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ABSTRACT 

OPTIMAL AIR DEFENSE STRATEGIES 

FOR A NAVAL TASK GROUP 

 
Karasakal, Orhan 

Ph.D., Department of Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Nur Evin Özdemirel 

Co-Supervisor: Assoc. Prof. Dr. Levent Kandiller 

 
January 2004, 214 pages 

 

We develop solution methods for the air defense problem of a naval task 

group in this dissertation.  We consider two interdependent problems.  The first 

problem is the optimal allocation of a set of defensive missile systems of a naval task 

group to a set of attacking air targets.  We call this problem the Missile Allocation 

Problem (MAP).  The second problem called the Sector Allocation Problem (SAP) is 

the determination of a robust air defense formation for a naval task group by locating 

ships in predefined sectors on the surface.  For MAP, we present three different 

mixed integer programming formulations.  MAP by its nature requires real time 

solution.  We propose efficient heuristic solution procedures that satisfy the 

demanding time requirement of MAP.  We also develop mathematical programming 

models for SAP.  Proposed branch and bound solution scheme for SAP yields highly 

satisfactory solutions.  We characterize the interaction between MAP and SAP and 

develop an integrated solution approach.   

 

Keywords: Air Defense, Naval Task Group, Formation, Weapon Target Allocation 

Problem, Military Operations Research, Quadratic Assignment, Location. 
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ÖZ 

BİR DENİZ GÖREV GRUBU İÇİN  

OPTİMAL HAVA SAVUNMA STRATEJİLERİ 

 
Karasakal, Orhan 

Ph.D., Endüstri Mühendisliği Bölümü 

Tez Yöneticisi: Doç. Dr. Nur Evin Özdemirel 

Ortak Tez Yöneticisi: Doç. Dr. Levent Kandiller 

 
Ocak 2004, 214 sayfa 

 
Bu tezde, deniz görev gruplarının hava savunma problemlerinin çözümü için 

bir metodoloji geliştirilmiştir.  Bu kapsamda, birbirine bağımlı iki problem ele 

alınmıştır.  İlk problem, bir deniz görev grubunda bulunan gemiler üzerinde konuşlu 

hava savunma güdümlü mermilerinin tehdit hava hedeflerine optimal tahsisidir.  Bu 

problemi Güdümlü Mermi Tahsis Problemi (MAP) olarak adlandırıyoruz.  Sektör 

Tahsis Problemi (SAP) olarak adlandırdığımız ikinci problem, gemileri deniz 

üzerinde tanımlanmış sektörlere yerleştirmek suretiyle deniz görev grubu için etkin 

ve gürbüz bir hava savunma nizamının belirlenmesidir.  MAP için üç ayrı güdümlü 

mermi tahsis modeli geliştirilmiştir.  MAP çok hızlı reaksiyon ihtiyacı nedeniyle 

gerçek zamanlı çözümlere ihtiyaç duymaktadır.  MAP, ihtiyacı karşılayacak şekilde 

çok kısa zaman içinde etkin çözümler üretebilen sezgisel yöntemler kullanılarak 

çözülmektedir.  SAP için önerilen dal-sınır algoritması kabul edilen iyi çözümler 

üretmektedir.  Son olarak, MAP ve SAP problemleri arasındaki etkileşim 

tanımlanmış ve her iki probleme bütünleşik bir çözüm yöntemi geliştirilmiştir.   

Anahtar Kelimeler: Hava Savunma, Deniz Görev Grubu, Nizam, Silah Hedef Tahsis 

Problemi, Askeri Yöneylem Araştırması, Kuadratik Atama, Yer Seçimi. 
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CHAPTER I 

1. INTRODUCTION 

1.1 MOTIVATION 

Air defense has been an increasingly important problem for national 

authorities and armed forces.  Substantial resources have been devoted to develop 

both defensive and offensive weapons and systems.  The use of aircraft and air-

dropped munitions in World War-I, the attack of German V-1 cruise missiles and V-

2 ballistic missiles on London in World War-II, the sinking of the Israeli destroyer 

Eilat by Styx guided missiles in 1973, Exocet missiles in the Falklands, the 

Tomahawk cruise missiles and SCUD theatre ballistic missiles during the Gulf War, 

and the decisive allied air operation against Yugoslavia in 1999 are important 

benchmarks that trace the evolution of air power and the air threat for armed forces 

and nations.  After the nuclear threat of the cold-war, the post-cold-war era witnesses 

the proliferation of weapons of mass destruction, tactical ballistic missiles and cruise 

missiles.  Many nations still devote a substantial amount of their defense budget for 

acquisition of air defense weapons and systems.  The effective use of and defense 

against these weapon systems is of the utmost importance for the armed forces.   
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The proliferation of anti-ship missiles (ASMs) and the increasing frequency 

of littoral operations (i.e. operations close to land and territorial waters) have 

increased the threat to the navies posed by the ASMs.  Townsend (1999) reports that 

there are 13 nations (not including the NATO countries) having an ASM production 

capacity and an additional 15 nations developing this capability. 

The competing technologies of ASMs and ASM defense systems force the 

navies to update the systems and to develop new tactics continuously.  All modern 

navies devote considerable resources to ASM defense systems (Carus, 1992).  The 

sinking of Israeli destroyer Eilat by four Styx ASMs by the Egyptian Navy in 1967 

was a first in naval history and the demonstration of the potential ASM threat.  Six 

years later in 1973, a total of 54 ASMs launched by the Syrian and Egyptian Navies 

failed to hit their intended targets due to the defensive tactics developed by the Israeli 

Navy (Carus, 1992).  The Exocet ASMs sank the British destroyer HMS Sheffield 

during the Falklands War in 1982.  The ASM attack on the US Navy frigate Stark in 

Persian Gulf in 1987 is another example of the fragility of ASM defense.  

Although significant resources are allocated to technological development, 

planning for effective use of these systems in operation has not been paid equal 

attention.  One particular aspect of planning is coordinated allocation of defense 

systems within a group of ships to attacking missiles, which we intend to tackle in 

this study.  A second aspect we deal with is formation of ships on the surface prior to 

allocation. 
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1.2 STATEMENT OF THE GENERAL PROBLEM 

A most generic form of the weapon-target allocation (WTA) problem is the 

following: given an existing weapon force and a set of targets, what is the optimal 

allocation of weapons to targets (Matlin, 1970)?  WTA problem can be viewed both 

from an attacker's and a defender's perspective.  We restrict ourselves to the defense 

of the friendly forces with surface-to-air (SAM) missiles, and call the problem 

defensive missile allocation problem (MAP).  MAP can be stated as the optimal 

allocation of a set of defensive missile systems to a set of attacking air targets.   

In 1997, Panel on Modeling and Simulation of Naval Studies Board identified 

air defense as one of the warfare areas for focused research.  The Naval Studies 

Board (1997) states that: “There has been relatively little recent investment in 

understanding the phenomenology of military operations at the mission and 

operational levels.  Much of the basis for related modeling and simulation is still 

programmer hypothesis and qualitative opinions expressed by subject matter 

experts.”   

In this research, we further focus on the MAP of the navies.  In particular we 

address the issue of allocating air defense missiles to incoming air targets in a 

coordinated way within a naval task group (TG) such that the available defense 

capability is used in the most effective manner.  A TG is a collection of naval 

combatants and auxiliaries that are grouped together for the accomplishment of one 

or more missions. 
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Nations spend billions of dollars for their navies.  However, it is still 

prohibitively expensive to equip all the platforms with adequate air defense systems.  

For many navies, equipping all the platforms with air defense systems is clearly not 

the best and the cost-effective solution.  A number of NATO navies have plans for 

acquiring area air defense (AAD) platforms that can provide air defense support to 

the other ships that have limited or no effective air defense capability.  The Canadian 

Command and Control, Area Air Defense Replacement (CADRE) project, and the 

Turkish Navy’s Area Air Defense Frigate Project (TF-2000) are the two examples of 

these projects.  The allocation of the capability of the AAD ship(s) to the other units 

in the TG is an immediate problem to be solved for effective use of these platforms. 

The aim of this study is twofold.  The first one is to develop a MAP model 

for TG air defense that captures the reality of ASM defense, generates an efficient 

allocation plan and measures the effectiveness of the air defense under a given 

scenario.  A scenario is composed of the information on the attacking ASMs and the 

defensive SAM systems as well as the relative positions of the ships in TG, which is 

called the formation of the TG.  Our second aim is to develop an approach for 

determining a robust air defense formation for a naval TG with known ships and air 

defense capabilities.  We refer to this second problem as sector allocation problem 

(SAP) since we intend to locate ships in predefined sectors on the surface.  A robust 

formation is the one that is very effective against a variety of attack scenarios (i.e. 

independent of the scenarios) but not necessarily the most effective one against any 

of the scenarios.  The reason of seeking robustness is that formation takes much 

longer time compared to allocation.  Given the available SAM systems and attacking 
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ASMs, allocation and engagement are almost instant whereas changing the formation 

may take hours. 

We further develop integrated solution methods for the air defense problem 

of a naval TG.  We first develop analytical solution methods for the TG MAP.  

Formation data will be used as an input to the model.  Algorithms for MAP may be 

used in command and control systems of warships.  We next consider the 

development of a solution procedure for SAP.  Solving SAP will enable the naval 

tactician to evaluate the effectiveness of present formations, to develop new air 

defense tactics, and to use air defense systems at their best. 

1.3 OVERVIEW AND CONTRIBUTION OF THE DISSERTATION 

The purpose of this thesis is to develop air defense strategies for a naval TG.  

We identify two problems, MAP and SAP, that enable the TG to use its defensive 

resources at the maximum extent possible against air attacks under several 

assumptions.   

MAP, which can be categorized as a weapon target allocation problem, is a 

new treatment of an emerging problem fostered by the rapid increase in the 

capabilities of ASMs and the different levels of air defense capabilities of the 

warships against the ASM threat.  Area air defense missile systems can provide 

support to the other ships in TG and new technologies such as improved tactical data 

links and cooperative engagement capability (CEC) enable a fully coordinated air 

defense within a TG.  In addition to allocating SAMs to ASMs, MAP also schedules 

launching of SAM rounds according to shoot-look-shoot tactic considering multiple 



 

6 

SAM and ASM types.  Although we have developed mathematical programming 

models for this new variant of WTA problem, we did not explicitly use those models 

to solve MAP.  We developed efficient heuristic algorithms to solve MAP.  MAP 

solution can be used for both real time and non-real time applications.  MAP can 

produce the best course of action for defending the TG against an immediate and 

simultaneous ASM threat.  Using MAP to provide input for SAP is an example of 

non-real time use of MAP.  MAP can also be used for off-line analysis of the air 

defense effectiveness of warships under different scenarios.   

In SAP, we make use of the information on possible threat and decide on 

formation of the TG before the air attack by allocating the warships to sectors 

intelligently.  Although SAP resembles the quadratic assignment problem in several 

ways, we do not use this type of formulation.  We develop strong formulations that 

make use of the special properties of the problem.  In SAP, locations of both 

facilities and demand points are unknown.  To our knowledge, our formulations and 

the solution procedure for SAP are new in open literature.   

We also integrated the two problems such that sector-to-sector coverage 

values produced by MAP for various attack scenarios are used as input parameters in 

solving SAP.  This way, we can propose TG formations based on partial information 

concerning the expected threat. 

The next chapter contains the detailed description of MAP and SAP.  We 

discuss special properties, assumptions, and environments of the problems.  We 

characterize the interaction between MAP and SAP. 
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In Chapter 3, we present the relevant literature on MAP and SAP.  This 

chapter contains different WTA models and definition of a classification scheme for 

WTA models.  Literature on SAP covers the relevant researches, which mainly focus 

on the geometric aspects of the problem rather than the optimum allocation using 

mathematical programs.  

In Chapter 4, we formulate MAP for a naval TG.  Three different 

formulations with several extensions are given in three different sections.  

Theoretical development of those models and possible solution approaches are 

discussed.  However, we propose efficient heuristic solution algorithms for MAP in 

order to satisfy the demanding solution time requirement of the problem.  Chapter 5 

gives the details of the solution approach and the computational results.   

We present sector allocation models in Chapter 6.  We developed five 

different sector allocation models and several variations.  We also investigated the 

validity of different objective functions.  We identify the most suitable model for 

SAP by identifying the features and drawbacks of each model.  We developed cuts 

for linear programming relaxation of the models and proposed branch and bound 

solution approaches.  Solution algorithms and computational results for SAP are 

reported in Chapter 7.   

In Chapter 8, we discuss an integrated solution approach to attain a robust 

sector allocation for a naval TG by using MAP results within SAP.  Two different 

coverage aggregation procedures in the development of a robust formation are 

discussed.  MAP and SAP interactions are presented using sample scenarios and 

sample problems.   
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We conclude the dissertation with the chapter on conclusion and directions 

for future research. 

 



 

9 

CHAPTER II  

2. DEFINITION OF PROBLEMS 

2.1 MISSILE ALLOCATION PROBLEM 

Consider a naval TG, composed of several ships with variable air defense 

capabilities, defending itself against an air attack.  These ships may either be 

equipped with one or more surface-to-air missile (SAM) systems or none at all.  

Their air defense capability may be limited to self-defense or may extend to area 

defense, i.e. a ship may defend the other ships within its effective weapon range.  In 

a naval TG, the individual ships function together as a team to provide mutual 

support and defense against opposition to assigned missions.  These ships are 

typically arrayed into a formation, called a screen, in which the most valuable and 

important units (termed high value unit or HVU) are surrounded and protected by the 

escorting vessels.  Within the screen, the escort ships are stationed in sectors away 

from the HVU.  Figure 2.1 depicts a generic naval TG composition and an air attack 

scenario.  In this scenario a TG composed of four ships in formation, one HVU and 

three escort ships, is attacked by four ASMs.  Ship 1 (HVU with no SAM system 

onboard) is targeted by ASM2 and ASM3, Ship 2 is targeted by ASM1 and Ship 4 is 

targeted by ASM4.  There is no ASM threat to Ship 3.  Ships 2, 3, and 4 have short-

range self defense SAM systems (such as NATO Sea Sparrow SAM) and the 
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effective ranges are depicted by the circular areas around each ship.  Ship 2 also has 

a long-range area defense SAM system (such as SM-2 SAM), and part of its effective 

range is depicted by the dotted area and the arc drawn in dashed-line.  ASM1 can be 

engaged by both SAM1 and SAM2.  ASM2 and ASM3 can be engaged by only 

SAM2.  Note that SAM4 cannot engage ASM3 even if some part of the ASM3’s 

flight path falls into the effective range of SAM4, since SAM4 is a self defense 

system and can only engage the ASMs that are a direct threat to it.  ASM4 can be 

engaged by both SAM2 and SAM4.  A TG typically consists of 4 to8 warships, and 

the maximum number of warships hardly exceeds 10. 
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Figure 2.1. Composition of a Naval TG and an Air Attack Scenario. 

 



 

11 

The TG air defense commander will maintain the air picture for the TG and 

coordinate the response until the time when ships are forced to defend themselves.  

The air defense command and control ship will, in most cases, have to coordinate the 

TG response to an air threat to ensure maximum efficiency and probability of 

success.  In this role a set of command decision tools is required to plan the air 

defense of the TG, and to schedule the force defense as an attack develops, allocating 

assets on a real-time basis. 

Maximization of probability of the shooting down all the incoming ASMs is 

an important objective for a TG air defense commander at sea.  However, saving the 

maximum number of the SAMs (for possible future attacks) from a limited number 

of SAMs in the magazines available onboard of the ships, and the high price tag of 

each missile have to be considered as well.  The objective might be to use the SAM 

expenditure with the minimum cost subject to goal constraints for the minimum 

probability of neutralizing the incoming ASMs.  Several missile engagement tactics 

have been developed to achieve a balance between these conflicting objectives.  One 

of the missile engagement tactics employed by navies is called shoot-look-shoot 

(SLS).  The SLS tactic requires shooting at the target first, then looking to see if it 

was killed, and shooting again if necessary to achieve the kill.  In this research, we 

consider the case when the TG employs a SLS tactic. 

Engagement process of a SAM system to an ASM can be divided into four 

phases.  These are the tracking of the target illumination radar, the solution of the fire 

control problem, the launch delay (i.e. the system delay between receiving the launch 

signal from the fire control console and the missile leaving the launchers), and the 
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flight time to the engagement.  Note that this engagement process is for a generic 

semi-active SAM (i.e. the SAM is to be illuminated by the fire-control radar either 

throughout its flight or at intermitted time intervals during its flight).  The 

engagement process for an active SAM (i.e., one that does not need an illumination 

radar) may be considered to have only three phases except the tracking phase of the 

target illumination radar.  Each engagement of both active and semi-active SAM 

systems takes a constant setup time for the first three phases and a variable time for 

the last phase, which is the flight time to the engagement.  Each engagement takes 

less time compared to the one before as the attacking ASM is approaching the TG.   

The maximum distance at which an ASM intercept can take place is 

determined by either the maximum effective range of the SAM system or the radar 

horizon of the fire control radar against the incoming ASM, or the first detection 

range of the ASM if it is smaller than the above two.   

