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Abstract 7 

Monitoring grazing activities on grassland is crucial for ensuring sustainable grassland 8 

development and for protecting it from grazing-led degradation. The Leaf Area Index (LAI), 9 

which measures leaf coverage over a surface area, is commonly used as a proxy for grassland 10 

condition. However, current studies focus on the year-round or seasonal aggregated LAI 11 

change rather than the change that can be attributed explicitly to grazing, which is the 12 

important indicator for quantifying grassland grazing. This paper presents a new exponential 13 

growth function under grazing with an estimation algorithm, the purpose of which is to 14 

extract grazing-led LAI changes for every 8 days’ satellite observations. All the analyses are 15 

based on the Moderate Resolution Imaging Spectroradiometer (MODIS) MOD15A2H 16 

products. An improved MODIS LAI and an expected LAI are produced separately, 17 

considering both current and previous grazing-led LAI changes. The differences between 18 

expected LAI and improved LAI are then converted to the equivalent carbon mass of grazed 19 

material. This grazed carbon mass is then aggregated within the growing season, and 20 

compared with the expected carbon mass consumed by livestock (calculated from statistics 21 

yearbooks). In addition, Net Primary Productivity (NPP) is produced using the improved 22 

LAI, simulated by a Light Use Efficiency with Vegetation Photosynthesis Model (LUE-23 

VPM). This is compared with the NPP produced by LUE-VPM based on original MODIS 24 

LAI, MODIS NPP products (MOD17A2H) and grassland monitoring stations’ in situ 25 

measured data. Results show that the NPP calculated from the improved LAI is statistically 26 
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the same as in situ converted NPP with a p-value equalling 0.998 (the RMSE between the 27 

two is 97.77 gC/m2). Conversely, the p-value between converted in situ measured carbon 28 

mass and the MODIS NPP product is 0.011 (the RMSE between the two is 133.98 gC/m2), 29 

indicating they are statistically different. The results detailed in this paper provide precise and 30 

almost real-time grassland grazing monitoring information for policy makers managing 31 

grassland. 32 

Keywords  33 
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1. Introduction 39 

The Leaf Area Index (LAI) is generally defined as the total one-sided green leaf area per unit 40 

ground area for flat broadleaf plants (Monteith and Reifsnyder 1974) or one-half the total 41 

green leaf area per unit ground area for needles of conifers (Chen and Black 1992). It is a 42 

dimensionless value, and descriptive statistics such as the range or the aggregated LAI are 43 

directly comparable over time and sites as the resulting numbers are absolute values (Asam et 44 

al. 2015). The LAI is a key parameter for assessing the carbon and energy in the biosphere 45 

(Swain et al. 2016; Verger et al. 2015; Zhang et al. 2016), photosynthesis (Verrelst et al. 46 

2016; Wei et al. 2016) and biomass production (Prieto-Blanco et al. 2009). Empirically, the 47 

amount of total solar radiation intercepted by a canopy is often well correlated with the 48 

production of dry matter during periods when the leaf area index is increasing (Russell et al. 49 

1990); and extending from this observation, numerous vegetation Net Primary Productivity 50 
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(NPP) models use LAI as a key proxy of canopy status in quantifying the solar radiation 51 

interception (Ruimy et al. 1999).  52 

The in-situ LAI of plant canopies can be obtained either directly by green leaf collection or 53 

indirectly by examining the physical properties of green leaves; a detailed discussion on these 54 

measurements was presented in Jonckheere et al. (2004). Large-scale in-situ measurement of 55 

LAI is almost impossible due to its labour-intensive character (Jonckheere et al. 2004). 56 

Remote sensing of vegetation spectral information acquired from moderate resolution optical 57 

sensors provides an alternative means of observing canopy LAI, which largely extended the 58 

LAI observation from regional to global (Buermann et al. 2001; Tian et al. 2004). Datasets 59 

such as the 10 day CYCLOPES LAI (Baret et al. 2007), which uses neural networks over a 60 

radiative transfer model (Verhoef 1984) at about 1km spatial resolution from 1998 to 2003; 61 

and GLOBCARBON (Deng et al. 2006) from Satellites Pour l’Observation de 62 

(SPOT/VEGETATION) from 1997 to 2003, which is calculated through a Four-Scale 63 

bidirectional reflectance model (Chen and Leblanc 1997) at about 1 km resolution; or 64 

Moderate Resolution Imaging Spectroradiometer LAI  (MODIS LAI, which is based on a 3D 65 

radiative transfer model  (Knyazikhin et al. 1998a) with about 0.5 km resolution) from 66 

TERRA-AQUA sensors since 2000 (Yang et al. 2006) report the global vegetation LAI. We 67 

use MODIS LAI for its high spatial resolution and data availability during 2003~2012.  68 

The LAI datasets derived from remote sensing are extensively employed in the field of 69 

grassland monitoring (Field et al. 1995; Gao et al. 2013; Piñeiro et al. 2006; Potter et al. 70 

1993). Among them, the MODIS LAI dataset is one of the most widely used (Fang et al. 71 

2008; Hill et al. 2006). MODIS LAI reduces the effects of soil conditions (Fang et al. 2015), 72 

local viewing and illumination conditions (Croft et al. 2014; Galvão et al. 2013; Los et al. 73 

2005) and canopy structure (Croft et al. 2014), by taking the canopy and scene geometry 74 

specifications into account during estimation (Jensen et al. 2011). Therefore, MODIS LAI 75 
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changes, especially time-series changes, are suitable and consistent for the detection of 76 

vegetation status changes. MODIS LAI are widely used and extensively validated around the 77 

world (De Kauwe et al. 2011). For example: by comparing the LAI of two different 78 

catchments in South Africa, Palmer and Bennett (2013) use MODIS LAI to identify the 79 

grassland degradation of communal grasslands. Similarly, Bobée et al. (2012b) reported the 80 

seasonal dynamics of grasslands by the employment of time series MODIS LAI observations. 81 

Mayr and Samimi (2015) further validated the consistency of MODIS LAI by comparing the 82 

spatial patterns of field-measured LAI, LAI derived from High-Resolution RapidEye Imagery 83 

and MODIS LAI. 84 

MODIS LAI retrieval techniques are mainly based on the spectral and angular samplings of 85 

the radiation field reflected by vegetation canopies. The MODIS LAI algorithm uses a main  86 

Look-up-Table to retrieve LAI values (Wang et al. 2004). A three-dimensional radiative 87 

transfer equation is used to derive spectral and angular biome-specific reflectances of 88 

vegetation canopies (Knyazikhin et al. 1998a). The numerical solutions of this equation are 89 

calculated and stored in the Look-up-Table. It provides the best fit LAI to measured data by 90 

considering background effects (soil reflection), and biome-specific spectral and angular 91 

information for vegetation (Knyazikhin et al. 1998b). But in some instances, the algorithm 92 

may fail and an empirical LAI would generally be used to fill pixels where this is the case. 93 

For example; radiation is strongly affected by clouds, meaning that the MODIS LAI needs to 94 

be reprocessed before use. Current reprocessing methods are focused on producing a 95 

smoother and more spatiotemporally consistent product by taking a spatial, temporal or 96 

hybrid combination of weighted LAI values into account (Fang et al. 2008; Hansen et al. 97 

2003; Liu et al. 2017; Xiao et al. 2011; Yuan et al. 2011; Zhang et al. 2012). These improved 98 

