02 294.36 108.26 0.58
∗Region names are abbreviated versions of the source regions.

In our setup, one client and one worker is co-located
within the consensus node. Each transaction is composed
of 512 random bytes, and the batch size is configured to
500KB. We set the timeout parameter, τ to 3 seconds. Each
experimental run spans 180 seconds, and the data presented
in the graphs represents an average across three independent
runs. For latency, we measured the average time between
the creation of a transaction (or a vertex) and its commit
by all (non-faulty) nodes to compute the end-to-end (or
consensus) latency. Throughput is measured as the number
of committed transactions per second.

Methodology. In our evaluations, we gradually increased the
input transactions. As depicted in Figure 7, the throughput
increases with increasing load without increasing latency up
to a certain point before reaching saturation. After satura-
tion, the latency starts to increase while the throughput either
remains consistent or slightly increases. In the subsequent
figures, we report the throughput and latency just before
reaching this saturation point.

Performance of Sailfish under fault-free case. We initially
assess the performance of Bullshark, Shoal, and Sailfish un-
der fault-free scenarios across system sizes of 10, 20, and 50
nodes. The consensus latencies are presented in Figure 6a,
while the corresponding end-to-end latencies are illustrated
in Figure 6b. For completeness, we also present throughput-
vs-latency graph at varying input in Figure 7.

In Figure 6a, LV represents the average latency to com-
mit the leader vertices, NLV represents the average latency
to commit the non-leader vertices a round before the leader
vertex and Avg represents the average latency for all vertices
(including those from prior rounds that were ordered when
the leader vertex was committed). For Bullshark, the NLV
latency is the average latency to commit the two layers of
non-leader vertices before the leader round.

Consistent with our theoretical analysis, Sailfish signif-
icantly outperforms both Bullshark and Shoal in terms of
these latencies. While Bullshark and Shoal achieve similar
latencies for the leader vertex, Bullshark’s additional layer
of non-leader vertices results in higher latency compared
to Shoal for non-leader vertices. The improvement in con-
sensus latencies directly translates to an improvement in the

overall end-to-end latency. As depicted in Figure 6b, Sailfish
reduces the end-to-end latency by approx. 25% compared
to Bullshark and approx. 20% compared to Shoal across
all system sizes. Furthermore, due to reduced latency of
Sailfish, it achieves slightly improved throughput before
experiencing a latency spike as depicted in Figure 7.

TABLE 3: Consensus latencies (in ms) under failures at n = 10

Leader vertices Non-leader vertices Average

Sailfish 754 2592 3234
Shoal [45] 1175 3003 6829

Bullshark [46] 1169 4960 7005

Performance of Sailfish under failures. We evaluated the
performance under f crash failures at n = 10, distributing
the failed leaders across consecutive odd rounds. For Sail-
fish, this means a leader failure every other round over 2f
rounds. In Bullshark, where leaders are designated exclu-
sively in odd rounds, this equated to f consecutive leader
failures. Consequently, Bullshark fails to commit for the first
2f rounds, with this pattern repeating every n rounds. Shoal,
which relies on a Bullshark instance to commit some vertex
before starting a new instance, also does not initiate a new
instance until 2f rounds have passed.

Commit latency for the leader vertex increases slightly
for all protocols compared to fault-free scenarios, as shown
in Table 3. In fault-free cases, protocols commit with the
fastest 2f + 1 nodes. With f failures, the protocol must
wait for all nodes, increasing commit latency for the leader
vertex. Additionally, rounds with a failed leader incur τ
time, and non-leader vertices of failed rounds are only
committed when the leader vertex of the following round
is committed. This results in increased average latency for
committing non-leader vertices for all protocols.

In Bullshark and Shoal, vertices of the first 2f rounds are
only committed after 2f rounds, leading to worse average
latency. As Sailfish supports a leader in every round, it can
commit every other round, resulting in approx. 50% lesser
average latency. We present the corresponding throughput
and end-to-end latency in Figure 8. With the increased aver-
age commit latency, the end-to-end latency for Bullshark and
Shoal worsens compared to Sailfish, while the throughput
remains (almost) the same as the failure-free case.

Performance of Multi-leader Sailfish under fault-free
case. We also evaluated the performance of Multi-leader
Sailfish in failure-free scenarios, exploring configurations
with both f and 2f leaders in a round. To simplify im-
plementation, we adopted the strategy where nodes wait
for all leader vertices before advancing to the next round.
The corresponding consensus and end-to-end latencies are
presented in Figure 9. In Figure 9, MLSF-f represents Multi-
leader Sailfish with f leaders, while MLSF-2f represents
Multi-leader Sailfish with 2f leaders.

As depicted in Figure 9a, the latency to commit the
leader vertex (and the non-leader vertices) increased slightly
due to the necessity of waiting for all leader vertices in a

12

50 80 110 140 170 200 230

Throughput (KTps)

0

1

2

3

4

5

6

7

L
a
te

n
cy

(s
)

Bullshark-10 nodes
Shoal-10 nodes
Sailfish-10 nodes

50 80 110 140 170 200 230

Throughput (KTps)

0

1

2

3

4

5

6

7

L
a
te

n
cy

(s
)

Bullshark-20 nodes
Shoal-20 nodes
Sailfish-20 nodes

50 80 110 140 170

Throughput (KTps)

0

1

2

3

4

5

6

7

L
a
te

n
cy

(s
)

Bullshark-50 nodes
Shoal-50 nodes
Sailfish-50 nodes

Figure 7: Throughput vs. end-to-end latency in the absence of failures at various system sizes and varying input

40 60 80 100 120 140

Throughput (KTps)

0

3

6

9

12

15

L
a
te

n
cy

(s
)

Bullshark-10 nodes
Shoal-10 nodes
Sailfish-10 nodes

Figure 8: Throughput vs. end-to-end latency at n = 10 with 3
failures and varying input

10 20 50

Network size (n)

0.0

0.5

1.0

1.5

2.0

2.5

L
a
te

n
cy

(s
)

Sailfish-LV
Sailfish-NLV
Sailfish-Avg

MLSF-f-LV
MLSF-f-NLV
MLSF-f-Avg

MLSF-2f-LV
MLSF-2f-NLV
MLSF-2f-Avg

(a) n vs consensus latencies.

10 20 50

Network size (n)

1.0

1.5

2.0

2.5

L
a
te

n
cy

(s
)

Sailfish
MLSF-f
MLSF-2f

(b) n vs. end-to-end latency.
Figure 9: Latency comparison of Multi-leader Sailfish in the ab-
sence of failures across different system sizes.

round. Nonetheless, the average commit latency exhibits sig-
nificant improvement as more vertices are committed with
reduced latency. This improvement in consensus latencies
also translates to improved end-to-end latency. As illustrated
in Figure 9b, we observe improved end-to-end latencies as
the number of leader vertices increases.

