
Red-Blue and Standard Pebble Games: Complexity and

Applications in the Sequential and Parallel Models

by

Quanquan Liu

S.B., Massachusetts Institute of Technology (2015)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2017

c© Massachusetts Institute of Technology 2017. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

February 3, 2017

Certified by. .
Erik D. Demaine

Professor, Department of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Dr. Christopher Terman

Chairman, Masters of Engineering Thesis Committee

Abstract

Pebble games are games played on directed acyclic graphs involving placing and moving pebbles
on nodes of the graph according to a certain set of rules. The standard pebble game (also known
as the black pebble game) is the first of such games played on DAGs. The game itself involves
three simple rules: a pebble can be placed on any leaf node (a node without any predecessors),
a pebble can be moved or placed on a non-leaf node if all of its predecessors are pebbled, and a
pebble can be deleted from any node at any time. Generally, the standard pebble game is used to
model space-bounded computation. Each node represents a result of a computation and placing a
pebble on a node represents performing a deterministic computation of a result using previously
computed results.

The standard pebble game has been used in a variety of applications including register alloca-
tion, VLSI design, compilers, and, more recently, propositional proof complexity and memory-hard
functions. Much previous research has been done in analyzing the computational complexity of the
standard pebble game in a variety of settings. It has been shown previously that computing an
optimal strategy using the standard pebbling game on any given DAG is PSPACE-hard [GLT79].
Furthermore, it was more recently shown that the standard pebble game is hard to approximate
to any constant additive factor [CLNV15]. In this thesis, we present a simpler proof of the result
presented in [CLNV15] and strengthen the result to include any polynomial additive factor. In
particular, we strengthen the result to show that it is PSPACE-hard to determine the minimum
number of pebbles to any n1−ε additive factor for any ε.

The red-blue pebble game was introduced by [JWK81] as a model of I/O complexity and is
also played on DAGs. Despite its importance in applications such as data access complexity and
more recently to I/O-complexity in multi-level memory hierarchies [CRSS16], little is known about
the computational complexity of determining the minimum number of red pebbles and transitions
used when pebbling a given DAG using the rules of the game. In this thesis, we show that the
red-blue pebble game is PSPACE-hard and that the red-blue pebble game with no deletions and
allowing overwrites is NP-Complete. We also show that the red-blue pebble game parameterized
by the number of transitions, k, is W[1]-hard.

In addition to the stated hardness results, we also introduce a graph family that takes Ω(nk)
time to pebble given k constant number of pebbles. This graph family partially answers an open
question posed in [Nor15] regarding whether such a family that meets the O(nk) time upper bound
exists for constant k pebbles. Furthermore, the graph family can be generalized for any k <

√
n.

Given k pebbles where k = ω(1), the pebbling time is Ω(n
k

k) for any graphs with n nodes in this
family.

Finally, we present a new complexity measure, called decremental complexity, based on the
sequential and parallel pebbling models. This complexity measure is concerned with the decrease
in pebbling time when switching from the sequential to the parallel model of pebbling any given
graph with n nodes using the minimum number of pebbles. Graphs with low decremental complexity
have potential applications in proofs of work/space and memory-hard functions. In this thesis, we
determine the decremental complexity of several common families of graphs as well as composite
graphs consisting of many copies of instances of these families.

2

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Erik Demaine, for having provided me

with invaluable aid throughout the course of this thesis. Prof. Demaine first introduced the topic

of this thesis to me and have been immediately available throughout the course of the past year

to discuss ideas and provide pointers on new directions to explore, new problems to look at, and

comments on writing and presenting my ideas in a clear and precise manner–all points of which I

am very grateful.

Secondly, I would like to thank Sunoo Park for helpful discussions on the cryptographic ap-

plications of this topic and for working with me through the surprisingly large number of papers

published on this topic within the last year and a half. I also thank the following people for the

help provided in various ways such as suggesting and providing copies of research papers related

to the topic of pebble games or for nice intellectual discussions related to the topic of this the-

sis: Jeremiah Blocki, Tadge Dryja, Jayson Lynch, Jakob Nordström, Aaron Potechin, Ling Ren,

Alessandra Scafuro, and Gary Wang. Special thanks to Jakob Nordström for providing a copy of

his New Wine into Old Wineskins: A Survey of Some Pebbling Classics with Supplemental Results

manuscript which has been an invaluable resource for discovering past research on this topic.

Finally, I would like to thank my wonderful family and friends who supported me through

this thesis and listened and comforted me during the frantic rush in the weeks/days/hours before

deadlines.

3

Contents

1 Introduction 9

1.1 Background . 9

1.2 Pebble Games and Previous Hardness Results . 12

1.2.1 Standard Pebble Game . 12

1.2.2 Red-Blue Pebble Game . 13

1.2.3 Reversible Pebble Game . 14

1.2.4 Black-White Pebble Game . 15

1.3 Time-Space Tradeoffs and Graph Families . 15

1.4 Parallel Pebbling Model, Previous Complexity Measures and Decremental Complexity 16

1.5 Organization of the Thesis and Summary of Contributions 18

2 Definitions and Terminology 21

2.1 Sequential Pebbling Definitions . 22

2.2 Parallel Pebbling Definitions . 23

3 Red-Blue No-Deletion Pebble Game is NP-Complete 25

3.1 Red-Blue Pebble Game is PSPACE-complete . 27

3.2 Red-Blue Pebble Game with No Deletion . 29

3.3 Proof Overview . 30

3.4 Gadgets . 31

3.5 Reduction from Positive 1-in-3 SAT . 40

4 Red-Blue Pebble Game Parameterized by Number of Transitions is W[1]-hard 45

4.1 Proof Overview . 46

4

4.2 Gadgets . 47

4.2.1 Variable Gadget . 47

4.2.2 Pebble Sink Path Gadget . 53

4.3 Red-Blue Pebbling is W[1]-hard . 55

5 Inapproximability of Standard Pebbling Number and Moves 58

5.1 Simpler Proof of the Additive Inapproximability of Standard Pebbling 58

5.2 Inapproximability of Number of Moves in Standard Pebbling 62

6 Parallel Pebbling Model 64

6.1 Sequential and Parallel Time of Pebbling for Graphs 65

6.1.1 Pebbling Price of Composite Graphs . 67

7 Other Pebbling Results 70

7.1 One-Shot Standard Pebbling is Fixed-Parameter Tractable 70

7.2 A Graph Family that Requires Ω((n−k+1
2k)k) time to pebble for k <

√
n 71

7.3 Standard, Red-Blue, and Reversible Pebbling are in XP 73

8 Open Questions 74

8.1 Standard and Red-Blue Pebble Games Hardness . 74

8.2 Parallel Pebbling Model and Decremental Complexity 74

8.3 Space-Time Tradeoffs . 75

5

List of Figures

3-1 Example of a pyramid gadget with rΠ4 = 5 and tΠ4 = 10. 32

3-2 Example of a variable gadget, xi, with pyramid costs ai, pebble sink path connections

gi, g
′
i, and g′′i . The corresponding pebble sinks that correspond with this gadget are

si, s
′
i, and s′′i . 33

3-3 Example pebble sink path. Each node is connected to the root of each pyramid in

each variable gadget. 36

3-4 Example of a clause gadget with rci = 2 and tci = 8 for clause ci = (xi ∨ xj ∨ xk).

The number of red pebbles that is needed to fill this gadget is 6 (excluding the two

red pebbles that are present on the true literal and the red pebble on pi−1). 37

3-5 Example of a anti-clause gadget with r = 3 and t = 5. The number of red pebbles

that is needed to fill this gadget is 6 (including the two red pebbles that are present

on the true negative literals). 38

3-6 Example construction given φ = (x1 ∨x2 ∨x3)∧ (x3 ∨x5 ∨x4). Blue nodes represent

the pebble hold nodes and red nodes represent the pebble sink path. The green node

is the target node that needs to be pebbled in the end. Note that many of the edges

for variable nodes have been omitted for clarity. 44

4-1 Variable gadget. 47

4-2 The All False gadget consists of 2k+ 1 nodes that all have x′i and xi as predecessors.

Each of these 2k + 1 nodes are connected to the k-True-Variables gadget and the

clause gadgets. 48

4-3 k-True gadget connects to all xi for all i. 49

4-4 3-or-None gadget. One is created for every variable. 52

6

4-5 Pebble sink that captures 3n − 4k − 6 pebbles leaving 5 pebbles to be used in the

clauses. Here g = 3n− 4k − 1. 54

4-6 Clause gadget. 55

4-7 Example reduction. The vertex colored blue is the vertex that must be pebbled at

the end and can only be pebbled if and only if the 3SAT instance has a solution that

sets exactly k variables to True and uses at most 2k transitions. 57

5-1 Road graph gadget. Here, in this example, a minimum of 5 pebbles are necessary to

pebble o1 and o2. 4 pebbles must be used to pebble i1, i2, i3, and i4 and one more

pebble is necessary to pebble o1 since the four pebbles used to pebble i1, i2, i3 and

i4 must remain on the road graph in order to pebble o2. K is the width of this road

graph gadget. In this example, K = 4. 59

5-2 Modified quantifier gadgets from [GLT79] with road graphs replacing the variable

nodes. The road width for each of the road graphs is K + 1 where K = 1 in this

figure. The left figure is the modified quantifier gadget and the right figure is the

modified existential gadget. The green nodes indicate one road graph gadget with

width 2 and the purple nodes indicate another road graph gadget with width 2. The

yellow nodes are nodes that are part of binary tree gadgets connecting to the road

graph gadgets. 60

5-3 The clause gadgets are modified to account for the width K + 1 variables. Each

clause contains width K + 1 literals and an added K nodes to take up the extra K

pebbles that are necessary to pebble the false literals. In this example, K = 1 and

lj,i for i ∈ {1, 2, 3} are the literals. 61

7

List of Tables

1.1 Upper and lower bounds on pebbling costs for 4 types of pebble games [HPV77a,

DT85, Cha13, PTC76, GT78] . 10

1.2 Upper and lower bounds on transition costs for red-blue pebble games on certain

types of graphs [JWK81, AV88]. 11

1.3 Hardness of various pebble games with minimizing parameters such as the minimum

pebbling number or minimum number of pebbling moves/transitions. 12

8

Chapter 1

Introduction

1.1 Background

Pebble games were originally introduced to study compiler operations and programming languages.

For example, a DAG represents the computational dependency of an operation on a set of previous

operations and pebbles represent register allocation. Minimizing the amount of resources allocated

to perform a computation is accomplished by minimizing the number of pebbles placed on the

graph [Set75] and the time of computation, specifically parallel computation, is modeled by the

Dymond and Tompa pebble game played by two players [DT85]. In addition to the standard

pebble game (also known as the black pebble game in the literature) and the Dymond and Tompa

pebble game, there are a number of other pebble games that are useful for studying computation.

The red-blue pebble game is used to study I/O complexity [JWK81], the reversible pebble game is

used to model reversible computation [Ben89], and the black-white pebble game is used to model

non-deterministic straight-line programs [CS74]. A quick summary of these pebble games, their

applications, and current hardness results are given in Section 1.2.

Previous research has shown upper bounds for the number of pebbles needed to pebble a graph

in any of the one-player pebble games mentioned above except the red-blue pebble game since

the minimization constraint is also different there. Hopcroft et al. [HPV77a] showed that any

graph with bounded in-degree and containing n vertices requires at most O(n/ log n) pebbles in the

standard pebble game, meaning a computation that takes time n requires space O(n/ log n). Fur-

thermore, [DT85] showed that a graph with n nodes and bounded-indegree takes O(n/ log n) time

9

Pebble Game Upper Bound Lower Bound

Standard O(n/ log n) Ω(n/ log n)

Black-White O(n/ log n) Ω(n/ log n)

Reversible O(n/ log n) Ω(n/ log n)

Dymond-Tompa O(n/ log n) Ω(n/ log n)

Table 1.1: Upper and lower bounds on pebbling costs for 4 types of pebble games [HPV77a, DT85,
Cha13, PTC76, GT78]

to pebble in the two-player Dymond and Tompa pebble game. This means that any deterministic

computation carried out in n time can be carried out in O(n/ log n) alternating time (alternating

time can be measured on an alternating machine which is useful for estimating the time required for

parallel computation). Similarly, the upper bound on pebbling price for the black-white pebbling

of a DAG is O(n/ log n) since we can ignore the use of white pebbles. The reversible pebble game

on a bounded in-degree graph has cost O(n/ log n) [Cha13]. A summary of these upper bounds can

be seen in Table 1.1.

In addition to upper bounds, [PTC76] showed that there exists an n-node DAG with bounded

in-degree such that the pebbling cost of the graph is Ω(n/ log n) and consequently, the price of the

Dymond and Tompa game on the same graph is Ω(n/ log n) and the cost of the reversible pebbling

game is also Ω(n/ log n). Furthermore, [GT78] showed that there exists a family of DAGs such

that the cost of black-white pebbling is Ω(n/ log n). These lower bounds are also summarized in

Table 1.1.

For the red-blue pebble game, upper and lower bounds are derived for the number of transitions

needed to pebble the graph given that the maximum number of red pebbles that can be used is

r. The minimum number of transitions needed to pebble a FFT digraph given n nodes and r

red pebbles is lower bounded by Ω(n log n/ log r) [JWK81, AV88] and also upper bounded by

O(n log n/ log r). Hong and Kung et al. [JWK81] also proved bounds on the minimum number

of transitions for several other types of computations outlined in their paper. These time bounds

are shown in Table 1.2. However, to the best of the author’s knowledge, an upper bound on the

minimum number of transitions for general DAGs with n nodes is not yet known.

Despite somewhat extensive research on the upper and lower bounds of optimally pebbling a

10

Type of Computation (i.e. Type of Graph) Bound on Minimum Number of Transitions

FFT digraph Θ(n logr n) [JWK81]

Multiplication of Two Square Matrices Θ(n3/
√
r) [JWK81]

Multiplication of Matrix by Vector Θ(n2/r) [JWK81]

Odd-even Transposition Sort Θ(n2/r) [JWK81]

General DAGs Ω(n3/
√
r) [JWK81]

Table 1.2: Upper and lower bounds on transition costs for red-blue pebble games on certain types
of graphs [JWK81, AV88].

DAG in these games, the complexity of finding a minimum solution has fewer results. In fact, it is

not yet known whether it is hard to find the minimum number of pebbles within even a non-constant

additive factor [CLNV15]. It turns out that finding a strategy to optimally pebble a graph in the

standard pebble game is computationally difficult even when each vertex is allowed to be pebbled

only once. Specifically, finding the minimum number of black pebbles needed to pebble a DAG

in the standard pebble game is PSPACE-complete [GLT79] and finding the minimum number of

black pebbles needed in the one-shot case is NP-complete [Set75]. In addition, finding the minimum

number of pebbles in both the black-white and reversible pebble games have been very recently

shown to be both PSPACE-complete [CLNV15, HP10]. A summary of these results is shown in

Table 1.3.

Despite having some results in the hardness of finding the minimum number of pebbles needed to

pebble these DAGs using the rules of the aforementioned pebble games, there are still some number

of gaps in our knowledge of these games. There are currently no results on whether the solutions

could be approximated to within a constant factor of the optimal or whether a fixed-parameter

tractable algorithm can be found for these games. In this thesis, we discuss some new results in

the fixed parameter tractability of finding the minimum number of red pebbles and transitions

needed in the red-blue pebble games. We also introduce a new red-blue pebble game paradigm

that we prove to be NP-complete to solve for the minimum number of red pebbles and transitions.

Furthermore, we present some hardness results in approximating the minimum number of pebbles

in the standard pebble game, in particular, improving upon a result presented in [CLNV15]. We

also make some observations in the complexity of approximating other pebble games such as the

11

Type of

Game

Unbounded

In-degree
Bounded In-degree

Approximation

(Additive)
FPT

Standard

(one-shot)

NP-

complete [Set75]
? ? FPT [Thm 7.1]

Standard PSPACE-complete
PSPACE-

complete [GLT79]
n1−ε [Thm 5.1] ?