LAI estimates are widely used for a broad view of pixel-specific vegetation dynamics at both 99 

regional scale (Bobée et al. 2012a; Jin et al. 2017) and global scale (Zhang et al. 2017). 100 
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However, when looking into the vegetation dynamics for each time period in grazing 101 

monitoring, the improved LAI dataset has the disadvantage that it demolishes the original 102 

grazing information through spatiotemporal averaging. In the context of grassland, especially 103 

in grazing intense areas (Gignoux et al. 2001), the grazing-led LAI changes caused by 104 

livestock grazing could have a significant effect on the quantity and quality of grass 105 

productivity (Matches 1992). Remote sensing data can only capture the time period status of 106 

vegetation, rather than the whole process of vegetation development; nevertheless, 107 

improvements can be made. Ignorance of the grazing activities that may cause LAI change 108 

can lead to underestimates or otherwise incorrect assessments of grassland productivity, 109 

especially in grazing intensive regions (Lebert et al. 2006; Nyima 2015). This is important for 110 

grassland management, and researchers have argued that grazing coupled with climate 111 

change are the main factors contributing to regional grassland degradation and even 112 

desertification (Dean et al. 1995; Harris 2010). It may directly lead to the change from green 113 

land to bare land, and a grazing-led LAI change could be observed in the grass growth season 114 

(Miller-Goodman et al. 1999; Tsalyuk et al. 2015).   115 

It is of great importance to identify the spatial distribution and quantity of grazing-led LAI 116 

changes on grasslands. The aim of this paper is therefore to estimate these changes using 117 

MODIS LAI datasets. However, the information we have from MODIS LAI datasets is very 118 

limited with regards to extracting the precise changes directly. Therefore, we need to further 119 

process the available datasets. The accurate quantification of grazing-led LAI changes would 120 

produce a crucial indicator that would be used to guide sustainable grazing pasture 121 

management.  122 

There are two main difficulties directly or indirectly related to the MODIS LAI datasets:  123 

 MODIS LAI datasets are inevitably affected by clouds or other modelling errors 124 

(Myneni et al. 2015). When we only use “good quality” data, the other pixels (non-125 
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good quality) make the dataset discontinuous. We need to pre-emptively decide how 126 

to fill these “non-good quality” pixels reasonably and consistently in a manner that is 127 

best for estimating grazing-led LAI changes on grassland. 128 

 The question of how to estimate the grazing-led LAI changes during the grass 129 

growing season is based on the LAI after grazing observed by MODIS. This depends 130 

on how we calculate the expected LAI before grazing. For a specified pixel, both the 131 

effect of current grazing and previous grazing should be considered simultaneously. 132 

To solve these two problems, we need to develop a new integrated growth grazing 133 

function that is able to describe seasonal growth cycles of the grass under grazing. It can 134 

be used to fill these “non-good quality” pixels more reasonable according to grass 135 

phenological dynamics. The grazing-led LAI changes can then be derived by fitting to 136 

this new growth function. Since there are no direct data to validate the estimation of 137 

grazing-led LAI changes, we use two indirect measures to validate it: the expected carbon 138 

mass consumed by livestock and the land Net Primary Productivity (NPP). 139 

2. Data sources 140 

The case study area for this work is Zeku County, Qinghai, China. The total land area is 141 

approximately 6600 km2, of which grassland accounts for 98%. The elevation is above 3500 142 

meters for the vast majority of the land, with the highest elevation being 4971 meters and the 143 

lowest being 2800 meters. The year-round mean temperature ranges from -3 ć to 2.8 ć (the 144 

average annual temperature is -ͳǤͳԨ with a deviation of ͲǤͺͶ Ԩ), with no absolute frost-145 

free period.  146 

2.1. Household survey data 147 

The household data used in this study originate mainly from a field survey conducted in 2012 148 

by the Centre for Chinese Agricultural Policy (Huang et al. 2016). This field survey was 149 
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supported by the National Key Programme for Developing Basic Science (2012CB95570001) 150 

project “Impact of Climate Change on Key Parameters of Socio-economic System in Typical 151 

Regions”, which was led by the Centre for Chinese Agricultural Policy, Chinese Academy of 152 

Science. The first author was part of the survey team. Zeku was one of the three selected 153 

typical counties in the survey. The towns and villages within Zeku were randomly chosen for 154 

inclusion, and the sampling size was 52 households. The sampling data include the number of 155 

livestock, the winter/summer pasture area and the land tenure for each household. The 156 

percentage of winter pasture area is 44.8% for Zeku in 2011 according to the survey. This 157 

percentage is mainly used to filter out the small LAI changes in un-grazed pixels, that is, the 158 

percentage of winter pasture area derived from MODIS LAI should be the same as that of 159 

household survey statistics. Although the survey size is relatively small, its results are useful 160 

because it gives the information of the grazing land (percentage of winter/summer pasture 161 

area), and represents characteristic of the grassland grazing in the local area (Huang et al. 162 

2017). 163 

The survey also showed that there are herbivores other than agricultural livestock present in 164 

the area, and, indeed, that some species (such as Stipa purpurea) are even threatening the 165 

stability of the rangeland ecosystem in places. However, this paper does not consider the 166 

effect of other herbivores due to the fact that the livestock grazing has a dominant role in the 167 

rangeland forage consumption. 168 

2.2. Image datasets 169 

Two image datasets were employed to assess the Leaf Area Index (LAI). These are MODIS 170 

LAI and GlobalLand30 land use/cover datasets. GlobalLand30 land use/cover datasets were 171 

used to extract the spatial distribution of grassland in Zeku. The MODIS LAI datasets were 172 

used to estimate the LAI value of grassland. Both datasets were projected to Krasovsky 1940 173 

Albers, with central meridian 105°, standard parallel 25° and 47°. The projection kept the 174 
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projected land area the same as that of the earth’s surface, which is important for the 175 

validation of grazing-led LAI changes. 176 

2.21. MODIS LAI products (MOD15A2H006) 177 

The LAI datasets were gathered from the MODIS collection 6 LAI (MOD15A2H006) 178 

(Myneni and K. 2015). For each pixel (approximately 463 m×463 m) during 2003-2012, the 179 

data contain a LAI estimate as well as an 8-bit quality control (QC) value (Myneni et al. 180 

2015). The LAI is unitless (m2/m2) and the scale factor is 0.1 (meaning the real value is 10 181 

times smaller than that of the MODIS LAI).  182 

In this paper, only the “good quality” data with QC=0 were used in order to avoid introducing 183 

any further uncertainties into the model. In the MODIS LAI dataset, there are LA I 184 

observations every 8 days which in total is 46 observations each year. These are the "best" 185 

pixels available from all the acquisitions of the Terra sensor from within the 8- day period. 186 

The time range of the dataset is from 2003 to 2012. The average percentage of the number of 187 

“good quality” (QC=0) pixels to the total number of grassland pixels is shown in Fig. 1, the 188 

average ratio is 81.52% for Zeku during 2003~2012.  189 



9 
 

 190 

Fig. 1: Percentage of “good quality” (QC=0) pixels for MODIS LAI in Zeku, China 191 

2.22. GlobalLand30 datasets 192 

The land cover data, used in this study to identify grasslands were from the 30 meter Global 193 

Land Cover dataset (GlobalLand30). The overall classification accuracy reached 83.51% 194 

(Kappa= 0.78). Specifically, the accuracy for grassland was 76.88% (Chen et al. 2015). As it 195 

was organized into tiles, four tiles were downloaded to cover the extent of Zeku County (tile 196 

numbers are: N47_30_2010LC030, N47_35_2010LC030, N48_30_2010LC030, and 197 

N48_35_2010LC030). After mosaicing, re-projection and extraction, the data were resampled 198 

to approximately 463×463m2 spatial resolution (this is the same pixel size as in the 199 

MOD15A2H006 LAI datasets) by the majority percentage principle. The land cover in the 200 

year 2010 is shown in Fig. 2. Because there are almost no changes in land cover when 201 

compared with the data in 2000, it is assumed that Land Cover type has not been changed 202 

substantially during the modelling period (2003~2012). 203 

 204 
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 205 

Fig. 2: Land Cover of Zeku, 2010 206 

2.3. Validation datasets 207 

In order to validate the new LAI estimation (that takes account of grassland grazing), two 208 

types of datasets were used.  209 

2.3.1 Net Primary Productivity Validation 210 

The first data set was related to the improved LAI validation, which involves the calculation 211 

of Net Primary Productivity (NPP) from the LAI and a comparison with some in-situ grass 212 

fresh weight data, provided by The Grassland and Livestock Husbandry Bureau of Zeku that 213 

was collected in 2016. There were 15 grassland sampling sites and 4 samples were taken for 214 

each site, and the size was 1 m2 for each sample. These are the Chinese national grassland 215 

monitoring sites, which were chosen depending on the representativeness of the overall grass 216 

growth. We used the average fresh weight for each sampling site. Two datasets are used in 217 

the NPP calculation. Both datasets are projected to Krasovsky 1940 Albers. The first is daily 218 