7. Related Work

Extensive body of research has aimed to enhance the
performance of BFT consensus protocols. DAG-based BFT
protocols has emerged as a means to enhance the throughput
of BFT consensus protocols. We review the most recent
and closely related works below (additional related work in
Appendix A). Compared to these protocols, our protocols
require one RBC plus 1δ to commit the leader vertex and
an additional RBC to commit the non-leader vertices. Our
protocol also supports multiple leaders in a round.

Asynchronous DAG-based BFT. Hashgraph [5] builds an
unstructured DAG with each vertex referencing two pre-
vious ones and then runs an inefficient binary agreement
protocol, resulting in expected exponential time complexity.
Aleph [28] constructs a structured, round-based DAG where
parties advance rounds after receiving 2f + 1 vertices from
the same round. An asynchronous binary agreement protocol
then decides vertex order, leading to higher commit latency.

DAG-Rider [33] is an asynchronous DAG-based BFT
protocol that progresses in waves, each consisting of 4
rounds. There is a single leader in each wave and it requires
an expected 6 rounds (i.e., 6 sequential RBCs) to commit
the leader vertex, and an additional 4 rounds to commit non-
leader vertices that share a round with the leader vertex.
Tusk [19] is implementation based on DAG-Rider.

Recently, GradedDAG [17] and LightDAG [15] improve
the latency of asynchronous DAG-based BFT protocols by
using weaker primitives like consistent broadcast [48] in-
stead of RBC. While these weaker primitives reduce latency
in fault-free cases, they necessitate downloading missing
vertices during failures, increasing overall latency.

Partially synchronous DAG-based BFT. Blockmania [18]
uses a modified PBFT [12] for vertex dissemination and
constructs a structured round-based DAG. Their protocol is
specifically designed for owned objects [6], and it does not
ensure the total ordering of these vertices. Bullshark [46],
[47] builds upon DAG-Rider to improve the commit latency
during the synchronous period. The partially synchronous
version has one leader every two rounds. It requires 2 RBCs
to commit a leader vertex and an additional 2 RBCs to
commit the non-leader vertices that share a round with the
leader vertex. Furthermore, Bullshark relies on an honest
leader to synchronize all parties post the GST, committing
a vertex only after such synchronization. Consequently, it

13

demands two honest leaders to successfully commit a vertex
after GST, leading to latency issues in case of frequent tran-
sitions between synchrony and asynchrony in the network.
Our protocol supports commit with a single honest leader
after GST through explicit round synchronization.

Shoal [45] invokes multiple instances of Bullshark and
uses leader reputation to elect good leaders, ensuring a
leader vertex in each round. However, leader reputation
takes time to build and can prevent slow honest nodes
from becoming leaders, introducing fairness concerns and
potentially becoming inapplicable when parties change over
time. Shoal also supports multiple leaders in a round by
executing multiple instances of Bullshark sequentially, each
with a different leader. Since Bullshark is designed as a
single-leader protocol that commits only one leader vertex
per round (after GST), reinterpreting the existing DAG with
a different leader does not guarantee the new leader will be
committed, even if the new leader is honest.

Comparison with Cordial Miners [34] has been pre-
sented in the introduction. Building on Cordial Miners,
Mysticeti [4] introduces support for multiple leaders within
the same round. However, their approach for committing
multiple leaders is optimistic in nature with no guarantee
that these multiple leader vertices be committed even after
GST. It also does not detail necessary conditions to ensure
these leaders are committed. In addition, when Byzantine
parties selectively send their proposals to only some honest
parties, extra latency is required to download missing ver-
tices, increasing overall latency and communication com-
plexity. Furthermore, we identified issues in their liveness
(a property similar to validity), where it may fail to com-
mit even after GST. The issues are discussed in detail in
Appendix D.

BBCA-chain [38] relies on a traditional leader-heavy
BFT protocol inherently capable of accommodating a leader
in each round. At the end of each round, each party sends
a block of transactions (via BEB) along with the commit
status of the current round and the commit certificate for the
highest round it have observed. The next leader aggregates
a quorum of these messages in its proposal and uses single-
shot PBFT [12] instance to propose its block. However,
when the Byzantine parties “selectively” send their pro-
posals only to the leader, additional latency is incurred to
download the missing proposals and the leader is responsible
for propagating O(n) proposals.

Concurrent work. Shoal++ [3] extends Shoal to commit the
leader vertex with one RBC plus 1δ. However, if Byzantine
parties drive the protocol too fast (see Section 4 for de-
tails on driving protocol too fast), this commit rule is not
triggered, and it falls back to Shoal, committing the leader
vertex with 2 RBCs. Like Shoal, it relies on a leader repu-
tation system to support a leader in each round, inheriting
the same limitations as Shoal. In comparison, our protocol
prevents Byzantine parties from driving the protocol fast,
ensuring the commit rule is always triggered with an honest
leader after GST. Moreover, our protocol truly supports a
leader vertex in each round.

Acknowledgements

We thank George Danezis, Lefteris Kokoris-Kogias,
Oded Naor, Ehud Shapiro, Alexander Spiegelman, the
anonymous reviewers, and our Shepherd for their valuable
comments and feedback on this paper.

References

[1] Ittai Abraham, Kartik Nayak, Ling Ren, and Zhuolun Xiang. Good-
case latency of byzantine broadcast: A complete categorization. In
Proceedings of the 2021 ACM Symposium on Principles of Dis-
tributed Computing, pages 331–341, 2021.

[2] Nicolas Alhaddad, Sourav Das, Sisi Duan, Ling Ren, Mayank Varia,
Zhuolun Xiang, and Haibin Zhang. Balanced byzantine reliable
broadcast with near-optimal communication and improved compu-
tation. In Proceedings of the 2022 ACM Symposium on Principles of
Distributed Computing, pages 399–417, 2022.

[3] Balaji Aurn, Zekun Li, Florian Suri-Payer, Das Sourva, and Alexander
Spiegelman. Shoal++: High throughput dag bft can be fast! arXiv
preprint 2405.20488, 2024.

[4] Kushal Babel, Andrey Chursin, George Danezis, Lefteris Kokoris-
Kogias, and Alberto Sonnino. Mysticeti: Low-latency dag consensus
with fast commit path. arXiv preprint arXiv:2310.14821, 2023.

[5] Leemon Baird. The swirlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance. Swirlds Tech Reports SWIRLDS-TR-2016-
01, Tech. Rep, 34:9–11, 2016.

[6] Mathieu Baudet, George Danezis, and Alberto Sonnino. Fastpay:
High-performance byzantine fault tolerant settlement. In Proceedings
of the 2nd ACM Conference on Advances in Financial Technologies,
pages 163–177, 2020.

[7] Erica Blum, Jonathan Katz, Julian Loss, Kartik Nayak, and Simon
Ochsenreither. Abraxas: Throughput-efficient hybrid asynchronous
consensus. Cryptology ePrint Archive, 2023.

[8] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from
the weil pairing. Journal of cryptology, 17:297–319, 2004.