Black-white
PSPACE-

complete [HP10]
? ? ?

Reversible PSPACE-complete
PSPACE-

complete [CLNV15]

PSPACE-complete

(Constant

Factor) [CLNV15]

?

Red-Blue
PSPACE-complete

[Thm 3.2]

PSPACE-complete

[Thm 3.2]
?

W[1]-hard k

Transitions

[Thm 4.1]

Red-Blue

(no deletion)

NP-complete

[Thm 3.1]

NP-complete

[Thm 3.1]
? ?

Table 1.3: Hardness of various pebble games with minimizing parameters such as the minimum
pebbling number or minimum number of pebbling moves/transitions.

one-shot standard pebble game by utilizing a variety of previous results available in the literature.

1.2 Pebble Games and Previous Hardness Results

1.2.1 Standard Pebble Game

The standard pebble game played on DAGs has two variations [PH70]. For the one-shot pebble

game, pebbles can be placed on a vertex at most once (hence the graph has to be pebbled in

one-shot). In the standard pebble game, a vertex can be pebbled multiple times. The rules of the

standard pebble game are as follows:

1. A pebble can be placed on any leaf (i.e. a vertex that has no predecessors).

2. A pebble can be removed from any vertex.

12

3. A pebble can be placed on a non-leaf vertex if and only if its direct predecessors are pebbled.

4. A pebble can be moved from a predecessor to a direct successor if and only if all the successor’s

direct predecessors are pebbled.

The goal of both variations is to place a pebble on a set of target vertices. As mentioned above,

the standard pebble game can be used to model computational resource usage. The final vertices

that need to be pebbled thus represent the results that must be obtained from the computation.

Sethi [Set75] proved that the one-shot pebbling game is NP-complete given a DAG with un-

bounded in-degree. Gilbert et al. [GLT79] proved that the pebbling game is PSPACE-complete

even when it is played on graphs with bounded in-degree. More recently, Chan et al. [CLNV15]

showed that estimating the optimal pebbling price to within a constant additive factor is PSPACE-

complete.

1.2.2 Red-Blue Pebble Game

The red-blue pebble game was introduced to model I/O complexity [JWK81, AV88]. The rules of

the game are as follows:

1. A red pebble can be placed on any leaf node if and only if the leaf node contains a blue

pebble.

2. A red pebble can be placed on any non-leaf node if and only if all of its predecessors are

pebbled with red pebbles.

3. A blue pebble can be placed on any node that contains a red pebble.

4. A red pebble can be placed on any node that contains a blue pebble.

5. A pebble can be deleted from a node at any time.

6. All source nodes (nodes without incoming edges) contain blue pebbles at the begining of the

computation (i.e. at time t = 0).

Red pebbles represent space in fast memory (i.e. cache) and blue pebbles represent space in

slow memory (i.e. disk). Suppose, as in real systems, that there is a limited amount of fast memory

13

and an unlimited amount of slow memory. In terms of the red-blue pebble game, this means that

the number of red pebbles is limited by some upper bound, r. One would like to minimize the

number of transitions, k, of data between fast and slow memory. The goal is to pebble a certain

set of vertices using red pebbles. In the I/O interpretation of the game, pebbling with red pebbles

represent performing a computation and saving the result in fast memory while pebbling all the

vertices means computing all the results and maintaining some record of the results either in fast

or slow memory.

While much has been done in showing upper and lower bounds in pebbling price in terms of

number of red pebbles and number of transitions of pebbling certain types of DAGs, the compu-

tational complexity of finding the exact number of minimum red pebbles used and the minimum

number of transitions has not been studied in the past to the best of the authors’ knowledge.

More recently, the model of one-shot red-blue pebble games was introduced in [CRSS16]. This

pebble game is used to model I/O-complexity without recomputating any calculations in cache.

They also show how to extend this model to the multi-level memory hierarchy case.

1.2.3 Reversible Pebble Game

The reversible pebble game was introduced by [Ben89] to study energy efficient algorithms such

that any computation that is performed could be reversed. The rules of the reversible pebble game

are the following.

1. A pebble can be placed on a vertex if and only if all of its direct predecessors are pebbled or

if the vertex is a leaf.

2. A pebble can only be removed from a vertex if and only if all of its direct predecessors are

pebbled.

The rules of the reversible pebble game is the same as the standard pebble game except that

the rules of adding and deleting pebbles from a vertex are now symmetric. Solving this game and

approximating the game to a constant additive factor has been shown recently to be PSPACE-

complete [CLNV15] even in DAGs with bounded in-degree 2.

14

1.2.4 Black-White Pebble Game

The black-white pebble game is used to model non-deterministic straight-line programs [CS74].

The problem this game seeks to answer is whether non-determinism can save space (i.e. reduce

the number of registers used to perform a computation). As in the standard pebble game, a

black pebble represents a deterministically computed value. Each white pebble represents a non-

deterministically determined value that is verified later on. The rules of the black-white pebble

game are the following:

1. A white pebble can be placed on a vertex at any time.

2. A white pebble on a vertex can be turned black if all of its immediate predecessors are pebbled.

3. A black pebble can be removed from a vertex at any time.

4. All vertices are pebble-free at the end of the computation.

The goal of this game is to pebble and remove the vertices at least once from all nodes in the

given DAG. Finding an optimal pebbling of the vertices was determined to be PSPACE-complete

for DAGs with unbounded in-degree [HP10]. It is currently not known whether the problem is hard

for DAGs with bounded in-degree.

While many results in previous literature hold for both the standard (black) pebble game and

the black-white pebble game, in this thesis, we only state results for the standard pebble game

unless we state explicitly that the result also holds for the black-white pebble game.

1.3 Time-Space Tradeoffs and Graph Families

The time space tradeoffs of graph families have always been an area of interest in pebble games.

The key question in studying such tradeoffs is given S pebbles and a graph Gn,δ with n nodes

and indegree δ, how much time does it take to pebble Gn,δ using S pebbles. If S increased, does

computing the graph take a shorter amount of time?

A number of previous results have proven time-space tradeoff bounds for various families of

graphs. Paul and Tarjan [PT78] were the first to show an exponential time space trade for some

constants c1 and c2 where c2 < c1 such that using c1
√
n pebbles requires n pebbling moves whereas

15

using c2
√
n pebbles requires 2Θ(

√
n) moves. It subsequently became of research interest to find

graph families that exhibit the greatest tradeoff between time and space when Θ(n/ log n) pebbles

were used. This is of greater interest because Θ(n/ log n) pebbles is shown to be asymptotically

tight for all DAGs [HPV77b]. In a monumental paper by Lengauer and Tarjan [LT82], it was shown

that the tradeoff between time and space is exponential even when S = Θ(n/ log n) pebbles are

used for a certain graph families consisting of graphs they called superconcentrators.

While much attention has been focused on the pebbling graphs with a large number of pebbles

(such as Θ(n/ log n) pebbles), not much work has been done in terms of smaller number of pebbles

(such as Θ(1) pebbles). The only line of research in this direction is a graph family that has a

tradeoff of T (S) = Ω(n2/S) where S is the number of pebbles used and T (S) is the pebbling time

as a function of S [LT82].

In this thesis, we introduce a graph family that has steep time-space tradeoffs when the number

of pebbles used is S <
√
n, thereby lessening the gap in our knowledge with respect to graphs

pebbled by o(n/ log n) pebbles.

1.4 Parallel Pebbling Model, Previous Complexity Measures and

Decremental Complexity

A series of recent papers in cryptography introduces the concept of the parallel Random Oracle

Model (pROM) in the context of memory-hard functions [AB16a, ACK+16, AB16b, AGK+16,

ABP16, AS15]. The concept behind the usage of the parallel pebbling model is that adversaries

may break cryptographic memory-hard functions by computing such functions faster than an honest

party. The idea behind such attacks is the design of special ASIC circuits that are specialized to

break such functions while utilizing parallel time. The honest party, on the other hand, is assumed

to only have access to a generic CPU that comes in any standard commercial computer or laptop.

In this section, we introduce the parallel pebbling model as well as some previous measures of

complexity in the parallel pebbling model. We conclude with a brief description of decremental

complexity which we define in more detail in Chapter 3.4.

Definition 1.1 (Parallel Pebbling Model [AS15]). Let Gn,δ = (V,E) be a graph with n nodes and

indegree δ and T, S ⊆ V be sets of nodes. There is a legal sequence of pebble placements on node

16

sets, P = (P0, . . . , Pt), starting with pebbles on all nodes in S and ending with pebbles on all nodes

in T that follow the following rules:

1. P0 ⊆ S.

2. Pebbles are added to a set of nodes Pi only if all of their predecessors are pebbled at time i−1:

∀i ∈ [t], ∀v ∈ Pi \ Pi−1, pred(v) ∈ Pi−1.

3. Pebbles can be deleted from any set of nodes at any time.

4. At some point, every target node is pebbled (though not necessarily simultaneously):

∀x ∈ T, ∃z ≤ t, x ∈ Pz.

Definition 1.2 (Parallel Complexity Measures). Let Gn,δ be a DAG with n vertices and δ indegree

and let P = (P0, . . . , Pt) be a pebbling of Gn,δ that takes t parallel pebbling steps. Let Π be the

set of all complete parallel pebblings of G. Then, the cumulative cost of P , c − cost(P), and the

cumulative complexity (CC) of Gn,δ, cc(Gn,δ), are defined as follows:

c-cost(P) :=
t∑
i=0

|Pi|

and

cc(Gn,δ) := min {c-cost(P) : P ∈ Π} .

We further define the space complexity (SC), sc(Gn,δ), and the space/complexity complexity

(STC), stc(Gn,δ), as the following:

17

s-cost(P) := max {Pi : i ∈ {0, . . . , t}}

et-cost(P) := k ·max {Pi : i ∈ {0, . . . , t}}

sc(G) := min {s-cost(P) : P ∈ Π}

stc(G) := min {st-cost(P) : P ∈ Π} .

A recent paper proved that it is NP-complete to compute the minimum cumulative complexity

of a given DAG [BZ16] since the cumulative complexity of any DAG with n nodes cannot exceed

n2. However, it is conjectured but not proven in [BZ16] that approximating the cumulative com-

plexity of a given graph is also hard. An efficient and reasonably accurate approximation algorithm

would be useful in the sense that password hash functions could be analyzed as to the cumulative

complexity hardness of computation of the hash function.

While cumulative complexity measures the amortized space-time cost of computing a function,

allowing honest parties to trade space for time whereas adversaries must use less space but greater

time, we believe an important measure in determining the memory-hardness of a function is the

amount of pebbling time that is gained when switching from the parallel model of computation to

the sequential model of computation. Thus, we introduce the concept of decremental complexity as

the ratio of the minimum pebbling time in the sequential model over the minimum pebbling time

in the parallel model given S (minimum pebbling) number of pebbles. Intuitively, this complexity

measure tells us the relative disadvantage that an honest prover who does not have access to

parallel computation must incur in terms of pebbling (computation) time. Graphs that have a

decremental complexity ratio of 1 does not require the honest prover to use any more resources

than the adversary–a very powerful statement to show. We show in Chapter 6 some examples of

graphs that have low decremental complexity and pose as an open question: what is the maximum

amount of space S you can show that results in a decremental complexity ratio of 1?

1.5 Organization of the Thesis and Summary of Contributions

Despite some results in the hardness of finding the minimum number of pebbles needed to pebble

DAGs using the rules of the aforementioned pebble games, there are still a number of gaps in

18

our knowledge of these games. There are currently no results on whether the solutions could be

approximated to within a constant multiplicative factor of the optimal or whether a fixed-parameter

tractable algorithm can be found for these games. In this thesis, we discuss the following new results:

1. We present some hardness results in approximating the minimum number of pebbles in the

standard pebble game, in particular, improving upon a result presented in [CLNV15].

2. We show that it is W[1]-hard in the number of transitions to find the minimum number of

red pebbles and transitions needed in the red-blue pebble games.

3. We also introduce a new red-blue pebble game paradigm that we prove to be NP-complete to

solve for the minimum number of red pebbles and transitions. Recently, the one-shot variation

of the red-blue pebble game (i.e. without recomputation of values in cache) has been shown

to be approximable to a polylogarithmic factor (same as the best known approximation factor

for the one-shot standard pebbling game [APW12]) and can be shown to be applicable to

modeling multi-level memory hierarchies [CRSS16]. Thus, it seems natural to consider the

case when recomputation is allowed but some version of every computed value is kept in

memory.

4. We provide a family of DAGs that exhibit pebbling time Ω(nk) time given constant k pebbles

in the black pebbling case, thereby partially resolving a longstanding open problem as can be

seen in [Nor15]. We conjecture that this graph family also exhibits this pebbling time lower

bound in the black-white pebbling model.

5. We also make some observations in the complexity of approximating other pebble games such

as the one-shot standard pebble game by utilizing a variety of previous results available in

the literature.

6. We finally present our decremental complexity definition and analyze this complexity measure

on common graph families.

The organization of the thesis is as follows. In Chapter 3, we present a short argument on

the complexity of finding the minimum number of red pebbles and transitions needed to pebble a

given DAG. We also introduce our new paradigm for the red-blue pebble game without deletion

and show that this game is NP-complete. In Chapter 4, we prove that the red-blue pebble game is

19

W[1]-hard to determine whether a given number of red pebbles and parameterized by the number

of transitions, k. In Chapter 5, we present our inapproximability result for the standard pebble

game to an additive factor of n1−ε for any ε. In Chapter 6, we present our decremental complexity

measure and analysis of several common graph families with regard to this measure. In Chapter 7,

we talk about other results in pebbling including other hardness results obtained through some

scouring of the current literature. Finally, in Chapter 8, we discuss some open problems resulting

from this thesis.

20

Chapter 2

Definitions and Terminology

In this section, we define some definitions and terminology that we will use throughout the thesis.

Since graph pebbling by definition only occurs on directed acyclic graphs, we define Gn,δ to be

the family of all DAGs with n vertices and indegree δ. (The indegree of a DAG is the maximum

number of incoming edges to any node in the DAG.)

Let Gn,δ = (V,E) ∈ Gn,δ be a DAG with n nodes and indegree δ. A pebbling of G is a sequence

of pebble configurations P = {P0, . . . , Pt} such that P0 = ∅ and Pt = S where S is the set of sinks

(i.e. nodes with no outgoing edges). We define [i] to be the ordered set of values [0, . . . , i − 1].

Then, for all i ∈ [t], Pi+1 follows from Pi by the rules of the pebble games given in Chapter 1.

For any given node v ∈ Gn,δ, we define succ(v) to be the set of all successors of v and pred(v) to

be the set of all predecessors of v. Furthermore, let G5v be the set of all ancestors of v and Gv4 be

the set of all descendants of v. Here we define a predecessor of node v to be any node u that has a

directed edge directed into v (i.e. (u, v) ∈ E). A successor of v is any node w that has a directed

edge from v into w. The ancestors of v are all nodes u′ where there exists a directed path from u

to v and the descendants of v are all nodes w′ where there exists a directed path from v to w. Let

G�v4 and G5
�v

be the corresponding sets not including v. We define nodes u and w to be siblings if

u,w ∈ pred(v). The sources of Gn,δ are all nodes s ∈ S(Gn,δ) that have indegree 0 and the sinks

are all nodes z ∈ Z(Gn,δ) that have outdegree 0.

The depth of Gn,δ is the longest path from a source in S(Gn,δ) to a sink in Z(Gn,δ).

21

2.1 Sequential Pebbling Definitions

Given the terminology we defined in the previous section we now define the measures by which we

determine the pebbling cost of a sequential pebbling strategy. First we define a sequential pebbling

strategy, P, to be the following:

Definition 2.1. A sequential pebbling strategy P = {P0, . . . , Pt} is a set of valid pebbling configu-

rations (that follow the rules defined in Chapter 1) where we let |Pi| be the number of pebbles used

in configuration Pi. Then, one of the following must be true:

1. |Pi| = |Pi−1|+ 1,

2. |Pi| = |Pi−1| − 1, or

3. |Pi| = |Pi−1|.