11 
 

temperature data, which are downloaded from the High-Resolution China Meteorological 219 

Forcing Dataset (0.1° spatial resolution for every 3 hours from 2003 to 2012) (He and Yang 220 

2011). The daily average temperature is calculated and resampled (using mean value for the 221 

mixed pixel) to the same spatial resolution as MODIS LAI.  222 

The second NPP-validation data includes the daily surface reflectance and is available online 223 

from MODIS MOD09A1 surface reflectance datasets (Vermote 2015) from 2003 to 2012. 224 

These data have the same spatial resolution as MODIS LAI (about 463×463m2). The 225 

temporal resolution is 8-day periods. For each day in the 8-day period, the surface reflectance 226 

is calculated through the weighted average of its former surface reflectance and current 227 

reflectance; they are linearly interpolated to daily surface reflectance data for daily NPP 228 

calculation.  229 

2.3.2 Livestock Validation 230 

The second validation dataset is related to the validation of grazing-led LAI changes. This 231 

includes the number of livestock (yak, sheep, goat, and horse) during the grass growth period, 232 

which has been provided by the Statistical Bureau of Zeku from 2003 to 2012. The Statistical 233 

Bureau of Zeku collects the number of livestock for the whole county every year through a 234 

household survey at each village. 235 

3. Methods 236 

The estimation of grazing-led LAI changes is mainly based on the analysis of MODIS LAI 237 

datasets. The framework is shown in Fig. 3: 238 
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  239 

Fig. 3:  Conceptual framework for quantifying grazing based on LAI data  240 

After extracting the grassland LAI of Zeku based on MODIS LAI and GLO30 land use/cover 241 

datasets from 2003 to 2012, the “good quality” LAI data were retained by setting the LAI 242 

value of “non-good quality” pixels to “NA”. The retained “good quality” LAI data are not 243 

continuous over 46 observations during the year due to the “NA” settings. We use the new 244 

growth function to calculate the value of these “NA” pixels. 245 

In this paper, we focus only on the grass growth period for the estimation of grazing-led LAI 246 

changes. This is because the LAI is largely static during the winter period for grassland in 247 

Zeku. MODIS LAI can capture limited grass information in winter due to the grassland 248 

burning in Zeku, such that the LAI values mainly report the background soil information. In 249 

order to distinguish the grass growth period and non-growth periods, which will be used to 250 

MODIS LAI data GLC30 land cover 
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calculate initial background LAI, the first work in this paper is to detect the phenophase of 251 

the grassland. A change detection technique was employed to estimate the starting date and 252 

end date of the grass growing season. The initial background LAI (mainly soil information) 253 

can be calculated after phenophase detection. 254 

A new grass growth function will be developed to describe grass growth under grazing. In 255 

order to fit this new growth function, the initial background LAI, current LAI (MODIS “good 256 

quality” LAI) and the expected LAI (LAI before grazing with the effect of the previous 257 

grazing) should be known. An estimation algorithm is then developed to extract the value of 258 

the expected LAI for each pixel, which considers both current grazing and the effect of the 259 

previous grazing. Finally, by curve fitting, an improved LAI and expected LAI will be 260 

produced. The grazing-led LAI change is then the difference between expected LAI and 261 

improved LAI. Next, this new growth function will be introduced. 262 

3.1. New growth function 263 

One way to estimate the grazing-led LAI change is to estimate the full growth curve and 264 

compare it with the recorded LAI for each pixel. There is a history of research devoted to 265 

finding a simple function that describes the basic LAI dynamics of grass. For perennial 266 

grasses, which are the dominant species in the Zeku, Qinghai-Tibet area, the LAI within the 267 

whole season can be described by three stages (Fig. 4). These stages can be observed both in 268 

field measurements (Hoffmann et al. 2005) and by remote sensing (Garrigues et al. 2008; 269 

Xiao et al. 2011). The LAI estimation process developed here starts by identifying the 270 

grazing-led LAI changes caused by livestock during the grass growing season for each 8-day 271 

period. The parameters of this new growth function for each pixel are estimated though 272 

fitting against the MODIS LAI dataset.  273 
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 274 

Fig. 4: LAI during a regrowth follows a bell curve as the canopy develops from low LAI 275 
(Phase I: low LAI increase rate) to maximum LAI (Phase II: high increase rate, growth 276 
dominated) and then to low LAI again (Phase 3: high LAI decrease, senescence dominated). 277 

The ordinary exponential growth function as detailed in Johnson and Thornley (1983) and 278 

Thornley and Johnson (1990) is widely used, but there are two problems that need to be 279 

further considered when describing the LAI changes: 280 

1. The senescence factor is totally ignored; 281 

2. A lack of parameters that can represent the grazing effect. 282 

A feasible way to deal with those problems is to add a senescence defoliation coefficient (the 283 

leaf changes colour from green to yellow) and grazing-led defoliation coefficient (the leaf is 284 

partly consumed by livestock) to the exponential growth function according to the nature of 285 

plant development. In this way, the whole processes of plant development (see Fig. 4) can be 286 

described appropriately in one function, while the traditional growth function can only 287 

describe growth dominated period (Phase I and Phase II in Fig. 4). When considering 288 

livestock grazing and grass senescence, the new function can be expressed as: 289 

ௗሺା ீାீሻௗ௧ ൌ ݇ଵሺܮ௧  ௧ܩ  ௧ሻܤܩ െ ݇ଶሺܮ௧  ௧ܩ   290     ݐ௧ሻܤܩ

Where ܮ௧ is the current LAI that can be observed; ܩ௧ is the grazing-led LAI loss; and ܤܩ௧ is 291 

the previous grazing effect on current LAI.  ݇ଵሺܮ௧  ௧ܩ   ௧ሻ represents the current total 292ܤܩ

growth rate, which is proportional to the current LAI. This has been widely examined in 293 

ecological related studies (Johnson and Thornley 1983; Thornley and Johnson 1990). 294 

Phase III Phase I Phase II  

Time 

LA
I 

Phase I 
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 ݇ଶሺܮ௧  ௧ܩ   represents the total senescence rate, and is proportional to the current 295 ݐ௧ሻܤܩ

LAI. Notice that it takes the time as a weight; fሺݐሻ ൌ  and is calculated in a time-dependent 296 ,ݐ

manner. According to the observations from Borrás et al. (2003) and Leopold et al. (1959), 297 

the total senescence rate is linear to time t. Although this relationship may be linear or non-298 

linear across plant species, this paper assumes a linear relationship for simplicity. There is an 299 

improvement that can be made to the function; given the quantity of growth is the effect of 300 

growth and senescence combined, that growth is proportional to its current LAI (ܮ௧). Equally, 301 

as the senescence rate can be related to both current LAI (ܮ௧) and time t, it can be written as: 302 

ௗሺାீశಸಳሻሺା ீାீሻ ൌ ሺ݇ଵ െ ݇ଶݐሻ݀௧   303 

Then to integrate this equation:  304 

 ௗሺା ீశାீሻሺା ீାீሻబ ൌ  ሺ݇ଵ െ ݇ଶݐሻ݀௧௧      305 

where Lሺt ൌ Ͳሻ ൌ   is the initial background LAI. This equation is now can be solved to 306ܮ 

have: 307 

݈݊ ሺା ீାீሻሺబାீబାீబሻ ൌ ݇ଵݐ െ ݇ଶݐଶ   308 .ܥ

In fact, at the start, ܩ ൌ ܤܩ ൌ Ͳ; C is the constant after integration, and therefore we have: 309 