[9] Gabriel Bracha. Asynchronous byzantine agreement protocols. In-
formation and Computation, 75(2):130–143, 1987.

[10] Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup.
Secure and efficient asynchronous broadcast protocols. In Annual
International Cryptology Conference, pages 524–541. Springer, 2001.

[11] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet,
Victor Shoup, and Dominic Williams. Internet computer consensus.
In Proceedings of the 2022 ACM Symposium on Principles of Dis-
tributed Computing, pages 81–91, 2022.

[12] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault
tolerance. In OSDI, number 1999 in 99, pages 173–186, 1999.

[13] Shir Cohen, Rati Gelashvili, Lefteris Kokoris Kogias, Zekun Li,
Dahlia Malkhi, Alberto Sonnino, and Alexander Spiegelman. Be
aware of your leaders. In International Conference on Financial
Cryptography and Data Security, pages 279–295. Springer, 2022.

[14] Xiaohai Dai, Chaozheng Ding, Hai Jin, Julian Loss, and Ling Ren.
Ipotane: Achieving the best of all worlds in asynchronous bft. Cryp-
tology ePrint Archive, 2024.

[15] Xiaohai Dai, Guanxiong Wang, Jiang Xiao, Zhengxuan Guo, Rui
Hao, Xia Xie, and Hai Jin. Lightdag: A low-latency dag-based bft
consensus through lightweight broadcast. Cryptology ePrint Archive,
2024.

[16] Xiaohai Dai, Bolin Zhang, Hai Jin, and Ling Ren. Parbft: Faster asyn-
chronous bft consensus with a parallel optimistic path. Cryptology
ePrint Archive, 2023.

14

[17] Xiaohai Dai, Zhaonan Zhang, Jiang Xiao, Jingtao Yue, Xia Xie, and
Hai Jin. Gradeddag: An asynchronous dag-based bft consensus with
lower latency. Cryptology ePrint Archive, 2024.

[18] George Danezis and David Hrycyszyn. Blockmania: from block dags
to consensus. arXiv preprint arXiv:1809.01620, 2018.

[19] George Danezis, Lefteris Kokoris-Kogias, Alberto Sonnino, and
Alexander Spiegelman. Narwhal and tusk: a dag-based mempool and
efficient bft consensus. In Proceedings of the Seventeenth European
Conference on Computer Systems, pages 34–50, 2022.

[20] Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren,
and Victor Shoup. Asynchronous consensus without trusted setup or
public-key cryptography. Cryptology ePrint Archive, 2024.

[21] Sourav Das, Zhuolun Xiang, and Ling Ren. Asynchronous data
dissemination and its applications. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security,
pages 2705–2721, 2021.

[22] Isaac Doidge, Raghavendra Ramesh, Nibesh Shrestha, and Joshua
Tobkin. Moonshot: Optimizing chain-based rotating leader bft via
optimistic proposals. In International Conference on Dependable
Systems and Networks (DSN), 2024.

[23] Sisi Duan, Michael K Reiter, and Haibin Zhang. Beat: Asynchronous
bft made practical. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, pages 2028–
2041, 2018.

[24] Sisi Duan, Xin Wang, and Haibin Zhang. Fin: Practical signature-free
asynchronous common subset in constant time. In Proceedings of the
2023 ACM SIGSAC Conference on Computer and Communications
Security, pages 815–829, 2023.

[25] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus
in the presence of partial synchrony. Journal of the ACM (JACM),
35(2):288–323, 1988.

[26] EigenLabs. Intro to eigenda: Hyperscale data availability for rollups,
2023. Accessed on March 20, 2024.

[27] Ethereum. Data availability — ethereum.org, 2024. Accessed on
March 20, 2024.

[28] Adam Gκagol, Damian Leśniak, Damian Straszak, and Michał
Świκetek. Aleph: Efficient atomic broadcast in asynchronous net-
works with byzantine nodes. In Proceedings of the 1st ACM Confer-
ence on Advances in Financial Technologies, pages 214–228, 2019.

[29] Yingzi Gao, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and
Zhenfeng Zhang. Dumbo-ng: Fast asynchronous bft consensus with
throughput-oblivious latency. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security,
pages 1187–1201, 2022.

[30] Rati Gelashvili, Lefteris Kokoris-Kogias, Alberto Sonnino, Alexander
Spiegelman, and Zhuolun Xiang. Jolteon and ditto: Network-adaptive
efficient consensus with asynchronous fallback. In International
Conference on Financial Cryptography and Data Security, pages
296–315. Springer, 2022.

[31] Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, and
Zhenfeng Zhang. Speeding dumbo: Pushing asynchronous bft closer
to practice. In 29th Annual Network and Distributed System Security
Symposium, NDSS 2022. The Internet Society, 2022.

[32] Bingyong Guo, Zhenliang Lu, Qiang Tang, Jing Xu, and Zhenfeng
Zhang. Dumbo: Faster asynchronous bft protocols. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 803–818, 2020.

[33] Idit Keidar, Eleftherios Kokoris-Kogias, Oded Naor, and Alexander
Spiegelman. All you need is dag. In Proceedings of the 2021 ACM
Symposium on Principles of Distributed Computing, pages 165–175,
2021.

[34] Idit Keidar, Oded Naor, Ouri Poupko, and Ehud Shapiro. Cordial
miners: Fast and efficient consensus for every eventuality. In 37th
International Symposium on Distributed Computing (DISC 2023).
Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[35] Yuan Lu, Zhenliang Lu, and Qiang Tang. Bolt-dumbo transformer:
Asynchronous consensus as fast as the pipelined bft. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 2159–2173, 2022.

[36] Yuan Lu, Zhenliang Lu, Qiang Tang, and Guiling Wang. Dumbo-
mvba: Optimal multi-valued validated asynchronous byzantine agree-
ment, revisited. In Proceedings of the 39th symposium on principles
of distributed computing, pages 129–138, 2020.

[37] Dahlia Malkhi and Kartik Nayak. Hotstuff-2: Optimal two-phase
responsive bft. Cryptology ePrint Archive, 2023.

[38] Dahlia Malkhi, Chrysoula Stathakopoulou, and Maofan Yin. Bbca-
chain: One-message, low latency bft consensus on a dag. In Inter-
national Conference on Financial Cryptography and Data Security,
2024.

[39] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song.
The honey badger of bft protocols. In Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, pages
31–42, 2016.

[40] Achour Mostéfaoui, Hamouma Moumen, and Michel Raynal.
Signature-free asynchronous binary byzantine consensus with t¡ n/3, o
(n2) messages, and o (1) expected time. Journal of the ACM (JACM),
62(4):1–21, 2015.

[41] Kartik Nayak, Ling Ren, Elaine Shi, Nitin H Vaidya, and Zhuolun
Xiang. Improved extension protocols for byzantine broadcast and
agreement. In 34th International Symposium on Distributed Comput-
ing, 2020.