Let Peb(Gn,δ) be the sequential pebbling price of pebbling Gn,δ where Peb(Gn,δ) is defined as

follows:

Definition 2.2. The sequential black pebbling cost of pebbling Gn,δ by strategy P is defined as the

maximum number of pebbles used, where |Pi| is the number of pebbles used in configuration Pi:

Peb(Gn,δ,P) = max
Pi∈P

(|Pi|).

We define Peb(Gn,δ) to be the minimum number of pebbles used by all strategies P ∈ P:

Definition 2.3.

Peb(Gn,δ) = min
P∈P

(Peb(Gn,δ,P)).

Furthermore, we define the function, Time(Gn,δ, S) to be the sequential time of pebbling Gn,δ

using S pebbles:

Definition 2.4. Let t be the number of sequential steps to pebble graph Gn,δ using strategy P =

{P0, . . . , Pt}. And let Time(Gn,δ,P) = t. Then,

22

Time(Gn,δ) = min
P∈P

(Time(Gn,δ,P)).

2.2 Parallel Pebbling Definitions

We now define the parallel pebbling cost explored in [AS15, CRSS16] and further results will be

mentioned in Chapter 6. We first define a parallel pebbling strategy, P|| to be the following:

Definition 2.5. A parallel pebbling strategy P|| =
{
P
||
0 , . . . , P

||
t

}
is a set of valid pebbling configu-

rations (that follow the rules defined in Chapter 1) where we let |P ||i | (the number of pebbles used

in configuration P
||
i) be any size.

Furthermore, we define the parallel pebbling cost of a parallel pebbling strategy, P|| to be the

following:

Definition 2.6. The parallel black pebbling cost of pebbling Gn,δ by strategy P|| is defined as the

maximum number of pebbles used, where |P ||i | is the number of pebbles used in configuration P
||
i :

Peb||(Gn,δ,P||) = max
P
||
i ∈P||

(|P ||i |).

Then, the parallel pebbling cost is the following:

Definition 2.7.

Peb||(Gn,δ) = min
P||∈P||

(Peb||(Gn,δ,P||)).

Finally, we define the time cost of parallel pebbling Gn,δ to be:

Definition 2.8. Let t|| be the number of parallel steps to pebble graph Gn,δ using strategy P|| ={
P
||
0 , . . . , P

||
t

}
. And let Time||(Gn,δ,P||) = t||. Then,

Time||(Gn,δ, S) = min
P||∈P||

(Time||(Gn,δ,P||)).

23

In addition to the previously mentioned parallel definitions, we also introduce the following def-

inition for measuring the relative robustness of a graph in resisting decrease in time when switching

from a sequential strategy to a parallel pebbling strategy. As we will mention in Chapter 6, this

measure has important applications in cryptography such as proofs of work and space and memory-

hard functions.

We define Dec(Gn,δ, S) to be the ratio of the time cost of sequential pebbling and the time cost

of parallel pebbling of Gn,δ using S pebbles.

Definition 2.9.

Dec(Gn,δ, S,P,P||) =
Time(Gn,δ)

Time||(Gn,δ)

where Peb(Gn,δ, P) ≤ S and Peb||(Gn,δ,P||) ≤ S.

We define Dec(Gn,δ, S) to be the minimum ratio between the time of pebbling sequentially and

the time of pebbling in parallel. We define this complexity measure as the decremental complexity

of the graph.

Definition 2.10.

Dec(Gn,δ, S) = min
P∈PS ,P||∈P

||
S

Time(Gn,δ)

Time||(Gn,δ)

where P ||S and PS are the set of strategies in their respective models that uses at most S pebbles.

Note that Dec(Gn,δ, S) ≥ 1 by simple argument.

24

Chapter 3

Red-Blue No-Deletion Pebble Game

is NP-Complete

We begin this section with a short proof that the red-blue pebble game with deletion is PSPACE-

complete. We do not expand too much into the proof since it relies heavily on the proof given

in [GLT79] (and is almost identical to the proof provided there). Therefore we include this result

before our main result on red-blue pebbling without deletions which is the main proof we expand

upon in detail.

First, we define the red-blue start-in-disk game to be the version of the red-blue pebble game

as defined in Section 1.2.2 (i.e. all source nodes contain blue pebbles at the beginning of the

computation, i.e. at t = 0, and all inputs if deleted from cache must be redrawn from disk) and

the red-blue start-in-cache game to be the version of the red-blue pebble game where we remove

the condition that all source nodes contain blue pebbles at the beginning of the computation (i.e.

essentially, all inputs start in cache) and red pebbles can be placed at any time on the source

nodes–without the need of blue pebbles being on the source nodes first (i.e. inputs always stay in

cache).

Before we dive into the proofs, we first show that any red-blue pebbling of a DAG G using the

rules of the red-blue start-in-cache game that has minimum pebbling space usage r and number of

transitions k can be converted to a DAG G′ with minimum pebbling space usage r+ 1 and number

of transitions k + 1 using the rules of the red-blue start-in-disk game.1

1Note, we did not explicitly make this distinction between the red-blue start-in-cache and the red-blue start-in-disk

25

Proposition 3.1 (Red-Blue Disk to Cache). Given a DAG, G = (V,E), with bounded indegree

2 that uses a minimum of r red pebbles and k transitions to pebble using the rules of the red-blue

start-in-cache game, we can convert it into a DAG, G′ = (V ′, E′), that uses a minimum of r + 1

red pebbles and k + 1 transitions to pebble using the rules of the red-blue start-in-disk game.

Proof. First, create a node u and let V ′ = V ∪ {u}. Then, create a set of directed edges U where

we add an edge (u, v) to U for all v ∈ V . Let E′ = E ∪ U . Graph G′ now potentially has vertices

with indegree up to 3. In the final step of creating G′, we replace all vertices with indegree 3 with

pyramids of height 3. Note that a pyramid of height 3 functions in the same manner as a node

with indegree 3 by normality of pebbling strategies proven in [GLT79, Nor15].

Let P be the optimal strategy used to pebble G using the rules of the red-blue start-in-cache

game that results in a minimum of r red pebbles and k transitions.

Now, we prove that a minimum of r + 1 pebbles and k + 1 transitions are necessary to pebble

G′ using the rules of the red-blue start-in-disk game. By construction, G′ has one source (leaf)

node where one blue pebble is placed on it at the beginning of the pebbling (at t = 0). Before any

other pebbles can be placed on G′, we must use exactly 1 transition to turn the blue pebble on the

source to a red pebble. The red pebble remains on the source, and we use strategy P to pebble the

remaining nodes of G′.

We now show that in order to use a minimum of k+1 transitions, the red pebble must remain on

the source during the entire computation of G′. Suppose for contradiction, the red pebble is turned

into a blue pebble (recall that all leaves must contain a pebble at all times–otherwise they can never

be pebbled again using the rules of the red-blue start-in-disk game), then, in any future pebbling

of any other nodes in G′, the blue pebble on the source must be turned into a red pebble, resulting

in 2 additional transitions (a total of k + 3 transitions) which exceeds the minimum allowed k + 1

transitions (since P uses a minimum of k transitions). Thus, given that the red pebble remains on

the source during the entire pebbling of G′ (i.e. the red pebble on the source is present at time

t = max where the maximum number of red pebbles are on the graph using strategy P) the number

of red pebbles necessary to pebble G is then increased by 1, so a minimum of r+ 1 red pebbles are

necessary to pebble G′ given that a minimum of k + 1 transitions are used.

In the remaining sections of the paper, we prove all results with respect to the rules of the

models in the first version of this thesis.

26

red-blue start-in-cache game, even if we do not explicitly state that we do so. Note that using

Proposition 3.1, we can transform any graph G we use in our hardness reductions into a graph G′

that can be used to show the corresponding hardness results for the red-blue start-in-disk game.

3.1 Red-Blue Pebble Game is PSPACE-complete

The red-blue pebble game as defined in Section 1.2.2 is PSPACE-hard as a simple extension of the

proof given in [GLT79]. The formal definition of the problem is given below.

Definition 3.1 (Red-Blue Pebble Game). Given a DAG, G(V,E) with n = |V | vertices and

m = |E| edges, find a pebbling of G following the red-blue pebbling rules provided in Section 1.2.2

such that at most r red pebbles are present on G at any time and the number of red-blue transitions,

k, is minimized.

The proof structure and the gadgets to show that the red-blue pebble game is PSPACE-hard

can be constructed in the same way as the gadgets in the proof of the PSPACE-hardness of the

standard pebble game as defined in [GLT79]. The reduction would specify the number of red

pebbles necessary to be one greater than the number of pebbles necessary in the proof presented

by Gilbert et al. [GLT79] and the number of transitions to be 0. We, thus, only need to show that

the number of red pebbles necessary to pebble the gadgets in the construction is indeed one greater

than the number necessary to pebble the construction provided in [GLT79]. If the construction can

be pebbled with one greater pebble in the red-blue pebble game using 0 transitions if and only if

the construction in [GLT79] can be pebbled using the rules of the standard pebble game, then we

have shown that the red-blue pebble game is PSPACE-complete.

Lemma 3.1. The proof construction provided in [GLT79] can be pebbled using s pebbles in the

standard pebble game if and only if it can be pebbled using s+ 1 red pebbles and 0 transitions in the

red-blue pebble game.

Proof. We first show that if the construction given in [GLT79] can be pebbled using s pebbles in

the standard pebble game, then it can be pebbled using s+ 1 red pebbles and 0 transitions in the

red-blue pebble game. The only difference between the rules of the standard pebble game and the

red-blue pebble game is that in the standard pebble game, a pebble can be moved from a node to

27

a successor from a predecessor. However, in the red-blue pebble game, we are no longer allowed

moving a pebble from a predecessor to a successor. However, the process of moving a pebble from

predecessor to successor can be modeled using 2 red pebbles. Suppose that a pebble is moved from

a predecessor to a successor in the standard pebble game. Let v be node in the graph and p be

the predecessor from which a black pebble was moved to v. Let pred(v) indicate the set of nodes

that are the predecessors of v. Since a pebble was moved from p to v, it means that all nodes in

pred(v) are pebbled with black pebbles. If the pebble movement from p to v is modeled using red

pebbles, then at the time the black pebble was moved from p to v, all nodes in pred(v) would be

pebbled with red pebbles. Thus, one additional red pebble can be placed on v at the same time.

In the construction provided by [GLT79], if the constructed DAG can be pebbled using s pebbles,

then one additional pebble will be able to simulate all pebble movements from predecessor nodes to

successor nodes. Thus, if the original construction can be pebbled using s pebbles in the standard

pebbling game, the construction can be pebbled using s+ 1 pebbles in the red-blue pebbling game.

Now we show that if the construction provided in [GLT79] can be be pebbled using s + 1 red

pebbles and 0 transitions in the red-blue pebble game, then it can be pebbled using s black pebbles

in the standard pebble game. We need to show that having one additional pebble in the red-blue

pebble game does not provide an advantage in any situations where a pebble is moved from a

predecessor to a successor in the standard pebble game. Suppose for the purposes of contradiction

that there is an advantage if an extra pebble is provided in the red-blue pebble game for situations

where a pebble is moved from a predecessor to successor node in the standard pebble game. Then,

some node can be pebbled in the red-blue pebble game with one extra pebble that cannot be

pebbled in the standard pebble game. Suppose that node v cannot be pebbled in the standard

pebble game. This means that some node in pred(v) is not pebbled. Otherwise, a pebble can be

moved from a node in pred(v) to v. With one extra pebble, the node in pred(v) can be pebbled.

However, in the red-blue pebble game, no red pebbles can be moved from a node in pred(v) to v.

Therefore, v cannot be pebbled even with one extra pebble, a contradiction.

In the proof construction provided in [GLT79], every pebbling of a node requires moving a

pebble from a predecessor to a successor except pebbling the leaf nodes of the clause gadgets.

Thus, having an extra pebble in all cases but the cause of pebbling the leaf nodes of the clause

gadgets does not provide an advantage. Now, we will show that having an extra pebble in the red-

28

blue pebble game also does not provide an advantage in this case. In the proof provided by [GLT79],

the clause gadgets can be pebbled using 3 additional pebbles. Suppose that in the red-blue pebble

game construction, the clauses now have 4 additional pebbles available. In this case, the red-blue

pebble game only provides an advantage if 4 pebbles can be used to pebble a clause gadget even

if all variable gadgets connecting to it are in the false configuration. In this case, 4 pebbles must

be used to pebble all the leaves of the clause gadget. Then, since the non-leaf nodes of the clause

gadget requires a pebble to be moved from a predecessor to successor, they cannot be pebbled in

the red-blue pebble game using 4 pebbles if all literals connecting to the clause are false. A simple

case by case analysis shows that no other strategy can cause the clause gadget to be completely

pebbled.

Theorem 3.1. Determining the minimum pebbling cost and number of transitions is PSPACE-

complete to compute in the red-blue pebbling game.

Proof. Containment in PSPACE is trivial and PSPACE-hardness of the red-blue pebble game

follows immediately from Lemma 3.1.

3.2 Red-Blue Pebble Game with No Deletion

In this section, we introduce our model of the red-blue pebble game with no deletion and prove

that it is NP-complete to determine the minimum number of red pebbles and transitions needed

to pebble a given DAG under the rules of this game. The red-blue pebble game with no deletion is

defined as follows:

1. A red pebble can be placed on any vertex that has a blue pebble. (Transition move.)

2. A blue pebble can be placed on any vertex that has a red pebble. (Transition move.)

3. A red pebble can be placed on a vertex where all predecessors of the vertex contain red

pebbles. (The red pebble can override preexisting pebble placements, i.e. the vertex already

contains a blue pebble.)

4. No pebbles can be deleted from a vertex.

29

Red pebbles represent fast memory and blue pebbles represent slow memory. As usual, we

assume that we have infinitely large slow memory, but only a bounded fast memory. The goal of

the game is to pebble all vertices in G while minimizing the number of transition moves. Transition

moves are moves that convert a pebble of one color into a pebble of another color. The motivation

of this game is to determine the added computational complexity of allowing deletions to occur in

the RAM. Suppose that one would like to limit the number of deletions or to minimize the number

of transitions as well as deletions. Another motivation is to always maintain computed data in

memory. For example, for certain persistent data structures, one always want to keep some form

of computed values in memory at all times. This paper analyzes the computational complexity of

such a model.

The formal statement of the game is almost identical to the definition of the red-blue pebble

game and is the following:

Definition 3.2 (Red-Blue Pebble Game with No Deletions). Given a DAG, G(V,E) with n = |V |

vertices and m = |E| edges, find a pebbling of G following the red-blue with no deletion pebbling

rules (given above) such that at most r red pebbles are present on G at any time and the number

of red-blue transitions, k, is minimized.

In the next few sections, we show that the Red-Blue Pebble Game is NP-complete.

3.3 Proof Overview

We provide a reduction broadly similar in concept to [GLT79] except we reduce from Positive 1-

in-3 SAT to show that our problem is NP-complete. The definition of Positive 1-in-3 SAT is given

below:

Definition 3.3 (Positive 1-in-3 SAT [GJ90]). Given a set U of variables and a collection C of

clauses over U such that each clause c ∈ C has size |c| = 3 and all literals in c are positive, does

there exist a truth assignment for U such that each clause has exactly one true literal?

The proof of NP-completeness of the red-blue pebble game with no deletions proceeds as follows.

We create a set of variable gadgets that are pebbled with a set of red pebbles that determine whether

the variable is set to true or false. The variable gadgets are then connected to clause and anti-

clause gadgets that enforce the 1-in-3 condition on the variable settings. The variable gadgets

30

are also connected to a pebble sink path that ensures that all variables are pebbled and set to a

truth configuration before the clause gadgets are pebbled. Finally, the clause gadgets and variable

gadgets are connected to a pebble hold path that ensures that all red pebbles are removed from

these gadgets and are used to fill up the pebble hold path. Specifics about the gadgets and details

of the proof construction will be given in the next few sections of this thesis.