 
ା ீାீబାீబାீబ ൌ ା ீାீబ ൌ ା ீାீ כ బ ൌ ଵ כ బ ൌ బ    310 

where P is defined as the percentage of LAI which has been observed (remaining LAI after 311 

grazing): 312 

௧ܲ ൌ ା ீାீ .         313 

If we substitute this to the integrated growth equation, we get: 314 

௧ܮ ൌ  ܲ݁భ௧ିమ௧మା ,        315ܮ
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which is the basic form of the new growth model. When using this model, an initial 316 

background LAI value (ܮ, or background value) is set, as this is more convenient when 317 

fitting the observed data. In fact ܮ௧ ൌ ௦௩ௗܮ െ  , thus, it becomes: 318ܮ

௦௩ௗܮ ൌ ܮ  ܮ ௧ܲ݁భ௧ିమ௧మା     319 

and usually, ܮ ൌ ܮ ൌ min ሼܮ௧ሽ. 320 

We additionally define  321 ܲܤ௧ ൌ ீା ீାீ         322 ܲܩ௧ ൌ ீା ீାீ        323 

where ܲ  ௧ is the effect of 324ܤܲ ௧ is the percentage of current grazing-led LAI change andܩ

previous grazing on LAI change. Then we can have the following relation between ܲܤ௧, ܲ  ௧ 325ܩ

and ܲ ௧: 326 

௧ܲ ൌ ͳ െ ௧ܤܲ െ  ௧ .         327ܩܲ

Substitute this to ܮ௦௩ௗ ൌ ܮ  ܮ ௧ܲ݁భ௧ିమ௧మା and we have the final equation: 328 

௦௩ௗܮ ൌ ܮ  ሺͳܮ െ ௧ܤܲ െ  ௧ሻ݁భ௧ିమ௧మା   329ܩܲ

In general, this new growth-grazing function can improve the accuracy of the regression 330 

coefficient if we intend to find a curve across the sample points that match as reasonably as 331 

possible. However, this new growth-grazing function is not enough in isolation; it needs to be 332 

accompanied by a grazed LAI estimation algorithm where ܲܤ௧  and ܲ ௧ will be estimated, as 333 

discussed in Section 2.3.4. 334 

In the next section, we will outline the components of a curve fitting procedure with regard to 335 

this new growth function. This procedure follows the framework outlined in Fig. 3. 336 

3.2. Step 1: phenophase detection 337 

The first element of the analysis is identifying the grass growth period. To do this, we utilise 338 

change point detection, applied to the 8-day MODIS LAI data time series. The purpose of the 339 

change point detection is to identify the location of change (single or multiple) in the 340 
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statistical properties of a sequence of observations that change in the series data. The cost-341 

penalty function is a commonly used method (Killick and Eckley 2014) to measure such 342 

change locations that minimize: 343 

 ൫ݕߩሺఛషభାଵሻǣ ߬൯  ሺ݉ሻାଵ݂ߚ
ୀଵ  344 

where  ߩ is a cost function for a segment, the log-likelihood is a commonly used cost function 345 

(Horváth 1993); ߬ is the ith change point and the total number of change points is m; 346 ݕሺఛషభାଵሻǣ ߬ represent the ith segment, the  ݂ߚሺ݉ሻ is a penalty to guard against over fitting. 347 

We use the PELT method, which assumes that the penalty is linear to the number of change 348 

points, that is, ȕf (m) = ȕm (Jackson et al. 2005; Killick et al. 2012), as a choice of penalty 349 

function with Modified Bayes Information Criterion (Zhang and Siegmund 2007). For this 350 

research, we need to identify the change point where the mean value of the ith segment has a 351 

maximum likelihood statistic which minimizes the value of cost-penalty function. The change 352 

detection software used here is the R “changepoint” package developed by Killick and 353 

Eckley (2014). At least two change points would be expected according to Phase I in Fig. 4: 354 

the start and end date for grass growth. 355 

3.3. Step 2: generating initial background LAI 356 

After identifying the phenophase using a change point detection technique, the initial 357 

background LAI can be calculated using the LAI data during winter periods. There are 358 

various methods that can be used to calculate the initial background LAI. On the global scale, 359 

a series of calculation algorithms are integrated in the background LAI calculation schema 360 

(Yuan et al. 2011), which consists of a conditional multi-year average, TIMESAT (a software 361 

package to analyse time-series of satellite sensor data) Savitzky–Golay (SG) filter (Savitzky 362 

and Golay 1964), local per class mean (average LAI value with a small area for each land 363 

use/cover type), per class mean (average LAI value for each land use/cover type) and multi-364 
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year per class mean (multi-year average LAI value for each land use/cover type) (Yuan et al. 365 

2011). In addition,  improved ecosystem curve fitting (VCF-ECF) has been proved a useful 366 

method in producing continuous field products (Hansen et al. 2003). However, these methods 367 

are not applicable at Zeku, or, indeed, any other area where grazing is important in 368 

calculating carbon cycling. All of these methods are focused on producing smooth and 369 

consistent values of LAI, while in the grazing-intensified grassland areas in Zeku, any 370 

attempt to produce the average or weighted average of LAI, either spatially or temporally, 371 

would directly reduce or eliminate the effect of grazing. In addition, prescript grassland 372 

burning during winter is commonly seen in Zeku, which results in the same value of LAI 373 

during the winter period (determined by the results of phenophase detection). We, therefore, 374 

use the modal value of LAI during winter period from 2003 to 2012 as the initial background 375 

LAI. 376 

3.4. Step 3: preliminary estimation for current grazing and the effect of the previous 377 
grazing 378 

The next step is to estimate the grazing-led LAI changes for each pixel preliminarily. The 379 

value of this estimation will be improved by fitting with the new growth function. For each 380 

pixel, here we define the following: 381 

 Full growth LAI is the theoretical LAI curve if there is no grazing (without the effect 382 

of previous grazing and current grazing); 383 

 Expected LAI is the LAI before grazing (with effect of the previous grazing but 384 

without effect of current grazing);  385 

 Observed LAI is the LAI after grazing (with the effect of current grazing and previous 386 

grazing).  387 

The observed LAI is a time-series of point data. When there is an adverse observed LAI 388 

value, we can calculate the expected LAI and compare it to that of the observed LAI. The 389 
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field measurement LAI of grazing treatment suggest that when grazing stops, grassland 390 

can regrow to pre-grazing levels (Harrison et al. 2012). Taking this model, we assume 391 

that local maxima in the growth curves represent expected seasonal growth for grazed 392 

pixels. An illustration of how the grazing-led LAI changes are calculated is shown in Fig. 393 

7 and elucidated below: 394 

 395 

Fig. 5: Estimation of grazing-led LAI changes estimation 396 

 397 

For example, the red point in the figure represents the current estimation point i, yellow 398 

points are the left neighbouring points with neighbourhood radius 3 (for MODIS, the unit is 399 

an 8-day period), while the green points are the right neighbours. The grazed LAI is then the 400 

difference between expected LAI and observed LAI (arrowed red segments). The effect of 401 

the previous grazing on current growth is calculated by the difference of full growth LAI and 402 

expected LAI (arrowed blue segments).  The algorithm can be summarised as: 403 

 for each time slice point i (the ith observation recorded by MODIS LAI, i=1, 2…46), 404 

the time-series LAI point data are divided into its left neighbour points set (from 405 

point i-r to point i-1) and right neighbour points set (from point i+1 to point i+r) by a 406 

predefined neighbourhood radius r, r is the radii, ranging from 1 to 46, and is defined 407 
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as the radii to search the neighbouring points for the current estimation point. The 408 

values of the radii range from 1 to 21 which is enough to estimate in all situations. 409 