[42] [n.d.]. Google Cloud Platform - general purpose machines. https://
cloud.google.com/compute/docs/general-purpose-machines. [Online;
accessed 06/03/2024].

[43] [n.d.]. Google Cloud Platform - Network Bandwidth. https:
//cloud.google.com/compute/docs/network-bandwidth. [Online; ac-
cessed 06/03/2024].

[44] Facebook Research. Bullshark github repository. https://github.com/
facebookresearch/narwhal/tree/bullshark. [Online; accessed 20-April-
2024].

[45] Alexander Spiegelman, Balaji Aurn, Rati Gelashvili, and Zekun Li.
Shoal: Improving dag-bft latency and robustness. In International
Conference on Financial Cryptography and Data Security, 2024.

[46] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Left-
eris Kokoris-Kogias. Bullshark: Dag bft protocols made practical. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 2705–2718, 2022.

[47] Alexander Spiegelman, Neil Giridharan, Alberto Sonnino, and Lef-
teris Kokoris-Kogias. Bullshark: The partially synchronous version.
arXiv preprint arXiv:2209.05633, 2022.

[48] TK Srikanth and Sam Toueg. Simulating authenticated broadcasts
to derive simple fault-tolerant algorithms. Distributed Computing,
2:80–94, 1987.

[49] Espresso Systems. Designing the espresso sequencer: Combining
hotshot consensus with tiramisu da, 2023. Accessed on March 20,
2024.

[50] Giorgos Tsimos, Anastasios Kichidis, Alberto Sonnino, and Left-
eris Kokoris-Kogias. Hammerhead: Leader reputation for dynamic
scheduling. arXiv preprint arXiv:2309.12713, 2023.

[51] Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and
Ittai Abraham. Hotstuff: Bft consensus with linearity and responsive-
ness. In Proceedings of the 2019 ACM Symposium on Principles of
Distributed Computing, pages 347–356, 2019.

Appendix A.
Additional Related Work

Asynchronous BFT protocols. Fully asynchronous BFT
protocols [10], [23], [29], [31], [32], [39] also utilize n

15

https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/general-purpose-machines
https://cloud.google.com/compute/docs/network-bandwidth
https://cloud.google.com/compute/docs/network-bandwidth
https://github.com/facebookresearch/narwhal/tree/bullshark
https://github.com/facebookresearch/narwhal/tree/bullshark

parallel RBCs to propagate the proposals, followed by asyn-
chronous common subset agreement [24], [39] or multi-
value validated Byzantine agreement [36] to agree on at
least n−f proposals. These protocols are primarily designed
for single shot consensus and terminate there after. Because
these protocols operate under asynchronous networks and
involve a separate agreement instance following RBCs, their
latencies are significantly higher.

Fully asynchronous BFT protocols have been studied
under various setup assumptions, such as without signa-
tures [24], [40] or without public key cryptography [20].
When using a signature-free RBC [21], Sailfish is also
signature-free in common case executions without failures
and after GST, as it requires signatures only for no-vote
and timeout messages and certificates. It is an interesting
direction to explore fully signature-free version of Sailfish.

Hybrid BFT protocols. We also note hybrid BFT proto-
cols [7], [14], [16], [35] that aim to match the commit
latency of partially synchronous BFT protocols [30] dur-
ing synchronous periods and asynchronous protocols [36]
during asynchronous periods. In these protocols, all parties
propose in parallel, but only a single proposal is decided
per round. In contrast, DAG-based protocols decide at least
n− f proposals per round.

Appendix B.
Security Analysis of Sailfish

We say that a leader vertex vi is committed directly
by party Pi if Pi invokes commit leader(vi). Similarly, we
say that a leader vertex vj is committed indirectly if it is
added to leaderStack in Line 84. In addition, we say party
Pi consecutively directly commit leader vertices vk and
vk′ if Pi directly commits vk and vk′ in rounds r and r′

respectively and does not directly commit any leader vertex
between r and r′.

The following fact is immediate from using reliable
broadcast to propagate a vertex v and waiting for the entire
causal history of v to be added to the DAG before adding
v.

Fact 1. For every two honest parties Pi and Pj (i) for
every round r,

⋃
r′≤r DAGi[r

′] is eventually equal to⋃
r′≤r DAGj [r

′], (ii) at any given time t and round r, if
v ∈ DAGi[r] ∧ v′ ∈ DAGj [r] s.t. v.source = v′.source,
then v = v′. Moreover, for every round r′ < r, if
v′′ ∈ DAGi[r

′] and there is a path from v to v′′, then
v′′ ∈ DAGj [r

′] and there is a path from v′ to v′′.

Claim 1. If an honest party Pi directly commits a leader
vertex vk in round r, then for every leader vertex vℓ in round
r′ such that r′ > r, there exists a strong path from vℓ to vk.

Proof. Since Pi directly committed vk in round r, there
exists a set Q of 2f + 1 round r + 1 vertices that included
a reference to vertex vk. Let H ⊂ Q be the set of vertices
proposed by honest parties in Q. We complete the proof by
showing the statement holds for any r′ > r.

Case r′ = r + 1: If vℓ ∈ H, we are trivially done.
Otherwise, the vertices in H are from round r + 1 honest
non-leader parties. When a round r + 1 honest non-leader
party Pi includes a reference to vertex leader vk, it does
not send a round r no-vote message. Since |H| ≥ f + 1,
by standard quorum intersection argument, NVCr does not
exist. Moreover, parties in H have delivered vk. By Fact 1,
Lr+1 will eventually deliver vk. Thus, if vℓ exists, it must
include a reference to vk and there exists a strong path from
vℓ to vk.

Case r′ > r + 1: Note that all vertices in H will
eventually be delivered by all honest parties and included in
DAG[r+1]. Additionally, a round r+2 vertex has a strong
path to 2f + 1 round r + 1 vertices. By standard quorum
intersection, this includes at least 1 vertex in H which has a
strong path to vk. Thus, all-round r + 2 vertices (including
round r+2 leader vertex) have a strong path to vk. Moreover,
each round r′′ > r + 2 vertex has strong paths to at least
2f +1 vertices in round r′′ − 1. By transitivity, each vertex
at round r′′ has strong paths to at least 2f + 1 vertices in
round r + 2. This implies vℓ must have a strong path to
vk.

Claim 2. If an honest party Pi directly commits a leader
vertex vk in round r and an honest party Pj directly commits
a leader vertex vℓ in round r′ ≥ r, then Pj (directly or
indirectly) commits vk in round r.

Proof. If r′ = r, by Fact 1, vk = vℓ and we are trivially
done. When r′ > r, by Fact 1 and Claim 1, there exists
a strong path from vℓ to vk in DAGj . By the code of
commit leader, after directly committing a leader vertex vℓ
in round r′, Pi tries to indirectly commit leader vertices vm
in smaller rounds such that there exists a path from vℓ to
vm until it reaches a round r′′ < r′ in which it previously
directly committed a leader vertex. If r′′ < r < r′, party Pj

will indirectly commit vk in round r. Otherwise, by induc-
tive argument and Claim 1, party Pj must have indirectly
committed vk when directly committing round r′′ leader
vertex.