When a SLS firing policy is used, there are few engagement opportunities 

(mostly less than 10) against each ASM.  For example, an ASM with 300 m/sec 

velocity, which is detected at 30 km distance can be attacked at most four times by a 

SAM with 600 m/sec velocity using a SLS tactic, given that the target illumination 

radar track time is 5 sec, the fire control solution time is 2 sec, and the launch delay 

is 2 sec.  In this calculation, we use a total of 9 sec setup time before each 

engagement.  In reality each engagement does not take the same set-up time, since 

the target illumination radar may already be on track, or the fire control problem may 

have already been solved.  However, we use a conservative approach and consider 

that each engagement takes a constant setup time. 
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In summary, MAP is concerned with allocation of different types of SAMs 

available to attacking ASMs and scheduling the SAM launches under SLS firing 

policy, so as to maximize the TG’s air defense capability. 

2.2 SECTOR ALLOCATION PROBLEM 

Formation is the geographical order of the ships in TG.  Ships in a TG 

operate together as a coherent unit.  HVUs are usually located at the center of the 

formation.  The escort ships station away from the center of the formation at a point 

designated by a bearing and range relative to the center of formation, or in a sector 

designated by two bearings and two ranges relative to the center.  Figure 2.2 depicts 

such a generic formation in which ships are stationed in their assigned sectors.   

 
Figure 2.2. A Typical Formation of a TG with 5 Ships Allocated to Sectors. 
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 In MAP, we assume that the formation information such as the relative 

bearings and the distances between ships is given in a scenario as well as the specific 

attack information.  This approach is reasonable when TG operates in a formation 

and encounters an immediate air attack by ASMs.  In this case, solving the MAP and 

fighting the war accordingly would optimize the effectiveness of air defense.  

However, we may ask ourselves a second question: can we define a formation that 

keeps the effectiveness of the TG against an air attack at a high level, independent of 

the specific attack scenario?  We call this problem as the Sector Allocation Problem 

(SAP).  Note that the speed of the ships is very small compared to the speed of the air 

attack.  It may take from tens of minutes to several hours to change the formation 

from one to the other, while it takes tens of seconds from detection to time-on-target 

for an ASM.  Thus, it is important to be in a suitable formation before a possible air 

attack.  We may investigate this problem under two different assumptions: 

1. No information is available about the possible attack direction, i.e. the 

attack is expected from any direction. 

2. Information coming from intelligence and surveillance sources indicates 

the general direction of the attack, i.e. the attack is expected from a 

direction such as north or south or between bearings 120 and 180 of the 

TG. 

2.3 INTERACTION BETWEEN THE MODELS 

Consider an operational scenario for a naval TG that is on mission at sea 

under an immediate air threat.  Assume that the TG has the information that an air 

attack is expected from a certain direction (i.e. no surprise air attack).  The officer in 
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tactical command would order his ships to form a formation that is most suitable for 

that situation.  After getting ready for an attack in terms of the formation, he would 

use his SAM systems to counter the possible attack.  Reality dictates us to make a 

decision on formation before the missile allocation decision for an immediate air 

attack.  However this should not lead us to consider those problems independently.  

In general, the solution to MAP can be used in solving SAP and vice versa.  We 

define two different interactions between those models.   

Figure 2.3 depicts the Interaction Model-1.  In Interaction Model-1, we solve 

MAP for a number of attack scenarios, and using aggregated results as input, we 

solve SAP.  Scenarios are expected to reflect the possible threat to the TG at sea.  A 

scenario typically involves size and type of ASMs, attack directions, detection 

distances of ASMs, defending SAM systems, number of available missiles in the 

magazines and TG formation.  Information on the enemy inventory of warships and 

their weapon systems and the intelligence coming from different sources may enable 

the decision maker (or officer in tactical command of the ships within TG) to 

generate such representative scenarios.  For each scenario, we can calculate the 

“coverage” provided by an AAD ship to another ship for all possible pairwise sector 

allocations.  Then, we can aggregate the coverage values for each sector pair and use 

that information in solving SAP.  Here, a robust formation that will satisfy all 

scenarios at a certain degree can be found.  This type of interaction implies off-line 

use of the two models. 
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Figure 2.3. Interaction Model-1 Between MAP and SAP. 

 

In Interaction Model-2, which is depicted in Figure 2.4, we assume that we 

have determined the formation of TG using the sector allocation model (or chosen 

one of those formations generated off-line), and we are operating at sea.  Then, in the 

presence of an immediate ASM threat, we solve MAP to optimize our air defense 

against the threat.  In this interaction model, MAP can be used on-line. 
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Figure 2.4 Interaction Model-2 Between MAP and SAP. 
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CHAPTER III 

3. LITERATURE REVIEW 

In this chapter, we review the relevant literature for MAP and SAP in 

separate sections.  We start with background literature on MAP and continue with 

the literature review on SAP. 

3.1 LITERATURE REVIEW ON WEAPON-TARGET ALLOCATION 

PROBLEM 

MAP models use different parameters and assumptions depending on the 

requirement of the specific air defense scenario under consideration.  Simplifying 

assumptions are generally used to reduce the problem to a level of suitable 

mathematical tractability.  Even a simple MAP can be quite hard to solve in terms of 

the computational complexity. Indeed, Lloyd and Witsenhausen (1986) prove that 

the weapon allocation problem is NP-Complete even in its simplest form.  Thus, 

using the simplifying assumptions in the modeling phase of the problem is a 

prerequisite for a successful solution of the problem.   

MAP in general has many characteristics.  However, an exhaustive 

categorization can be quite large, and therefore we focus on those aspects that 

provide for distinctive characteristics of the models. The important characteristics for 

the modeling and the solution process in the present applications are:  
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1. simultaneous or sequential attack,  

2. command and control system capability,  

3. point or area defense systems, 

4. number of attacking and defending weapon types, 

5. one or multiple layers of defense, 

6. radar capability, and, 

7. interceptor missile allocation policy.  

In order to better understand how these aspects provide a characterization of 

air defense problem we shall consider each in further detail.  

Simultaneous or Sequential Attack: A simultaneous attack is one for which 

the defense sees all of the air threat to intercept.  The term “known attack size” is 

also used synonymously for simultaneous attack.  A sequential attack is the case for 

which the defense does not know the number of attack groups and the number of 

attackers in each attack group.  A mixture of simultaneous and sequential attack may 

exist for real world situations. 

Command and Control System Capability: Point and area defenses may 

function in full coordination, partial coordination or autonomously.  For example, 

Cooperative Engagement Capability is a new technology (at sea testing conducted in 

the last 10 years) that allows a fully coordinated air defense within a group of 

warships. 

Point or Area Defense: Point defense systems are those designed for the 

defense of a single target such as a strategic facility, an air base, or a command 
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control center.  Point defense systems may intercept the attackers that are attacking 

their assigned targets.  Area defense systems may intercept an attacker within the 

area of its effective range.  Defense system may or may not be a collocated with the 

target of the attack.  

Weapon Types: There may be identical attackers and defenders as well as a 

number of different weapon system types according to the scenario considered.  

Different weapon types usually complicate the problem.   

Layered Defense: Defense systems of different types protecting the same 

target may have different effective ranges.  These are then said to constitute the 

layers of defense. Layers typically overlap. 

Radar Capability: Defense systems may or may not predict the eventual 

target of the attacking missile, i.e. either impact point prediction (IPP) or no IPP.  

Since such defense systems are typically radar controlled, we characterize this under 

radar capability. 

Missile Allocation Policy: The defense’s interceptor allocation policy such as 

salvo, shoot-look-shoot, shoot-shoot-look effects the performance and modeling of 

the air defense system.  Defensive systems may have single or multiple engagement 

opportunities depending on the time-space conditions of the interception.   

The problem and the solution procedure differ significantly depending on the 

assumptions made and parameters used. These may range from simulation based 

approaches to analytical methods.  However, Bracken and Brooks (1985) argue that 

the MAP is not addressed much in the literature in an analytic sense after the 1972 
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Anti-Ballistic Missile Treaty.  Those papers that address the MAP mostly consider 

the scenario of a defense against tactical ballistic missile (TBM) attack.  Matlin 

(1970) and Ecker and Burr (1972) review the literature on missile allocation 

problem.  However, Matlin focuses on the problem from the attacker’s perspective. 

The MAP models and solution methods differ significantly according to the 

assumptions made and the parameters used.  There are a number of possible 

classification schemes for the OR literature on MAP, with the merits of classification 

fairly subjective.  Our intent is to provide a classification scheme that identifies and 

delineates the major aspects of the problem.  Thus, we propose a two-level 

classification, first according to inclusion or exclusion of the opponent’s moves and 

second the identifying characteristics of the approach.   

We use the first level of the classification scheme proposed by Matlin (1970) 

for our first level grouping of the MAP approaches.  We classify the literature into 

three groups.  The first class of approaches allocates the defensive sources to targets 

without taking into account the behavior of the opposing side.  This is the group of 

defense allocation models.  These methods generally use different versions of 

dynamic programming, integer programming, non-linear programming, and meta-

heuristics.  The actions of the opposing side are included in the scenario as a given 

input.  

The second class of approaches takes into account the opposing side’s moves 

as well as the defensive moves.  These methods, namely game models employ the 

two-person-zero-sum-game concept from the game theory in the solution process.  

These methods reach the solution value of the game by assuming best defensive and 
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offensive moves.  The defense wants to minimize the maximum offense return while 

the offense acts to maximize the minimum expected return.  This approach is more 

suitable when the inventories of the opposing sides are known to some degree.   

The third class of techniques covers the rest of the literature that address 

different aspects and questions within the MAP context.  Simulation models and 

layered defense models are included in this category. 

The research and literature on MAP mainly focus on the attack or the defense 

of ballistic missiles.  However, the methodologies used in these models have 

potential for use under different air defense scenarios.  In Section 3.1.1, we review 

approaches that allocate defensive sources to offensive targets. In Section 3.1.2, we 

present approaches employing both defensive and offensive actions in a game 

theoretic context and we discuss methods that deal with different aspects of the MAP 

in Section 2.2.3. 

3.1.1 Defense Allocation Models   

The defense allocation models optimize the defense without explicit 

knowledge of the actions of the opposing side.  The threat to the defense is 

considered as given.   

Prim-Read Defense 

Prim-Read defense has the general form of minimizing the total number of 

interceptors required for defending separated point targets against an attack by an 

unknown number of sequentially arriving tactical ballistic missiles (TBM).  This 
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method produces solutions both for the deployment and the firing doctrine of 

interceptors, while ensuring that the damage to the target is bounded by a linear 

function of the attack size.  In a sense, it finds the optimum allocation of interceptors 

to keep the damage incurred by each attacking missile as low as possible.  Thus, 

Prim-Read defense uses the allowable damage per attacker instead of the number of 

attacking missiles and builds the model without explicitly knowing the attack size.  

Burr et al. (1985) developed the optimal integer solutions for Prim-Read defense.  

They formulate the problem first as a multi-target problem and later reduce it to the 

single target problem. They show that the greedy algorithm optimally solves the 

multi-target problem through solving single target problems.  They investigate both 

the perfect and the imperfect interceptor cases (An interceptor is called perfect, if its 

probability of successfully intercepting the attacker is 1.  If the probability is less 

than 1, then the interceptor is called imperfect.). 

 The Prim-Read defense formulation is as follows:  Define a defense strategy 

d to be a semi-definite matrix, where d(i,j) is the number of interceptors assigned at 

target i against the jth incoming attacker (if there are any).  An attack strategy is a 

vector a where a(i) is the number of attackers against target i.  The total value of 

target destroyed, V(d,a), for a given defense and attack strategy is; 
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where, v(i) is the value of target i and q is the probability of the inceptor’s failure to 

destroy attacker.  Then, the problem Prim-Read defense addresses has the following 

form: 
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where s is the upper bound on the maximum damage per attacker.  In order to solve 

this multi-target problem, Burr et al. (1985) solves all the single target problems of 

the type, 
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 The greedy algorithm that solves the single target problem is as follows. 
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Prim-Read defense implicitly assumes that the defense can determine the 

attacker’s firing schedule before making interceptor allocations.  The defense may 

not be able to ascertain such information in many real life settings. 
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Proportional Defense 

The proportional defense introduced by Shumate and Howard (1974) is based 

on the idea of preventing “cheap” kills of the attacker.  The objective of the defense 

is to balance its resources in order to make sure that the offense will pay a price 

(which is proportional to the value of the target) greater than or equal to a fixed value 

for every unit of damage inflicted.  Proportional defense assumes that the offense 

knows the allocation of interceptors and firing doctrine at each target.  That is, the 

defense first decides upon its allocation of interceptors with no information on the 

planned size of attack at any target or the total attack size, and then the offense 

allocates its missiles to targets.  Defensive allocation can leave some of the targets 

undefended depending on their values.  The solution procedure includes the 

classification of the targets into three groups (small, medium, and large value targets) 

according to their values and implementation of a dynamic programming scheme for 

optimum (minimizing) interceptor allocation.  

Known Attack Size 

Soland (1987a) considers the defense of a single target against a simultaneous 

attack (known attack size) and assumes that the defense has interceptor missiles with 

a fixed number of engagements and shoot-look-shoot capability between 

engagements.  The single-shot kill probability of interceptors may change between 

the engagements.  Thus, this model captures the realm of change in kill probability 

depending on the range at which interception occurs.  The objective of the defense is 

to minimize the expected fraction of target destroyed.  Soland (1987a) determines the 

optimal allocation of interceptors using stochastic dynamic programming.  The 
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objective of minimizing the required number of interceptors while keeping the 

damage below a linear function of the attack size, as in the Prim-Read defense case, 

can be employed by minor modifications to the dynamic programming scheme.   

A short description of the model proposed by Soland (1987a) is as follows.  

Let k be the number of engagements left after a previous engagement, pk be the 

single-shot kill probability of one interceptor (qk=1-pk), d be the number of 

interceptors left, and a be the number of attackers left.  We define the expected 

fraction of target destroyed when k engagements, d interceptors, and a attackers left, 

S(a,d,k), using the following formula: 
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where P(j|a,i,d,k) is the probability that j attackers survive the kth engagement when 

there are a attackers, and i of the d remaining interceptors are used at that 

engagement. 

Soland (1987a) calculates P(j|a,i,d,k) by assuming the survival of each 

attacker at each engagement as a Bernoulli trial, and by using the quasi-uniform 

defense theorem through the following recursive formula.   

 Quasi-Uniform Defense Theorem: Let d be the number of interceptor 

missiles, each of which will kill an attacker with probability p, a be the number of 

attacking missiles.  The defender’s goal is to maximize the probability that the target 

survives, then he should distribute the interceptor missiles as evenly as possible.  

Soland (1987a) shows that such a quasi-uniform defense is optimal. 
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Let Ja be a random variable whose probability distribution is P(j|a,i,d,k).  

Then Ja is the sum of a independent random variables.  Hence, we can calculate the 

probability distributions of the Js, s=1,…,a successively from the recursion in the 

following way: 
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This solution procedure is untractable as the size of the MAP gets larger.  

Bertsekas et al. (2000) propose a solution method for large MAPs with known attack 

size using neuro-dynamic programming (NDP).  NDP is a class of reinforcement 

learning methods that deals with the complexity problem of the dynamic 

programming by using neural network based approximations of the optimal cost-to-

go function (Bertsekas et al., 2000).  The formulation of the MAP is cast to be a type 

of stochastic shortest path problem (Bertsekas and Tsitsiklis, 1991), which employs 

the different probability of kill values for each level of interceptor and attacker 

allocation and for each target type without explicitly calculating the values.  The 

attacker’s choice of attack wave against selected targets is selected probabilistically.  

Then, the defense optimizes the goal of maximizing the expected value of targets that 
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are surviving at the end of the battle.  Three different NDP algorithms, namely 

approximate policy iteration with neural network architecture, approximate policy 

iteration with linear architecture, and optimistic policy iteration with neural network 

architecture are investigated and the results are reported.  The authors conclude that 

the NDP approach is promising for very large size problems.     

Due to the computational complexity of the MAP, a number of heuristic 

approaches have been suggested.  All of those models to our knowledge use a 

completely known attack scenario.  Wacholder (1989) proposes a solution for a one 

sided many-on-many MAP using artificial neural networks combined with the 

Lagrange differential multipliers method.  Jaiswal (1997) investigates a similar 

problem using simulated annealing, genetic algorithms and artificial neural networks 

in a layered defense context. 

3.1.2 Game Models 

MAP has been frequently treated using game theory.  We refer to two-person-

zero-sum (TPZS) games in the context of this review.  TPZS games contain exactly 

two sides whose interests are in complete opposition.  In this exposition, we include 

the min-max theorem, which is the keystone of the theory of finite TPZS games.   

 Min-Max Theorem (Karlin, 1959): If there exist strategies YyXx ∈∈ 00 , and 

a real number v such that 

 Yyallforvyxf ∈≥),( 0   and  Xxallforvyxf ∈≤),( 0 , then 
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 vyxfvyxfv
yxxy

==== ),(minmax),(maxmin ,  and conversely.   

 A strategy x  is a vector that represents a point in polytope X .  For example, 

the elements of the vector may represent the allocation of interceptors to attackers.  

vv  and  are the value of the minimax and maximin strategies of defense and offense 

respectively.  All strategies x0 and y0 such that vyxf ≥),( 0  for all y and vyxf ≤),( 0  

for all x is referred to as optimal strategies for defense and offense, and v  is the value 

of the game. 

An interested reader may refer to Jones (1980) for a comprehensive treatment 

of game theory. 

Min-Max Defense 

The min-max problem may be defined as 

iyx
Yy
Xx

ts

yxfMaxMin

ii

i

i

i
iiiyx

∀≥≥
∈
∈

∑

0,0

..