The estimation algorithm chooses the radius which minimizes the average fitting 410 

residual for each pixel as the optimal neighbourhood radius for each pixel. 411 

 Search for the point with maximum LAI in the left neighbouring points set and right 412 

neighbouring points set separately (the left maximum LAI point ܲ ൌ413 maxሺ ܲି ǡ ǥ ǡ ܲିଵሻ  and the right maximum LAI point ܲ ൌ maxሺ ܲାଵǡ ǥ ǡ ܲାሻ). 414 

 Calculate the full LAI for point i, utilising the time difference as a weight, 415 

  if ܲ ൏  ܲ, the full LAI is: ܫܣܮ௨ ൌ ܲ  ିି כ ሺ ܲ െ ܲሻ 416 

 if ܲ   ܲ, the full LAI is: ܫܣܮ௨ ൌ ܲ  ିି כ ሺ ܲ െ ܲሻ 417 

 if ܲ ൌ  ܲ, the full LAI is: ܫܣܮ௨ ൌ ܲ ൌ ܲ 418 

 Calculate the difference between full LAI and observed LAI. If this difference is 419 

bigger than zero, calculate the observed percentage of LAI by: ܲ ൌ ூುூುା ௗ; 420 

if not, this percentage will be set to 1. 421 

 If the previously observed percentage of LAI ܲିଵ is smaller than 1, change the left 422 

neighbour to point i-1, do step 3 and we can get ܲܤ; If not, set ܲ ܤ ൌ Ͳ; ܲܩ can be 423 

calculated by ܲܩ௧ ൌ ͳ െ ௧ܤܲ െ ௧ܲ; 424 

 The estimation error can be evaluated by using the sigma value of the nonlinear 425 

fitting of the new growth function, which indicates the average fitting residual.  426 

Having preliminarily estimated the grazing-led LAI changes and full growth for each point 427 

on the per-pixel LAI curve, and knowing the initial background LAI, the analysis can proceed 428 

to fit the growth curve to the observed growth points, filling in the “non-good quality” pixels 429 
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(improved LAI). The improved LAI can be calculated by the new growth equation directly; 430 

while the expected LAI is calculated by setting ܲܩ௧=0 (the percentage of current grazing). 431 

The expected LAI is calculated by making sure that the percentage of winter pasture area 432 

(44.8%) is the same as the percentage of the pixels that are estimated to have no grazing. We 433 

use the percentage of pixels to filter out the smallest estimated grazing-led LAI changes. The 434 

expected LAI is then calculated by setting the preliminary estimation of grazing-led LAI 435 

changes to 0 (ܲ௧ ൌ ͳ, ܲ ܤ ൌ estimated ܲܤ and ܲ ௧ܩ ൌ Ͳ). Note ܲ  ௧ should stay the same, as 436ܤ

has been calculated in step five. This is because whole estimation algorithm depends on the 437 

previous status of vegetation, and if there is no grazing at the current time period it does not 438 

mean the previous time period had no grazing as well. The grazing-led LAI change (without 439 

the effect of previous grazing) can then be calculated by taking the difference between 440 

expected LAI and improved LAI.  441 

3.5. Step 4: validation of improved LAI 442 

Before we validate the estimated grazing-led LAI changes in this paper, the improved LAI 443 

which was produced by the new exponential growth function should be validated first. There 444 

are no in-situ measured LAI data for Zeku with which we could validate the improved LAI. 445 

Instead, we compare the aboveground Net Primary Productivity (NPP) produced by the 446 

improved LAI with in-situ measured grass weight data that were collected from the Grassland 447 

Livestock Bureau of Zeku.  448 

To calculate the NPP, based on the improved LAI, we here utilise the Light Use Efficiency 449 

with Vegetation Photosynthesis Model (LUE-VPM) which is widely used in NPP estimation, 450 

most specifically by MODIS, to produce their global 500m and 1000m NPP data. The 451 

difference between the LUE-VPM model in this paper and the conventional model used in 452 

the MODIS data is that the Vapour Pressure Deficit (VPD) attenuation scalar is replaced by a 453 

Vegetation Photosynthesis Model (VPM) scalar due to data limitations; for more information 454 
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on the VPM construction, see (Xiao et al. 2004). The key parameters and datasets for the 455 

MODIS NPP calculation and LUE-VPM are shown in Table 1: 456 

Table 1: model parameters of NPP calculation 457 

 MODIS 
(Running and 
Zhao 2015) 

LUE-VPM (Light Use Efficiency with 
Vegetation Photosynthesis Model) 

Light Use 
efficiency (LUE)  

Vapour Pressure 
Deficit (VPD) 

Vegetation Photosynthesis Model 
(VPM) (Xiao et al. 2004) 

Maximum 
radiation 
conversion 
efficiency (ߝ௫, 
KgC/mϡ/d/MJ) 

0.00086 0.00061(Li et al. 2012) 

Photosynthetic 
Active Radiation 
(PAR) data 

from Global 
Modelling and 
Assimilation 
Office 
(GMAO/NASA) 

calculated by Area Solar Radiation (Fu 
and Rich 2002) 

The fraction of 
Photosynthetically 
Active Radiation 
absorbed by 
vegetation (fPAR) 
data 

from MODIS 
fPAR 

calculated with Beer-Lambert law 
(Ruimy et al. 1999) 

 458 

Another work is to convert grass fresh weight (g/m2) to NPP (gC/m2). The relation between 459 

aboveground dry matter (ADM) and NPP can be described as (Maselli et al. 2013; Running 460 

2015): 461 NPP ൌ ADM כ ሺܴ݅ݐ̴ܴ݂ܽܽ݁ܮ̴ݐ  ͳሻ כ ͲǤͷ 462 

where the multiplier ሺܴ݅ݐ̴ܴ݂ܽܽ݁ܮ̴ݐ  ͳሻ converts the above ground dry matter to whole 463 

plant dry matter (both above ground mass and below ground mass). This value is taken as 464 

0.28 following Running (2015). The 0.5 multiplier accounts for the conversion from dry 465 

matter to carbon (Maselli et al. 2013). The ratio of ADM to above ground fresh grass weight 466 

in Zeku is 0.37 according to Lai et al. (2008). 467 
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3.6. Step 5: validation of grazing-led LAI changes 468 

The LAI should decrease in proportion to the amount eaten during grazing (Johnson et al. 469 

2010). One direct way to validate the accuracy of grazed LAI estimation is to measure LAI at 470 

both pre-grazing and post-grazing sites for every 8 days during the growth period. However, 471 

this would require continuous sampling on the same site for years. An alternative method is 472 

to compare the grazed LAI estimate with the total carbon mass consumption of the livestock 473 

during grass growth period for each year. To calculate the livestock consumption, all the 474 

livestock including sheep, goat, yak and horse are converted to Sheep Units (SU), then 475 

according to the SU conversion coefficient (Table 2, see NY/T635 (2002)), the carbon 476 

consumption is calculated during the grazing period for each year using the follow formula: 477 Raised Sheep Unit478 ൌ ൫݈݅݇ܿݐݏ݁ݒ௧௧ೞೌೝ െ ௬௨ೞೌೝ൯݇ܿݐݏ݁ݒ݈݅ כ ௧௨479 ܷ݁ܿܵ ൫݈݅݇ܿݐݏ݁ݒ௬௨ೞೌೝ  ௬௨ೝೌೞ൯݇ܿݐݏ݁ݒ݈݅ כ ௬௨480 െܷ݁ܿܵ ൫݈݅݇ܿݐݏ݁ݒ௧௧ೌ െ ௬௨ೌ൯݇ܿݐݏ݁ݒ݈݅ כ ௧௨ܷ݁ܿܵ כ ݁ܥ ௗ݂481 െ ௬௨ೌ݇ܿݐݏ݁ݒ݈݅ כ ௬௨ܷ݁ܿܵ כ ݁ܥ ௗ݂ 482 