Claim 3. Let vk and v′k be two leader vertices consecu-
tively directly committed by a party Pi in rounds ri and
r′i > ri respectively. Let vℓ and v′ℓ be two leader vertices
consecutively directly committed by party Pj in rounds rj
and r′j > rj respectively. Then, Pi and Pj commits the same
leader vertices between rounds max(ri, rj) and min(r′i, r

′
j)

and in the same order.

Proof. If r′i < rj or r′j < ri, then there are no rounds
between max(ri, rj) and min(r′i, r

′
j) and we are triv-

ially done. Otherwise, assume wlog that ri ≤ rj < r′i.
By Claim 2, both Pi and Pj will (directly or indirectly)
commit the same leader vertex in the round min(r′i, r

′
j).

Assume min(r′i, r
′
j) = r′i. By Fact 1, both DAGi and

DAGj will contain v′k and all vertices that have a path
from v′k in DAGi.

By the code of commit leader, after (directly or indi-
rectly) committing the leader vertex v′k, parties try to indi-
rectly commit leader vertices in smaller round numbers until

16

they reach a round in which they previously directly commit-
ted a leader vertex. Therefore, both Pi and Pj will indirectly
commit all leader vertices from min(r′i, r

′
j) to max(ri, rj).

Moreover, due to deterministic code of commit leader, both
parties will commit the same leader vertices between rounds
min(r′i, r

′
j) to max(ri, rj) in the same order.

By inductively applying Claim 3 between any two pairs
of honest parties we obtain the following corollary.

Corollary 1. Honest parties commit the same leader ver-
tices in the same order.

Lemma 1 (Total order). The protocol in Figures 1 to 3
satisfies Total order.

Proof. By Corollary 1, honest parties commit the same
leader vertices in the same order. By the code of or-
der vertices, parties iterate on the committed leader vertices
according to their order and a deliver all vertices in their
causal history by a predefined deterministic rule. By Fact 1,
all honest parties have the same causal history in their DAG
for every committed leader. Thus, the lemma follows.

Lemma 2 (Agreement). The protocol in Figures 1 to 3
satisfies Agreement.

Proof. If an honest party Pi outputs
a deliveri(vi.block, vi.round, vi.source), vi must be
in the causal history of some leader vertex vk.

When party Pj eventually directly commits a leader
vertex vℓ for round higher than vk.round, by Lemma 1,
Pj also commits vk. By Fact 1, the causal histo-
ries of vk in DAGi and DAGj are the same. Thus,
when Pj orders the causal histories of vk, it outputs
a deliverj(vi.block, vi.round, vi.source).

Lemma 3 (Integrity). The protocol in Figures 1 to 3 satisfies
Integrity.

Proof. An honest party Pi calls
a deliveri(v.block, v.round, v.source) only when vertex
v is in DAGi. The vertices in DAGi are added with
event r deliveri(v, v.round, v.source). Therefore, the
proof follows from the Integrity property of reliable
broadcast.

Validity. We rely on GST to prove validity. For RBC,
we use the protocol from Das et al. [21] for its (nearly)
optimal communication complexity. Their protocol requires
4 communication steps and satisfies the RBC properties
at all times. After GST, it provides the following stronger
guarantees:

Property 1. Let t be a time after GST. If an honest party
reliably broadcasts a message M at time t, all honest parties
deliver M by time t+ 4∆.

Property 2. Let tg denote the GST. If an honest party
delivers message M at time t, then all honest parties deliver
M by time max(tg, t) + 2∆.

Claim 4. Let tg denote the GST and Pi be the first honest
party to enter round r. If Pi enters round r at time t via
receiving round r− 1 leader vertex, then all honest parties
enter round r or higher by max(tg, t) + 2∆.

Proof. Observe that Pi must have delivered 2f + 1 round
r−1 vertices along with round r−1 leader vertex by time t.
By Property 2, all honest parties must have delivered 2f+1
round r−1 vertices along with round r−1 leader vertex by
max(tg, t)+2∆. Thus, all honest parties will enter round r
by max(tg, t)+2∆ if they have not already entered a higher
round.

Claim 5. Let tg denote the GST and Pi be the first honest
party to enter round r. If Pi enters round r at time t via
T Cr−1, then (i) all honest parties (except Lr when Pi ̸=
Lr) enter round r or higher by max(tg, t) + 2∆, and (ii)
Lr (if honest and Pi ̸= Lr) enters round r or higher by
max(tg, t) + 4∆.

Proof. Observe that Pi must have delivered 2f+1 round r−
1 vertices and received T Cr−1 by time t. By Property 2, all
honest parties must have delivered 2f+1 round r−1 vertices
by max(tg, t) + 2∆. In addition, Pi must have multicasted
T Cr−1 which arrives all honest parties by max(tg, t) + ∆.
Thus, all honest parties (except Lr when Pi ̸= Lr) will
enter round r by max(tg, t) + 2∆ if they have not already
entered a higher round. This proves part (i) of the claim.

Observe that if no honest party delivered round r − 1
leader vertex by max(tg, t) + 2∆, all honest parties (in-
cluding Lr) will send ⟨no-vote, r− 1⟩ to Lr. Thus, Lr will
receive NVCr−1 by time max(tg, t) + 3∆. On the other
hand, if at least one honest party delivered round r−1 leader
vertex by max(tg, t) + 2∆, by Property 2, Lr will deliver
round r−1 leader vertex by max(tg, t)+4∆. Thus, Lr will
enter round r by max(tg, t)+4∆ if it has not already entered
a higher round. This proves part (ii) of the claim.

Claim 6. All honest parties keep entering increasing rounds.

Proof. Suppose all honest parties are in round r or above.
Let party Pi be in round r. If there exists an honest party Pj

in round r′ > r at any time, then by Claim 4 and Claim 5,
all honest parties will enter round r′ or higher. Otherwise,
all honest parties are in round r. Observe that all honest
parties will r broadcast round r vertex when entering round
r. Thus, all honest parties will deliver 2f + 1 round r
vertices.

Observe that if no honest party delivered round r leader
vertex, due to the timeout rule, all honest parties will mul-
ticast ⟨timeout, r⟩ and receive T Cr. In addition, all honest
parties will also send ⟨no-vote, r⟩ to Lr+1 and Lr+1 will
receive NVCr−1. Thus, all honest parties will move to round
r + 1. On the other hand, if at least one honest party has
delivered round r leader vertex, by Fact 1, all honest parties
will deliver the round r leader vertex. Having delivered
2f+1 round r vertices and round r leader vertex, all honest
parties will move to round r + 1.

17

Claim 7. If an honest party enters round r then at least
f + 1 honest parties must have already entered r − 1.

Proof. For an honest party to enter round r, it must have
delivered 2f+1 round r−1 vertices. At least f+1 of those
vertices are sent by honest parties while they were in round
r− 1. Thus, f +1 honest parties must have already entered
r − 1.