),(

 

Randolph and Swinson (1969) describe the MAP as a discrete max-min 

problem.  Their work uses dynamic programming to obtain the upper and the lower 

bounds on the value of the game and proposes a procedure for determining an 

optimal stopping rule that indicates the solution found is sufficiently close to the 

optimal value.   
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Soland (1973) uses 0-1 implicit enumeration scheme and a branch-and-bound 

procedure for solving a similar problem.  The objective is the minimization of the 

damage done by an optimal offensive attack with a known number of attacking 

missiles of one type.  Defensive allocation policy is further constrained by a certain 

budget level.  It is assumed that no damage can be inflicted on a target unless its 

defense is first exhausted.  O’Meara (1988) proposes a number of solutions for the 

MAP under different combinations of hit probability (perfect and imperfect 

weapons), with or without the defensive capability of identifying the eventual target 

of each attacker (which is called the impact point prediction, IPP), and different 

engagement rules (one-on-one or many interceptor-on-one attacker).  Different 

settings are investigated in a min-max problem context.  The defense seeks an 

allocation that maximizes the total expected survival value while the attacker seeks 

an allocation that minimizes the total expected survival value against the best 

defense.  Both defender and attacker know the size of the opponent, and both have 

only one type of interceptors and attacking missiles. O’Meara (1988) presents the 

solution algorithms for each scenario under consideration.  O’Meara and Soland 

(1990) investigate a very similar problem under full and partial defensive 

coordination conditions.  Defensive setting contains full coordination with IPP, or 

full coordination without IPP, or partial coordination without IPP.  O’Meara and 

Soland (1991) and O’Meara and Soland (1992) give detailed formulation of min-max 

MAP without IPP and with IPP respectively.   
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Preferential Strategies 

Preferential strategies imply that the number of interceptors defending some 

targets can be higher than the number defending other targets.  The problem 

addressed in preferential strategies context is the protection of a number of 

identically valued targets defended by identical interceptors against identical 

attacking weapons.  Both attacker and defender know the total number of targets, 

interceptors and attacking weapons.  Matheson (1967) uses the idea of mixed 

strategies of preferential defenses with imperfect weapons.  He represents the 

scenario as a TPZS game by allowing the attacker and the defender to choose 

allocations independently.  The objective function to be maximized by the defense 

and minimized by the offense is the expected fraction of surviving targets, which is a 

function of opposing strategies.  The opponents preallocate their weapons (i.e. they 

allocate their weapons to the attack and defense of specific targets before the 

engagement; however, they are not informed about the specific allocation.).   

Bracken, Brooks and Falk (1987) and Bracken, Falk and Tai (1987) introduce 

the issue of robustness  for preallocated preferential defense under the assumption of 

perfect weapons and imperfect weapons respectively.  The robust defense does not 

require the defender to assume the knowledge of the total attack size.  A robust 

strategy is good for a predetermined attack range (any attack size falls within this 

range), but is not the best for any of a particular attack size within range.   

Haaland and Wigner (1977) analyze the robust min-max allocation of the 

resources for the perfect interceptors and attackers case.  They give an optimal 
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allocation algorithm for defense independent of the attack size, provided that the total 

number of interceptors and targets are reasonably large.   

Bracken and Brook (1985) consider the optimal allocation strategies for 

attack and defense of intercontinental ballistic missiles deceptively based in a 

number of identical sites in different areas.  They consider the cases of uniform 

allocation of attackers, and either uniform or preferential allocation of interceptors 

within selected sites. 

Lansdown (1989) implements the preferential defense strategy including 

decoys and a two-layered defense.   Layered defense includes a probabilistic model 

of terminal defense (last defense layer) and a TPZS game model of second layer.  

Uniform defense and tapered defense (either a modified Prim-Read or user specified 

tapered defense) doctrines are also investigated. 

Minimum Cost Defense 

A number of researchers worked on the minimum cost defense as reported by 

Soland (1987b).  Soland’s paper is the only one in the open literature that we know 

of in this classification.  The objective of the defense is to select the number of 

interceptors to minimize the cost while bounding the total expected value of target 

destroyed by a specified function.  This approach is similar to the Prim-Read defense 

doctrine in the sense that defense keeps the damage, inflicted by an unknown number 

of attacking missiles, reasonable. 

Soland (1987b) models the MAP as a three sequential move of a game.  The 

defender first selects the minimum cost defense including the area interceptors and 
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the point interceptors.  After the defensive move, the attacker selects an allocation 

policy that maximizes the total expected value of targets destroyed against the known 

minimum cost defense.  Finally, the defender allocates its interceptors against the 

known policy (simultaneous attack) of the attacker so as to minimize the total 

expected value of target destroyed.  He assumes a superadditive damage function and 

an isotone increasing cost function.  It is shown that the defender’s first-move 

problem can be decomposed into smaller problems under certain conditions.  This 

result is similar to that of Burr et al. (1985) on Prim-Read defense.  Soland also 

shows that under certain conditions, low valued targets do not need any protection.   

3.1.3 Special Feature Models 

In this category, we investigate the MAP models that do not fall into the two 

preceding categories.   

Effectiveness Evaluation 

Nguyen et al. (1997) introduce the idea of using generating functions as a 

simple, consistent and easily applied tool for evaluating the effectiveness of an air 

defense system.  This approach does not provide any interceptor allocation plan.  The 

scenario considered is similar to that of Soland (1987a) discussed under “known 

attack size” sub-category.  However, this method can accommodate both 

simultaneous and sequential attack scenarios by carefully selecting the parameters.  

The model described in Nguyen et al. (1997) is based on four parameters, such as the 

total number of available interceptors, the total number of attackers, the maximum 
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number of engagement opportunities against each threat, and a constant probability 

of successful interception.  Nguyen and Reding (1997) extend the model to include 

the case of incomplete damage assessment.  Nguyen and Reding (1998) present a 

multi-layer air defense model using the same idea.  Their model handles both perfect 

and imperfect kill assessment cases.  Nguyen et al. (1999) developed a ballistic 

missile defense (BMD) evaluation model using generating functions.  They use the 

generic defense decision making cycle (observe-orient-decide-act) as the underlying 

idea of their BMD model.  This cycle is represented by a generating function 

sequence.  The model evaluates important measures of effectiveness for BMD for 

both simultaneous and sequential attack scenarios.   

Analysis of a Layered Defense 

Nunn et al. (1982) propose a Markov chain formulation for analyzing a 

layered defense model.  They assume that the layers are independent and produce 

attrition according to a Binomial distribution.  Since each layer has a distinct 

probability of successful interception, the discrete Markov chain is non-

homogeneous.  However, a closed form solution is presented for analyzing the 

number of leakers at each layer.  Orlin (1987) solves the layered defense problem 

from the attacker’s perspective.  His objective is to maximize the net value of the 

attack, which is the difference between the value of the damage inflicted on defense 

and the cost of the offensive weapons used.  Comparisons between exhaustion and 

attrition algorithms are made, and the results of a hybrid algorithm are reported.  Al-

Mutairi et al. (1997) analyze the layered defense using Bayesian inference.  They 

present the predictive distribution of the number of attackers surviving under two 
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different priori assumptions, which are the independence of penetration probabilities 

and dependence of penetration probabilities under Dirichlet law. 

Simulation Models 

Simulation is one of OR tools frequently used to evaluate the effectiveness of 

the air defense systems.  Hoyt (1985) reports a simple Monte-Carlo simulation model 

of BMD system.  Hoyt argues that a simple model can identify important 

characteristics, salient features and the weaknesses of the BMD system in question.  

This model evaluates the probability of success of the BMD system with given 

interceptor inventory and a time frame.   

Beare (1987) describes the use of linear programming to reduce the number 

of air defense weapon mixes that would be investigated in detail by a Monte-Carlo 

simulation model.  The objective of the deterministic model is to choose the most 

effective defense in terms of robustness and maximizing attrition of the attacker.   

Martin et al. (1995) communicates the use of simulation for evaluating and 

analyzing the performance of a ship air defense system, called SEAROADS.  

SEAROADS is a high-resolution Monte-Carlo simulation model that incorporates 

the important aspects of a modern air defense system, such as threat evaluation and 

weapon allocation, chaff, decoys, jamming etc.  Bloemen and Witberg (2000) report 

that SEAROAD model is extended to include the evaluation of air defense 

effectiveness of a naval task group.   

Smith et al. (1995) develop a low resolution simulation model, called 

JASMINE for estimating the effectiveness of maritime air defense systems.  
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JASMINE uses Nguyen et al. (1997)’s effectiveness evaluation model for calculating 

the effectiveness of the defense under a variety of scenarios.  Layered defense and 

effectiveness of the soft-kill weapons can be investigated by JASMINE.   

In the early 1990s, a medium resolution simulation model has been developed 

in the Directorate of Operational Research (see Ormrod and Carleton, 1991).  The 

model, called the ship area air defense simulation (SAADS) provides a generalized 

overview of the defense capability of a group of ships defended by guns and missiles, 

and under attack by anti ship missiles.  SAADS allows the evaluation of the air 

defense scenarios either deterministically (using binary trees) or stochastically (using 

Monte Carlo simulations).   

The ship air defense model (SADM) developed by British Aerospace 

Australia Ltd. is a high resolution simulation model designed to evaluate the defense 

of a single ship against one or more antiship missiles.  It simulates both soft-kill and 

hard-kill systems and the interactions between them.  SADM has another version, 

which models the defense of multiple ships in a task group (see Chapman, 1999). 

Other Models 

A number of models that are closely related to the MAP are discussed shortly 

in this section.  Nguyen (1996) studies the quantification of benefit from resource 

allocation for a naval task group having perfect coordination between its assets.  The 

interceptors are assumed to cover all the other ships of the task group and are capable 

of defending the ships within range.  A quasi-uniform defense algorithm is used to 

allocate resources.   
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Griffiths et al. (1991) studies a highly restricted scenario of a naval MAP.  

They consider an attack of a group of identical aircraft in line-ahead formation 

against a group of ships with identical anti-aircraft weapons.  They present a 

difference equation for bivariate probability distribution of the attrition of both sides.  

They report that their model has been used to approximate more complex scenarios 

as a screening process for detailed simulations. 

Almeida et al. (1995) present the impact of information on the effectiveness 

of air defense in a time-constrained context. They illustrate the expected payoff from 

a reduction in uncertainty by the utilization of the information gathered from the 

sensors and the C4I (command, control, communications, computers and 

intelligence) capabilities in a scenario with a single defensive unit against a massed 

missile attack. 

 Sherali et al. (1995) present algorithms to schedule a set of illumination 

radars to engage incoming targets using surface-to-air missiles in a naval task group 

(TG).  The problem is handled as a production shop floor scheduling problem of 

minimizing the total weighted flow time, subject to time-window job availability and 

machine downtime side constraints. It assumes a perfect coordination, such as CEC 

within the task group.   

 Kohlberg and Greer (1996) discuss the uncertainty issue in MAP inherent to 

the inventory and the allocation plan of the attacker.  The objective is to find the 

minimum cost or maximum effective mix of interceptor inventory using statistical 

inference.  They solve an unconstrained optimization problem using the method of 

Lagrange multipliers.  
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Friedman (1977) investigates the optimal strategies of survival for one-on-

many engagements.  He suggests a procedure for the optimal defensive order of 

engagement in the presence of varying fire effectiveness and vulnerability of 

offensive units.  Manor and Kress (1997) consider the incomplete damage 

information case within similar settings.  They show that a certain type of a shooting 

strategy, called “greedy strategy” is optimal when the objective is to maximize the 

expected number of killed targets. 

3.2 DISCUSSION ON WEAPON-TARGET ALLOCATION MODELS 

The related literature discussed in preceding section is summarized in Figure 

3.1, where the incidence of each work with the set of features discussed above is 

shown.  Our version of MAP, which will be discussed in detail in the next chapter, is 

included in the last line.  

We conclude that there is a gap between the theory on air defense and the 

practice.  Despite the fact that weapon technology development pace and air threat 

growth are fast, analytical research has not been evolved accordingly.  While 

simulation techniques are well-developed, their ability to quickly evaluate a wide 

range of potential solutions is limited.  

The theory developed so far can be applied to a wide range of MAPs.  

However, the assumptions and solutions are still required to be customized for the 

specific scenario under consideration.  For example, a damage function for a TBM 

defense problem may not be that suitable for a ship MAP.  Damage inflicted by the 
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attacker is generally not linear.  It may be plausible to use a linear damage function 

for TBM defense, but the similar linear function cannot be used for the damage of a 

ship.  

Information technology driven integrated command and control systems for 

air defense bring up new problems for optimal use of resources under more complex 

environments as well as new capabilities.  CEC is an example of this case.  A C2 

system with CEC capability is expected to allocate the distributed defensive systems 

of a naval task group in a concerted way to optimize the effectiveness.  Focused 

analytical research on this area is required to answer the practical problems.  

The problem of solving formulations for MAP does not arise only once for a 

detached theoretical study or for off-line evaluation of engagement strategies.  

Indeed, supersonic and maneuvering anti-ship missiles and littoral operations bring 

about the need for development of on-line and near-real-time solutions for the 

allocation problem of the navy.  Not only an optimal solution algorithm but a fast 

one is required to answer the question in a situation where seconds are vital to the 

“survivability” of the ship and crew.    

Integration and evaluation of the soft-kill systems together with the hard-kill 

weapons is another area requiring focused research.  Hard-kill encompasses the 

kinematic kill that destroys the threat physically either by collusion or by explosion.  

Soft-kill is aimed at the control and guidance subsystems of the threat and diverts it 

away from the ship through confusion, distraction, or seduction (The and Liem, 

1992).  
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Figure 3.1.  A Summary of Surveyed Papers on WTA Problem. 
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Realistic modeling, problem specific environmental considerations, soft-kill 

and hard-kill integration, active and semi-active missiles, long range interception, 

overlapping coverage, different interceptor and attacker types, different probabilities 

of kill for each attacker-interceptor combination are a number of points required to 

be addressed. 

3.3 LITERATURE REVIEW ON SECTOR ALLOCATION PROBLEM 

There is not much research and literature on SAP that is known to us.  None 

of the models produces a reasonable solution to our SAP.   

Magonet-Neray (1983) presents an optimization model to maximize the 

survival probability of a carrier operating in a TG environment given anti-air warfare 

(AAW) and anti-submarine warfare (ASW) resources.  This model is a static, 

probabilistic, 2-dimensional representation.  The solution to the problem is the 

optimum location of the AAW and ASW ships with respect to the carrier; those 

locations that maximize the probability of survival of the carrier from the air and 

submarine threat.   

Helmbold (1982) discusses mathematical programming formulations for the 

problem of optimizing the stationing and vectoring of aircraft employed in the air 

defense of a naval TG.  He assumes that all aircraft and missiles move in straight 

lines and at constant speed.  It is assumed that the threat moves directly toward the 

center of the TG.  All actions are treated as taking place in plane.  
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Kelley (1991) addresses coordination between ships of a TG in AAW.  Two 

coordination schemes are presented.  One is based on earliest intercept time and the 

second scheme introduces a load sharing feature wherein current magazine 

inventories are considered. 

Chouinard and Baker (1994) outline the basic requirements for an objective 

and quantifiable model of determining the operational effectiveness of a TG.  They 

assume that the effectiveness of a naval TG can be divided into the achievement of 

objectives in each warfare area such as AAW and ASW.   

Drezner (1988) investigates the problem of covering a given area by moving 

satellites in space.  The locations of facilities that are moving in space are considered 

in this research.  This problem may have some resemblance to SAP because of the 

moving facilities.  However, we have moving demand points in SAP in addition to 

the moving facilities, i.e. both demand points and facilities need to be located.  

Moreover, we are maximizing the coverage of the demand points instead of 

maximizing the overall area coverage.  Thus, SAP and Drezner’s problem have 

substantial differences.  SAP may be viewed as stationary location problem since 

both facilities and the demand points are moving at the same speed on the average.  

This exposition is included here in order to show the difference of SAP from the 

similar problems addressed in literature.  Wolfe and Srensen (2000) address a 

problem similar to that of Drezner’s in a scheduling context.   

One of the SAP models resembles Quadratic Assignment Problem (QAP) in 

terms of the constraints.  See Burkard (1990) for a detailed discussion on QAP. 
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CHAPTER IV 

4. MISSILE ALLOCATION MODELS 

The literature review on generic MAP shows that there are not many models 

that can be used to solve the TG air defense problem.  The existing analysis methods 

mainly consist of computer models that simulate the defense against ASM attack.  

SEAROAD (Martin et al.,1995; Bloemen and Witberg, 2000), JASMINE (Smith et 

al., 1995) and SAADS (Ormrod and Carleton, 1991) are the examples of such 

models.  The only analytical model known to us is Nguyen (1996).  In his work, 

Nguyen studies the quantification of benefit from resource allocation for a naval TG 

having perfect coordination among its assets.  The interceptors are assumed to cover 

all the other ships of the TG and are capable of defending the ships within range.  

Other geometric and defense system limitations are not considered. 

Firstly, we state the basic assumptions that are needed to develop the missile 

allocation models.   

1. The TG sees all of the air threats to intercept simultaneously.  Thus, we 

investigate the case where the attack size is known.  This is a reasonable 

assumption in a naval air defense scenario context providing that the TG 

has modern search and detection sensors and systems.  However, there 

may be undetected or newly launched ASMs and these missiles may be 
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detected after the initial attack wave in a sequential order.  Here we 

restrict our scope to the case of simultaneous attack size. 

2. The ships in the TG are capable of coordinating the allocation of the air 

defense, i.e. C2 capability is assumed.  

3. The TG has both point and area air defense missile systems.  A point 

defense system may intercept the attackers that are attacking its own ship.  