Carbon Mass ൌ Raised Sheep Unit כ GrassDryWeightௌȀͲǤͷ כ ͳͷͷ  483 

 484 

For each livestock type (sheep, goat, yak, and horse), ݈݅݇ܿݐݏ݁ݒ௧௧ೞೌೝ is the total number 485 

of livestock at the start of the year; ݈݅݇ܿݐݏ݁ݒ௬௨ೞೌೝ  is the number of young livestock at 486 

the start of the year; ݈݅݇ܿݐݏ݁ݒ௬௨ೝೌೞ  is the number of livestock increased during the 487 

year; ݈݅݇ܿݐݏ݁ݒ௧௧ೌ  and ݈݅݇ܿݐݏ݁ݒ௬௨ೌ  is the number of total and young dead 488 

livestock respectively during the year; ܷܵܿ݁௧௨ and ܵ  ௬௨ is the SU convert 489ܷ݁ܿ

coefficient for mature and young livestock (Table 2); ݁ܥ ௗ݂ is the percentage of livestock 490 

dead before grazing period (here we give this a constant value 0.5, assuming the number of 491 
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dead livestock is evenly distributed during the year). In Zeku, the herders treasure livestock 492 

as an embodied fortune, and the livestock are mainly sold after the grass growth period 493 

according to our field survey. After calculating SU, the SU is converted to carbon mass using 494 

the second equation. The 0.5 multiplier accounts for the conversion from dry matter to carbon 495 

(Maselli et al., 2013), and 155 is the total grazing days during the grass growth period 496 

according to Fan et al. (2010b). GrassDryWeightௌ is the dry grass consumed per SU, the 497 

value is 1.8 kg day-1 according to (Fan et al. 2010a). 498 

Table 2: livestock conversion coefficients: 499 

Livestock Type Mature (sheep unit) Young (sheep unit) 

Sheep 1  0.4*1 

Goat 0.8 0.4*1 

Yak 4.5 0.3*4.5 

Horse 6.0 0.3*6.0 

 500 

To compare with the estimated carbon mass, the grazing-led LAI changes (without the effect 501 

of the previous grazing) are converted to carbon mass according to Johnson et al. (2010):  502 

LeafMass ൌ LAIȀɐ 503 

where ɐ is the Specific Leaf Area, we take the same value in the MODIS Biome-Property 504 

Look Up Table (Running et al. 2000). 505 

4 Results 506 

3.1. Grass growth under different defoliation severity estimates 507 

The indicator used in this paper is the Leaf Area Index (LAI), which will be used to extract 508 

grazing information according to time series change following the methodology above. Here, 509 

the example theoretical results generated by the new growth function under three different 510 

grazing defoliation severities are shown in Fig. 6. The results show that different grazing 511 
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regimes do have a significant effect on observed LAI. A larger percentage of grazed LAI 512 

means there will be a smaller observed LAI. The same is true for the instantaneous growth 513 

rate of LAI.  514 

 515 

 516 

Fig. 6: The effect of grazing severity on the observed LAI and instantaneous net growth rate 517 
of LAI, with for example k1= 0.16, k2=0.0003, C=-14. c and d are ܮ௧ᇱ 518 

3.2. Results of phenophase by change point detection 519 

Figure 7 shows the mean LAI distribution for all pixels from 2003 to 2014, from which the 520 

most conservative change points were chosen as the start and end dates of the growth season. 521 

There is a basic symmetrical trend for each year.  522 
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 523 

Fig. 7: Average MODIS LAI for each 8-days from 2003 to 2012 (QC=0) 524 

 525 

To choose the appropriate change points for the growing season, change point detection is 526 

used as shown in Table 3. The change points are those with the maximum likelihood of 527 

minimizing the cost-penalty function. There are two obvious change points. The first occurs 528 

at the beginning of the spring season (growth dominated), where the LAI increases from a 529 

period of fixed initial background to a rapid increase. The second occurs at the beginning of 530 

winter season (senescence dominated) when the sharp deceleration of LAI tends to be the 531 

same as initial background LAI. These two change points indicate the start of the fast-532 

growing period and the end of the rapid senescence period respectively. Based on the 533 

conservative principle, the minimum date of the first change point is chosen as the start day 534 

of the fast-growing season, and the maximum date of last change point is the end day of the 535 

senescence dominated period for the whole dataset. 536 

Table 3: Detected change points of mean LAI (QC=0) 537 

year Change points (Julian Day) Observation in the year 
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2003 137 169 185 209 217 241 265 281 18 22 24 27 28 31 34 36 

2004 129 153 177 225 257 281 17 20 23 29 33 36 

2005 129 153 185 201 249 265 289 17 20 24 26 32 34 37 

2006 113 145 177 217 257 281 15 19 23 28 33 36 

2007 129 145 169 193 225 257 273 17 19 22 25 29 33 35 

2008 121 153 169 233 257 281 16 20 22 30 33 36 

2009 113 145 161 185 225 241 273 15 19 21 24 29 31 35 

2010 129 153 169 225 257 289 17 20 22 29 33 37 

2011 145 161 177 217 257 289 19 21 23 28 33 37 

2012 129 161 201 249 273 17 21 26 32 35 

2013 137 153 169 193 225 249 281 18 20 22 25 29 32 36 

2014 129 153 185 209 241 273 17 20 24 27 31 35 

final choose Start date{113},  end date{289} Start date{15},  end date{37} 

 538 

The start and end dates of the grass growth period are used to extract the modal value of the 539 

MODIS LAI (taken from those points with QC=0); this is the initial value of LAI (or 540 

background LAI) during the winter period (observation 1~14 and 37~46). The initial 541 

background LAI will be used in fitting our new growth function. 542 

3.3. Estimated grazing-led LAI changes 543 

The grazing-led LAI changes, calculated on a per pixel basis and plotted as maps, are shown 544 

in Fig. 8. Recall that LAI values are a measure of the leaf surface area per unit area and as 545 

such are dimensionless (m2/m2). They range from 0 to 15.34. Note that there is a consistent 546 

spatial pattern whereby the southeast part of the region has higher grazed LAI than that of its 547 

counterparts; this is similar to the pattern found by other researchers (Fan et al. 2010b). Given 548 

an estimate of the grazed LAIs, these figures can be converted to equivalent leaf mass and 549 

aggregated to a sum total for each year. This will be shown in the validation section of the 550 

results. 551 
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 552 

Fig. 8: Grazing-led LAI changes (without the effect of the previous grazing) of Zeku, 553 
2003~2012  554 

 555 

3.4. Modelling results vs MODIS NPP and in-situ measurements 556 

The NPP was calculated on a daily basis for our improved LAI (Table 4, column “LUE-VPM 557 

NPP (improved LAI)”). In order to compare with the in situ observed data (Table 4, column 558 

“Converted in-situ NPP”), we aggregate the daily NPP from the first day of 2012 to the date 559 

listed in Table 4 (column: “collecting time”, these are the date when the grass fresh weight 560 

were measured). The original MODIS NPP data are in Table 4 (column: “MODIS NPP”).  In 561 

addition, with the purpose of showing our improved LAI performs better than the MODIS 562 
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LAI, we calculate the NPP using MODIS LAI as well (column: “LUE-VPM NPP (MODIS 563 

LAI) ”).  564 

Table 4: Validation with in-situ measured carbon mass (unit: gC/m2) 565 
ID longtitute latitut

e 
altitute collecting 

time 
Converte
d in-situ 
NPP 

LUE-VPM NPP 
(improved LAI) 

MODIS 
NPP 

LUE-VPM NPP 
(MODIS LAI) 