Claim 8. If the first honest party to enter round r does so
after GST and Lr is honest, then there exists at least 2f+1
round r + 1 vertices with strong paths to round r leader
vertex.

Proof. Let t be the time when the first honest party (say
Pi) entered round r. Observe that no honest party sends
⟨timeout, r⟩ before t+ 8∆ due to its round timer expiring.
Accordingly, no honest party sends ⟨timeout, r⟩ due to
receiving f +1 ⟨timeout, r⟩ before t+8∆. Thus, T Cr does
not exist before t+8∆. In addition, by Claim 7, no honest
party can enter a round greater than r until at least f + 1
honest parties have entered r. Thus, no honest party sends a
timeout message for a round greater than r before t+8∆ and
no honest party enters a round greater than r via a timeout
certificate before t+ 8∆.

Since, Pi entered round r at time t, by Claim 5, all
honest parties (except Lr) enter round r or higher by t+2∆
and Lr enters round r or higher by t+4∆. Observe that if
some honest party enters a round higher than r + 1 before
t + 8∆, there exists at least 2f + 1 round r + 1 vertices
with strong paths to round r leader vertex (say vk). This
is because for an honest party to enter round r′, it must
have delivered 2f + 1 round r′ − 1 vertices. By transitive
argument, it must be that there exists 2f + 1 round r + 1
vertices. Since T Cr does not exist before t+8∆, the round
r + 1 vertices must have a strong path to vk.

Also, note that if an honest party enters round r + 1
before t+8∆, it must have delivered 2f+1 round r vertices
and vertex vk (since T Cr does not exist before t+8∆). Thus,
its round r + 1 vertex must have a strong path to vk.

In the rest of the proof, we consider the case when no
honest party entered a round higher than r before t + 8∆.
Thus, by Claim 5, all honest parties (except Lr) enter round
r by t + 2∆ and Lr enters round r by t + 4∆. Note that
an honest party invokes r bcast on its round r vertex when
it enters round r. By Property 1, round r vertices from all
honest parties (except Lr) will be delivered by t + 6∆. In
addition, by Property 1, vk will be delivered by t + 8∆.
Thus, all honest parties will receive 2f +1 round r vertices
by t+ 8∆ along with vk and send round r + 1 vertex with
a strong path to vk.

The above claim uses τ = 8∆. When an honest party
enters round r via receiving round r − 1 leader vertex, by
using Claim 4 (instead of Claim 5), we can show the above
claim holds with τ = 6∆. By the commit rule and Claim 8,
the following corollary follows.

Corollary 2. If the first honest party to enter round r does
so after GST and Lr is honest, all honest parties will directly
commit round r leader vertex.

Lemma 4 (Validity). The protocol in Figures 1 to 3 satisfies
Validity.

Proof. Let party Pi be an honest party that invokes
a bcast(b, r). We show that all honest parties eventually
output a deliver(b, r, pi). Observe that Pi pushes b into the
blocksToPropose queue. By Claim 6, Pi keeps increasing
rounds and creating new vertices in those new rounds. Thus,
Pi will eventually create a vertex vi with b at some round r
and reliably broadcast it. By the Validity property of reliably
broadcast, all honest parties will eventually add it to their
DAG i.e., vi ∈ DAG[r] for every honest party. By the code
of create new vertex, every vertex that Pj creates after vi
is added to DAGj [r] has a path to vi.

By Corollary 2, the leader vertex proposed by an honest
leader is directly committed after GST. With a leader-
election function that elects all parties with equal probability,
there will be an honest leader who will propose a vertex
with a path to vi and the leader vertex will be committed.
By the code of order vertices, Pj will eventually invoke
a deliver(b, r, pi). By Lemma 2, all honest parties will even-
tually invoke a deliver(b, r, pi).

Appendix C.
Security Analysis of Multi-leader Sailfish

We say that a leader vertex vi is committed directly by
party Pi if Pi invokes commit leaders(CLS) and vi ∈ CLS.
Similarly, we say that a leader vertex vj is committed
indirectly if CMV is added to leaderStack (in Line 140)
and vj ∈ CMV . In addition, we say party Pi consecutively
directly commit leader vertices in rounds r and r′ > r and
does not directly commit any leader vertex between r and
r′.

To commit a round r leader vertex in Multi-leader
Sailfish, at least f + 1 round-(r + 1) vertices proposed by
honest parties must have a strong path to the round r leader
vertex, which is identical to that of Sailfish. Additionally, the
main leader vertex of Multi-leader Sailfish is identical to the
leader vertex of Sailfish. Thus, the proof of the following
claim (Claim 9) remains identical to Claim 1.

Claim 9. If an honest party Pi directly commits a leader
vertex vk in round r, then for every main leader vertex vℓ
in round r′ such that r′ > r, there exists a strong path from
vℓ to vk.

Similarly, the indirect commit rule of a main leader
vertex in Multi-leader Sailfish is identical to the indirect
commit rule of the leader vertex in Sailfish. Thus, the
proof of the following claim (Claim 10) remains identical
to Claim 2 except Claim 9 needs to be invoked (instead of
Claim 1).

Claim 10. If an honest party Pi directly commits the main
leader vertex vk in round r and an honest party Pj directly

18

commits the main leader vertex vℓ in round r′ ≥ r, then Pj

(directly or indirectly) commits vk in round r.

Claim 11. If an honest party Pi directly commits all leader
vertices corresponding to MLr[: x] (for some x > 0) and
an honest party Pj directly commits the main leader vertex
vℓ in round r′ > r, then Pj indirectly commits all leader
vertices corresponding to MLr[: x] in round r.

Proof. Given that Pi directly committed all leader vertices
in MLr[: x], by Fact 1 and Claim 9, there are strong paths
from the main leader vertex of any round higher than r to
all leader vertices corresponding to MLr[: x] in DAGj .

By the code of commit leaders(), after directly com-
mitting the main leader vertex vℓ in round r′, Pi tries
to indirectly commit all leader vertices corresponding to
MLr′′ [: y] (for some y > 0) in an earlier round r′′ < r′

such that there exists strong paths from vℓ to all leader
vertices corresponding to MLr′′ [: y]. This process of indi-
rectly committing multiple leader vertices of an earlier round
is repeated for leader vertices that have strong paths from
the main leader vertex of round r′′ (i.e., MLr′′ [1]), until
it reaches a round r∗ < r′ in which it previously directly
committed a leader vertex. If r∗ < r < r′, party Pj will
indirectly commit all leader vertices in MLr[: x] in round
r. Otherwise, by inductive argument and Claim 9, party
Pj must have indirectly committed all leader vertices in
MLr[: x] when directly committing the main leader vertex
of round r∗.

Claim 12. Let an honest party Pi consecutively directly
committed in rounds ri and r′i. Also, let an honest party Pj

consecutively directly committed in rounds rj and r′j . Then,
Pi and Pj commits the same leader vertices between rounds
max(ri, rj) and min(r′i, r

′
j) and in the same order.