An area defense system may intercept attackers within the area of its 

effective range.   

4. Both attacking ASMs and SAM systems onboard ships may be of 

different types. 

5. Different SAM systems may have different effective ranges, i.e. layered 

defense is assumed. Layers may overlap. 

6. Defense systems may predict the eventual target of the attacking ASMs, 

i.e. impact point prediction capability is assumed. 

7. Missile allocation policy is SLS. 

8. The incoming ASMs are assumed to be classified in terms of their speed 

(e.g. supersonic or subsonic) and attack profile (e.g. sea-skimmer, high 

diver).  Thus, the single shot kill probability of each SAM against each 

ASM is known.   

9. The relative positions of the ships within TG do not change as the air raid 

continues.  The ships are thought to be stationary.  This is a reasonable 
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assumption since the speed of the ships is very low compared to the speed 

of the ASMs. 

10. There are no limitations on the number of SAMs in flight that are 

launched from the same SAM system.  i.e. a SAM system may launch one 

missile right after the other. 

Note that the first seven assumptions place our version of MAP in the 

classification scheme given in Section 3.1.  We consider each SAM system distinct 

even if they are of the same type as long as they are onboard of different ships.  This 

enables us to capture the geometric differences that need to be studied to develop the 

best stationing tactics for the TG. 

In this chapter, we present three different missile allocation models.  Each 

model has some features and drawbacks.  First, we develop a missile allocation 

model with no time dimension.  The second model solves MAP with a discretized 

time dimension.  The last one uses a continuous time dimension. 

Although solution procedures are also discussed and illustrated for these 

mathematical programming models that will be introduced in the following sections, 

they will not explicitly be used to solve MAP.  Mathematical programming models 

do guarantee to find an optimal solution (without loss of generality), but they usually 

take more than a few seconds in which we have to find solution for MAP.  Since 

MAP requires real time solution, we develop very fast solution approaches for MAP 

in the next chapter.   
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4.1 MAP1 - MISSILE ALLOCATION MODEL WITH NO TIME DIMENSION 

In this section, we formulate a MAP with an implicit treatment of time and 

discuss the solution procedures for this problem.  Although the formulation does not 

have an explicit time dimension, time is embedded inside the parameter of maximum 

possible number of engagements for each ASM.   

4.1.1 Formulation of the Problem 

Suppose that there are n  incoming ASMs, indexed { }nNi ,...,1=∈  and there 

are m  SAM systems onboard of the warships composing the naval TG, indexed 

{ }mMj ,...,1=∈ .  Let V  denote the set of valid combinations of the ASM and the 

SAM systems, i.e. Vji ∈),(  if SAM system j  can engage ASM i .  Each ASM i  

has a specified engageability duration ij∆ , which depends on the location and the 

effective range of the SAM system j , and a successful engagement can be achieved 

only during this interval.  As explained in Section 3.1, time taken by each feasible 

engagement is determined as the sum of a constant setup time and a variable flight 

time to the engagement.  Thus, each engagement process takes a specified time 

according to the ASM and SAM combination Vji ∈),(  and the starting time of the 

engagement.  The SLS tactic requires us to ensure that the SAMs allocated against 

each ASM are scheduled in non-overlapping intervals.  Thus, we define iju  as the 

maximum number of missiles that can be launched from SAM system j  against 

ASM i , V),( ∈ji  using a SLS tactic.   
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We need the following additional notation and variables to formulate the TG 

air defense problem: 

ijx : the number of the missiles (rounds) of SAM system j  to be launched 

against ASM i , Vji ∈),( . 

ijp : the single shot kill probability of SAM system j  against ASM i , 

Vjipij ∈<< ),(,10 . 

jd : the number of available rounds on SAM system j . 

is : the maximum number of engagements that can be done against ASM 

i  using a SLS tactic.   

ih : the minimum desired probability of shooting-down the ASM i , 

Nihi ∈<< ,10 . 

The TG air defense problem MAP1 can be formulated as the following 

nonlinear integer programming model.  Note that the objective function (4.1) is 

constant.  Thus, this model just checks the feasibility of the constraints.  If the model 

gives a feasible solution, it means that the desired probabilities set forth for each 

incoming ASM can be met within the limits of the defensive potential. 
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0Min         (4.1) 

subject to 

Mjdx j
VjiNi
ij ∈≤∑

∈∈

  allfor 
}),|({

     (4.2) 

( ) Nihp i
VjiMj

x
ij

ij ∈≥−− ∏
∈∈

  allfor  11
}),|({

    (4.3) 

Nisx i
VjiMj
ij ∈≤∑

∈∈

  allfor 
}),|({

      (4.4) 

integer  is    and   ),(  allfor 0 ijijij xVjiux ∈≤≤    (4.5) 

Constraint set (4.2) reflects the restriction on the number of rounds available 

for each SAM system.  Constraints of type (4.3) require the allocation of enough 

SAMs that meet the desired probability of shooting down each ASM.  Constraints of 

type (4.4) limit the total number of engagements that can be done against each ASM.  

Constraint set (4.5) imposes integer restriction and lower and upper limits on the 

decision variables.  The upper limit is determined by the maximum number of 

engagements that can be done during the engageability duration of each valid ASM 

and SAM combination using a SLS tactic.  

Constraint set (4.4) actually employs a loose upper bound on the total number 

of engagements that can be done against each ASM, when more than one SAM 

system can engage the ASM along its flight path.  If more than one SAM system can 

engage an incoming ASM, calculating the maximum number of engagements against 
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an ASM may be cumbersome.  Figure 4.1 depicts an example of such a situation.  

Both SAM1 and SAM2 can engage ASM1 and their engageability durations are 

overlapping.  Clearly  
{ }

∑
∈∈

≤
VjiMj
iji us

),|(
.  However this upper bound will not be tight 

when the overlap in engageability durations is large.  Developing a tight bound for 

is  is required in order to be able to have a feasible SLS allocation.  Let ik  show the 

number of different SAMs that can engage ASM i , 
{ }

∑
∈∈

=
VjiMj

ik
),|(
1 .  Then there are 

ik2  different combinations of SAM systems that can be used against ASM i .  For a 

thorough control of the upper limit on possible engagements in a SLS tactic, we need 

to determine the upper limit for each combination since the speeds of the SAMs vary.  

This would require )1(2 +− i
k ki  additional constraints.  (Note that we impose the 

upper bounds of single combinations through iju .)  Instead of 

)1(2 +− i
k ki constraints we propose an approximation by means of only one 

constraint.  The engageable portion of the flight path of an ASM, l , can be divided 

into parts such that the number of SAMs that can engage the ASM is different 

compared to the neighboring parts.  For example, in Figure 4.1 the flight path of 

ASM1 is divided into three parts 321 ,, lll .  SAM2 is the only one that can engage 

ASM1 in part 1l .  Both SAM1 and SAM2 can engage in part 2l .  In the last part, 3l , 

only SAM1 can be used against ASM1.  In this way, the speed of the fastest SAM for 

each part of the flight path can be used to calculate is  for each ASM i .  If there are 

two SAM systems that can engage an ASM, then this approximation is exact.  If 

more than two SAMs can engage one or more ASMs, then the allocation requires a 

feasibility check after solving the problem. 
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Figure 4.1. An Illustration of the ASM Engageability Durations for Different SAM 

Systems.  

 

The non-linearity in problem MAP1 can be transformed into linearity by 

using logarithms as in Kwon et al. (1999).  Since logarithm preserves normative 

order (  0 ba ≤<  if and only if )ln()ln( ba ≤  where ℜ∈ba, ), taking the 

logarithms of constraint set (4.3) does not affect the optimal solution.  Then set (4.3) 

becomes Nihxp i
VjiMj

ijij ∈−≤−∑
∈∈

   allfor  )1ln()1ln(
}),|({

.  We may further continue 

our linearization process by scaling the constraint with a large number, say β , and 

then rounding down.  This approximation is reasonable from a practical point of 
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view since the values of the coefficients in the inequalities come from probabilistic 

estimates.  This gives an approximation of the feasible region with integer 

coefficients and transforms the problem from a non-linear integer programming 

model into a linear integer programming model.   

The resulting linear integer program is still not much of use in practical sense.  

It only gives us whether the desired probability levels are achievable or not.  

However, we can guarantee reaching a feasible solution by making a minor 

modification to the model.  If we introduce an artificial SAM system that can engage 

every ASM and has a large inventory, then the model becomes a flexible one that 

reaches a feasible solution whatever the desired probability levels, ih , are.  Let *j  

denote the artificial SAM.  We revise the set definitions, VM   and   including the 

artificial SAM accordingly.  If we penalize the use of the artificial SAM in the 

objective function, and set the desired probability levels, Nihi ∈  allfor   very high 

(say Nihi ∈=   allfor   0.99 ) then the model will minimize the use of the artificial 

SAM and maximize the use of real SAMs to achieve the desired levels for the 

probability of shooting down each ASM.  The under-achievement will be met by the 

artificial SAM.  

The resulting elastic linear integer programming model MAP1.1 is:  
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∑
∈Ni

ijxMin *        (4.6) 

subject to  

Nibxa i
VjiMj

ijij ∈≥∑
∈∈

  allfor  
}),|({

,     (4.7) 

(4.2), (4.4), and (4.5) 

where    )1ln( and )1ln( iiijij hbpa −−=−−= ββ . 

Musman and Lehner (2001) state that an ideal weapon allocation solution is 

the one that maximizes the probability of shooting down each threat.  Model MAP1.1 

does not guarantee this solution.  It minimizes the total number of artificial SAM 

engagements used to achieve the desired probability levels.  In a sense, it will 

minimize the total deviation from the desired probability levels.  However, MAP1.1 

is not very sensitive to the individual deviations for each ASM.  Thus it is possible to 

have a larger deviation from the desired probability level of one ASM and very small 

or no deviations for the rest.  This may lead us to a second formulation.  We can 

easily convert MAP1.1 to a model that minimizes the maximum number of artificial 

SAM engagements used to achieve the desired probability levels.  In this new model, 

MAP1.2, we define a single elastic decision variable, e , instead of the artificial SAM 

of model MAP1.1.  Let us define the sets VM   and   as in the original model 

excluding the artificial SAM.  Then model MAP1.2 can be written as: 
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eMin        (4.8) 

subject to  

Nibexa i
VjiMj

ijij ∈≥+∑
∈∈

  allfor   
}),|({

,     (4.9) 

0≥e         (4.10) 

(4.2), (4.4), and (4.5) 

where e  is the elastic decision variable that shows the maximum deviation from the 

right hand side values of constraint set (4.9). 

MAP1.1 and MAP1.2 both minimize the number of engagements 

emphasizing the cost in the objective.  From a TG perspective, maximizing the 

probability of no-leaker (i.e. shooting-down all the threats) may also be an important 

objective.  One might ask why we do not consider it as the objective of the models.  

Note that using this objective turns the model into a non-linear integer programming 

problem.  The objective function becomes a non-separable one and no efficient 

solution algorithm is readily available.  Thus we choose to develop these models as 

linear integer programming problems, leaving the maximization of probability of no-

leaker objective to be discussed later.   

Both models can be solved using a standard mathematical programming 

package for reasonable size problems.  The application of the models and 

comparison of the solutions are presented in the next section. 
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4.1.2 Solution Procedures 

In the next section, we discuss the implementation of models MAP1.1 and 

MAP1.2 and present the result of a test problem.  We develop a Lagrangean 

Relaxation approach for MAP1.1 in the second section.   

Implementation of the Models 

Models MAP1.1 and MAP1.2 have been implemented using GAMS (General 

Algebraic Modeling Language) mathematical programming package and solved 

using OSL Solver (Brooke et al., 1988). 

We show the results of the proposed models MAP1.1 and MAP1.2 on a 

simple example.  The example is depicted in Figure 4.2.  Ship 1 has only a self-

defense SAM system, and Ship 2 has both self-defense and area defense SAM 

systems (SAM2 is the area defense system).  We assume that we did all the 

necessary calculations for the given input data.   

The SAM allocation plans generated by the models are reported in Table 4.1.  

An allocation plan shows which SAMs should engage which ASMs and with how 

many missiles.  For example, “4” in the last row and the last column of the Table 4.1 

means that SAM3 is to engage ASM2 with 4 missiles. 
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Ship 1

Ship 2

ASM1
s1=7

ASM2
s2=5

SAM2 (d2=4)
SAM3 (d3=8)

SAM1 (d1=8)

u11=4

u12=3

u23=4

u22=5

Single Shot 
Kill Prob.:
p11=0.30
p12=0.20
p22=0.45
p23=0.30

Desired Prob. 
     Levels:
     h1=0.99
     h2=0.99

 

Figure 4.2. Example of an air defense scenario. 

 

Table 4.1. Allocation Plans Generated by the Models. 

MODEL  SAM1 SAM2 SAM3
ASM1 4 1  
ASM2  3 2
ASM1 4 3
ASM2 1 4

MAP1.1

MAP1.2
 

Since the example is small, we can write down a subset of possible 

allocations that ensure maximum number of engagements against each ASM while 

keeping the allocation plans feasible.  Table 4.2 shows these allocation plans and 

their respective probability measures.  All the other allocation plans for this problem 
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will have fewer engagements and will achieve lower levels for the probability of 

shooting down the ASMs and the probability of no-leaker for the TG. 

 

Table 4.2. A Subset of the Possible Allocation Plans. 

SAM1 SAM2 SAM2 SAM3 ASM1 ASM2
1 3 4 0 4 0,860 0,760 0,653
2 4 3 1 4 0,877 0,868 0,761
3 4 2 2 3 0,846 0,896 0,759
4 4 1 3 2 0,808 0,918 0,742
5 4 0 4 1 0,760 0,936 0,711

Prob. of 
No-Leaker

Allocation 
Plan No

Prob. of ShootingASM1 ASM2

 

The SAM allocation plan no 4 in Table 4.2 is the same as the plan generated 

by the model MAP1.1.  The model MAP1.2 generates the plan no 2, which has the 

highest probability of no-leaker for the TG.   

Both models generated highly efficient allocation plans in terms of the 

probability of no-leaker for the TG.  However, in this example model MAP1.2 

generated a more balanced allocation in the sense that the probability of shooting 

down each ASM is within 0.01 of each other.  
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A Lagrangean Relaxation Based Solution Procedure 

The final form of model MAP1.1 is given below for convenience.  

∑
∈Ni

ijxMin *         (4.6) 

subject to 

Mjdx j
VjiNi
ij ∈≤∑

∈∈

  allfor 
}),|({

     (4.2) 

Nibxa i
VjiMj

ijij ∈≥∑
∈∈

  allfor  
}),|({

      (4.7) 

Nisx i
VjiMj
ij ∈≤∑

∈∈

   allfor 
}),|({

      (4.4) 

integer is  and ),( allfor 0 ijijij xVjiux ∈≤≤    (4.5) 

Problem MAP1.1 can be solved using Lagrangean relaxation.  There are 

several ways to relax the problem.  One such way is relaxing constraint set (4.2) to 

obtain: 

∑ ∑∑ 







−+

∈∈∈ j
j

VjiNi
ijj

Ni
ij

dxxMin
}),|({

* λ      (4.11) 

subject to 

 (4.4), (4.5), and (4.7). 

 

 Objective function can be rewritten as: 

∑ ∑∑∑
∈ ∈∈∈∈

−+
Mj Mj

jj
VjiNi

ijj
Ni

ij
dxxMin λλ

}),|({
*     (4.11') 
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 Then the problem can be decomposed into n  sub-problems, each of which 

should be solved for one ASM. 

∑ ∑
∈ ∈

−+
Mj Mj

jjijjij dxxMin λλ*      (4.11'') 

subject to 

 
}),|({

i
VjiMj

ijij bxa ≥∑
∈∈

       (4.7') 

i
VjiMj
ij sx ≤∑

∈∈ }),|({
        (4.4') 

integer is    and  ),(    where  allfor 0 ijijij xVjijux ∈≤≤   (4.5') 

 

 Relaxing constraint set (4.2) left us with several smaller and easier problems.  

However, we end the discussion on solving MAP1 models at this point.  We develop 

missile allocation models that can both allocate the missiles to targets and schedule 

the missiles for engagements in the following sections.   

 

4.2 MAP2 - MISSILE ALLOCATION MODEL WITH DISCRETIZED TIME 

In this section, we formulate a MAP with an explicit treatment of time and 

discuss the solution procedures for this problem. 
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4.2.1 Formulation of the Problem 

Suppose that there are n  incoming ASMs, indexed { }nNi ,...,1=∈  and there 

are m  SAM systems on board of warships composing the naval TG, indexed 

{ }mMj ,...,1=∈ .  Define it  as the time taken by ASM i  to reach its target.  Letting 

 { }iNi tT ∈= max  be the problem horizon given by the highest time-on-target, the 

interval ],0[ T  may be divided into t  non-overlapping slots each of unit duration ∆ , 

indexed { }tKk ,...,1=∈ , and kτ  denotes the beginning time of slot k , Kk ∈ .  Let 

V  denote the valid combinations of ASM and SAM systems, i.e. Vji ∈),(  if SAM 

system j  can engage ASM i .  Each ASM i  has a specified engageability duration 

],[ ijij rq , which depends on the location and capability of the SAM system j , and a 

successful engagement can be achieved only during this interval.  We assume that 

the problem data related with time have been perturbed such that each value is a 

multiple of the unit time ∆ .  Time taken by each feasible engagement is again 

determined as the sum of a constant setup time and a variable flight time to the 

engagement.  Thus, each engagement process takes a specified time according to the 

ASM and SAM combination Vji ∈),(  and the starting time of the engagement.  This 

engagement period is denoted by ijk∆ .   