1 101.13 35.31 3482 2012-08-06 143.56 191.47 151.12 182.79 

2 101.08 35.27 3495 2012-08-05 548.06 285.35 203.60 264.61 

3 101.32 35.27 3636 2012-08-06 180.38 245.00 175.12 223.42 

4 101.73 35.06 3617 2012-08-07 335.81 316.31 194.16 272.44 

5 101.80 35.06 3549 2012-08-08 233.40 235.56 167.36 228.64 

6 100.87 35.22 3371 2012-08-09 193.42 NA 194.96 NA 

7 100.87 35.22 3380 2012-08-09 346.88 NA 183.36 NA 

8 101.01 35.19 3511 2012-08-06 290.71 301.43 219.12 269.31 

9 101.46 35.04 3671 2012-08-08 103.15 256.47 156.64 202.58 

10 100.91 35.39 3411 2012-08-07 149.98 245.32 170.16 230.09 

11 100.94 35.39 3420 2012-08-07 288.73 271.83 170.24 243.14 

12 101.15 35.30 3481 2012-08-06 139.91 230.29 146.64 194.44 

13 101.18 35.29 3524 2012-08-06 321.60 254.39 161.76 210.04 

14 101.70 35.03 3619 2012-08-10 328.38 339.67 188.80 262.48 

15 101.61 35.08 3789 2012-08-07 346.54 295.67 195.84 289.53 

mean     262.32 266.83 176.97 236.42 

Since Root Mean Square Deviation (RMSE) can only report the difference between model 566 

results and validation observations, but not the significance level of these differences, we use 567 

Tukey's honest significance test (TukeyHSD test) (Tukey 1949) to report such a significance 568 

level (Table 5). It shows there is no significant difference between NPP calculated by LUE-569 

VPM based on our improved LAI and converted in-situ measured carbon mass with a p-value 570 

equalling 0.998 (the RMSE between the two is 97.77 gC/m2) Conversely the p-value between 571 

converted in-situ measured carbon mass and the MODIS NPP product is 0.011(the RMSE 572 

between the two is 133.98 gC/m2), indicating the MODIS NPP product for Zeku is 573 

significantly different from the in-situ measured data. When keeping all the parameters of 574 

LUE-VPM the same, the p-value between converted in-situ measured NPP and the NPP 575 

calculated based on MODIS LAI is 0.760. In addition, from Table 4, the average converted 576 

NPP from in-situ measured data is 262.32 gC/m2, while the NPP calculated by LUE-VPM 577 

based on our improved LAI is 266.83 gC/m2, and if all the LUE-VPM parameters are kept the 578 
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same, the average recalculated NPP by LUE-VPM based on MODIS LAI is  236.42 gC/m2, 579 

which indicates that the improved LAI estimate has improved the accuracy of the NPP 580 

calculations on average.  581 

 582 

Table 5: Multiple comparisons with one-way ANOVA test 583 

(I) group (J) group Mean 

Difference 

(I-J) 

Std. Error Sig. 95% Confidence Interval 

Lower 

Bound 

Upper 

Bound 

LUE-VPM NPP 

(improved LAI) 

MODIS NPP 89.861*  26.350 .007 19.735 159.988 

Converted in-

situ NPP 

4.504 26.350 .998 -65.623 74.6301 

LUE-VPM NPP 

(MODIS LAI) 

30.404 26.350 .658 -39.723 100.531 

MODIS NPP LUE-VPM NPP 

(improved LAI) 

-89.862*  26.350 .007 -159.988 -19.735 

Converted in-

situ NPP 

-85.358*  26.350 .011 -155.485 -15.231 

LUE-VPM NPP 

(MODIS LAI) 

-59.458 26.350 .123 -129.585 10.669 

Converted in-

situ NPP 

LUE-VPM NPP 

(improved LAI) 

-4.504 26.350 .998 -74.631 65.623 

MODIS NPP 85.358*  26.350 .011 15.231 155.485 

LUE-VPM NPP 

(MODIS LAI) 

25.900 26.350 .760 -44.227 96.027 

LUE-VPM NPP 

(MODIS LAI) 

LUE-VPM NPP 

(improved LAI) 

-30.404 26.350 .658 -100.537 39.723 

MODIS NPP 59.458 26.350 .123 -10.669 129.585 

Converted in-

situ NPP 

-25.900 26.350 .760 -96.027 44.227 

*. The mean difference is significant at the 0.05 level. 

Notes: Converted in-situ NPP is the converted NPP from in-situ measurement of grass fresh weight; 

MODIS NPP is MOD17A3H (MODIS collection 6 NPP), which is public free from 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3h_v006; 

LUE-VPD (improved LAI) is the NPP calculated by Light Use Efficiency with Vegetation Photosynthesis Model 

based on improved LAI produced by this paper; 

LUE-VPD (MODIS LAI) is the NPP calculated by Light Use Efficiency with Vegetation Photosynthesis Model 

based on MODIS LAI (MOD15A2H006,  MODIS collection 6 LAI, which is public free from 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006 ). 

 

https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod17a3h_v006
https://lpdaac.usgs.gov/dataset_discovery/modis/modis_products_table/mod15a2h_v006
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 584 

3.5. Carbon mass changes vs statistical livestock consumption  585 

The following table (Table 6) shows the Pearson correlation matrix between the yearly 586 

aggregated grazed leaf mass based on LAI and the carbon mass calculated from raised 587 

livestock according to the statistics yearbook. The unit for carbon is 1×106 kgC. Herders do 588 

not sell yaks until there is insufficient feed from the grassland in Zeku to maintain the herd. 589 

They see yak as part of their property in the local culture. Hence there is there is no 590 

correlation (a Pearson correlation coefficient of -0.01) between raised yaks and estimated 591 

grazed carbon mass. However, sheep more accurately reflect the change in grassland 592 

provision and can be traded at any time and during any growth period as needed (correlation 593 

coefficient is 0.59). The overall correlation between sheep units of actual sheep and estimated 594 

grazed leaf mass is 0.42, while the p-value of a paired T-test is 0.71 (with R-squared= 0.17). 595 

This indicates a consistent trend between the estimated grazed amount of leaf mass and the 596 

associated consumed carbon mass over time.  597 

Table 6: Pearson correlation matrix among raised livestock and identified grazed leaf mass  598 
Pearson  
correlation 

year yak horse goat sheep total leaf mass 

year 1.00       

yak -0.78 1.00      

horse 0.82 -0.61 1.00     

goat -0.38 0.75 -0.49 1.00    

sheep 0.57 -0.68 0.32 -0.39 1.00   

total -0.50 0.84 -0.36 0.71 -0.22 1.00  

leaf mass 0.28 -0.01 0.06 0.12 0.59 0.42 1.00 

3.6. Impact of neighbour radius on the estimation of grazing-led LAI change 599 

The temporal neighbourhood radius considered in the above estimation methodology could 600 

potentially have a significant effect on the estimation of grazing-led LAI change. There is a 601 

contradiction when choosing a proper neighbourhood radius. A smaller radius is expected to 602 

be more precise, but may equally underestimate grazing-led LAI change. A greater neighbour 603 
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radius value would increase the error of the searching algorithm, especial near inflection 604 

points of the LAI growth curve. This section, therefore, explores this sensitivity. When 605 

setting the neighbour radius at values of 1, 2, 3 and 4 neighbouring points separately, the 606 

distributions of the aggregated grazing-led LAI changes for all of the pixels are shown in Fig. 607 

9. It is clear that there are differences in the distributions between search radius 1 and search 608 

radius 2, and, likewise, 2 and 3. But values are almost the same between searching radius 3 609 

and 4. Making a ‘natural breaks’ assumption, therefore, the optimal search radius value is 3 610 

for the majority of the pixels in this sensitivity analysis. This can be further validated by 611 

plotting the histogram of the actual optimal neighbourhood radius used for each pixel (Fig. 612 

10), of which the average optimal neighbourhood radius is 3. 613 



33 
 

 614 

Fig. 9: distribution of estimated grazing-led LAI changes at neighbour radius 1, 2, 3 and 4 615 
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 616 

 617 

Fig. 10: Histogram of optimal neighbourhood radius for all pixels when choosing minimum 618 
fitting residuals.  619 