3.4 Gadgets

In this section, we introduce some gadget components that will be used in the proof that the

red-blue pebble game with no deletions is NP-complete.

We define a variable gadget for every xi ∈ U . The purpose of the variable gadget is to force

a selection of variable assignments. In order to construct the variable gadget, we use a pyramid

gadget introduced by previous work [GLT79] that is used to “trap” a certain minimum number of

pebbles that must be used to pebbled the gadget. Henceforth, for every gadget, g, we introduce,

we will specify the minimum number of red pebbles, rg, that can remain on the gadget after it has

been pebbled once and tg, the minimum number of red-blue transitions that must be performed on

the gadget after it is pebbled each time.

The pyramid graph has been proven to use h pebbles where h is the height (where a single node

has height 1) of the pyramid graph using standard pebbling (with sliding pebbles) [Coo73]. Let Πh

be a pyramid graph with height h. It was proven in [Nor15] that the standard pebbling price with

no sliding is h + 1 for a pyramid with height h. Here we prove that using the red-blue pebbling

strategy with no deletions, the minimum pebbling price of a pyramid with height h is rΠh
= h+ 1

and tΠh
= h(h+1)

2 . Let PebRBD(Πh) be the minimum pebbling price of a pyramid graph using the

red-blue strategy with no deletions. The ending state of the pyramid has no red pebbles. We use

this property of the pyramid graph in our proof in Section 3.5.

Lemma 3.2. Given a pyramid graph of height h, the PebRBD(Πh) is rΠh
= h+1 and tΠh

= h(h+1)
2 .

Proof. The standard pebbling lower bound (no sliding) for pyramids is h given a pyramid of height

h. The number of red pebbles necessary to pebble a pyramid of height h, however, is h + 1 since

the key component of the bound on standard pebbling of pyramids relies on the ability to slide

pebbles, whereas in our pebbling game, no pebble slides are allowed. Otherwise, the rules for red

31

pebble placement is the same as the rule for standard pebbling with no sliding. Therefore, by the

proof of Theorem 4.8 in [Nor15], the lower bound for the number of red pebbles necessary to pebble

Πh is rΠh
= h+ 1.

As stated in the proof of Theorem 4.8 in [Nor15], the strategy for achieving this pebbling is to

pebble the bottom row (the sources) of the pyramid and use one extra pebble to move the pebbles

up the levels of the pyramid.

To prove the transitions bound, since the only way to remove all the pebbles from the pyramid

is to use transitions, the number of transitions is ≥ h(h+1)
2 . Since the pebbling strategy stated

above for pyramids is linear (each vertex is pebbled by a red pebble at most once), each node is

visited once and a red pebble is removed from each node one resulting in tΠh
= h(h+1)

2 . When a

pebble is “moved up” a level of the pyramid, the pebble on the previous node is turned to blue.

Fig. 3-1 shows the construction of the pyramid gadget and its associated symbol that will be

used to denote it in all subsequent proofs in Section 3.5. One can see that the number of pebbles

required to fill the pyramid gadget is also the number of leaves on the bottom layer plus one and

the number of transitions is
∑l

i=1 i where l is the number of leaves in the gadget.

Figure 3-1: Example of a pyramid gadget with rΠ4 = 5 and tΠ4 = 10.

Using the pyramid gadget we can construct the variable gadget as the following:

Lemma 3.3. The pebbling price of the variable gadget (not including si, s
′
i, s
′′
i , gi, g

′
i, g
′′
i or qi)

for variable xi is rxi = ai and txi =
∑3

j=1
(ai−j+1)(ai−j)

2 + 4. The transitions cost includes the

cost of pebbling and removing red pebbles from all nodes as shown in Fig. 3-2 except si, s
′
i, s
′′
i , gi,

g′i, g
′′
i and qi. During Phase 1, the pebbling cost is rxi = ai and

∑3
j=1

(ai−j+1)(ai−j)
2 − 3 ≤ t ≤∑3

j=1
(ai−j+1)(ai−j)

2 − 1. Furthermore, during Phase 2 of the pebbling, the pebbling cost is rxi = 4

and 5 ≤ txi ≤ 7.

32

s′isi s′′i

ai − 2

qi

qi−1

x∗i xi

xi

ai

x∗i

ai − 1

gi

g′i

g′′i

Figure 3-2: Example of a variable gadget, xi, with pyramid costs ai, pebble sink path connections
gi, g

′
i, and g′′i . The corresponding pebble sinks that correspond with this gadget are si, s

′
i, and s′′i .

Proof. Each of the three pyramids must be pebbled using the number of pebbles shown in Fig. 3-2

by Lemma 3.2. The number of nodes in the gadget is
∑3

j=1
(ai−j+1)(ai−j)

2 + 4 (excluding si, s
′
i,

s′′i , gi, g
′
i, g
′′
i and qi). If we are limited to a total of txi =

∑3
j=1

(ai−j+1)(ai−j)
2 + 4 transitions in

both Phase 1 and Phase 2, then each vertex of the gadget can only be pebbled once among the

two phases. In Phase 1, we must use ai red pebbles to pebble all three pyramids. Recall that gi,

g′i, and g′′i must be pebbled at the end of Phase 1 in order to begin pebbling the clauses. In order

to pebble gi, g
′
i, and g′′i , all the pyramids in all variable gadgets xi must be pebbled by the end of

Phase 1.

33

In addition to pebbling the pyramids, one pair of x∗i and xi or x∗i and xi must be pebbled in

Phase 1 in order to be able to pebble them during the clause verification phase. To ensure that each

vertex in the gadget is pebbled once during Phase 1 and Phase 2, the variables must be selected in

the indicated pairs. Suppose for contradiction that xi and x∗i are selected to contain a pebble. This

means that xi must have been pebbled at some point in Phase 1 (and a transition was used to turn

the pebble to blue). Now, in Phase 2, xi must be pebbled again (and using one more transition to

turn the pebble to blue) to pebble x∗i , breaking our invariant. The same holds if the pair x∗i and

xi was chosen initially.

In Phase 2, the following set of pebblings must occur. If xi and x∗i have red pebbles remaining

from Phase 1, then x∗i and xi must be pebbled in Phase 2. Since, qi−1 will be pebbled by the end

of the clause verification phase, the remaining parts of the gadgets can be pebbled using in 7 more

transitions. If, instead, xi and x∗i have red pebbles remaining from Phase 1, then the remaining

nodes of the gadget can be pebbled using 5 more transitions. Since si, s
′
i, s
′′
i , and qi must be

pebbled with red pebbles at the end of pebbling xi in Phase 2, the number of pebbles necessary to

pebble xi in Phase 2 is 4.

We define ai for all xi shortly. Each xi variable gadget requires ai pebbles since in order to

choose an assignment for xi, ai pebbles must be used to pebble the pyramid gadget attached to

the variable. qi+1 is part of the next variable gadget. The gadget must be pebbled in the following

way.

During Phase 1 of pebbling the variable gadget, xi, each pyramid gadget is pebbled. Then, the

corresponding nodes in the pebble sink path can be pebbled in the order gi, g
′
i, and, then, g′′i . All

nodes along the pebble sink path must be pebbled in order to pebble the clauses and proceed to

the clause verification phase. First, ai pebbles must be used to pebble both xi and x∗i with red

pebbles, converting all other pebbled vertices in each pyramid to contain blue pebbles. This then

leaves ai − 2 pebbles to pebble the other pyramid gadget, leaving one pebble at the apex of the

gadget and converting all other pebbled vertices in the pyramid to contain blue pebbles. Then,

either xi and x∗i are pebbled with red pebbles and xi and x∗i are converted to blue pebbles or xi

and x∗i contain red pebbles and xi and x∗i are not pebbled. At most 3 red pebbles can remain on

each variable gadget.

In Phase 2, qi−1 will be pebbled once all clauses are pebbled. Therefore, all other nodes of the

34

variable gadget must be pebbled using the pebbles that remain on each pyramid gadget. If the

red pebbles from Phase 1 are placed on x∗i and xi, then xi and x∗i need to be pebbled in Phase

2. Furthermore, si, s
′
i and s′′i need to be pebbled with red pebbles in Phase 2 by moving the red

pebbles from each corresponding pyramid. The red pebbles will remain on these nodes since no

transitions are allowed to be spent on these nodes.

Lemma 3.4. If n′ variables does not have at least one of the two pairs, x∗i and xi or xi and x∗i , peb-

bled at the end of the clause verification phase, then a total of at least
(∑n

i=1

∑3
j=1

(ai−j+1)(ai−j)
2 + 4

)
+

n′ transitions are needed to pebble all variable gadgets in Phase 1 and Phase 2.

Proof. Suppose that without loss of generality, node xi is pebbled and node x∗i is not at time t in

Phase 2. Suppose also that in accordance with the lemma, either node x∗i or xi is also not pebbled

with a red pebble. Since all pyramids must be pebbled at the end of Phase 1, x∗i must have been

pebbled with a red pebble at some time t′ < t during Phase 1. Since x∗i was pebbled with a red

pebble at time t′ and holds a blue pebble at time t in Phase 2, 1 transition must have been used to

convert the red pebble to a blue pebble during Phase 1 (since an−3n pebbles are needed to pebble

the top of the pebble sink path). In order to pebble either x∗i or xi in Phase 2, one transition must

be used to convert the blue pebble on x∗i to a red pebble. Therefore, one additional transition

per each of the n′ variables. Therefore, the number of transitions necessary to pebble the variable

gadgets in Phase 1 and Phase 2 is
(∑n

i=1

∑3
j=1

(ai−j+1)(ai−j)
2 + 4

)
+ n′.

Each variable gadget is connected to a pebble sink path as shown in Fig. 3-3. The purpose of

the pebble sink path is to ensure that all pyramids are pebbled by the end of Phase 1 of variable

pebbling and that each variable only contains at most 3 red pebbles. The pebble sink path can

be pebbled using an − 3n red pebbles and the number of transitions needed to pebble this path is

3n+ (an−3n+1)(an−3n)
2 . The number of transitions indicate that each node of the pebble sink path

can only be pebbled once. Once the end of the pebble sink path is pebbled, the clause gadgets can

be pebbled in the Clause Verification phase.

A clause gadget is created for each cj ∈ C. The clause gadget is connected to every positive

xi literal that is present in its respective clause cj . An example clause gadget with rci = 6 and

tci = 29 (here rci does not include the red pebble on the one true literal and the red pebble on pi−1

and tci does not include the transition used to turn the pebble on pi to blue) is shown below.

35

Figure 3-3: Example pebble sink path. Each node is connected to the root of each pyramid in each
variable gadget.

The clause gadget must be pebbled by first pebbling the pyramid gadget that requires 6 red

pebbles to pebble. Then, with the remaining 5 red pebbles the bottom layer of the gadget (i.e.

the nodes representing the literals) are pebbled using 4 red pebbles plus the two pebbles that are

present on the true positive literal (false literals are pebbled to become true). The final red pebble

plus the red pebble from pi−1 are used to pebble the next layer. The rest of the pebbling follows

directly from this initial pebbling. Once the gadget has been pebbled, one red pebble is left at

the apex of the gadget, pi, and the true literal still contains its red pebbles. Four transitions are

used to convert the two pebbled false literals back to false and 25 transitions are used to convert

all other vertices except pi and the positive literal to blue.

Lemma 3.5. Given rci = 6 and tci = 29, the clause gadget ci cannot be pebbled if all three variable

gadgets incident on ci are in the false configuration.

Proof. The amount of transitions needed to pebble the clause gadget if all incident literals are in

the false position is 31 if no red pebbles remain on the gadget after it is pebbled. Suppose that

two red pebbles remain on the gadget, then the number of red pebbles available to the next clause

is 4 which is not enough to ensure that the clause is successfully pebbled. Suppose without loss of

36

qi

6

qi−1 xi x∗i xj x∗j xk x∗k

Figure 3-4: Example of a clause gadget with rci = 2 and tci = 8 for clause ci = (xi ∨ xj ∨ xk). The
number of red pebbles that is needed to fill this gadget is 6 (excluding the two red pebbles that are
present on the true literal and the red pebble on pi−1).

generality that two red pebbles remain on xi and x∗i , then, two red pebbles need to be removed

from xi and x∗i resulting in two extra transitions as before. Therefore, a clause gadget cannot be

pebbled under the conditions stated in the lemma unless at least one literal is true.

The clause gadget is accompanied by two anti-clause gadgets, ci and ci
′, that are used to enforce

the exact 1-in-3SAT condition. The anti-clause gadgets should also be pebbled with rci = 6 and

tci = 64. ci contains all xi literals and ci
′ contains all x∗i literals. First, the pyramids must be

pebbled along the path leading up to pi. Then, the one negative literal that is not pebbled must be

pebbled with a red pebble by using 2 transitions. Finally, the remaining nodes of the gadget are

pebbled once using 62 transitions resulting in pi being pebbled with a red pebble. An anti-clause

gadget is shown in Fig. 3-5.

Lemma 3.6. Given rci = 6 and tci = 64, the anti-clause cannot be pebbled if less than 2 negative

literals are true.

Proof. Without loss of generality, we will assume we are pebbling the anti-clauses containing the

xi variables. Each xi variable needs 2 transitions to pebble and unpebble. The remaining vertices

need t = 43 transitions to unpebble. Therefore, the total number of transitions and red pebbles

needed is r = 9 and t = 45.

37

qi

6

3

2

qi−1 xi xj xk

· · ·

...

Figure 3-5: Example of a anti-clause gadget with r = 3 and t = 5. The number of red pebbles that
is needed to fill this gadget is 6 (including the two red pebbles that are present on the true negative
literals).

Lemma 3.7. Each clause gadget must contain exactly one true literal and each anti-clause gadget

must contain exactly two true literals at the end of Phase 1 before the clause verification phase.

Proof. The following are the different possible ways red pebbles can reside on the nodes for each

variable gadget:

1. A clause contains 0 gadgets set in the true configuration at time t during the clause verification

phase. If a clause contains 0 true literals, then we must pebble the clause using ≥ 6 red

pebbles. Given that all variables gadgets must contain 3 red pebbles by the end of Phase

1, we must obtain the 2 extra pebbles from another variable gadget. Obtaining the 2 extra

pebbles from the variable gadget results in 2 extra transitions during Phase 1 or a previous

time t′ < t in the clause verification phase. Furthermore, these two pebbles must be deleted

and reinserted back into the other variable gadget resulting in two more transitions.

38

2. A clause contains 2 variable gadgets set in the true configuration. In this case, the clause

gadget does not save any transitions since recomputation in memory is free. However, this

also means that both corresponding anti-clause gadgets need one more red pebble placement

to pebble them. This results in at least 2 additional transitions to turn the blue pebbles on

the negative literals to red plus 2 additional transition from Phase 1 or some time t′ before

the current time to obtain the extra necessary red pebbles. This results in a net gain of 4

additional transitions.

3. A clause contains 3 true variables. This is the same case as 2 with net transitions change

(i.e. number of transitions needed to pebble the anti-clauses minus the number of transitions

saved) of 8 instead.

4. Without loss of generality, a clause contains the pair xi and x∗i that are pebbled with red

pebbles and xi is pebbled with a blue pebble and x∗i is not pebbled. In order to pebble the

corresponding anti-clause, one pebble must be removed from xi using one transition and the

blue pebble on xi must be turned into a red pebble using an additional transition. There will

be a net increase of at least one additional transition with each variable gadget that is set in

this configuration.

5. A variable gadget contains more than 3 pebbles. (For instance, a variable gadget could contain

red pebbles on xi, x∗i , and xi.) Recall that at the end of Phase 1, all variables gadgets are each

pebbled with 3 red pebbles. Therefore, in order for a literal to be pebbled with more than 2

red pebbles, at least one transition is used to delete the pebble from a variable gadget by the

end of Phase 1 (assuming that the pebble is not one of the 6 red pebbles used to pebble the

clause gadgets). If the red pebble is moved onto a positive literal node then one transition is

used to delete the pebble from its previous node. If it is moved onto a negative literal node,

then 2 transitions are used to delete the pebble from its previous node and place the pebble

on its new node. If the pebble movement is unnecessary for satisfying a clause or anti-clause,

then it would not occur. If the movement is necessary, then at least one other transition per

variable that contains more than 3 pebbles is necessary resulting in more transitions than

that allowed.