To formulate the problem, recalling that kτ  denotes the beginning time of slot 

Kk ∈ , let us define for each valid combination of ASM Ni ∈  and SAM Mj ∈ , a 

set 

{ }],[],[  and  ),(: ijijijkkkij rqVjiKkS ⊆∆+∈∈= ττ . 
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Note that ijS  denotes the slots for which SAM j  can be scheduled to engage ASM 

i . 

Accordingly we define the binary decision variable 1=ijkx , if SAM j  is 

scheduled to engage ASM i  at the beginning of the slot k , and 0=ijkx  otherwise.  

Furthermore, in order to ensure that the schedule of the SAMs against each ASM 

does not overlap in accordance with the SLS tactic, let us define for each slot Kk ∈  

and for each ASM Ni ∈ , the set  

{ }],[],[ and ,,),(:),( ρρρ ττττρρ ijkkijik SVjijJ ∆+⊆∆+∈∈= . 

Note that for each Ni ∈  and Kk ∈ , ikJ  is the set of combinations ),( ρj  such that 

the slot k  for ASM i  will be occupied if 1=ρijx . 

 Let us give an example to illustrate the sets ijS  and ikJ .  Suppose that we 

divide the engageability duration ],[ ijij rq  into 9 slots as in Figure 4.3 and 

engagement period, 5=∆ ijk  slots.  Note that the engagement period may vary 

depending on the slot, in which the engagement starts.  Here, we kept the 

engagement period constant for simplicity. 

1 65 943 82 7
Slots

qij rij

SAM jASM i

 
Figure 4.3.  An Example of Set Definitions For MAP2. 

{ }5,4,3,2,1=ijS .  ijS  denotes that [1,5], [2,6], [3,6], [4,8], and [5,9] are 

possible engagement intervals.  Thus; 
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{ })1,(1 jJ i = , 

{ })2,(),1,(2 jjJ i = , 

{ })3,(),2,(),1,(3 jjjJ i = , 

{ })4,(),3,(),2,(),1,(4 jjjjJ i = , 

{ })5,(),4,(),3,(),2,(),1,(5 jjjjjJ i = , 

{ })5,(),4,(),3,(),2,(6 jjjjJ i = , 

{ })5,(),4,(),3,(7 jjjJ i = , 

{ })5,(),4,(8 jjJ i = , 

{ })5,(9 jJ i = . 

For example, 4iJ  means that if an engagement starts at the beginning of slots 

1, 2, 3, or 4, then slot 4 will be occupied. 

We need the following additional notation and variables to formulate the TG 

air defense problem: 

ijkp : the single shot kill probability (SSPK) of SAM j  against ASM i  

when the engagement begins at the beginning of slot k , 

ijijk SkVjip ∈∈<<   and  ),(,10 . 

jd : the number of available rounds on SAM system j . 

iju : the upper bound on the number of engagements that can be done by 

SAM system j  against ASM i ,  ),( Vji ∈ . 

Then the TG air defense problem MAP2 can be formulated as the following 

nonlinear integer programming model. 
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( )∏ ∏
∈

∈∈
∈ 















−−

Ni
VjiMj

Kk
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ijkpMax
}),(|{
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11      (4.12) 

subject to 

Mjdx j

VjiNi
Kk

ijk ∈≤∑
∈∈

∈

  allfor 
}),(|{

}{
     (4.13) 

KkNix
ikJj

ij ∈∈≤∑
∈

  and    allfor 1
),( ρ

ρ     (4.14) 

Vjiux ij
Sk

ijk
ij

∈≤∑
∈

),(  allfor      (4.15) 

ijijk SkVjix ∈∈∈  and ),( allfor }1,0{     (4.16) 

The objective function (4.12) maximizes the probability of no-leaker for the 

whole TG.  Constraint set (4.13) reflects the restriction on the number of rounds 

available for each SAM system.  The constraints of type (4.14) ensure that there is no 

overlap of the engagements against each ASM.  The constraints of type (4.15) limit 

the total number of rounds that can be fired for each valid ASM and SAM 

combination.  This constraint set tightens the feasible space of the problem.  The 

constraint set (4.16) imposes binary restriction on the decision variables.    
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4.2.2 Solution Procedure 

The non-linearity in the above model can be transformed into linearity by 

using logarithms. Taking the logarithm of equation (4.12) does not affect the optimal 

solution.  Then equation (4.12) becomes: ( )∑ ∏
∈

∈∈
∈ 















−−

Ni
VjiMj

Kk

x
ijk

ijkpMax
}),(|{

}{

11ln .   

Let ( ) Niph
VjiMj

Kk

x
ijki

ijk ∈















−−= ∏

∈∈
∈

  allfor   11
}),(|{

}{

 and 10 << ih .  Equivalently we 

can write equation (4.12) as ∑
∈Ni

ihMax )ln(  (4.17) and introduce a new set of 

constraints into the problem as follows: 

( ) Nihp i

VjiMj
Kk

x
ijk

ijk ∈≥−− ∏
∈∈

∈

 allfor  11
}),(|{

}{

.  Taking the logarithm of both sides of 

the constraints leaves us with a simpler constraint set. 

Nibxa i

VjiMj
Kk

ijkijk ∈≥∑
∈∈

∈

  allfor  
}),(|{

}{
,     (4.18) 

where )1ln(  and  )1ln( iiijkijk hbpa −−=−−= . 

We can further simplify the model by exploiting the relation between the 

term )ln( ih  in the objective function and ib , and then removing the logarithms.  If 

we have the same term in the objective function (4.17) and constraint set (4.18), we 

can replace the logarithms with a variable.  Let Ni
h

hc
i

i
i ∈

−−
=   allfor    

)1ln(
)ln( .  Then 

objective function (4.17) becomes ∑
∈Ni

iibcMax .  Note that ic  is the ratio between 
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the objective function variable and the term at the right hand side of the constraint set 

(4.18).  Figure 4.4 depicts the graph of )ln( ih  against )1ln( ih−− .  ic  is a concave 

function that enables us to easily make a linear approximation.  In Figure 4.4, we 

approximate the function with three line segments.  Note that this is a rough and 

conservative approximation, and further investigation is needed to justify the quality 

of the approximation.  Rosenthal et.al. (2001) propose several methods for attaining 

high quality piecewise linearization.  However, the approximation in Figure 4.4 is 

sufficient for illustrating the approach.    

Let 321   ,  , ccc  be the slope of the line segments that approximate the function 

and ib  is represented as the sum of three different variables corresponding to those 

three line segments, 321
iiii bbbb ++= .   

 

-4

-3

-2

-1

0
0 1 2 3 4

bi=-Ln(1-hi)

Ln
(h

i)

Z1 Z2 Z3

c2
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Figure 4.4. Relationship between )ln( ih  and ib . 
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 After introducing the following three simple upper bounding constraints for 

each ASM i  into the model, 

 NiZbi ∈≤≤   allfor 0 1
1     (4.19) 

NiZZbi ∈−≤≤   allfor 0 12
2     (4.20) 

NiZZbi ∈−≤≤   allfor 0 23
3     (4.21) 

and replacing ib  with 321
iii bbb ++ , we can rewrite the objective function as 

( )∑∑
∈∈

++≅
Ni

iii
Ni

ii bcbcbcMaxbcMax 332211 .  This completes the linearization 

process.  The resulting model MAP2 is as follows.  

 ( )∑
∈

++
Ni

iii bcbcbcMax 332211      (4.22) 

subject to 

Ni bbbxa iii

jivjiMj
Kk

ijkijk ∈++≥∑
∈∈

∈

  allfor   321

)},(),|({
}{

,    (4.23) 

and (4.13), (4.14), (4.15), (4.16), (4.19), (4.20), (4.21). 

 We illustrate solution of MAP2 on an example problem in Section 4.4, 

following the MAP3 formulations. 

4.3 MAP3 - MISSILE ALLOCATION MODEL WITH CONTINUOUS TIME 

In this section, we formulate a MAP with an explicit and continuous 

treatment of time and discuss the solution procedures for this problem. 
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4.3.1 Formulation of the Problem 

Suppose that there are n  incoming ASMs, indexed { }nNi ,...,1=∈  and there 

are m  SAM systems on board of warships composing the naval TG, indexed 

{ }mMj ,...,1=∈ .  Let is  be the maximum number of engagements that can be done 

against ASM i  using a SLS tactic.  Let V  denote the valid combinations of ASM 

and SAM systems, i.e. Vji ∈),(  if SAM system j  can engage ASM i .  Each ASM 

i  has a specified engageability duration ],[ ijij rq , which depends on the location and 

capability of the SAM system j , and a successful engagement can be achieved only 

during this interval.  Define k  as the order of the shots against an ASM, i.e. k=1 

denotes the 1st shot against an ASM.  Let ijk∆  be the time-to-engagement for the 

thk shot against ASM i , if the missile is launched by SAM system j .   

Accordingly we define the binary decision variable 1=ijkx , if the thk shot is 

fired against ASM i  from SAM system j , and 0=ijkx  otherwise.  

We need the following additional notation and variables to formulate the 

continuous time MAP: 

ijp : single shot kill probability of SAM j  against ASM i , 

 ),(,10 Vjipij ∈<< .   

jd : number of available rounds on SAM system j . 

ikt : time of the thk shot against ASM i . 

L : a large number. 
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Then MAP3 can be formulated as the following nonlinear integer 

programming model: 

( )∏ ∏ ∏
∈ ∈∈ =









−−

Ni VjiMj

s

k

x
ij

i
ijkpMax

}),|({ 1

11      (4.24) 

subject to 

Mjdx j
VjiNi

s

k
ijk

i

∈≤∑ ∑
∈∈ =

  allfor 
}),|({ 1

      (4.25) 

1  and    allfor 11 =∈≤∑
∈

kNix
Mj

ij       (4.26) 

i
Mj

kij
Mj

ijk skNixx ,...,3,2  and    allfor 1, =∈≤ ∑∑
∈

−
∈

    (4.27) 

    allfor 1 1,1, NixttxL
Mj

ijkijkikki
Mj

kij ∈∆+≥+







− ∑∑

∈
+

∈
+  

1,...,2,1  and −= isk   (4.28) 

1,...,2,1  and    allfor )( −=∈∆−≤≤ ∑∑
∈∈

iijk
Mj

ijijkik
Mj

ijijk skNirxtqx  (4.29) 

iijk skVjix ,...,2,1  and  ),(  allfor }1,0{ =∈∈     (4.30) 

iik skNit ,...,2,1  and    allfor 0 =∈≥      (4.31) 

The objective function, (4.24) maximizes the probability of no-leaker for the 

whole TG.  Constraint set (4.25) reflects the restriction on the number of rounds 

available for each SAM system.  Constraints of type (4.26) ensure that there is only 

one first shot against each ASM if there is any.  Constraints of type (4.27) ensure that 

the shots are counted in order and there is only one thk shot against any ASM fired 

by any one of the valid SAMs.  Constraint set (4.28) makes sure that the next 

engagement will start after the end of the previous engagement.  Constraint set (4.29) 
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restricts an engagement to be within the engageability duration and ensures that there 

is enough time for the last engagement.  The constraint sets (4.30) and (4.31) impose 

binary restriction and non-negativity restriction on the decision variables.    

4.3.2 Solution Procedure 

In addition to the objective function, MAP3 has non-linearity in the 

constraints as well.  Since ijk∆  depends on the time of the thk shot that is determined 

indigenously, there is non-linearity in the constraint sets (4.28) and (4.29).  However, 

we may eliminate the non-linearity in the constraints by applying the following 

transformation process.  Let 

 c
ij

ikcii
ijk vv

tvD
∆+

+
+∆−

=∆
)(

 

where iD  is the initial detection distance of ASM i , c∆  is the constant setup time 

for an engagement, iv  is the speed of ASM i , and jv  is the speed of SAM j .  For 

example, when, m 000,10=iD , m/sec300== ji vv , sec  4=∆ c , and time of the kth 

shot is 15, the engagement would take 7.17 seconds.  Then, we substitute ijk∆  in the 

following equation. 
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Defining  
ij

i

ij

cii
ij vv

v
vv

vD
+

=
+

∆−
= ij   and   βα   leads us to the following equality. 

∑∑ ∑∑
∈∈ ∈∈

∆+−=∆
Mj

ijkc
Mj Mj

ikijkijijkij
Mj

ijkijk xtxxx βα  

Let ikijkijk txy = .  Then, when 0=ijkx , ijky  must be equal to 0, and when 

1=ijkx , ijky  must be equal to ikt .  Then the constraint sets (4.28) and (4.29) become 

∑∑ ∑∑
∈∈ ∈

+
∈

+ ∆+−+≥+







−

Mj
ijkc

Mj Mj
ijkijijkijikki

Mj
kij xyxttxL βα1,1,1  

1,...,2,1  and    allfor −=∈ iskNi   (4.28') 

∑∑ ∑∑∑
∈∈ ∈∈∈

∆−+−≤≤
Mj

ijkc
Mj Mj

ijkijijkij
Mj

ijijkik
Mj

ijijk xyxrxtqx βα  

1,...,2,1  and    allfor −=∈ iskNi   (4.29') 

and we introduce the linking constraints for ijky  as follows: 

iijkijk skVjiLxy ,...,2,1  and  ),(  allfor =∈≤    (4.32) 

iikijk skVjity ,...,2,1  and  ),(  allfor =∈≤     (4.33) 

iijk skVjiy ,...,2,1  and  ),(  allfor 0 =∈≥     (4.34) 

We need to modify the objective function in order to be able to force ijky  to 

be equal to ikt  when 1=ijkx . We add a small weight to the objective function as 

follows: 

( ) ∑∏ ∏ +















−−

∈
∈∈

∈ ijk
ijk

Ni
VjiMj

Kk

x
ij y

nKT
pMax ijk 111

}),|({
}{

ε    (4.24') 

where ε  is a very small positive number, { }ijji
rT

,
max= , and }{max ii

sK = . 
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We remove the non-linearity of the constraint from MAP3 by using the above 

procedure.  We may use the method described for model MAP2 for the 

transformation of the objective function.  The implementation of MAP3 using the 

procedure described in Section 4.2.2 will be discussed in the following section. 

4.4 DISCUSSION 

In this section, we discuss and compare the MAP models on an example 

problem.  The problem introduced in Section 4.1.2.1 (see Figure 4.2) will be used 

here with some modifications that ease the application and comparison of the 

models.  Note that our primary aim is to demonstrate the applicability of the models. 

MAP2 and MAP3 require more detailed scenario information compared to 

MAP1.  Information required to describe a scenario is given in Table 4.3, Table 4.4, 

and Table 4.5 for the example problem.   

 

Table 4.3.  Task Group Formation Information. 

Ship Bearing* Range (m) 
1 Center       0 
2 070 2000 

* Relative bearing from the center of the formation. 

 

Table 4.4.  Attack Information. 

ASM Target Ship Bearing Range (m) Speed (m/sec) 
1 1 020 11000 300 
2 2 015 10000 300 
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Table 4.5. Defense Information. 

SAM System Hosting 
Ship 

Minimum Range 
(m) 

Maximum Range 
(m) 

Speed (m/sec) 

SAM1 1   500  5000 300 
SAM2 2 2000 20000 600 
SAM3 2   500  5000 300 

 

Implementations of the models MAP2 and MAP3 have also been done in 

GAMS by using OSL Solver (Brooke et al., 1988).   

Sizes and solution times of the models for the example problem are reported 

in Table 4.6.  For MAP2, we used a 3 seconds unit time for each slot.  We 

implemented the piecewise linearization of the objective functions of MAP2 and 

MAP3 as described in Figure 4.4.  We set the parameters as follows: 

)16.0,94.0,74.7(),,( 321 =ccc  and )91.3,17.1,35.0(),,( 321 =ZZZ .  For illustrative 

purposes, we only solved MAP1.2 of MAP1 models.  MAP1.2 is the smallest in size.  

MAP2 has the largest number of integer variables.  Solution times are all less than 1 

sec.  Although there is no significant difference between the solution times for the 

test problem, we expect that the computational time will increase with a higher rate 

for MAP2 and MAP3 compared to MAP1. 

 

Table 4.6. Sizes and solution times of the models for the example problem. 

 MAP1.2 MAP2 MAP3 
Constraints 8 25 36 
Continuous Variables 3 7 27 
Discrete Variables 6 30 8 
Non-zero Elements* 19 211 157 
Solution Time (sec)** 0.11 0.33 0.21 
*   Decision variables that have nonzero coefficient values in generated problem. 
** Runs carried out on a personal computer with 2.1 GHz CPU and 256 MB RAM. 
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We do not have an explicit control of time dimension in MAP1.  MAP1 

implicitly controls time by using two parameters, the maximum number of 

engagements against each ASM and the maximum number of engagements for each 

valid combination of SAM systems and ASMs.  MAP1.2 allocates the defensive 

capacity whereas MAP2 and MAP3 schedule the engagements in addition to 

allocation at the expense of increased problem size.  In MAP1, there is a chance of 

producing infeasible allocation.  In MAP2, there is a trade-off between the resolution 

of the model and increased problem size.  We can increase the resolution of the 

model by choosing the unit time of the discretized time dimension small.  However, 

the problem size increases as the unit time decreases.  If we increase the unit time, 

solutions may be unrealistic and unreasonable.  Thus, we need to find a reasonable 

value of unit time for MAP2.  In MAP3, we reduce the number of integer variables 

compared to MAP2.  However, we need to find the correct objective function weight 

in order to solve the problem successfully.  Summary of features and drawbacks of 

the models are given in Table 4.7. 