3.7. Uncertainty of MODIS “good quality” LAI data 620 

For each pixel, MODIS LAI estimations were associated with the day when the highest fPAR 621 

value was observed during every 8-day period, and the fPAR was estimated based on daily 622 

surface reflectance data (Knyazikhin et al. 1999). Unfortunately, this date has not been 623 

recorded in the MODIS LAI dataset. In Section 3.4, the time difference was used to as a 624 

weight and it was assumed that the observation date of the LAI value is exactly the same as 625 

MODIS LAI recorded date (Julian day 1, 9…361 of the year). This assumption would affect 626 

the weight in calculating grazing-led LAI changes.  We, therefore, set up an uncertainty 627 

simulator, with the purpose of assessing the effect of the uncertainty of date in MODIS LAI 628 



35 
 

on the time weight. Taking assumed weight ( 
ିି in Section 3.4) for example, we assume r, i, 629 

m, n can be any day during the 8-day period in reality, the values of which are then the 630 

random between 0 and 1 (within 1 unit of 8-day period). We use 10000 iterations to 631 

recalculate the possible actual weight (possible MODIS weight) and the mean and variance 632 

are plotted with regards to the different neighbourhood radius (Fig. 11). The result show that, 633 

on the average, the uncertainty of the date in the MODIS LAI data has a limited effect on the 634 

assumed weight. The variation of the weight in both assumed random date and simulated 635 

random date has the same range, and is mainly caused by the position of left or right 636 

neighbourhood point (in 8-day period unit) within the optimal neighbourhood radius. The 637 

most obvious difference during 8-day period in Fig. 12 is when the optimal neighbourhood 638 

radius equals 1, but as the average optimal neighbourhood radius is 3 (Figure 10), and more 639 

than 99.5% of the optimal neighbourhood radius is bigger than 1, this has a very limited 640 

effect on the estimation of grazing-led LAI changes.  641 
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 642 

Fig. 11: Uncertainty of the date recorded in MODIS LAI on the weight of the estimation of 643 
grazing-led LAI changes 644 

 645 

In term of the uncertainty of the value of MODIS “good quality” LAI, we use this percentage 646 

to filter out small LAI fluctuations, which may cause overestimation of the grazed LAI due to 647 

the effect of modelling error here, and background noise within the MODIS LAI data (Li et 648 

al. 2014). The effect of this uncertainty is therefore largely reduced during the estimation of 649 

grazing-led LAI changes.  650 

 651 
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5. Discussion 652 

This paper developed a new growth grazing function with an estimation algorithm to identify 653 

the grazing-led LAI changes for each land pixel. It can extend the ability to extract large scale 654 

and real-time grazing information based on remote sensing data. The results were validated in 655 

two indirect validation ways. However, there are some aspects that could possibly affect the 656 

estimation accuracy of grazing-led LAI changes. 657 

There is an assumption in Fig. 6 that the parameters k1 and k2 (growth and senescence 658 

coefficient) stay the same in spite of grazing, which may be not true in reality – plants may 659 

grow at different rates under grazing due to the over/under compensation of grazing both in 660 

the long term (McNaughton 1983) and short-term (Gignoux et al. 2001) grass development. 661 

In fact, a fitted growth function can only reflect growth parameters under the current grazing 662 

method and intensity. The local maximum LAI might be the result of either over- or under-663 

compensation of grazing on the grass. If it is under compensated, the local maximum LAI is 664 

actually greater than the LAI of un-grazed and vice versa. But unfortunately, we don’t know 665 

the actual LAI value if no grazing happens. It would require ground comparison experiments 666 

with remote sensing observations for all the pixels, which is an important research area but it 667 

is beyond the scope of this paper. Remote sensing can capture the status of grass under 668 

grazing, but cannot distinguish the kind of effect (over or under compensation) that is 669 

influencing grass growth, which is highly depended on grazing intensities (Hickman and 670 

Hartnett 2002). The figures here are an illustration of how grazing severity would affect the 671 

observed LAI and it's instantaneous growth rate if these parameters remain unchanged. This 672 

is why we cannot use this function to predict LAI under grazing. It is a year-round grass 673 

growth under grazing function rather than a predictive plant-livestock interaction function. 674 

Grazing methods can affect the estimation of grazing-led LAI changes. Rotational grazing (or 675 

intermittent grazing), continuous grazing and un-grazed are the three common grazing 676 
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methods on grassland in Zeku (Zhou et al. 2007). The grass on the un-grazed lands will be 677 

used as livestock winter forage; no grazing activities occur on these lands during the pasture 678 

growth period, so the LAI curve observed should be more close to a bell-shaped curve (Fig. 679 

4) compared with that of the other two grazing methods. The difference between rotational 680 

and continuous grazing methods is that there are some “rest periods” for the grass on 681 

rotational grazing lands. They would present a fluctuated profile (see Fig. 5 for example). We 682 

can see in Fig. 6 that the mean LAI of 50% intermittent grazed (rotational grazing) is bigger 683 

than that of 50% continuous grazed (top right figure in Fig. 6). This is because the grazing 684 

intensity of the later (reduce 50% of the LAI continuously) is about two times than that of the 685 

former (reduce 50% of the LAI intermittently, it is approximately equivalent to 25% of the 686 

LAI reduction continuously); therefore, the mean value of LAI under 50% intermittent grazed 687 

land would be approximately equal to that of 25% continuous grazed (top left figure in Fig. 688 

6). This theoretical result reveals the same outcomes at that of the field based comparison 689 

experiment reported by McMeekan and Walshe (1963) and PavlĤ et al. (2003), that the 690 

stocking rate is the main factor affecting the growth of grass rather than grazing methods. 691 

In the fast-growing period, the LAI value may be smaller than expected due to the grazing-692 

led LAI changes (Garay et al. 1999; Sala et al. 1986). By utilising such features we can 693 

estimate the grazing-led LAI changes and the effect of the previous grazing. However, there 694 

would be an underestimation for continuous grazing as the MODIS LAI can only capture one 695 

fluctuation on the curve when livestock first start grazing. Again, the data on ground 696 

comparison experiments and grazing method for each land patch would need to be collected 697 

to deal with such underestimation. This would be extremely resource intensive, requiring 698 

long-term observations for future work. 699 

In addition, some grass is harvested for winter forage, but the amount is very small and the 700 

local herders tend to keep one spare grassland patch un-grazed for winter (according to the 701 
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field survey in 2012), which means that mowing activities have a little effect on the final 702 

estimation. For the non-growth periods, no matter how much grass had been consumed by 703 

livestock during winter, the grass will recover in the following year as long as the soil 704 

conditions and grassroots had not been severely affected by livestock browsing or trampling 705 

(Vallentine 2000). Further research on livestock browsing behaviours and the soil response to 706 

livestock grazing using remote sensing is the next challenge. 707 

6. Conclusions 708 

Large-scale monitoring of the grazing-led LAI changes based on MODIS LAI is possible 709 

when some characteristics of the grazing (such as the percentage of winter pasture used here), 710 

are known. Others factors such as time and duration of grazing, winter/summer pasture 711 

distribution, grazing methods, stocking rates, etc., could also potentially be used. This 712 

research is important for grazing management as it identifies the spatial pattern of grazing, 713 

which provides a useful proxy for managing the heterogeneity of grass forage distribution. In 714 

terms of methods, current reprocessing methods for MODIS LAI datasets are focused on 715 

producing smoother and more spatiotemporally consistent products by taking a spatial, 716 

temporal, or hybrid combination of weighted LAI. However, for grazing grasslands, the 717 

spatiotemporal weighted average LAI reprocessing methods diminish grazing information. In 718 

fact, for grassland vegetation, the temporal consistency is more dominant than the spatial 719 

consistency: every pixel is likely to have different conditions and/or different grazing 720 

patterns. We considered the characteristics of grassland growth, developed a new exponential 721 

growth function under grazing to produce the final improved LAI data (after grazing or if 722 

grazing happens) and expected LAI data (before grazing or if no grazing happens), which is 723 

suitable for extracting grazing information effectively and consistently. It provides a useful 724 

tool for the large-scale grazing monitoring and further assessment of the grassland ecosystem.    725 
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