6. The variables switch value after some clauses are satisfied. If the variables switch from the

39

true configuration to the false configuration to satisfy some anti-clause, then the switch would

result in at least 4 transitions per switch exceeding our allowed bound on transitions. If the

switch was from a false configuration to a true configuration, then an extra 2 transitions

per switch is necessary. Suppose that some of these extra transitions are credited to the

transitions necessary for pebbling a clause. In the case of the false to true switch, none of the

switches can be credited to satisfying the corresponding previous clause since the switch needs

to occur before the first clause or anti-clause is unsatisfiable. Therefore, no extra transitions

can be saved from previous clauses or anti-clauses since all clauses were satisfied (and none

of the previously mentioned cases occurred). The problem occurs when one of the previously

false variables could be turned to true and a true variable can be turned to false during

clause verification. However, this results in 2 extra transitions that cannot be shared in the

next clause verification since two of the true literal red pebbles must be removed from the

variable that was turned to false since all variables must be set by the conclusion of the clause

verification phase. In the other case, if a variable needs to be switched from true to false,

then one can only charge the transitions necessary for deleting the pebbles on the positive

literals to satisfying the previous clause. However, the 2 transitions for turning the negative

literals to true cannot be charged to clause satisfaction.

The lemma follows from the set of cases mentioned above.

Given these gadgets, we are ready to proceed with the reduction from Positive 1-in-3 SAT.

3.5 Reduction from Positive 1-in-3 SAT

Given a Positive 1-in-3 SAT expression, φ, we create a variable gadget for each of the n variables

and a clause and two anti-clause gadgets (one for xi and one for x∗i) for each of the m clauses. The

gadgets are linked together as shown in Fig. 3-6.

Each variable gadget is connected to the next by the set of vertices Q consisting of nodes qi ∈ Q.

Each variable gadget is also connected to the pebble sink path consisting of vertices gi ∈ G and to

the pebble hold nodes si, s
′
i, and s′′i . For each clause gadget, we connect it with its corresponding

anti-clause gadgets via the nodes in the set pi ∈ P . The final anti-clause gadget in the chain of

40

clause and anti-clause gadgets is connected to the bottom of the chain of variable gadgets. Finally,

all variable gadgets are connected to pebble hold nodes, si, s
′
i, s
′′
i ∈ S that are also along a path

and ensure that all red pebbles end on these set of nodes. There are no transitions allocated for

these nodes; therefore, any red pebbles that are used to pebble these nodes must remain.

We let an = 3n+ 6 and ai = ai−1 + 3. Therefore, we set r = 3n+ 6 and t = 93m+ 3n+ 22 +∑n
i=1

∑3
j=1

(ai−j+1)(ai−j)
2 for the entirety of the construction.

We now provide an argument that red-blue pebbling with no deletions is in NP.

Lemma 3.8. Given a DAG G(V,E) where n = |V |, and parameters r and t and a pebbling strategy,

we can check whether the strategy works in time O(n2).

Proof. We can solve any red-blue pebbling game using O(n2) transitions given a reasonable number

of red pebbles. We can achieve this by performing the pebbling greedily. If r < max(indegree(v))

for some vertex v, then the pebbling cannot be done. Otherwise, all other pebblings can be

completed using (2d+ 1)n transitions where d = max(indegree(v)) for all vertices v in a graph G

with n vertices. On the other hand, a pebbling can never be performed if t < n− r. Therefore, we

seek to show that n− r ≤ t ≤ (2d+ 1)n and r ≥ d are necessary conditions to valid strategies. To

show that all pebblings can be completed using (2d + 1)n transitions, first, topologically sort the

vertices in the DAG, then perform pebbling according to the topological sort.

No transitions are used to pebble the predecessors of the first node in the topological sort and

only 1 transition is used to remove a pebble from the node after it has been pebbled. Now for

each of the outgoing edges of this node, the number of times this vertex will need to be pebbled

and removed is at most the number of outgoing edges from the node. Since all nodes that are

predecessors of the current node in the topological sort must be pebbled before the current node,

the current node can be pebbled by using d transitions to make all predecessors contain red pebbles,

pebble the current node, and then use d+ 1 transitions to convert all red pebbles to blue pebbles.

There are n nodes that need to be pebbled in this way, therefore, at most (2d+ 1)n transitions are

needed to pebble the graph. Therefore, the maximum number of transitions needed to pebble a

graph is 2dn = O(n2).

Using only O(n2) transitions results in a time of pebbling that is O(n2). Therefore, checking

the pebbling strategy should not take more than polynomial amount of time (if t = ω(n2) and

r ≥ d, then the graph can always be pebbled).

41

Theorem 3.2. Generalized Red-Blue No-Deletion pebble game on a DAG with maximum in degree

7 is NP-Complete by reduction from Positive 1-in-3 SAT.

Proof. We first show that given a solution to φ, we can construct a solution to our construction

using the amount of red pebbles and transitions as described above. We first set the variables

according to the assignment provided by the satisfying assignments to φ. Then, we pebble the

remainder of the construction according to the steps provided in the previous section.

Now we prove that given a satisfying pebbling strategy to our construction, we also have a

satisfying assignment for φ. First, during Phase 1 of pebbling the construction, the variable gadgets

as described in Section 3.4 are pebbled using the number of red pebbles and transitions described

in Lemma 3.3. By Lemma 3.4, at the end of Phase 1, the variable gadgets all have at least one

pair of xi and x∗i or xi and x∗i pebbled with red pebbles. Each pyramid of the variable gadget

needs to be pebbled in order to pebble the pebble sink path which is necessary to pebble before

the clause verification phase. No more than 3 red pebbles can remain in each variable gadget since

the next variable gadget uses the number of red pebbles minus the 3 that remain in the previous

variable gadget. The remaining 6 pebbles after all variable gadgets are pebbled will be used to

pebble the clause and anti-clause gadgets. In order for the clause and anti-clause gadgets to be

pebbled, exactly 1 literal of each clause must be true as proven by Lemma 3.7.

Each clause and anti-clause gadget uses the number of red pebbles and transitions as given in

Lemma 3.5 and Lemma 3.6 in order to be pebbled. After all clauses and anti-clauses have been

pebbled, we can proceed with Phase 2 of pebbling the variables. The cost of pebbling the variables

during Phase 2 is given in Lemma 3.3.

Since the number of transitions thus far cover the pebbling of the variable gadgets, the pebble

sink path, and the clause/anti-clause gadgets, there does not remain any transitions for the pebble

hold nodes. Therefore, all the red pebbles will be used to pebble these pebble hold nodes. By

Lemmas 3.4 and 3.7, if there exists a valid strategy to pebble the configuration, then there exists

a valid variable assignment for φ.

The problem is in NP by Lemma 3.8. Therefore, the problem is NP-Complete by reduction

from Positive 1-in-3SAT.

Corollary 3.1. Generalized Red-Blue No-Deletion pebble game on a DAG with maximum in degree

2 is NP-Complete by reduction from Positive 1-in-3 SAT.

42

Proof. This follows as an immediate corollary of Theorem 3.3 by using the gadgets described

in [GLT79].

43

44

Figure 3-6: Example construction given φ = (x1 ∨ x2 ∨ x3) ∧ (x3 ∨ x5 ∨ x4). Blue nodes represent
the pebble hold nodes and red nodes represent the pebble sink path. The green node is the target
node that needs to be pebbled in the end. Note that many of the edges for variable nodes have
been omitted for clarity.

Chapter 4

Red-Blue Pebble Game

Parameterized by Number of

Transitions is W[1]-hard

In this section, we prove that the red-blue pebble game with deletion and target vertices parame-

terized by k, the number of red-to-blue or blue-to-red transitions is W[1]-hard by reduction from

the W[1]-complete problem, Weighted q-CNF Satisfiability. It was previously shown by [DF95]

that Weighted q-CNF Satisfiability is W[1]-complete for any fixed q ≥ 2. In order to maximize

the similarity to our previous reductions, we will be reducing from Weighted 3-CNF SAT via a

parameterized reduction.

It has been noted that this result seems superfluous given the NP-hardness result for 0 transitions

given in Chapter 3. However, we note that an NP-hardness result does not necessarily supersede

a parameterized complexity result since they are different complexity domains. Furthermore, the

techniques presented in this chapter are techniques that could be important for future proofs of

hardness or graph family constructions.

Definition 4.1 (Weighted q-CNF Satisfiability [DF95]). Given a CNF formula, φ, a set U of

variables where n = |U |, and a set C of clauses and m = |C| where the number of literals per

clause is at most q, determine whether there is a satisfying assignment for φ of truth values to the

variables in U such that the number of variables that are true is k.

45

Given a 3-CNF formula, we first create two clauses for each of the variables: for all xi ∈ U we

add the clauses (xi ∨ xi ∨ xi) ∧ (xi ∨ xi ∨ xi). Note that if a truth value is assigned to xi, then

the clauses must be true. The presence of these clauses is to ensure that each of the variables are

assigned a truth value.

The reduction transforms an instance of Weighted 3-CNF SAT with parameter k to an instance

of red-blue pebble game with deletion (note that this is a different model from the one presented

in Chapter 3) such that the reduced instance is allowed r = 7n − 4k + 1 pebbles and 2k red-blue

transitions.

We first provide an overview of our proof techniques. Then, we describe the gadgets used in

our proof. Finally, we provide the proof that the red-blue pebble game defined in Section 1.2.2 is

W[1]-hard.

4.1 Proof Overview

Given a Weighted 3-CNF SAT expression, φ, we first duplicate all the variables and clauses until

n′ the number of new variables including duplicates follows the rule 3n′

4 > k. From here onwards,

we refer to φ to be the new 3-CNF expression (with the duplications) and n to be the number of

new variables.

As in the proof given in Section 3, we create a set of variable gadgets that are connected to a

set of clause gadgets that check whether each clause is satisfied according to the truth settings of

the variables. The k true variables conditions is enforced by the All-False and k-True-Variables

gadgets which first force all variable to be set to false and then picks exactly k variables to set to

true. The problem is parameterized by the number of transitions, k, and the number of red pebbles

is limited by some number that is polynomial in the number of variables in φ. All of the transitions

will be used before the clause gadgets are pebbled. Therefore, all pebblings of all gadgets after the

variable gadgets, the All-False gadget, and the k-True-Variables gadget are pebbled using only red

pebbles and no transitions.

We will now describe the gadgets that are used in the reduction.

46

4.2 Gadgets

4.2.1 Variable Gadget

The variable gadgets are used to represent the variables that are in U and are present in φ (i.e.

we do not create a variable gadget for variables that are not present in φ). We again categorize

the complete pebbling of the variable gadgets into three phases: Phase 1, Phase 2, and Phase 3.

During Phase 1, each variable must be pebbled in the following way. The pyramid gadgets within

each variable gadget are first pebbled with red pebbles and one red pebble remains on the apex of

each pyramid gadget. See Fig. 4-1.

After all variable gadgets have been pebbled once (i.e. both x′i and xi are pebbled), the x′i nodes

must be pebbled with red pebbles. In order to pebble the x′i nodes, the remaining red pebbles will

be used as well as the red pebbles on x′i. The corresponding red pebble on x′i is either turned to

blue or removed. At most k of these red pebbles may be turned to blue since we are given only 2k

transitions and each of the blue pebbles must be reverted back to red at some point in the future

(proof will be provided later). The three vertices representing xi remain un-pebbled and a red

pebble remains on each xi. Each vertex of x′i as well as xi are connected to the All False gadget

(described below). The All False gadget must be pebbled after the variable gadgets since all other

subsequent pebbling depends on the set of 2k + 1 nodes that were pebbled during the pebbling of

the All False gadget.

Figure 4-1: Variable gadget.

Lemma 4.1. All variable gadgets must be in the false configuration after Phase 1.

47

Proof. During Phase 1, the All False Gadget 4-2 must be pebbled. We are allowed at most an

pebbles and the All False gadget consists of a set of 2k + 1 nodes each of which costs an, an − 1,

. . . , an − 2k pebbles to pebble (i.e. have indegree an, an − 1, . . . , an − 2k). Thus, the only

possible pebbling configuration is the configuration that leads all variable gadgets to be in the false

configuration and the remaining pebbles are used to pebble the other nodes that each of the 2k+ 1

are dependent.

During Phase 3 of pebbling the variable gadgets, the other nodes within the gadget are pebbled

using the red pebbles that are left on the gadget from Phase 2. This phase requires no transitions

since the extra red pebbles from the clause and pebble sink path gadgets can be used to pebble the

variable gadgets during this phase.

4.2.1.1 All False Gadget

The All False gadget is used to check that all variables are initially set to false. See Fig. 4-

2. It consists of 2k + 1 vertices with unbounded indegree with predecessors x′i and xi for all i.

Furthermore, its predecessors also contain an− 4n− i nodes for i = {0, . . . , 2k} to use up the other

an − 4n − i extra pebbles. The 2k + 1 nodes from the All False gadget are then connected to the

k-True-Variables gadget and all the clause gadgets.

Figure 4-2: The All False gadget consists of 2k + 1 nodes that all have x′i and xi as predecessors.
Each of these 2k + 1 nodes are connected to the k-True-Variables gadget and the clause gadgets.

48

4.2.1.2 k-True-Variables Gadget

Phase 2 of the variable pebbling phases consists of resetting a set of k variables to true. The

k-True-Variables gadget is present to constrain the number of true variables to exactly k. The

k-True-Variables gadget consists of a single unbounded indegree vertex with xi as predecessors for

all i. After passing through the All False gadget, k variable gadgets must be switched from the

False position to the True position by moving 3k pebbles from x′i to xi and using k transitions to

move k red pebbles to x′i. As we will show in the next few gadgets, k transitions must be used to

pebble x′i nodes with red pebbles. See Fig. 4-3 for an example.

Figure 4-3: k-True gadget connects to all xi for all i.

Lemma 4.2. At the end of Phase 2, exactly k variables are set in the true configuration.

Proof. In order to prove this lemma, we first prove the following two claims.

Claim 4.1. At least 3k pebbles must be removed from x′i and used to pebble xi with red pebbles and

k pebbles must be removed from xi.

Proof. In order to pebble the k-True-Variables gadget, all the nodes that are incident to the central

node must be pebbled. Given that we only have 3n− 4k pebbles remaining after pebbling all the

variable gadgets in Phase 1 and the All-False gadget, we must use 4k pebbles from the variable

gadgets in order to pebble the remaining 4k slots. The pebbling strategy proceeds as follows.

First, pebble 3n−4k xi’s. Of these, remove 4k pebbles from the corresponding x′i and xi. Using

these removed pebbles, pebble the remaining k variables (i.e. the remaining 4k xi’s).

49

Since the 2k + 1 pebbles from the All-False gadget are needed to pebble the k-True gadget, we

cannot remove these pebbles. Thus, the smallest number of pebbles we need to remove is 4k from

the variable gadgets.

Claim 4.2. No pyramid gadgets in the variable gadgets may be repebbled using ≤ 2k transitions in

Phase 2.

Proof. In order to pebble the k-True-Variables gadget, the 2k + 1 nodes pebbled during the All-

False phase must remain pebbled with red pebbles. Even if all red pebbles were removed from all x′i

nodes, the number of red pebbles available is not enough to pebble the pyramid with the smallest

cost among all pyramids in variable gadgets. In order to obtain the 2k + 1 red pebbles, at least

2k + 1 transitions need to be used to turn the red pebbles on the All-False gadget to blue which

exceeds our limit of 2k transitions.

Claim 4.3. At least k pebbles must be turned from blue to red on x′i using k transitions.