Table 4.7.  Summary of MAP Models. 

Model 
SAM, 
ASM 
Types 

Allocation Scheduling Time 
Dimension 

Size of the 
Formulation Other 

MAP1 Multiple Yes No Not 
Explicit Small SLS may be 

violated 

MAP2 Multiple Yes Yes Discretized Large 

SSPK can 
be different 
for different 
time slots 

MAP3 Multiple Yes Yes Continuous Medium 
Fine tuning 
of ε is 
required. 
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Results of the example problem are depicted in Table 4.8.  Models produce 

comparable and reasonable results.  MAP1.2 and MAP2 produced exactly the same 

result.  MAP3 result is different than the result of other two models.  The difference 

in results is due to the parameter settings.  Note that we need to fine-tune the 

objective function weight, ε  in MAP3.  We do not discuss the results and parameter 

settings more, since we will not directly use those models to solve MAP.  These 

results show that all of the MAP models work and produce results as expected.  

 

Table 4.8. Results of the Example Problem. 

 Allocation Prob. of Shooting 
 SAM1 SAM2 SAM3 ASM1 ASM2 

Prob. of 
No-leaker 

MAP1.2 1 2 1 0.920 0.875 0.805 
MAP2 1 2 1 0.920 0.875 0.805 
MAP3 0 3 0 0.800 0.938 0.750 

 

Air defense of a TG requires very quick reaction.  The duration of an air 

attack might range from tens of seconds to a few minutes at the most.  Coordination 

of the air defense of the ships within the TG is prone to confusion.  This may suggest 

allocating the SAM systems once at the beginning of the attack and then sticking to 

this allocation policy throughout the raid.  However, we may also choose to improve 

the initial allocation plan autonomously, or cooperatively with the other TG units.  

By autonomously we mean that a TG unit acts independently as the situation 

warrants.  Thus models developed in this research may be used in threat-evaluation 

and weapon-assignment (TEWA) module of a TG AAW command ship to allocate 

the air defense missiles to incoming air targets.  However, the solution time for 
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relatively larger size problems may suggest using other solution techniques such as 

heuristics instead of a standard mathematical programming package. 

The models presented here may be used off-line to investigate the 

effectiveness of the air defense formations under different scenarios in an exploratory 

analysis setting. 

The proposed solution procedures were applied to an example problem.  The 

quality of the results represents the potential value and the use of the models.  A 

more thorough investigation of the models using different test scenarios may secure a 

robust solution procedure for the TG air defense problem.  However, we will develop 

solution algorithms that satisfy the demanding time requirements of a real time 

defense against ASMs in the next section.  The findings of this research are expected 

to provide valuable insights to the decision-maker and the commander at sea. 
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CHAPTER V 

5. SOLUTION OF THE MISSILE ALLOCATION PROBLEM (MAP) 

In this chapter, we develop greedy construction and improvement heuristic 

solution procedures for MAP.  We discuss our reasoning for using heuristics in the 

next section.  We present an implicit enumeration algorithm in Section 2, which is 

used to measure the quality of the solutions produced by the heuristics.  Section 3 

contains the construction heuristics for MAP.  We present the improvement 

heuristics in Section 4 and we conclude this chapter by reporting computational 

results.  We also discuss scenario and the problem generation issues in the last 

section. 

5.1 NATURE OF THE PROBLEM 

On-line use of MAP requires real time solution and very fast implementation 

without even sacrificing a single second.  Thus, any solution procedure has to 

produce reasonable and high quality solutions in no more than several seconds.  This 

is a must feature of any solution algorithm that is eligible to be used in TEWA 

module of a warship.  

Solving MAP for a large number of representative cases is a prerequisite for 

successfully solving SAP.  Since this process requires running MAP many times for 
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a single SAP solution, off-line use of MAP also requires fast and high quality 

solutions. 

Mathematical programming models presented in the preceding chapter do not 

meet the solution time requirements for using MAP on-line or off-line.  Thus, we 

focus on heuristic solution procedures for MAP in order to meet aforementioned 

requirements.   

5.2 IMPLICIT ENUMERATION 

In this section, we develop an implicit enumeration algorithm for MAP.  In 

order to determine the quality of the solutions produced by the heuristics, we need to 

compare the heuristic solutions with the optimal solutions.  Thus, finding the optimal 

solution for the problems with sizes as large as possible is desirable.  Implicit 

enumeration does help to attain solutions of relatively larger problems compared to 

the complete enumeration.  We first developed a complete enumeration scheme and 

then improved it to an implicit enumeration algorithm.  Development of the implicit 

enumeration algorithm is presented below: 

Let )...,,,( 10 maaaA =  and )...,,,( 10 mbbbB =  be two SAM engagement 

vectors showing the number of missiles launched from SAM system Mi ∈ . 

Definition: A  dominates B , if and only if ii ba ≥  for all Mi ∈ , ii ba >  for 

at least one Mi ∈  and both A  and B  have at least one feasible engagement 

schedule against threat ASMs. 

Let ∑
=

=
m

i
iA aS

0
 and ∑

=

=
m

i
iB bS

0
. 



 

76 

Proposition: If BA SS >  then the best engagement schedule using AS  

number of SAM missiles is better than the best engagement schedule using BS  

number of SAM missiles. 

Proof: If BA SS >  then an engagement vector that dominates every specific 

engagement vector using BS  number of SAM missiles can be found. �  

 

Implicit Enumeration Algorithm: 

Step 0: Find the maximum number of engagements possible against each ASM. 

• Find the fastest SAM system that can be used against each ASM. 

• Find the maximum and minimum engagement ranges for each ASM 

using all SAM systems that can be used against the ASM. 

• Calculate the maximum number of engagements for each ASM based 

on the speed of the fastest SAM system. 

• Calculate the total number of SAMs that can be launched. 

Step 1: Generate all possible engagement schedules for the given total number of 

SAMs and, if there are feasible engagements, find the best one.  We generate the 

engagement schedules as follows: 

• Given the total number of SAMs used, generate all combinations of 

SAM launches by different SAM systems;  i.e. in each instance, we 

determine the number of missiles consumed from each SAM system. 

• Given the number of missile launches by each SAM system, generate 

all combinations of missile launch sequences. 
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• According to the given SAM launch sequences, generate all 

combinations of target ASMs. 

Step 2: If there is no feasible schedule then reduce the total number of SAMs by 

one and go to Step 1.  Otherwise, stop.  The best schedule is the optimal schedule. 

5.3 CONSTRUCTION HEURISTICS FOR MAP 

In this section, we present two greedy construction algorithms for MAP.  

First of those algorithms, best engagement construction heuristic, allocates SAM 

systems to incoming ASMs according to a measure, called engagement potential.  In 

quasi-uniform construction algorithm, we aim to engage each threat ASM at least 

once.  Thus, we give precedence to the ASM that has the lowest number of SAM 

systems that can engage it.   

We present the notation and variables for the construction algorithms below: 

Suppose that there are n  incoming ASMs indexed { }nNi ,...,1=∈  and there 

are m  SAM systems on board of warships composing the naval task group, indexed 

{ }mMj ,...,1=∈ .   

is : maximum number of engagements possible against ASM i  using a 

SLS tactic.   

V : set of valid combinations of ASM and SAM systems, i.e. Vji ∈),(  if 

SAM system j  can engage ASM i .   

iva : speed of ASM i ,  

jvs : speed of SAM j  
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jr : maximum range of SAM j  

jr : minimum range of SAM j  

c∆ : constant setup time for an engagement 

if : initial detection distance of ASM i  

ipf : present distance of ASM i  

jd : number of available rounds on SAM system j  

ijp : single shot kill probability of SAM j  against ASM i , 

 ),(,10 Vjipij ∈<<  

itot : time to reach the target (i.e. time-on-target (TOT)) for ASM i , 

iii vaftot = . 

5.3.1 Best Engagement Construction (BEC) Algorithm 

In this algorithm, we allocate SAM rounds to ASMs according to engagement 

potential, which is a measure of defensive capability of a SAM system against a 

given ASM.  We compare each SAM system with a hypothetical SAM, which has 

the best features such as maximum single shot kill probability, maximum speed, 

maximum effective range, and minimum effective range against a given ASM.  We 

assign the SAM with the highest engagement potential to the closest ASM in terms 

of TOT at each step of the algorithm. 

Step 0: Determine the ideal SAM for each ASM. 
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o Find the best features for each ASM using all SAM systems that can 

be used against the ASM. 

o For each ASM, define a new SAM called ideal SAM with the best 

features such as largest maximum range (maximum range may be 

limited to the initial detection distance of ASM if the detection 

distance is smaller than the maximum effective range of SAM), 

smallest minimum range, largest speed and largest single shot kill 

probability, **** ,,, iiii prrvs  respectively. 

{ }Vjivsvs jji ∈= ),(:max*  

{ }






 ∈= Vjirfr j

j
ii ),(:max,min*  

{ }Vjirr jji ∈= ),(:min*  

{ }Vjipp jji ∈= ),(:max*  

o Initialize present ASM distances to initial detection distances, 

Nifpf ii ∈∀= . 

Step 1: Determine the engagement potential, ijep  of each SAM system against 

each ASM if the engagement is feasible. 

• *4

*

3*2*1),(: 1,min
i

ij

j

i

i

j

i

j
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where 4321 ,,, wwww  are the weights of the components of the 

engagement potential. 
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• Let iG  be the set of engagement potentials of the SAMs that can be 

used against ASM i .  { }VjiepG iji ∈= ),(:  

Step 2: Determine the TOT for each ASM and let { }NitotT i ∈= :  be the set of 

TOTs of ASMs. 

Step 3: If all ASMs have been engaged then start a new engagement wave.   

 If { }=T , then reinitialize { }NitotT i ∈= : .  

This step ensures that the final engagement schedule is as uniform as possible.  

ASMs have been engaged with more or less equal number of SAMs.   

Step 4: Find the ASM with minimum TOT and remove its TOT from the 

engagement list, T . 

 Tk
i

minarg= ,  { }ktotTT \= . 

Step 5: If there is no SAM missiles left that can be used against any of the ASMs, 

stop. 

 If { } NiGi ∈∀= , then STOP. 

Step 6: If there is no SAM system that can be used against ASM k , then return to 

Step 3, otherwise find the SAM system with maximum engagement potential against 

the ASM in the engagement order. 

 If { }=kG  then go to Step 3, otherwise kj
Gl maxarg= . 

Step 7: If there is at least one SAM round of type l  and the intercept distance is 

larger than the minimum engagement range of SAM l , assign SAM l  to ASM k .  
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Reduce the number of available rounds of SAM l  by one and go to Step 3.  

Otherwise update the set of engagement potentials and go to Step 5. 

 If 1≥ld  and lk
jk

ckk
ckk rva

vsva
vapfvapf ≥























+
∆−

−∆−  then,  

If intercept distance is larger than the maximum engagement 

range of SAM l , then reduce intercept distance to maximum 

engagement range of SAM l , i.e. 

   If lk
jk

ckk
ckk rva

vsva
vapfvapf ≥























+
∆−

−∆− , then lk rpf = , 

   else k
jk

ckk
ckkk va

vsva
vapfvapfpf













+
∆−

−∆−= . 

   Assign SAM l  to ASM k  and 1−= ll dd .  Go to Step 3. 

 Otherwise { }klkk epGG \=  and go to Step 5. 

5.3.2 Quasi-Uniform Construction (QUC) Algorithm 

BEC algorithm assigns the SAM with the highest engagement potential to the 

closest ASM in terms of TOT.  However, if the number of missiles in magazine or 

launcher is limited, assignment rule may produce unsatisfactory results.  Note that 

probability of no-leaker will be zero by allocating anything less then one shot per 

ASM.  This discontinuity, the jump from zero to positive probability of no-leaker 

value as the last ASM in the first engagement wave is shot at, causes difficulties for 

our construction algorithm.  If there is an engagement schedule that has at least one 
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shot per ASM, then it is desirable to find that one.  This variation makes sure that we 

find the desirable engagement schedule if there is one.  Step 3 of the previous 

algorithm is to be read as follows: 

Step 3: If { }=T  and there exists at least one ASM with no interceptor assigned 

then disregard all assignments made so far and let TOTs be the cardinality of the 

corresponding set of engagement potentials, { }NiGtotT ii ∈== : . 

 Else if { }=T , then reinitialize { }NitotT i ∈= : .  

5.4 IMPROVEMENT HEURISTICS FOR MAP 

In this section, we present two improvement algorithms for MAP.  First of 

those algorithms, opt-change (OC) algorithm, improves the initial feasible 

engagement schedule by changing the target ASM or defending SAM system of an 

engagement in the engagement list.  In 2-opt exchange (2OX) algorithm, we aim to 

exchange target ASMs of two engagements to improve the solution.  For both 

algorithms, we choose the best move (change or exchange) in each iteration.  Since 

both OC and 2OX algorithms are lengthy, we give summary of the algorithms here.  

We present the details of OC and 2OX algorithms in Appendix A and B respectively.   

5.4.1 Opt-Change (OC) Algorithm  

Our purpose in this algorithm is to find the engagements that would increase 

the objective function value by (1) changing the target ASM of an engagement under 

consideration and (2) simultaneously considering the enhancement of the 
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effectiveness of defense by increasing the total number of SAM missiles launched 

against target ASMs.  Changing the target ASM means that while an ASM will get 

one less shot, another ASM will get one more shot.  The ASM that gets one less shot 

after change is considered for an additional shot observing the SLS tactic. 

Summary of the Algorithm 

Step 0: Select an initial feasible engagement list. 

Step 1: For each engagement in the list, check the possibility of the change of 

target ASM.  A change of target ASM will degrade defense against the target ASM 

before change, and will enhace the defense against the new target ASM.  Thus, we 

simultaneously consider enhancing the defense against the previous target ASM of 

the engagement using remaining SAM rounds, if any, while enhancing the defense 

against the new target ASM by the change. 

Step 2: Consider changing the defending SAM for the engagements in the list. 

Step 3: Find the best change in Step 1 and 2.  Update the engagement list, if it is 

needed.  If there is an improvement, go back to Step 1.  Otherwise, stop. 

5.4.2 2-Opt-Exchange (2OX) Algorithm 

Our purpose in this algorithm is to find the engagement pairs that would 

increase the objective function value by exchanging the target ASMs of the SAMs in 

the engagements.  We also try to increase the number of engagements done against 

the ASMs under consideration with each exchange simultaneously.   
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Summary of the Algorithm 

Step 0: Select an initial feasible engagement list. 

Step 1: For each engagement in the list, check the possibility of the exchange of 

target ASMs with all the other engagements in the list.  Simultaneously consider 

enhancing the defense against both target ASMs using remaining SAM rounds. 

Step 2: Consider exchanging all the scheduled engagements of two ASMs. 

Step 3: Find the best exchange in Step 1 and 2.  Update the engagement list, if it is 

needed.  If there is an improvement, go back to Step 1.  Otherwise, stop. 

5.5 COMPUTATIONAL RESULTS 

We randomly generated test problems using the random number generator 

explained in Law and Kelton (1991).  We defined seven different SAM systems, 

including four self-defense and three area air defense SAM systems, and seven 

ASMs.  We created a sample single shot kill probability matrix for SAM and ASM 

systems using open sources.  Those representative SAM and ASM systems are in use 

by the navies and are reported in Appendix C.  For the examples in this section, we 

assume that the ships in TG are in close formation and the distances between the 

ships are negligible compared to the initial detection distances of the ASMs for 

simplicity.  We discuss the sector allocation of ships in Chapter VI, VII, and VIII in 

detail. 



 

85 

We find the optimal solution to MAP by using the implicit enumeration 

algorithm.  Implicit enumeration algorithm generates a fraction of solutions 

compared to complete enumeration.  However, it is still very expensive to find the 

optimal solution in terms of computational time.  Thus, we restrict the sample 

problem size to a maximum of five SAM systems with a total of nine missiles in the 

launchers and five ASMs.  We generated five problem sets, each having SAM 

systems and ASMs from one to five composing a total of 125 problems.  We used 

different random number streams for each problem set.  Details of the sample 

problem generation are given in Appendix C. 

We start computational experiments by comparing the solutions of implicit 

enumeration and BEC heuristic.  Table 5.1 and Table 5.2 depict the results of 

implicit enumeration and the BEC heuristic for the first set of 25 problems.  The 3 

ASM and 4 SAM case produces zero probability of no-leaker since none of the 

SAMs engage the second ASM.  This is a representative case where we need to use 

the QUC heuristic to produce a feasible engagement schedule. 

In Table 5.3, we present the summary result of implicit enumeration and the 

best of construction heuristics.  QUC heuristic produces the optimal solution for 3 

ASM and 4 SAM case where BEC has 100% gap as well as for two other cases ( 2 

ASM 2 SAM and 2 ASM 3 SAM).  It also improves the solution for one case (5 

ASM 4 SAM).  Detailed results for the first 25 problems and the remaining 100 

problems (2nd – 5th problem sets) are given in Appendix D.   
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Table 5.1.  Comparison of Implicit Enumeration (IE) and BEC Heuristic. 