Proof. If r′i < rj or r′j < ri, then there are no rounds
between max(ri, rj) and min(r′i, r

′
j) and we are trivially

done. Otherwise, assume wlog that ri ≤ rj < r′i. Also,
assume min(r′i, r

′
j) = r′i. Let MLr′i

[: x] be the list of
multiple leader vertices directly committed by party Pi in
round r′i for some x > 0. If r′i = r′j , by Claim 10,
party Pj commits at least MLr′i

[1] in round r′i. Otherwise,
by Claim 11, party Pj indirectly commits all leader vertices
in MLr[: x] in round r′i.

Moreover, by Fact 1, both DAGi and DAGj will con-
tain MLr′i

[1] (i.e., the main leader vertex in round r′i) and
all vertices that have a path from MLr′i

[1] in DAGi. By
the code of commit leaders(), after (directly or indirectly)
committing MLr′i

[1], parties try to indirectly commit mul-
tiple leader vertices in a smaller round number r′′ < r′i
that have strong paths from MLr′i

[1]. And, this process is
repeated by indirectly committing leader vertices of earlier
round with strong paths from MLr′′ [1] until it reaches a
round r∗ < r in which it previously directly committed
a leader vertex. Therefore, both Pi and Pj will indirectly
commit all leader vertices from min(r′i, r

′
j) to max(ri, rj).

Moreover, due to deterministic code of commit leaders,
both parties will commit the same leader vertices between
rounds min(r′i, r

′
j) to max(ri, rj) in the same order.

By inductively applying Claim 12 between any two pairs
of honest parties we obtain the following corollary.

Corollary 3. Honest parties commit the same leaders in the
same order.

The proof of the following total order lemma (Lemma 5)
remains identical to Lemma 1 except Corollary 3 needs to
be invoked (instead of Corollary 1).

Lemma 5 (Total order). Multi-leader Sailfish satisfies Total
order.

Agreement. The agreement proof remains identical
to Lemma 2 except Lemma 5 needs to be invoked (instead
of Lemma 1).

Integrity. The integrity proof remains identical to Lemma 3.

Validity. We again rely on GST to prove validity and utilize
the RBC protocol from Das et al. [21].

Claim 13. Let tg denote the GST and Pi be the first honest
party to enter round r. If Pi enters round r at time t, then
(i) all honest parties (except Lr when Pi ̸= Lr) enter round
r or higher by max(tg, t) + 2∆, and (ii) Lr (if honest and
Pi ̸= Lr) enters round r or higher by max(tg, t) + 4∆.

Proof. Observe that Pi must have delivered either round
r− 1 main leader vertex (say vk) or received T Cr−1 along
with 2f +1 round r− 1 vertices. By Property 2, all honest
parties must have delivered 2f + 1 round r − 1 vertices
by max(tg, t) + 2∆. If Pi delivered vk, by Property 2, all
honest parties must have delivered vk by max(tg, t) + 2∆.
Otherwise, Pi must have multicasted T Cr−1 which arrives
all honest parties by max(tg, t) + ∆. Thus, all honest
parties (except Lr when Pi ̸= Lr) will enter round r by
max(tg, t) + 2∆ if they have not already entered a higher
round. This proves part (i) of the claim.

Having delivered vk or received T Cr−1 (along with
2f + 1 round r − 1 vertices), an honest party Pj sends
⟨no-vote, Pk, r − 1⟩ for all Pk ∈ MLr−1 if Pj did not
deliver its corresponding leader vertex by then. If no honest
party delivered the leader vertex corresponding to Pk by
max(tg, t) + 2∆, then all honest parties (including Lr)
will send ⟨no-vote, Pk, r − 1⟩ to Lr. Thus, Lr will receive
NVCPk

r−1 by time max(tg, t) + 3∆. On the other hand,
if at least one honest party delivered the leader vertex
corresponding to Pk by max(tg, t) + 2∆, by Property 2,
Lr will deliver the leader vertex corresponding to Pk by
max(tg, t) + 4∆. Thus, Lr will either deliver a leader
vertex corresponding to Pk or receive NVCPk

r−1 for all Pk ∈
MLr−1 by time max(tg, t)+4∆. Since Lr waits for leader
vertices corresponding to MLr−1[: x] and NVCp

r−1 where
p = MLr−1[x+ 1], Lr enters round r by max(tg, t) + 4∆
if it has not already entered a higher round. This proves part
(ii) of the claim.

Claim 14. All honest parties keep entering increasing
rounds.

19

Proof. Suppose all honest parties are in round r or above.
Let party Pi be in round r. If there exists an honest party
Pj in round r′ > r at any time, then by Claim 13, all
honest parties will enter round r′ or higher. Otherwise,
all honest parties are in round r. Observe that all honest
parties will r bcast round r vertex when entering round r.
Thus, all honest parties will deliver 2f +1 round r vertices.
Furthermore, if an honest party (except Lr+1) delivers the
round r main leader vertex (say vk), it will advance to round
r + 1.

Alternatively, if no honest party delivered vk by the time
their round r timer expires, due to the timeout rule, all
honest parties will multicast ⟨timeout, r⟩ and subsequently
receive T Cr. Having delivered vk or received T Cr, an
honest party Pj send ⟨no-vote, Pk, r⟩ for all Pk ∈ MLr if
Pj did not deliver its corresponding leader vertex by then.
If no honest party delivered the leader vertex corresponding
to Pk by the time they delivered vk or received T Cr, then
all honest parties will send ⟨no-vote, Pk, r⟩ to Lr+1. Thus,
Lr+1 will receive NVCPk

r . On the other hand, if at least
one honest party delivered the leader vertex corresponding
to Pk, by Property 2, Lr+1 will deliver the leader ver-
tex corresponding to Pk. Thus, Lr will either deliver a
leader vertex corresponding to Pk or receive NVCPk

r for
all Pk ∈ MLr. Since Lr+1 waits for leader vertices corre-
sponding to MLr[: x] and NVCp

r where p = MLr[x+ 1],
Lr+1 will advance to round r + 1.

The proof of the following claim (Claim 15) remains
identical to Claim 8 except Claim 13 needs to be invoked
(instead of Claim 4).

Claim 15. If the first honest party to enter round r does
so after GST and Lr is honest, then there exists at least
2f + 1 round r + 1 vertices with strong paths to round r
main leader vertex.

By the commit rule and Claim 15, the following corol-
lary follows.

Corollary 4. If the first honest party to enter round r does
so after GST and Lr is honest, all honest parties will directly
commit the round r main leader vertex.

The proof of the following validity lemma (Lemma 6)
remains identical to Lemma 4 except Corollary 4 needs to
be invoked (instead of Corollary 2).

Lemma 6 (Validity). Multi-leader Sailfish satisfies Validity.