Proof. The Pebble Sink Path gadget uses 3n− 4k− 6 pebbles and the clause gadgets use 5 pebbles

each; therefore, 3n − 4k of the pebbles that are used to pebble the k-True-Variables gadget (or

the variable gadgets) must be removed from the gadgets and used to pebble the pebble sink path.

Therefore a total of 4n pebbles remain on the variable gadgets. By Lemma 4-4, each variable gadget

must be set in either the true or false configuration (in other words, each variable gadget either has

all xi nodes pebbled with red pebbles or x′i pebbled with a red pebble and all x′i nodes pebbled

with red pebbles or xi pebbled with a red pebble). In order to transform a variable gadget from

the false configuration to the true configuration, at least one transition must be used to pebble x′i

with a red pebble provided that the pyramid under x′i cannot be repebbled. We showed this in

Claim 4.2 that in order to repebble this pyramid, more than 2k transitions are needed.

Therefore, the only way to change the truth value of a variable gadget is to use 1 transition per

gadget. Suppose that a red pebble is removed from a x′i node. Then, the node x′i must be pebbled

by Lemma 4-4. Furthermore, if a node is removed from xi, then all xi nodes must be pebbled which

implies that x′i must also be pebbled. Therefore, the minimum number of variables that need to

be switched from false to true is k since 4k pebbles can be removed from k variables and switched

from false to true using the strategy provided by Claim 4.1. The k transitions are used to turn

blue pebbles on k x′i nodes to red.

50

Claim 4.4. The minimum number of transitions that are needed for Phase 2 is k.

Proof. This follows directly from Claim 4.3.

Therefore, since all variables either have x′i and xi or xi and x′i pebbled, all variables are set to

either true or false. Furthermore, as the claims show, at most k variables are set to true.

4.2.1.3 3-or-None Gadget

The 3-or-None gadgets are used to ensure that every variable either has 3 pebbles on each xi or

x′i or none on them. This is to ensure that the player cannot cheat by using less than 3 pebbles

to set either x′i or xi true. A 3-or-None gadget is created for each variable. The 3-or-None gadget

consists of sets of 2 vertices one picked from xi and the other picked from x′i. All such pairings

are connected to a path with vertices of indegree 5 (the other vertices are roots) so that only one

pebble is allowed to go through the path. See Fig. 4-4 for an example of a 3-or-None gadget. This

gadget can be pebbled using 5 pebbles. However, more pebbles will not ensure that the gadget can

be pebbled if it does not satisfy the invariant as stated in Lemma 4.5. In other words, more pebbles

does not guarantee that the gadget can be pebbled without using any transitions. Attached to each

node of the 3-or-None gadget are 3n − 4k − 3 roots that have outgoing edges to the nodes in the

path in the gadget. The All-False termination node is also connected to every node in the path of

the 3-or-None gadget.

Lemma 4.3. For every variable gadget that does not follow the condition specified in Lemma 4.5

and contains less than 6 red pebbles, at least two transitions are required to satisfy the gadget.

Proof. Suppose that less than 6 red pebbles are on a variable gadget and no pair of components

xi and x′i or x′i and xi are pebbled with red pebbles, then the distribution of red pebbles are ones

that partially fill in some xi or x′i and does not pebble xi or x′i. Therefore, in order to pebble the

xi or x′i that does not contain a red pebble, we have to use two transitions to turn the blue pebble

on xi or x′i to red.

51

Figure 4-4: 3-or-None gadget. One is created for every variable.

Lemma 4.4. Suppose some variable gadgets are set in the configuration with xi and x′i are pebbled,

then the number of transitions needed to pebble both the All-False gadget and the 3-or-None gadget

is greater than 2k.

Proof. Suppose that b variable gadgets have red pebbles on xi and x′i. During Phase 2, 4k red

pebbles must be removed and moved to the xi nodes. In order for this to occur, some number of

red pebbles are removed. For any pebble placed during Phase 1 removed, at least 2 transitions

must be used to reset the value of the variable unless only the red pebble on xi is removed and

no other red pebbles are removed from the gadget. For each of the variable gadgets where the red

pebble on xi is removed, in order for the variable gadget to have red pebbles on xi and x′i, two

transitions must be spent on placing a red pebble on xi during Phase 2. We know that having a

variable gadget in the configuration xi and x′i saves 2 pebbles. However, in order to achieve this

configuration, we must spend 4 transitions per gadget in Phase 2 which does not make up for the

amount that is saved by this configuration. The removal of any other red pebble from a variable

gadget requires at least two transitions; therefore, the optimal removal number is 4 (instead of 3

which would lead to a xi and x′i configuration).

Lemma 4.5. In order to satisfy all 3-or-None gadgets using at most 2k transitions, the only possible

52

configurations for all pebbles must be placed in one of the two pairs of components: x′i and xi or xi

or x′i.

Proof. By Lemma 4.4, pebbles cannot be placed in the configuration xi and x′i using at most 2k

transitions. Therefore, in order for a red pebble placement to satisfy the corresponding 3-or-None

gadget without using 2 additional transitions, the must be placed in the pairs given in the lemma or

red pebbles must be on all nodes xi and x′i. Suppose that a variable gadget has this configuration.

Then, two pebbles will be removed from some other variable gadget. Since no variables can be

in the configuration xi and x′i by Lemma 4.4, if a variable is not set in a configuration, then two

transitions are used. By Lemma 4.3, at least k variables must be set to false at the end of Phase 2.

Therefore, each variable must be in the configurations as stated in this lemma in order to satisfy

all 3-or-None gadgets.

The remaining gadgets may be pebbled with red pebbles without using any transitions.

4.2.2 Pebble Sink Path Gadget

The Pebble Sink Path Gadget is used to take up 3n− 4k− 6 pebbles that were used in the k-True-

Variables gadget (and were left over after passing through the gadget) leaving only 5 pebbles for

the remaining parts of the winning path. The Pebble Sink Path occurs directly after the clause

gadgets path and must be pebbled before the clause gadgets are pebbled. This sink path consists

of 3n− 4k− 6 pyramid gadgets of successively smaller value starting from 3n− 4k− 1. See Fig. 4-5

for an example.

4.2.2.1 Clause Gadget

After the set of 3-or-None gadgets comes the Clause gadgets which are used to ensure that the

3SAT clauses are satisfied by the assignments. The clause gadget can only be pebbled with the 5

extra pebbles that remain after the pebble sink has been pebbled. Given that all 2k transitions

are used in Phase 2 and/or the pebbling 3-or-None gadgets phase, no transitions can be spent in

Phase 3 or pebbling the clause gadgets. The output of the clause path must be connected to each

vertex of the Pebble Sink Path gadget. See Fig. 4-6.

Finally, the target vertex can be pebbled with a red pebble if and only if all previous gadgets

53

Figure 4-5: Pebble sink that captures 3n − 4k − 6 pebbles leaving 5 pebbles to be used in the
clauses. Here g = 3n− 4k − 1.

are pebbled according to the necessary rules and conditions. The 2k + 1 nodes from the All-False

gadget are also predecessors of this target vertex.

For an example reduction, see Fig. 4-7. The target vertex that must be pebbled is the one

colored blue.

Lemma 4.6. The clause gadget can be pebbled with 5 pebbles (not including the red pebble on pi−1)

if and only if at least one of the variable gadgets that connects to it is set in the true configuration.

Proof. If at least one literal is true in the clause gadget, then we can pebble the gadget in the

following way. First, pebble all the other literals that are not set to true. Pebbling the other

literals requires at most 4 pebbles. Finally, pebble the bottom layer of the pyramid for the literal

that is set to true. Then, the pyramid can be pebbled using the method described in Lemma 3.2

using five pebbles once the bottom layer of the pyramid has been pebbled.

Based on the proof provided in Lemma 3.2, the cost of pebbling the pyramid in each clause

gadget is 5. In order for a red pebble to be placed on the pyramid in the clause gadget (aside

54

Figure 4-6: Clause gadget.

from the red pebble on pi−1), 3 red pebbles must be used on all literals that are not set in the true

configuration. Suppose that 2 pebbles are currently on the pyramid at some time t, then, to pebble

the last literal (since it is not set to true) takes at least 4 red pebbles. At the time the last literal

is pebbled, as least 2 red pebbles must already be on the pyramid (otherwise, the literal is not the

last literal to be pebbled in the gadget). Therefore, if the clause gadget can be pebbled using 5 red

pebbles (not including the red pebble on pi−1), then the clause is satisfiable.

4.3 Red-Blue Pebbling is W[1]-hard

In this section, we prove that red-blue pebbling parameterized by the number of transitions is W[1]-

hard using the gadgets as specified in Section 4.2. An example construction is shown in Fig. 4-7.

The order of the pebbling is given as the following. First, the variable gadgets are pebbled during

Phase 1 of the pebbling which pebbles each pyramid gadget in each variable with a red pebble.

Then, the All-False gadget is pebbled which results in all x′i and xi nodes being pebbled with red

pebbles. During Phase 2 of pebbling the variable gadgets, k variables are switched from the false

configuration to the true configuration. This in total uses the entirety of the allowed 2k transitions.

To ensure the 2k transitions are used in this phase, the 3-or-None gadgets are pebbled using only

55

5 red pebbles and no transitions. After the 3-or-None gadgets are pebbled, we pebble the Pebble

Sink Path gadget which consumes 3n − 4k − 6 pebbles. The clause gadgets are pebbled with the

remaining 5 pebbles not used in the pebble sink path. Finally, the variable gadgets are pebbled

completely using all the pebbles during Phase 3 and the target node as indicated in Fig. 4-7 pebbled

with a red pebble. The total number of red pebbles necessary is r = 7n − 2k + 1 and the total

number of transitions is t = 2k.

Theorem 4.1. Red-Blue Pebbling parameterized by the number of transitions k is W[1]-hard.

Proof. We first show that our reduction is a valid FPT reduction. As defined above, our reduction is

a polynomial time reduction in terms of n, m, and k. The number of nodes created is O(n+m+k)

and the number of edges is at most the square of this amount. The number of transitions is

determined by the function f(k) = 2k where k is the parameter in Weighted 3-CNF Satisfiability.

Now we will prove that a solution exists in our construction if and only if a solution exists for

the expression φ. Suppose a solution exists for φ, then one can set the variables in the construction

to have the truth value given by the solution to φ. We can set all the variables to their correspond-

ing truth values using at most 2k transitions. Furthermore, we can pebble the remainder of the

construction using the prescribed number of red pebbles.

As we proved in Lemma 4.5, the number of transitions that must be used after pebbling the

3-or-None gadgets is 2k. Therefore, the remainder of the construction must be pebbled using red

pebbles and no transitions. We proved in Lemma 4.6 that the clauses can only be pebbled using 5

red pebbles if they are satisfiable. Since the Pebble Sink Path gadget is pebbled after the 3-or-None

gadgets are pebbled, they must be pebbled at the time when the clause gadgets are pebbled, leaving

only 5 free red pebbles to pebble the clause gadgets. Finally, the path leading up to the blue pebble

can be pebbled if all the clauses are successfully pebbled. Therefore, this is a valid reduction from

Weighted 3-CNF SAT and the problem is W[1]-hard.

56

57

3-or-None
Gadgets

Figure 4-7: Example reduction. The vertex colored blue is the vertex that must be pebbled at the
end and can only be pebbled if and only if the 3SAT instance has a solution that sets exactly k
variables to True and uses at most 2k transitions.

Chapter 5

Inapproximability of Standard

Pebbling Number and Moves

In this section, we provide an alternative and perhaps simpler proof of the result presented in [CLNV15]

(without the use of the graph products used in [CLNV15]) that the standard pebbling game is in-

approximable to any constant additive factor. Then, we show that our proof technique can be used

to show that the minimum number of pebbles needed to pebble a DAG is inapproximable to any

additive factor n1−ε for any ε.

5.1 Simpler Proof of the Additive Inapproximability of Standard

Pebbling

We first note that the following graph (Fig. 5-1) (sometimes known in literature as the “road

graph” [EBL79, Nor15]) requires a number of pebbles that is the width of the graph to pebble all

the outputs.

Suppose we now replace all variable nodes in the proof provided in [GLT79] with road graphs

of width K + 1. The modified quantifier gadgets are shown in Fig. 5-2.

To see details of the original proof of the PSPACE-completeness of standard pebbling, please

refer to [GLT79]. In order to make the correct changes to the variable gadgets, we must make

a few other changes to the quantifier and clause gadgets. Fig. 5-3 shows the changes we must

make to the clause gadgets in order to prove the following lemmas about the PSPACE-hardness of

58

Figure 5-1: Road graph gadget. Here, in this example, a minimum of 5 pebbles are necessary
to pebble o1 and o2. 4 pebbles must be used to pebble i1, i2, i3, and i4 and one more pebble is
necessary to pebble o1 since the four pebbles used to pebble i1, i2, i3 and i4 must remain on the
road graph in order to pebble o2. K is the width of this road graph gadget. In this example, K = 4.

approximating within an additive factor of n1−ε.

In short, the proof relies on the fact that each quantifier gadget requires 2(K + 1) pebbles

to set the corresponding variable to true or false. Furthermore, a clause would consist of binary

trees with the bottom layer containing 6(K + 1) + K + 1 nodes. In this paradigm, we would

need (K + 1)n + 2(K + 1) + K pebbles to pebble the entire structure used in the proof if the

given QBF expression φ is satisfiable. Furthermore, if φ is unsatisfiable, then there is no way

to pebble the structure using less than (K + 1)n + 3(K + 1) + K pebbles. Thus, if given an

approximation algorithm that estimates the number of pebbles needed within an additive factor

K, we can distinguish between the case when φ is satisfiable (at most (K + 1)n + 2(K + 1) + K

pebbles are needed) and the case when φ is unsatisfiable (when (K + 1)n+ 3(K + 1) +K pebbles

are needed).

In this construction, K can be any polynomial function of v where v is the number of variables

in φ and c is the number of clauses (in other words, K = vacb for any constants a and b). The

total minimum number of pebbles necessary is O(Kv) and the total number of nodes in the graph

is O(Kv + c). We prove the following:

Lemma 5.1. The provided QBF instance, φ, is satisfiable if and only if the number of pebbles

necessary to pebble the modified construction of the proof presented in [GLT79] is at most (K +

1)n+ 2(K + 1) +K.

Proof. By the same argument as provided in [GLT79], each quantifier gadget must be pebbled with

2(K + 1) pebbles before the clause gadgets can be pebbled. In order to pebble the clause gadgets,

59

Figure 5-2: Modified quantifier gadgets from [GLT79] with road graphs replacing the variable
nodes. The road width for each of the road graphs is K + 1 where K = 1 in this figure. The left
figure is the modified quantifier gadget and the right figure is the modified existential gadget. The
green nodes indicate one road graph gadget with width 2 and the purple nodes indicate another
road graph gadget with width 2. The yellow nodes are nodes that are part of binary tree gadgets
connecting to the road graph gadgets.

2(K + 1) + K additional pebbles are needed provided that at most two literals are false in every

clause. All parts of the proof follows as in [GLT79] if we prove that for every cost 1 operation

in [GLT79] resulting from pebbling the quantifier gadgets, there is instead a K + 1 cost in pebbles,

and that the increase in pebbles does not make pebbling any other parts of the gadget easier. First,

we prove that the variables must take one of two possible configurations at the end of pebbling all

the quantifier gadgets. As proven in [Nor15], a road graph gadget with w inputs and w outputs

requires 2w − 1 pebbles to pebble all the outputs of the gadget. Therefore, all road graphs in the

literal gadgets require 2K + 1 pebbles to be placed in the true configuration. Therefore, if any

gadget is not in the true configuration, then K + 1 additional pebbles are necessary to pebble the

gadget.