  SAM ASM 
  1 2 3 4 5 
IE Obj 0.640 0.874 0.874 0.874 0.927 
BEC Obj 0.640 0.874 0.874 0.874 0.927 
IE Sched.* 11 / 11 211 / 111 211 / 111 233 / 111 553 / 111 
BEC Sched.* 11 / 11 211 / 111 212 / 111 233 / 111 253 / 111 
IE Time** 0.00 0.00 0.00 0.00 0.00 

1 

BEC Time** 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.160 0.416 0.559 0.416 0.602 
BEC Obj 0.160 0.316 0.506 0.416 0.602 
IE Sched. 11 / 11 211 / 122 33211 / 22111 332 / 112 5553 / 1121 
BEC Sched. 11 / 21 211 / 212 2131 / 2121 233 / 211 2553 / 2111 
IE Time 0.00 0.00 0.63 0.62 1.75 

2 

BEC Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.164 0.120 0.307 0.166 0.452 
BEC Obj 0.164 0.120 0.307 0.000 0.452 
IE Sched. 11111 / 11223 211 / 312 33211 / 22311 3321 / 1123 55532 / 11213 
BEC Sched. 11111 / 32121 211 / 321 23131 / 32121 233 / 311 25553 / 32111 
IE Time 0 0 0.422 0.422 9.812 

3 

BEC Time 0 0 0 0 0 
IE Obj 0.051 0.339 0.096 0.118 0.383 
BEC Obj 0.051 0.284 0.096 0.065 0.383 
IE Sched. 11111 / 11234 2211111 / 3411122 33211 / 24311 443321 / 221143 555332 / 123114 
BEC Sched. 11111 / 32412 2211111 / 3241241 23311 / 32411 24433 / 32411 255533 / 324111 
IE Time 0.50 41.90 0.00 1.99 1294.61 

4 

BEC Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.016 0.138 0.159 0.037 0.225 
BEC Obj 0.016 0.089 0.143 0.020 0.173 
IE Sched. 11111 / 12345 2211111 / 3411225 32211111 / 23411155 443321 / 221543 555332 / 234115 
BEC Sched. 11111 / 32415 2211111 / 3241524 22311111 / 3241515 24433 / 32415 255533 / 324151 
IE Time 0.22 228.77 7008.60 4.96 8503.29 

5 

BEC Time 0.00 0.00 0.00 0.00 0.00 
 *  IE or BEC Sched: SAM Engagement Order / Target ASM Order   
 ** Elapsed time in seconds.   
 

Table 5.2.  % Gap Between Implicit Enumeration (IE) and BEC Heuristic Solutions. 

SAM ASM 
1 2 3 4 5 

1 0.0 0.0 0.0 0.0 0.0 
2 0.0 24.0 9.6 0.0 0.0 
3 0.0 0.0 0.0 100.0 0.0 
4 0.0 16.0 0.0 44.9 0.0 
5 0.0 35.7 9.7 44.9 22.9 
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Table 5.3.  % Gap Between Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH). (First Set) 

SAM ASM 
1 2 3 4 5 

1 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 0.0 0.0 
3 0.0 0.0 0.0 0.0 0.0 
4 0.0 16.0 0.0 44.9 0.0 
5 0.0 35.7 9.7 41.9 22.9 

 

 Table 5.4 presents the summary of all 125 sample MAPs in terms of 

minimum, average, and maximum % gaps between the optimal solution and the best 

construction heuristic solution.  Construction heuristics failed to produce the optimal 

solution to MAP in 38 out of 125 cases.  Although the construction heuristics 

attained the optimal solution in 70 % of the test cases, we may conclude that the 

construction algorithms can frequently produce unsatisfactory results.  

Table 5.4.  Minimum, Average and Maximum % Gap for Five Problem Sets. 

  SAM 
ASM   1 2 3 4 5 

Mina 0.0 0.0 0.0 0.0 0.0 

Aveb 0.0 0.0 0.0 0.0 0.0 1 

Maxc 0.0 0.0 0.0 0.0 0.0 

Min 0.0 0.0 0.0 0.0 0.0 

Ave 0.0 4.0 4.8 2.1 1.5 2 

Max 0.0 20.0 23.8 10.7 7.3 

Min 0.0 0.0 0.0 0.0 0.0 

Ave 2.4 2.0 3.0 0.4 1.2 3 

Max 5.9 5.7 14.8 2.0 6.0 

Min 0.0 0.0 0.0 0.0 0.0 

Ave 0.0 11.0 7.6 19.2 20.0 4 

Max 0.0 17.9 33.3 44.9 100.0 

Min 0.0 0.0 0.0 0.0 0.0 

Ave 5.1 20.8 16.3 14.0 10.3 5 

Max 11.4 38.6 38.6 41.9 23.1 
a Minimum % gap,  b Average % gap,  c Maximum % 
gap.   
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 We run our improvement algorithms for those 38 cases, where the 

construction algorithms failed to produce the optimal solutions.  Two different 

combinations of the improvement algorithms are also investigated.  One of those 

combinations (OC+2OX) is running OC first and then 2OX.  The other (2OX+OC) is 

running 2OX first and OC second.  The summary results of improvement heuristics 

are given in Table 5.5.  Detailed computational results are presented in Appendix E.  

Last column of Table 5.5 depicts the best results of the improvement heuristics.  The 

best results may be viewed as another heuristic that runs OC, 20X, OC+2OX, and 

2OX+OC in this order and takes the best solution.  We call that heuristic “Best”.   

We provide some measures of accuracy for heuristics, OC+2OX, 2OX+OC, 

and “Best” in Table 5.6.  OC+2OX dominates 2OX+OC with respect to five 

measures given in Table 5.6.  “Best” provides a slight improvement on the OC+2OX 

results.  OC+2OX attains the optimal solution in 33 out of 38 problems.  In one out 

of five cases, where OC+2OX failed to achieve the optimal results, “Best” yields 

better result than OC+2OX.  2OX+OC is the worst one with respect to five measures 

given.  We statistically compared “Best” and OC+2OX against 2OX+OC heuristic 

using Wilcoxon signed rank test as described in Golden and Stewart (1985).  

Detailed calculations for Wilcoxon tests are given in Appendix F.  Wilcoxon tests 

showed that “Best” and OC+2OX heurisitics are statistically better than 2OX+OC 

heurisitic at 05.0=α  significance level.   
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Table 5.5.  % Gap Between Optimal Solution and the Improvement Heuristics for 
the Problems, Where Constructions Heuristics Failed to Find Optimal Solution. 

Improvement Algorithms 
* Problem 
Number 

Best of 
Construction 

Heuristics OC 2OX OC+2OX 2OX+OC Best 

I.4.2 16.0 15.4 13.8 0.0 0.0 0.0 
I.4.4 44.9 1.2 44.9 0.0 1.2 0.0 
I.5.2 35.7 15.4 0.0 0.0 0.0 0.0 
I.5.3 9.7 9.7 0.0 0.0 0.0 0.0 
I.5.4 41.9 1.2 24.7 0.0 24.7 0.0 
I.5.5 22.9 4.8 0.0 4.8 0.0 0.0 
II.3.1 5.9 0.0 5.9 0.0 0.0 0.0 
II.3.5 6.0 6.0 6.0 6.0 6.0 6.0 
II.4.2 10.1 0.0 10.1 0.0 0.0 0.0 
II.4.3 4.8 0.0 4.8 0.0 0.0 0.0 
II.4.4 7.2 7.2 7.2 7.2 7.2 7.2 
II.5.1 11.4 0.0 11.4 0.0 0.0 0.0 
II.5.2 38.6 0.0 9.4 0.0 9.4 0.0 
II.5.3 38.6 0.0 9.4 0.0 9.4 0.0 
III.2.2 20.0 20.0 0.0 0.0 0.0 0.0 
III.2.3 23.8 23.8 0.0 0.0 0.0 0.0 
III.3.2 4.1 4.1 4.1 4.1 4.1 4.1 
III.3.3 14.8 14.8 0.0 0.0 0.0 0.0 
III.3.4 2.0 0.0 2.0 0.0 0.0 0.0 
III.4.2 11.1 11.1 0.0 0.0 0.0 0.0 
III.4.3 33.3 0.0 5.6 0.0 5.6 0.0 
III.4.4 12.5 0.0 12.5 0.0 0.0 0.0 
III.5.1 8.3 0.0 8.3 0.0 0.0 0.0 
III.5.2 22.2 22.2 0.0 0.0 0.0 0.0 
III.5.3 33.3 0.0 5.6 0.0 5.6 0.0 
III.5.4 22.2 0.0 22.2 0.0 0.0 0.0 
IV.4.4 31.3 0.0 0.0 0.0 0.0 0.0 
IV.4.5 100.0 20.0 100.0 0.0 20.0 0.0 
IV.5.1 5.9 0.0 5.9 0.0 0.0 0.0 
IV.5.4 5.9 0.0 5.9 0.0 0.0 0.0 
IV.5.5 23.1 23.1 0.0 0.0 0.0 0.0 
V.2.4 10.7 0.0 10.7 0.0 0.0 0.0 
V.2.5 7.3 7.3 7.3 7.3 7.3 7.3 
V.3.1 5.9 0.0 5.9 0.0 0.0 0.0 
V.3.2 5.7 0.0 5.7 0.0 0.0 0.0 
V.4.2 17.9 17.9 0.0 0.0 0.0 0.0 
V.5.2 7.7 7.7 0.0 0.0 0.0 0.0 
V.5.5 5.6 0.0 5.6 0.0 0.0 0.0 

No. of Optimal Found 19 12 33 27 34 

* Problem Number: Roman numeral shows the problem set number, 2nd and 3rd numeral show the number of ASMs 
and SAM systems, respectively. 
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Table 5.6.  Comparison of OC+2OX and 2OX+OC Heuristics with Best Results. 

          OC+2OX 2OX+OC Best 
Number of times heuristic is best or tied for best 35 31 38 
Average percentage below optimal value 0.77 2.64 0.65 
Average rank among three results 1.05 1.37 1.00 
Worst ratio of solution to optimal value 0.93 0.75 0.93 
Number of times heuristic found the optimal solution 33 27 34 

 

Improvement heuristics enhanced the quality of the solutions significantly.  

However, we do not specifically test our heuristics in terms of computation time, 

which is a very important issue for providing real time solutions.  Up to this point, 

we investigated relatively small test problems in order to be able to compare the 

results of heuristics with optimal solutions.  We generated large test problems in 

order to be able to test the performance of heuristics in terms of elapsed time.  Table 

5.7 depicts the results for those large test problems.  The largest run time recorded is 

1.170 seconds.  We solved the problem with 15 ASMs and 20 SAM systems using 

2OX+OC algorithm for that case.  Run times of the improvement heuristics for most 

of the problems (44 out of 48 problems) are less than half a second. 

Table 5.7.  Performance of Heuristics for Large Problems in Terms of Elapsed Time. 

*Elapsed Time (sec) # of 
ASMs 

# of SAM 
Systems BEC QUC OC 2OX OC+2OX 2OX+OC 

10 10 0.000 0.000 0.010 0.020 0.020 0.020 
10 15 0.010 0.000 0.020 0.020 0.020 0.020 
10 20 0.000 0.000 0.010 0.020 0.040 0.030 
15 10 0.000 0.000 0.100 0.090 0.141 0.160 
15 15 0.010 0.000 0.050 0.040 0.090 0.080 
15 20 0.000 0.000 0.080 0.101 0.110 1.170 
20 10 0.000 0.000 0.120 0.100 0.241 0.180 
20 15 0.000 0.000 0.080 0.110 0.170 0.200 
20 20 0.000 0.000 0.161 0.180 0.320 0.330 
25 10 0.000 0.000 0.141 0.300 0.441 0.350 
25 15 0.010 0.000 0.200 0.291 0.390 0.411 
25 20 0.000 0.010 0.561 0.410 0.881 0.961 

* CPU time for the algorithms on a personal computer with AMD Athlon 2000+ CPU and 256 MB of RAM. 
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For all the test problems presented above, MAP solution procedure produced 

high quality solutions while satisfying the run time requirement for MAP.   

We used small test problems in order to be able to compare the heuristic 

results with the optimal results.  We restrict the number of total SAMs to 8.  Thus, 

the average number of missiles available on the magazines for the problems with 5 

SAM systems falls below 2 missiles per system.  Since the average number of 

available missiles for each system is low, using this valuable asset against one ASM 

may prevent using it against another one more effectively at a later engagement.  

This argument is generally valid for construction algorithms.  We expect that if we 

have had larger number of missiles per SAM system, construction algorithms would 

have produced better results.  Although we intuitively state that argument, the formal 

investigation of the quality of the solutions for the large size problems should be 

investigated.  
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CHAPTER VI 

 

6. SECTOR ALLOCATION MODELS 

In this chapter, we present five different sector allocation models.  Each 

model has some features and drawbacks that we discuss in detail.  We start with a 

relatively simple one and continue with more developed ones.   

In SAP, we would like to maximize the air defense effectiveness of the TG, 

i.e. the coverage level of each individual ship composing the TG.  One may think 

that maximizing the area coverage does increase the effectiveness of the air defense 

shield around the TG since threat must pass through a longer defense layer in order 

to reach the TG, which is assumed to be stationed in the center of the area of defense.  

However, defending every square inch of the area at a relatively low level does not 

necessarily pay off.  On the contrary, having multiple coverage over a ship increases 

her defensive potential and creates a stronger defense.  An air defense ship may even 

provide a stronger defense when stationed between the threat and the target without 

physically covering the target.  Thus, we focus on the air defense of individual ships 

in TG rather than defending the area around TG. 
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6.1 SAP1 - SECTOR ALLOCATION MODEL-I 

Maximizing the air defense effectiveness of a TG may be represented by 

maximizing the probability of no-leaker as the objective function in a mathematical 

program.  This yields a nonlinear objective function creating a need for futher 

treatment compared to that of a linear objective function.  Thus, in our first 

formulation for SAP, we use an indirect treatment approach.  We develop the model 

that incorporates probability of no-leaker function in the next section.  In this section, 

we formulate a SAP using an expected value approach for objective function and 

discuss the solution procedures.   

6.1.1 Formulation of the Problem 

Suppose that there are n  ships, indexed { }nNi ,...,1=∈  and there are m  

sectors in which the warships composing the naval TG may be assigned, indexed 

{ }mMj ,...,1=∈ .  Let k  be an alias for j .  We further define a subset of ships, 

namely area air defense ships, indexed { }anAa ,...,1=∈  and NA ⊆ .  Let jakp  be 

the expected level of coverage provided to the ship at sector j  by ship a  at sector 

k .  In this way, jakp  constitutes the link between MAP and SAP.  We can calculate 

the coverage probabilities for a range of attack scenarios involving different area air 

defense ship types by using any of the MAP solution procedures.  jakp  values can be 

calculated both for directional and omni-directional attack scenarios and can be used 

in SAP without any modification to the model.  All of the SAP models presented in 

this chapter are based on the knowledge about this input parameter, the level of 
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coverage provided by each AAD ship to all other ships in TG.  The level of coverage 

depends on the distance between each pair of ships, direction of the attack and the 

bearing of the covered ship from the AAD ship.  Note that this definition of jakp  

characterizes the relationship between SAP and MAP.  We will elaborate more on 

this relationship in Chapter VIII.   

We need the following notation and variables to formulate the TG sector 

allocation problem: 

iw : the military value of ship i . 

ips : the expected level of self-coverage of ship i .   





=
otherwise.,0

sector at  located is  ship if,1 ji
xij  

∑ ∑∑ ∑∑ 
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The objective function (6.1) maximizes the total weighted expected level of 

coverage provided within the TG.  Constraint set (6.2) ensures that every ship is 

assigned to a sector.  Constraints of type (6.3) reflect that each sector can 

accommodate at most one ship.  Constraint set (6.4) imposes binary restriction on the 

decision variables.   

6.1.2 Solution Procedure 

We have a quadratic term in the objective function.  However we may 

remove the nonlinearity by introducing a new variable.  Let ijakakij yxx = .  When 

both 1=ijx  and 1=akx  then ijaky  is to be 1.  ijaky  must take a value of zero for all 

the other cases.  Since our objective function is of maximization type we need to 

force ijaky  to take a value of zero when required.  We can guarantee ijaky  taking the 

correct values in two different ways among possible other ways. 

First way: 

AaNiMkj
xx

y akij
ijak ∈∈∈

+
≤   and  ,,allfor 

2
  (6.5) 

{ } AaNiMkjyijak ∈∈∈∈   and  ,,allfor 1,0   (6.6) 

Second way: 

AaNiMkjxy ijijak ∈∈∈≤   and  ,,allfor   (6.7) 

AaNiMkjxy akijak ∈∈∈≤   and  ,,allfor   (6.8) 
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AaNiMkjyijak ∈∈∈≥   and  ,,allfor 0    (6.9) 

In the first set, we introduce comparatively fewer constraints into the model.  

However we have to define ijaky  as a binary variable.  In this case, even a small size 

problem instance may lead an intractable formulation because of the large number of 

binary variables.  In the second set, we introduce twice as many constraints into the 

model as in the first case.  However, we may relax the variable ijaky  to be defined as 

a continuous variable as a result of stronger constraints.  We expect that the 

augmentation of the model with the second set of constraints will lead to a more 

tractable model.  Thus, the resulting model can be written as follows: 

∑ ∑∑ ∑∑ 







+

≠i j a jkk
ijakjaki

i
ii ypwpswMax

}¦{

   (6.1’) 

subject to 

(6.2), (6.3), (6.4), (6.7), (6.8), and (6.9). 