As demonstrated in Claim 15, a round r main leader
vertex (proposed by an honest leader) is always committed
by round r + 1 (after GST). We now establish that the
round r secondary leader vertices will receive votes from
at least 2f + 1 round r + 1 vertices under an “optimistic
condition” when at least 2f+1 parties (including Byzantine
parties) vote for the proposed secondary leader vertices.
Consequently, all leader vertices corresponding to MLr[: x]
will be committed by round r + 1 when all leaders in
MLr[: x] are honest (after GST).

Claim 16. If the first honest party to enter round r does so
after GST and HMLr ⊆ MLr be the set of honest round r
leaders, then under an optimistic condition where all parties
vote for the proposed vertices, there exists at least 2f + 1
round r + 1 vertices with strong paths to round r leader
vertices corresponding to parties in HMLr.

Proof. Let t be the time when the first honest party (say
Pi) entered round r. Observe that no honest party sends
⟨timeout, r⟩ before t+ 8∆ due to its round timer expiring.
Accordingly, no honest party sends ⟨timeout, r⟩ due to
receiving f +1 ⟨timeout, r⟩ before t+8∆. Thus, T Cr does
not exist before t+8∆. In addition, by Claim 7, no honest
party can enter a round greater than r until at least f + 1
honest parties have entered r. Thus, no honest party sends a
timeout message for a round greater than r before t+8∆ and
no honest party enters a round greater than r via a timeout
certificate before t+ 8∆.

Since, Pi entered round r at time t, by Claim 13, all
honest parties (except Lr) enter round r or higher by t+2∆
and Lr enters round r or higher by t+4∆. Observe that if
some honest party enters a round higher than r + 1 before
t + 8∆, there exists at least 2f + 1 round r + 1 vertices
with strong paths to the round r main leader vertex. This
is because for an honest party to enter round r′, it must
have delivered 2f + 1 round r′ − 1 vertices. By transitive
argument, it must be that there exists 2f + 1 round r + 1
vertices. Since T Cr does not exist before t+8∆, the round
r + 1 vertices must have a strong path to the round r main
leader vertex. Moreover, under the optimistic condition, the
round r + 1 vertices must have strong paths to all other
round r leader vertices corresponding to parties in HMLr.

Also, note that if an honest party enters round r + 1
before t+8∆, it must have delivered 2f+1 round r vertices
along with all round r leader vertices (since T Cr does not
exist before t+8∆ and it waits for all round r leader vertices
before entering round r + 1). Thus, its round r + 1 vertex
must have a strong path to all round r leader vertices.

In the rest of the proof, we consider the case when no
honest party entered a round higher than r before t + 8∆.
Thus, by Claim 13, all honest parties (except Lr) enter round
r by t + 2∆ and Lr enters round r by t + 4∆. Note that
an honest party r bcast its round r vertex when it enters
round r. By Property 1, round r vertices from all honest
parties (except Lr) will be delivered by t+6∆. In addition,
by Property 1, round r main leader vertex will be delivered
by t+8∆. Thus, all honest parties will receive 2f+1 round
r vertices along with leader vertices corresponding to parties
in HMLr by t+8∆. When honest parties advance to round
r + 1, their round r + 1 vertex will have a strong path to
vk.

Appendix D.
Issues with Mysticeti Liveness Proof

In this section, we discuss the issues identified in the
liveness proof of Mysticeti [4]. We refer to their most recent

20

version at the time of this writing [https://arxiv.org/pdf/2310.
14821v4].

DAG construction in Mysticeti. Mysticeti progresses
through waves, each consisting of 3 rounds. The first round
of the wave consists of the leader. In each round r, each
party proposes a vertex consisting of a block of transactions
and at least 2f +1 references to vertices from round r− 1.
The vertex is proposed via best effort broadcast (BEB).
Before proposing in the second round of a wave w, an honest
party waits for at least 2f + 1 vertices from the first round
of the wave w and for the leader’s proposal for a predeter-
mined delay. However, there is a discrepancy between the
protocol description and the liveness proof regarding this
predetermined delay: the protocol description specifies 1∆
while the proof states 2∆. We note the following issues in
their proofs even when parties await 2∆ time in each round.
• Lemma 8. The lemma statement claims “After GST, all

honest parties will enter the same round within ∆”.
This claim is too strong to be satisfied universally. It
is always possible that some honest parties lag behind
in some round r′ < r while others advance to round
r′′ > r, even after GST. When the lagging parties receive
sufficient messages from round r′′, they can directly move
to round r′′ or higher without ever entering round r.
The proof of this lemma argues that if an honest party
enters the highest round r before GST, all honest parties
enter round r by GST+∆. However, the honest party
could have entered round r after receiving f+1 proposals
from honest parties and f proposals from Byzantine par-
ties. The f Byzantine parties may not send (consistent)
proposals to all honest parties, meaning the remaining
honest parties would need to download the missing pro-
posals from the honest party that entered round r. This
process can take up to 2∆ time, implying that other
honest parties may only receive 2f + 1 proposals and
enter round r only by time GST+3∆ (if they have not
already entered a higher round). Therefore, we find their
argument incorrect.

• Lemma 9. The lemma statement claims “After GST, an
honest leaders’s proposal will get votes from every honest
parties”.
The proof of this lemma relies on Lemma 8 to ensure that
all honest parties enter a common round within ∆ time.
However, as previously discussed, it can actually take up
to 3∆ time to enter a common round (provided they do
not already enter a higher round).
As specified, parties await for the leader’s proposal for up
to 2∆ time in the first round of wave w before moving to
a higher round. However, it is possible that f + 1 honest
parties enter the first round of wave w at some time t,
while the leader of the wave only enters at time t + 3∆
and sends its proposal. With the support of f Byzantine
parties, the f+1 honest parties can enter the second round
of the wave w by time t+2∆. Therefore, the f+1 honest
parties that entered the second round of the wave w would
not vote for the leader’s proposals. This contradicts the
claim made in Lemma 9.

• Lemma 10. The lemma statement claims “After GST,
all honest parties will create a certificate for the honest
leader.”
The proof of this lemma relies on Lemma 9 to ensure that
all honest parties vote for the leader’s proposal. However,
as discussed earlier, the honest leader’s proposal may not
receive votes from all honest parties. Consequently, not
all honest parties would create a certificate for the honest
leader, contradicting the claim of the lemma.

We have also contacted the authors of Mysticeti to
inform them of these concerns, and they have acknowledged
the issues highlighted.

21

https://arxiv.org/pdf/2310.14821v4
https://arxiv.org/pdf/2310.14821v4

	Introduction
	Technical Overview
	Preliminaries
	Problem Definition

	The Sailfish Protocol
	Efficiency Analysis

	Multi-leader Sailfish
	Efficiency Analysis

	Evaluation
	Related Work
	References
	Appendix A: Additional Related Work
	Appendix B: Security Analysis of Sailfish
	Appendix C: Security Analysis of Multi-leader Sailfish
	Appendix D: Issues with Mysticeti Liveness Proof