As proven in [GLT79], in order to pebble the remaining nodes after the clause gadgets have

been pebbled, all variables must be set to either a true or false configuration. We show that with

the road graph gadgets, this invariant still holds. Suppose for the sake of contradiction that there

exists a variable gadget that is set in a configuration that is not true or false. Then, either, the

corresponding pair that needs to be set false is not which is problematic for the same reason as

the proof given in [GLT79] or the true component of the gadget is not set which results in K + 1

60

Figure 5-3: The clause gadgets are modified to account for the width K + 1 variables. Each clause
contains width K + 1 literals and an added K nodes to take up the extra K pebbles that are
necessary to pebble the false literals. In this example, K = 1 and lj,i for i ∈ {1, 2, 3} are the
literals.

pebbles being used to set the corresponding part to the true configuration.

Since all connections with quantifier gadgets are converted to pyramids that can only be pebbled

when its predecessors (which includes the previous part of the gadget as shown in [GLT79], see

Fig. 5-3 and Fig. 5-2) are pebbled, this is the same condition as that in [GLT79]. The extra pebbles

in this construction can only be used to pebble the pyramids attached to each quantifier gadget

and each of the pyramids is scaled accordingly. Therefore, the provided QBF instance, φ, is true if

and only if the number of pebbles necessary to pebble the modified construction of the proof is at

most (K + 1)n+ 2(K + 1) +K.

Lemma 5.2. The provided QBF instance, φ, is unsatisfiable if and only if the number of pebbles

necessary to pebble the modified construction of the proof presented in [GLT79] is at least (K +

1)n+ 3(K + 1) +K.

Proof. We proved in Lemma 5.1 that all variables must be set in either the true or false configura-

tion. Therefore, the only way that more than (K + 1)n+ 2(K + 1) +K pebbles are used to pebble

the construction is if φ is false by the proof given in [GLT79]. If φ is false (i.e. unsatisfiable), then,

there exists a clause gadget which contains three false literals. In order to pebble the clause with

three false literals, we must use an extra K + 1 pebbles since we proved in Lemma 5.1 that all cost

1 operations need to be converted to cost K + 1 operations.

61

We can also use the above argument to show that it is PSPACE-hard to approximate the

minimum number of black pebbles needed given v quantifier gadgets to an additive n1−ε factor for

all ε.

Theorem 5.1. It is PSPACE-complete to determine whether a DAG can be pebbled using the

standard pebbling rules to within an additive n1−ε factor for any ε where n is the number of nodes

in the graph.

Proof. Using the method described above, suppose the cost of pebbling each variable is K. As

a function of K, the cost of pebbling a satisfiable φ is Kn + 2(K + 1) + K whereas the cost of

pebbling an unsatisfiable φ is Kn+3(K+1)+K. As we can see, the aforementioned reduction is a

gap-producing reduction with a gap of K pebbles. Then, all that remains to be shown is a K exists

that satisfies K = ((c1 + c2K)v + c3c)
(1−ε) for all 0 < ε < 1 . We can accomplish this by scaling

up v and c. We can scale up v and c by duplicating the quantifier variables and clauses. We can

further scale up c by adding a path of an arbitrary polynomial number of nodes. We set K = va

where we pick a such that a
1−ε > 2. Then, v and c are scaled up to v′ and c′ where v′ ≈ v

(1
1−ε)
2 and

c′ ≈ v
(a
1−ε)
2 if v > c and K = ca if c ≥ v. Therefore, for every ε, we can find a K such that it is

PSPACE-hard to find an approximation within an additive n1−ε factor where n is the number of

nodes in the graph.

5.2 Inapproximability of Number of Moves in Standard Pebbling

Now we will prove that approximating the number of moves to any factor 2s given the number of

pebbles s used to pebble the graph is PSPACE-hard. We note that the proof presented in [GLT79]

is already a gap reduction, but here we show how to augment this reduction to achieve even greater

asymptotic significance.

We use the same general construction as in [GLT79] except we make the following changes:

1. We replace each edge between a variable setting with a “super-hard” graph as seen in, for

example, [EBL79].

2. We increase the pebbling prices of all the pyramids to account for the additions of the “super-

hard” graphs.

62

The purpose of the family of graphs shown in [EBL79] is to show an exponential tradeoff between

pebbling number and pebbling price. Following the notation in [EBL79], we define these graphs as

Hn where n is the minimum pebbling number cost. These graphs exhibit the property that with n

pebbles, the pebbling cost in the number of moves is n!. With n+ 1 pebbles, the pebbling cost in

the number of moves decreases to n4.

Now, we arrange the graph so that all universal quantifier gadgets are at the top of the reduction

structure. Furthermore, we add the n existential quantifiers, yi, as given in [GLT79] to ensure all

variables are set to either True or False (i.e. no double False positions).

To the given φ we add the following n universal quantifier variables, z1, z2, . . . , zn at the top

of the construction. We also create a series of clauses of the form (zi, zi, zi+1), (zi, zi, zi+1) for all

i ∈ [1, . . . , n− 1]. This is to ensure that all boolean variables are set to some setting other than the

double false setting. Suppose that all of these graphs HK have cost K. Then, we need 6n+(K+5)

pebbles to properly pebble this graph.

If φ is true, then the number of moves needed to pebble this graph is ≤ (
∑6n+(K+5)

i=K+5 i+ 3nK4 +

10(m + n) + c)2n∀+n where c is some constant. However, if φ is false, then the number of moves

needed to pebble the graph is ≥ (
∑6n+(K+5)

i=K+5 i + 10(m + n) + nK!)2n∀+n. Then, the ratio for

large K! is an approximation factor of this construction. Specifically, the ratio of approximation

is
(
∑6n+(K+5)

i=K+5 i+10(m+n)+3nK4+nK!)

(
∑6n+(K+5)

i=K+5 i+3nK4+10(m+n)+c)
≥ (K − 5)! for sufficiently large K ≥ (m + n)6. Since, K =

(m+n)Θ(1), we can achieve an approximation factor of (m+n)Θ(1)!. In order for this to be a valid

reduction K can be at most (m + n)Θ(1). Therefore, we can show that it is hard to approximate

the number of moves needed to pebble a DAG given s pebbles by a factor of (m+ n)Θ(1)! which is

better than the factor of 2(m+n)Θ(1)
known previously (implicitly) by the construction in [GLT79].

63

Chapter 6

Parallel Pebbling Model

In this section, we prove some properties related to the parallel graph pebbling model as introduced

in [AS15] and described Chapter 1.4, Definition 1.1. First, we give a brief overview of the known

results and definitions related to the pROM model. We also define some graph families that are

useful in this model of computation. The definition of cumulative complexity as provided by [AS15]

is restated in Definition 1.2.

Although somewhat intuitively obvious, we provide an explicit proof for the equivalence between

P (Gn,δ) and P ‖(Gn,δ).

Lemma 6.1. Peb(Gn,δ) = Peb‖(Gn,δ).

Proof. Any sequential pebbling strategy, Ap can be simulated by a parallel pebbling strategy, A
‖
p

since A
‖
p can choose to place one pebble at a time. Therefore, Peb‖(Gn,δ) ≤ Peb(Gn,δ). We now

show that there exists a sequential pebbling strategy, Ap, that uses the same number of pebbles

to pebble a graph as a parallel strategy A
‖
p. Suppose that at time ti, a set of pebbles Si are

added to Gn,δ under algorithm A
‖
p. Then, pred(Si) must be pebbled at time ti−1. Ap can thus

spend |Si| pebbling steps to pebble the graph sequentially by adding pebbles on all vertices v ∈ Si

sequentially until the state of the graph is the same as the state of the graph at time ti under

strategy A
‖
p. Similarly, if a set of pebbles Di are deleted from the graph at time ti, then Ap can

spend |Di| sequential pebbling steps to delete |Di| pebbles. If both strategies start on identical

graphs with the same starting configuration S, then we have shown that Peb‖(Gn,δ) ≥ Peb(Gn,δ).

Thus, Peb‖(Gn,δ) = Peb(Gn,δ).

64

An immediate application of this result is that all hardness proofs given in Chapters 3-5 im-

mediately transfer to this model since the proofs are hardness based on the minimum number of

pebbles used in the pebbling of the construction.

Given the proof of Lemma 6.1, we only need to prove Peb(Gn,δ) in order to show the minimum

parallel pebbling space cost of any graph Gn,δ.

6.1 Sequential and Parallel Time of Pebbling for Graphs

In this section, we discuss our results in determining the sequential/parallel gap of pebbling given

S pebbles as defined in Definition 2.10. We first discuss common graph families used in the black

pebbling literature. The goal of this analysis is not only to decrease Dec(Gn,δ, S) but to also

maximize S. Furthermore, we only consider S = Peb(Gn,δ) = Peb||(Gn,δ) as proven by Lemma 6.1.

We immediately present graphs that establish an upper bound on Dec(Gn,δ, S) as well as present

a simple graph family that meet the lower bound for Dec(Gn,δ, S) of 1.

First, we prove the simple fact about the parallel pebbling time cost of any graph, Gn,δ.

Lemma 6.2. Time||(Gn,δ) ≥ Λ(Gn,δ) for any S where Λ(Gn,δ) is the longest directed path in Gn,δ.

Proof. No successor may be pebbled in the same timestep as its predecessor as it would violate

precedence constraints. Therefore, in order to pebble all nodes in a directed path of length n, we

must use n time, proving the lemma.

Lemma 6.3. Dec(Gn,2, 1) = 1 for lines, Ln ∈ Ln where Ln = {v0, . . . , vn}, of length n where edges

are directed from vi to vi+1 for all i ∈ [n].

Proof. By simple observation, at most at most one additional pebble may be placed on Ln at

each timestep by precedence constraints as stated in Lemma 6.2. Therefore, Time(Ln, 1) = n and

Time||(Ln, 1) = n and Dec(Ln, 1) = 1.

Note that this proof only holds for connected line graphs where all edges are directed in the same

direction. For general directions of edges, the ratio is equal to the length of the largest connected

component in the line whereby connected component, we mean all pairs of vertices that can be

reached from one to another via a directed path.

We further prove an upper bound of
√
n on Dec(Gn,δ,

√
n) when S =

√
n.

65

Lemma 6.4. Time(Πn, h) = n and Time||(Πn, h) = h+ 1 where h is the height of π.

Proof. As proven in [Nor15], Peb(Πn) = h − 1 where h is the height of the pyramid. Then, by

Lemma 6.1, Peb||(Πn) = h. Because there are n nodes in the pyramid, the minimum time of

pebbling is n. Therefore, Time(Πn) = n.

We prove that Time||(Πn) = h + 1. First, we provide a parallel pebbling strategy that shows

that Time||(Πn) ≤ h + 1. First, the bottom of the pyramid is pebbled using h− 2 pebbles. Then,

a second turn is needed to pebble the two remaining vertices on the bottom layer that were not

pebbled by the h − 2 pebbles. After these two steps, we can pebble the remaining portion of the

pyramid in h steps. Therefore, Time||(Πn) ≤ h+ 1.

By Lemma 6.2, we know that Time||(Πn) ≥ h. Using this fact, what remains to be shown is

that Time||(Πn) ≥ h+ 1. To do this, we need only to show that the number of step used is > h. In

order to pebble Πn using h time, one must have a pebble on all paths of length h in Πn during all

h steps of the pebbling. We show this is impossible.

There exists a total of h distinct paths from the sources to the one sink in Πn since there exists

h sources all of which there exists directed paths to the one sink. Therefore, at time 0, there needs

to be h pebbles on all h sources of Πn. However, at least 1 path cannot have a pebble at time 0.

Therefore, Time||(Πn) > h, proving our lemma.

Lemma 6.5. Dec(Gn,2,
√
n) =

√
n for pyramids, Πn, with n total nodes.

Proof. We proved in Lemma 6.4 that Time(Πn) = n and Time||(Πn) = h+1. Recall by the definition

of the pyramid, n = h(h+1)
2 . Then, Dec(Gn,2,

√
n) ≤

h(h+1)
2

h+1 = h
2 ≤
√
n.

Another common graph used in traditional time/space tradeoff applications are bit-reversal

graphs. As summarized in [Nor15], these graphs exhibit a tradeoff of Time(Gn,δ, S) = Θ(n2/S).

While the pyramid graph is easy to analyze, another similar graph is slightly harder to analyze.

For a binary search tree with n nodes, Bn, Peb(Bn) = Peb||(Bn) = h and Time(Bn) = n as proven

in [adH81]. A trivial upper bound for Dec(Bn) is n
logn . However, we show instead a tighter upper

bound for Dec(Bn) to be log n. To prove this bound, we show that Time||(Bn) ≥ n/ log n.

Lemma 6.6. For a balanced binary tree with n nodes, Bn, Time||(Bn) ≥ n/ log n.

Proof. There exists n different paths from the sources to the sink of the binary search tree each of

length log n. By the same logic as in the proof of Lemma 6.4, for each timestep ti, we would like to

66

have a pebble on as many of these n different paths as possible. Suppose without loss of generality,

n = 2h for some h. Then, given h = log n pebbles, we can pebble at most log n of the n paths at

time t0. Each additional timestep reduces the number of pebbles used by this first pebbling by half

while maintaining the same previous number of paths that contain a pebble. Therefore, at time t1,

log n + logn
2 paths are pebbled. Therefore, at time ti, at most log n + i logn

2 paths are pebbled. In

order for all paths to be pebbled, we need at least n/ log n timesteps.

It follows immediately that

Lemma 6.7. Dec(Bn, log n) ≤ log n.

We see that thus far, Dec(Gn,δ, S) = S where S = Peb(Gn,δ) = Peb||(Gn,δ). However, it is not

yet proven whether this is true for all graphs with n nodes and δ indegree. Intuitively, a lower bound

of this form would be surprising since it essentially states that the more memory the sequential

player and the parallel player have available, the bigger the gap in performance of the sequential

and parallel player.

6.1.1 Pebbling Price of Composite Graphs

We define composite graphs to be graphs composed of parallel elements of the simple graphs defined

earlier in this section.

Specifically, in this section, we look at Dec(Gn,2,Θ(log n)) of graphs known as superconcen-

trators provided in [LT82]. However, rather than looking at the superconcentrator with Ω(n log n)

number of nodes where n is the width of the superconcentrator which has pebbling cost Peb(Gn,δ) ≤

c log n for some constant c. We look at an equivalent graph composed of n binary search trees as

defined below. We choose to use this graph instead of the original superconcentrator graphs since

the minimum number of pebbles used in the superconcentrator graph ≤ log n.

Definition 6.1. We define the composite balanced binary tree graph to be constructed by the

following rules:

1. There exists log n+ 1 levels, where level l ∈ [log n].

2. Construct edges (vli, v
l+1
d i

2
e+j) for all j ∈ [0, 2l, 2 · 2l, . . . , k · 2l, . . . , (n2 − 1) · 2l] where vli is the

i-th vertex in level l.

67

3. Construct edges (vlogn
i , vlogn+1

i).

4. Construct edges (vlogn+1
i , vlogn+1

i+1) for all i ∈ [n].

Lemma 6.8. Peb(CBn) = log n+1 and Time(CBn) ≤ n(n+1) where CBn is a composite balanced

binary tree as defined in Definition 6.1 with n nodes.

Proof. From [adH81], Peb(Bn) = log n and Time(CBn) = n. We first prove that Peb(CBn) =

log n+ 1. vlogn
0 is the apex of a balanced binary search tree. Therefore, to pebble this node alone

needs log n pebbles. An additional pebble is needed to pebble the nodes in level log n + 1. Since

any two consecutive trees are disjoint at least down to level logn
2 , the pebbles must be removed

from the first tree and used to pebble the next tree. Therefore, all log n pebbles must be used to

pebble the next tree and another pebble must remain in the nodes on level log n + 1 resulting in

log n+ 1 pebbles.

Given log n pebbles, we can pebble the binary trees one by one while maintaining a pebble on

the log n+ 1-th level. This results in a sequential pebbling time of n(n+ 1).

Lemma 6.9. Peb||(CBn) = log n+ 1 and Time(CBn) ≥ n(n/ log n+ 1).

Proof. The proof of Peb||(CBn) follows from the Lemmas 6.6 and 6.8. To prove that Time(CBn) ≥

n(n/ log n+1), we make the observation that all pebbles from the balanced binary search tree with

target node vi must be removed in order to pebble the tree with target node vi+1 since consecutive

trees have disjoint nodes from levels log n down to level logn
2 . A simple analysis from this observation

leads to Time(CBn) ≥ n(n/ log n+ 1).

Lemma 6.10. Dec(CBn) ≤ log n+ 1.

Proof. From Lemmas 6.8 and 6.9, we obtain that Dec(CBn) ≤ n(n+1)
n(n/ logn+1) ≤ log n+ 1.

We see that with the composite balanced binary tree, the ratio is approximately the same to a

negligible additive factor. Therefore, in this respect, it seems that both constructions are equally

“good” in terms of the decremental complexity of the graph.

However, as is often the case in cryptography, attackers often have less space than the honest

party with which to conduct their attack. Suppose instead that an honest part has space n to

perform their computation, which the adversary only has space log n to perform their computation.

68

Then, in this model, the decremental complexity is n(logn+1)
n(logn+1) = 1. This is the same decremental

complexity as a line but requires the adversary to have more than Θ(1) space available to conduct

the attack. Therefore, the concept of composite graphs is useful in certain attack models.

Although it is interesting to know the time tradeoffs of switching from the sequential pebbling

model to the parallel pebbling model for common DAG families and simple constructions of graphs,

it is even more interesting to consider the parallel pebbling time of graphs where Peb(Gn,δ) =

Peb||(Gn,δ) = Ω(n/ log n) since the maximum number of pebbles needed to pebble any graph is

O(n/ log n) [HPV77b]. A natural candidate for this analysis is then the stacked superconcentrator

graphs provided by [LT82]. Although these graphs are not analyzed in this thesis, we are interested

in analyzing these graphs in future work. It would also be interesting to determine lower bounds

for Dec(Gn,δ, S) for various values of S. Furthermore, it would be interesting to determine whether

the ratio is tight specifically for Peb(Gn,2) = Peb||(Gn,2) = Ω(n/ log n) is tight or whether we could

improve the argument by using a more intricate analysis than the one provided above.

69

Chapter 7

Other Pebbling Results

There are a number of hardness results that directly follow (or with some very minor adjustments)

from the results provided in the literature. In this chapter, we summarize these results and provide

more details in the cases where additional details and proofs are necessary.

7.1 One-Shot Standard Pebbling is Fixed-Parameter Tractable

Austrin, Pitassi, and Wu [APW12] previously showed the equivalence between the one-shot stan-

dard (or black) pebbling problem and a problem known as register sufficiency. The formal definition

of register sufficiency is given in Definition 7.1.

Definition 7.1 (Register Sufficiency). Let G = (V,E) be a directed acyclic graph, find a topological

ordering of the vertices of the graph, π, to minimize the following quantity:

min
π

max
i∈[n]
|Vi(π)|.

Here, Vi(π) is the number of predecessors (i.e. nodes that edges point from) of edges that cross

the location i in the topological ordering π.

Given the equivalence between these two problems as provided by [APW12], if there exists a

fixed-parameter tractable algorithm for register sufficiency, then there also exists a FPT algorithm

for the one-shot pebbling problem. Register sufficiency has been shown to be fixed-parameter

tractable [BFH94]; therefore, one-shot standard pebbling is also fixed-parameter tractable.

70

Theorem 7.1. One-shot pebbling problem is fixed parameter tractable when parameterized by the

number of pebbles, k.

7.2 A Graph Family that Requires Ω((n−k+1
2k)k) time to pebble for

k <
√
n

It is common folklore in the pebbling community that there exists families of graphs that take

Θ(nk) time to pebble sequentially given k pebbles (see Section 7.3 for proof). However, to the best

of the author’s knowledge, examples of such families of graphs do not exist in the literature. In

this section, we present a simple to construct family of graphs that require Θ(nk) time for constant

k number of pebbles. We further reduce the indegree of nodes in this family of graphs to 2 and

show that our results still hold. Such families of graphs could potentially have useful applications

in cryptography in the domain of proofs of space and memory-hard functions.

We construct the following family of graphs, Gk,n,k, below with indegree k and show that for

constant k, the number of steps it takes to pebble the graph Gk,n ∈ Gk,n with k pebbles and n

nodes is O(nk) for constant k. We also show a family of graphs, Gk,n,2 with indegree 2 that shows

the same asymptotic tradeoff.

We construct the family of graphs in the following way.

Definition 7.2. Given a set of n nodes and maximum number of pebbles k where k <
√
n, we

lexicographically order the nodes (from 0 to n− 1) and create the following set of edges between the

nodes where directed edges are directed from vi to vj where i < j:

1. vi and vi+1 for all i ∈ [k − 1, n− 1]

2. vi and vj for all i ∈ [0, l − 1] for all 1 ≤ l ≤ k − 1 and j ∈ {f(q) + 2i− 1} for all i ∈ [n−k+1
2k]

where f(q) = k − 1 + (q − 1)(n−k+1
k) where q ∈ [2, k]

3. vi and vj for all i = f(q) and j ∈ {f(q) + 2i} for all i ∈ [n−k+1
2k] where q ∈ [2, k].

The target node (the only sink) is vn−1. Note that the sources in our construction are v0 and

vj for all j ∈ [0, p(k)].

We now prove the time bound for this family of graphs Gk,n,k for all n ∈ R and k <
√
n.

71

To prove the minimum number of pebbles necessary to pebble the graph, it is sufficient to study

the number of blocked paths in any graph Gk,n,k ∈ Gk,n,k[Nor15]. We define blocking as in [Nor15].

Definition 7.3 (Blocking [Nor15]). A set of vertices, U , blocks a path, P , if U ∩ P 6= ∅. U blocks

a set of paths P if U blocks P for all P ∈ P.

Lemma 7.1. The minimum number of pebbles necessary to pebble Gk,n,k ∈ Gk,n,k is k.

Proof. The degree of the graph Gk,n,k is k, therefore, at least k pebbles are necessary to pebble

Gk,n,k.

Theorem 7.2 (Gk,n,k moves bound). The number of moves necessary to pebble Gk,n,k is Θ((n−k+1
2k)k)

for k <
√
n.

Proof. Suppose that at time t, there exists k paths which are not blocked by any of the pebbles

placed on the graph. By Lemma 7.1 and the proof of blocking paths in [Nor15], we know t must

exist at some point in the pebbling of Gk,n,k. Let the first degree k node to be pebbled be vi. Then,

|p(vi)| = k and there exists k blocking paths from each u ∈ p(vi) as its source. Placing a pebble

on each of its predecessors blocks all k paths. After vi has been pebbled, by Definition 7.2, there

are two different paths going from the sources through vi+1. However, none of the pebbles placed

at time t ≤ t′ ≤ tnow blocks the path from v0 to vn−1. Therefore, a pebble must be placed on this

path to block it. The resulting number of moves is T (k) = n−k+1
2k T (k− 1) + k(n−k+1

2k) by induction

on our argument above with base case T (1) = n−k+1
k . Therefore,

T (k) = (
n− k + 1

2k
)k +

k−1∑
i=0

(k − i)(n− k + 1

2k
)i+1 ≥ 2(

n− k + 1

2k
)k = Θ((

n− k + 1

2k
)k). (7.1)

This result partially answers an open question posed in [Nor15] whether a family of graphs can

have a number of moves, Ω(nk), that meets the upper bound for constant k number of pebbles. We

believe that our graph family also meets the upper bound for the black-white pebbling case. We

are interested in resolving this question in future work as that would completely resolve the open

question.

72

7.3 Standard, Red-Blue, and Reversible Pebbling are in XP

We provide a short proof that standard, red-blue, and reversible pebbling are in APX. We showed

in Chapter 4 that the red-blue game when parameterized by the number of transitions is W[1]-hard.

Here we show that none of the pebbling games mentioned can be APX-hard.

Theorem 7.3. Standard, red-blue, and reversible pebbling are in the complexity class, XP.

Proof. We provide a simple O(nk) algorithm for solving any of the pebbling problems mentioned

in this lemma. Given a graph G = (V,E) with n nodes and m edges, there are
(
n
k

)
different

configurations of pebble placements on nodes of the graph where k is the number of black or red

pebbles depending on the problem. We now create a digraph containing nodes each of which is a

different configuration of the pebbles on the graph.

Then, we create edges between nodes if there is a legal transition from one node to the next.

Then, we find all nodes that are legal terminal nodes (i.e. the end nodes are ones that exhibit legal

termination configurations). Then, we run a polynomial time single-source shortest path algorithm

from the starting node which consists of the blank graph. Therefore, the running time is polynomial

in terms of nk.

73

Chapter 8

Open Questions

There are a number of open questions that remain as a result of this thesis. Here we summarize

this open questions by the section of the thesis they would appear in:

8.1 Standard and Red-Blue Pebble Games Hardness

• Is the standard pebble game is fixed-parameter tractable or hard even in the fixed-parameter

sense when parameterized by the number of pebbles and the case when the number of moves

is restricted?

• Can the standard pebble game or the red-blue pebble game be approximated to any factor

smaller than n/ log n.

• Furthermore, are the games PSPACE-hard to approximate to any constant multiplicative

factor?

8.2 Parallel Pebbling Model and Decremental Complexity

• What is the lower bound on the decremental complexity for any family of graphs using

S = Θ(n/ log n) pebbles?

• What is the decremental complexity of stacked superconcentrators?

74

8.3 Space-Time Tradeoffs

• Do the bounds stated in Chapter 7 also hold in the black-white pebbling model?

75

Bibliography

[AB16a] Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-hard

functions. In Advances in Cryptology - CRYPTO 2016 - 36th Annual International

Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016, Proceedings,

Part II, pages 241–271, 2016.

[AB16b] Joël Alwen and Jeremiah Blocki. Towards practical attacks on argon2i and balloon

hashing. IACR Cryptology ePrint Archive, 2016:759, 2016.

[ABP16] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their

cumulative memory complexity. IACR Cryptology ePrint Archive, 2016:875, 2016.

[ACK+16] Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof Pietrzak,

and Stefano Tessaro. On the complexity of scrypt and proofs of space in the parallel

random oracle model. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual

International Conference on the Theory and Applications of Cryptographic Techniques,

Vienna, Austria, May 8-12, 2016, Proceedings, Part II, pages 358–387, 2016.

[adH81] Friedhelm Meyer auf der Heide. A comparison of two variations of a pebble game on

graphs. Theoretical Computer Science, 13(3):315 – 322, 1981.

[AGK+16] Joël Alwen, Peter Gazi, Chethan Kamath, Karen Klein, Georg Osang, Krzysztof

Pietrzak, Leonid Reyzin, Michal Roĺınek, and Michal Rybár. On the memory-hardness

of data-independent password-hashing functions. IACR Cryptology ePrint Archive,

2016:783, 2016.

[APW12] Per Austrin, Toniann Pitassi, and Yu Wu. Inapproximability of treewidth, one-shot peb-

bling, and related layout problems. In Approximation, Randomization, and Combinato-

76

rial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX

2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, Au-

gust 15-17, 2012. Proceedings, pages 13–24, 2012.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard

functions. In Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory

of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 595–603,

2015.

[AV88] Alok Aggarwal and S. Vitter, Jeffrey. The input/output complexity of sorting and

related problems. Commun. ACM, 31(9):1116–1127, September 1988.

[Ben89] Charles H. Bennett. Time/space trade-offs for reversible computation. SIAM J. Com-

put., 18(4):766–776, August 1989.

[BFH94] Hans L. Bodlaender, Michael R. Fellows, and Michael T. Hallett. Beyond np-

completeness for problems of bounded width (extended abstract): Hardness for the

w hierarchy. In Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of

Computing, STOC ’94, pages 449–458, New York, NY, USA, 1994. ACM.

[BZ16] Jeremiah Blocki and Samson Zhou. On the computational complexity of minimal cu-

mulative cost graph pebbling. CoRR, abs/1609.04449, 2016.

[Cha13] Siu Man Chan. Just a pebble game. Electronic Colloquium on Computational Com-

plexity (ECCC), 20:42, 2013.

[CLNV15] Siu Man Chan, Massimo Lauria, Jakob Nordström, and Marc Vinyals. Hardness of

approximation in PSPACE and separation results for pebble games. In IEEE 56th

Annual Symposium on Foundations of Computer Science, FOCS 2015, Berkeley, CA,

USA, 17-20 October, 2015, pages 466–485, 2015.

[Coo73] Stephen A. Cook. An observation on time-storage trade off. In Proceedings of the Fifth

Annual ACM Symposium on Theory of Computing, STOC ’73, pages 29–33, New York,

NY, USA, 1973. ACM.

77

[CRSS16] Timothy Carpenter, Fabrice Rastello, P. Sadayappan, and Anastasios Sidiropoulos.

Brief announcement: Approximating the I/O complexity of one-shot red-blue pebbling.

In Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architec-

tures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13, 2016,

pages 161–163, 2016.

[CS74] Stephen Cook and Ravi Sethi. Storage requirements for deterministic / polynomial time

recognizable languages. In Proceedings of the Sixth Annual ACM Symposium on Theory

of Computing, STOC ’74, pages 33–39, New York, NY, USA, 1974. ACM.

[DF95] Rod G. Downey and Michael R. Fellows. Fixed-parameter tractability and completeness

II: On completeness for W[1]. Theor. Comput. Sci., 141(1-2):109–131, April 1995.

[DT85] Patrick W. Dymond and Martin Tompa. Speedups of deterministic machines by syn-

chronous parallel machines. Journal of Computer and System Sciences, 30(2):149 – 161,

1985.

[EBL79] Peter Emde Boas and Jan Leeuwen. Theoretical Computer Science 4th GI Conference:

Aachen, March 26–28, 1979, chapter Move rules and trade-offs in the pebble game,

pages 101–112. Springer Berlin Heidelberg, Berlin, Heidelberg, 1979.

[GJ90] Michael R. Garey and David S. Johnson. Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[GLT79] John R. Gilbert, Thomas Lengauer, and Robert Endre Tarjan. The pebbling problem is

complete in polynomial space. In Proceedings of the Eleventh Annual ACM Symposium

on Theory of Computing, STOC ’79, pages 237–248, New York, NY, USA, 1979. ACM.

[GT78] John R. Gilbert and Robert E Tarjan. Variations of a pebble game on graphs. Technical

report, Stanford, CA, USA, 1978.

[HP10] Philipp Hertel and Toniann Pitassi. The PSPACE-completeness of black-white pebbling.

SIAM J. Comput., 39(6):2622–2682, April 2010.

[HPV77a] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM,

24(2):332–337, April 1977.

78

[HPV77b] John Hopcroft, Wolfgang Paul, and Leslie Valiant. On time versus space. J. ACM,

24(2):332–337, April 1977.

[JWK81] Hong Jia-Wei and H. T. Kung. I/O complexity: The red-blue pebble game. In Proceed-

ings of the Thirteenth Annual ACM Symposium on Theory of Computing, STOC ’81,

pages 326–333, New York, NY, USA, 1981. ACM.

[LT82] Thomas Lengauer and Robert E. Tarjan. Asymptotically tight bounds on time-space

trade-offs in a pebble game. J. ACM, 29(4):1087–1130, October 1982.

[Nor15] Jakob Nordstrom. New wine into old wineskins: A survey of some pebbling classics

with supplemental results. 2015.

[PH70] Michael S. Paterson and Carl E. Hewitt. Record of the project mac conference on con-

current systems and parallel computation. chapter Comparative Schematology, pages

119–127. ACM, New York, NY, USA, 1970.

[PT78] W. J. Paul and R. E. Tarjan. Time-space trade-offs in a pebble game. Acta Inf.,

10(2):111–115, June 1978.

[PTC76] Wolfgang J. Paul, Robert Endre Tarjan, and James R. Celoni. Space bounds for a

game on graphs. In Proceedings of the Eighth Annual ACM Symposium on Theory of

Computing, STOC ’76, pages 149–160, New York, NY, USA, 1976. ACM.

[Set75] Ravi Sethi. Complete register allocation problems. SIAM J. Comput., 4(3):226–248,

1975.

79