Note that in this formulation we do not guarantee reaching an optimal 

solution in terms of the maximization of the coverage of the whole TG.  Moreover 

we cannot control the coverage provided to each ship.  That is, while one ship has a 

strong coverage, another ship may have relatively poor coverage.  We may modify 

the model to maximize the minimum expected level of coverage provided to the 

ships.  We will refer to the preceding model as SAP1.1 thereafter and define the 

model, SAP1.2 that has a maximin objective function as follows: 
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αMax        (6.10) 

subject to 

(6.2), (6.3), (6.4), (6.7), (6.8), and (6.9), 

Niyppsw
j a jkk

ijakjakii ∈≥
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≠

  allfor     
}¦{

α   (6.11) 

0≥α         (6.12) 

The objective function, equation (6.10) maximizes the minimum weighted 

expected level of coverage provided to any one of the ships in the TG.  Constraint set 

(6.11) ensures that the objective function will be less than or equal to the minimum 

weighted expected level of coverage.  Constraint (6.12), which is added for the sake 

of completeness imposes nonnegativity restriction on the decision variable.   

 SAP1.1 model resembles Quadratic Assignment Problem (QAP) in terms of 

the constraints.  QAP is a NP-Hard problem.  Enumeration algorithms, cutting plane 

algorithms for the linear transformation of the objective, and heuristic approaches are 

available to solve QAP in the literature.  However, in the following sections, we 

develop stronger formulations that make use of special attributes of SAP such as 

having sister ships within the TG and classifying ships into three groups each having 

similar air defense capabilities.  
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6.2 SAP2 - SECTOR ALLOCATION MODEL-II 

In previous section, we formulated SAP1 with an indirect treatment of 

probability of no-leaker objective.  We used an expected value approach instead of a 

direct probabilistic one.  In this section, we formulate a SAP with a probabilistic 

objective function and discuss the solution procedures for this problem. 

6.2.1 Formulation of the Problem 

Suppose that there are n  ships, indexed { }nNi ,...,1=∈  and there are m  

sectors in which the warships composing the naval TG may be assigned, indexed 

{ }mMj ,...,1=∈ .  Let k  be an alias for j .  We further define a subset of ships, 

namely area air defense ships, indexed { }anAa ,...,1=∈  and NA ⊆ .  Let jakp  be 

the probability that the ship at sector j  is covered by ship a  at sector k .  Here, jakp  

is defined as a probability measure different from the one in SAP1 models. 

We need the following notation and variables to formulate SAP2: 

ips : the self-defense probability of having no-leaker of ship i .   





=
otherwise.,0

sector at  located is   ship if,1 ji
xij  

Then, SAP2 can be formulated as follows: 
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subject to 

(6.2), (6.3), and (6.4). 

The objective function (6.13) maximizes the probability of no-leaker for the 

whole TG.  We have a nonlinear objective function similar to that of MAP2 and 

MAP3 models.  However, we have an additional quadratic term in the power.  We 

can remove the quadratic term from the model as in SAP1 case.  The revised model 

can be written as follows: 

( ) ( )∏ ∏∏ ∏ 







−−−

≠i j a jkk

y
jaki

ijakppsMax
}¦{

111    (6.13') 

subject to 

(6.2), (6.3), (6.4), (6.7), (6.8), and (6.9). 

SAP2 guarantees reaching an optimal solution in terms of the maximization 

of the coverage of the whole TG, whereas SAP1 does not have any explicit control 

over the coverage of the whole TG.   

6.2.2 Solution Procedure 

We may use the method described for model MAP2 for the linearization of 

the objective function.  After taking the logarithms of equation (6.13'), the equation 

becomes: ( ) ( )∑ ∏∏ ∏ 







−−−
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y
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ijakppsMax
}¦{

111ln .   

Equivalently we can write equation (6.13') as; 
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∑
∈Ni

ihMax )ln(         (6.14) 

and introduce a new set of constraints into the problem as follows: 

( ) ( ) Nihpps i
j a jkk

y
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ijak ∈≥−−− ∏∏ ∏
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  allfor 111
}¦{

.  We can rewrite the 

constraint as follows after taking the logarithm of both sides: 
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where )1ln(  and  ),1ln(  ),1ln( iiiijakjak psshbpa −−=−−=−−= . 

Let Ni
h
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i

i
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−−
=   allfor    

)1ln(
)ln( .  Then objective function (6.14) becomes 

∑
∈Ni

iibcMax .   

Let 321   ,  , ccc  be the slope of the line segments that approximate the function 

and ib  is defined as the sum of three different variables corresponding to those three 

line segments, 321
iiii bbbb ++= .   

Then the resulting model SAP2 is as follows.  

 ( )∑
∈

++
Ni

iii bcbcbcMax 332211      (6.16) 

subject to 

Nibbbsya iiii
j a jkk
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 NiZbi ∈≤≤   allfor 0 1
1     (6.18) 

NiZZbi ∈−≤≤   allfor 0 12
2     (6.19) 
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NiZZbi ∈−≤≤   allfor 0 23
3     (6.20) 

and (6.2), (6.3), (6.4), (6.7), (6.8), (6.9). 

SAP1 and SAP2 formulations are similar to each other except the objective 

function.  Both formulations resemble QAP in terms of constraints.  We develop 

more tractable models in the following sections by using the special features of SAP. 

6.3 SAP3 - SECTOR ALLOCATION MODEL-III 

In this section, we formulate SAP as a location problem with nonlinear 

objective function.  The constraints resemble those of a p-median formulation.  We 

develop the model in two phases.  First, we present a simple model with only one 

type of ship available in the TG.  Second, we extend the simple model to include 

multiple types of ships in TG.   

6.3.1 Formulation of the Problem 

Suppose that there are P  ships with identical air defense capabilities and 

there are m  sectors in which the warships composing the naval TG may be assigned, 

indexed { }mMj ,...,1=∈ .  Let i  be an alias for j .  Let ijc  be the probability of 

coverage provided by the ship at sector j  to sector i .  ijc  parameters can be 

obtained by solving MAP, establishing the link between the two problems. 

We need the following notation and variables to formulate the TG sector 

allocation problem: 
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=
otherwise.,0

sector   toassigned is ship if,1 j
y j  





=
otherwise.,0

sector at  ship aby  covered becan   sector at  demand  theif,1 ji
xij  

Then, SAP3.1 can be written as follows: 

( )∑ ∏ 







−−

i j

x
ij

ijcMax 11      (6.21) 

subject to 

Py
j

j =∑        (6.22) 

jiyx jij ,  allfor ≤       (6.23) 

jiyx iij ,  allfor ≤       (6.24) 

{ } jixij ,  allfor 1,0∈       (6.25) 

{ } jy j   allfor 1,0∈       (6.26) 

The objective function (6.21) maximizes the sum of probabilities of no-leaker 

for the ships in TG.  Maximizing the probability of no-leaker for the whole TG might 

have been a better objective for the TG commander.  Here in this formulation, 

however, we have to use the summation of the probabilities of no-leaker for the 

ships, since the overall probability of no-leaker for the whole TG will always yield a 
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value of zero because of the empty sectors.  Note that ijx  is equal to 1 only when 

both sectors ji   and   accommodate ships.  ( ) 







−− ∏

j

x
ij

ijc11  is the probability of 

coverage for a ship at a sector, say i , by at least one ship in any other sector, say j .  

Constraint (6.22) enforces all of P ships to be allocated.  Constraints (6.23) and 

(6.24) ensure that if there is no ship allocated to sector j  then there can be no 

coverage provided from sector j , and if there is no demand (ship) at sector i  then 

there can be no coverage provided to sector i .  Constraints (6.25) and (6.26) enforce 

binary restrictions on the decision variables. 

By using the correct ijc  parameters, we can accommodate both omni-

directional and directional attack cases for SAP.  When TG has no information about 

the direction of the attack, ijc  can be determined using MAP accordingly.  In this 

case, the distance between any two sectors will be the primary factor affecting the 

coverage.  When TG has information on the attack direction, ijc  can be determined 

using the distance and the relative bearing from sector j  to sector i . 

SAP3.1 can easily be extended to include different types of ships.  We define 

a new index Kk ∈  denoting the ship types.  We redefine the parameters and the 

decision variables to accommodate the ship types. 

kP : the number of ships of type k  to assign sectors. 

ijkc : the probability of coverage provided by the ship of type k  at sector j  

to sector i . 
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=
otherwise.,0

sector   toassigned is   typeof ship if,1 jk
y jk  





=
otherwise.,0

sector at    typeof ship aby  covered becan   sector at  demand  theif,1 jki
xijk

 

Then, SAP3.2 can be written as follows: 

( )∑ ∏∏ 







−−

i j k

x
ijk

ijkcMax 11      (6.27) 

subject to 

kPy k
j

jk   allfor     =∑        (6.28) 

jy
k

jk   allfor 1≤∑        (6.29) 

kjiyyx
Kl

iljkijk ,,  allfor 
2
1









+≤ ∑

∈

     (6.30) 

{ } kjixijk ,,  allfor 1,0∈       (6.31) 

{ } kjy jk ,  allfor 1,0∈       (6.32) 

The objective function (6.27) maximizes the sum of probabilities of no-leaker 

for the ships in TG.  Constraint (6.28) ensures that no more than the available ships 

are allocated.  Constraint (6.29) enforces that each sector can accommodate at most 

one ship.  Constraints (6.30) ensure that if there is no ship allocated to sector j , there 
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can be no coverage provided from sector j , and if there is no demand (ship) at sector 

i , there can be no coverage provided to sector i .  Constraints (6.31) and (6.32) 

enforce binary restrictions on the decision variables. 

We can equivalently rewrite equation (6.28) as follows: 

kPy k
j

jk   allfor     ≤∑        (6.28') 

Since objective function (6.27) forces ijkx  to take positive values, and ijkx  

forces jky  to be as large as possible, summation of jky  over the sectors will be equal 

to the total number of ships of respective type.  Same reasoning is also valid for 

equation (6.22) in SAP3.1 model. 

SAP3 models have similarities in the constraints with the models in location 

literature.  This may enable us to use similar solution approaches.  Additionally, 

SAP3.2 model captures the reality of having multiple ships of the same type in TG 

and uses it as a simplifying assumption in modeling the problem.  Therefore we 

prefer SAP3.2 to previous SAP formulations, which treat the ships individually. 

6.3.2 Solution Procedure 

SAP formulation has resemblance to maximal covering location problem in 

the constraints, and MAP2 and MAP3 in the objective function.  Before developing 

any solution procedure, we need to get rid of the non-linearity in the objective 

function.  We can use the same procedure as in MAP2 case.   
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We can write equation (6.27) as ∑
i

ihMax  (6.33) and introduce a new set 

of constraints into the problem as follows: 

( ) Mihc i
x

j k
ijk

ijk ∈≥−− ∏∏   allfor 11 .  We can rewrite the constraint as 

follows after taking the logarithm of both sides:  

Mibxa i
j k

ijkijk ∈≥∑∑   allfor   ,     (6.34) 

where ).1ln(   and   ),1ln( iiijkijk hbca −−=−−=  

Let Mi
h

h
c

i

i
i ∈

−−
=   allfor    

)1ln(
.  Then objective function (6.33) becomes 

∑
i

iibcMax .   

Since we develop SAP3.2 further as we proceed, we call original SAP3.2 as 

SAP3.2-P thereafter.  The resulting linear formulation of SAP3.2-P model, SAP3.2-L 

is as follows.  

 ( )∑ ++
i

iii bcbcbcMax 332211      (6.35) 

subject to 

Mibbbxa iii
j k

ijkijk ∈++≥∑∑   allfor    321 ,   (6.36) 

and (6.28'), (6.29), (6.30), (6.31), (6.32), (6.18), (6.19), (6.20). 
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Comparison of SAP3.2-L with the Original SAP3.2-P Formulation: 

The resulting linear formulation of SAP, SAP3.2-L is an approximation of 

the original nonlinear programming formulation of SAP3.2.  In the new formulation, 

we approximate the objective function value.  Here, in this part of the section we 

verify the representativeness of the approximation. 

We approximate the nonlinear objective function coefficients with three line 

segments.  Taking a conservative approach, we make sure that the original function 

is greater than the approximate line segments.  Thus, the approximation 

underestimates the objective function. 

We relax the binary restriction on the decision variables in both of the 

formulations in order to be able to solve the models.  Moreover, we need to show 

that the NLP model produces global optimum solutions.  The following proof of 

concavity of the objective function shows that the NLP model will always produce a 

global optimum solution. 

 Proposition:  ( ) 10  , 10    ,11 ≤≤<≤−−= ∏ ijkijk
x

jk
ijki xccZ ijk  is concave if 

and only if  

( ) ( ) ( ) 







−−−+








−−≥−− ∏∏∏ −+ 2121

11)1(1111 )1( ijkijkijkijk x

jk
ijk

x

jk
ijk

xx

jk
ijk ccc λλ

λλ . 

Proof: 

( ) ( ) ( ) ( ) 







−−+








−≤








−− ∏∏∏

− 212)1(1

1)1(111 ijkijk
ijkxijkx x

jk
ijk

x

jk
ijk

jk
ijkijk cccc λλ
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( ) ( ) 21
)1(

2121 )1(  then  ,1   and   1Let  
21

yyyycycy ijkijk x

jk
ijk

x

jk
ijk λλλλ −+≤−=−= −∏∏

 

( ) ( )21
)1(

21 )1(ln ln yyyy λλλλ −+≤−  

[ ]2121 )1(ln)ln()1()ln( yyyy λλλλ −+≤−+  

The last equation implies that proving the concavity of the objective function 

is the same as proving the concavity of the logarithmic function, )ln(y .  From the 

second derivative of )ln(y , we get   , 01)(nl 2 <
−

=′′
y

y which establishes the concavity 

of )ln(y .           g 

To have an idea about the quality of linear approximation, linear 

programming relaxation of SAP3.2-L and nonlinear programming solution of 

SAP3.2-P with relaxed binary restrictions on the decision variables have been solved 

for several test problems in the presence of 19 sectors.  Results are presented in 

Table 6.1.  

The gap between SAP3.2-P and SAP3.2-L solutions was less than 3% for all 

the cases even with this rough approximation.   
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Table 6.1.  Results of the Test Problems. 

Total Number 
of Ships 

Number of Ships of 
Type (1,2,3) 

Obj. Value of 
SAP3.2-L* 

Obj. Value of 
SAP3.2-P** Gap (%) 

3  1,1,1 13.93 14.36 2.96 
4  1,1,2 14.31 14.71 2.77 
4  1,2,1 14.43 14.81 2.59 
4  2,1,1 17.00 17.36 2.07 
5  1,2,2 14.74 15.11 2.46 
5  2,1,2 17.21 17.57 2.05 
5  2,2,1 17.24 17.59 1.99 
6  2,2,2 17.37 17.74 2.09 

10   2,5,3 17.84 18.12 1.57 
*  Linear programming relaxation of SAP3.2-L 
** Solution of SAP3.2-P with relaxed binary restrictions on decision variables 

 

Lower Bounding Strategies 

Since SAP3.2-P has a nonlinear objective function, we cannot solve it 

directly.  Although we proved that the objective function of SAP3.2-P is concave, 

solving a nonlinear 0-1 integer programming problem is out of the scope of this 

research.  Instead, we developed a linearization procedure for SAP3.2-P.  Without a 

formal proof, we can say that SAP3.2-L is very hard to solve in terms of 

computational complexity.  Kariv and Hakimi (1979) proved that the problem of 

finding a p-median of a network is NP-hard even when the network has a simple 

structure.  SAP3.2-L has a complex objective function and additional constraints 

besides those similar to the p-median constraints.  Thus, development of tight upper 

and lower bounds is very important for solving the problem successfully.   

We developed a randomized heuristic (taking the best of a large number of 

randomly generated solutions) to establish a simple lower bound for SAP3.2-L.  This 

is taken as a first step toward developing tighter lower bounds.  Randomized 
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heuristic performed well for the small test problems that we could solve to 

optimality.  The results are depicted in Table 6.2.  However, we expect that the 

quality of lower bounds will deteriorate as the size of the problem increases.   

 

Table 6.2. Results of the Randomized Heuristic. 
Obj. Value Number of Solutions Generated (best is choosen) Total 

Ships  
Ship 

Types1 SAP3.2-L SAP3.2-P2 5000 10000 25000 50000 100000 200000 
3  1,1,1 2.61 2.69 2.69 2.69 2.69 2.69 2.69 2.69 
4  1,1,2 3.49 3.57 3.56 3.58 3.59 3.59 3.59 3.59 
4  1,2,1 3.52 3.63 3.61 3.62 3.62 3.63 3.63 3.63 
4  2,1,1 3.82 3.88 3.87 3.87 3.88 3.88 3.88 3.88 
5  1,2,2 4.41 4.53 4.50 4.50 4.51 4.52 4.52 4.53 
5  2,1,2 4.80 4.86 4.85 4.85 4.85 4.86 4.86 4.86 
5  2,2,1 4.80 4.86 4.86 4.86 4.86 4.86 4.86 4.86 
6  2,2,2 5.78 5.85 5.83 5.83 5.83 5.84 5.84 5.85 

10  2,5,3 9.71 9.77 9.75 9.76 9.76 9.76 9.77 9.77 
1   Number of Ships of Type 1,2, and 3. 
2   SAP3.2-P Objective Calculated for SAP3.2-L Solution. 

 

We also developed Lagrangean Relaxation of SAP3.2-L by relaxing 

constraint set (6.30).  Lagrangean Relaxation scheme produced high quality lower 

bounds through the Lagrangean heuristic developed within the relaxation procedure.  

Lagrangean subproblems produce feasible solutions in terms of allocating ships to 

sectors.  Then calculating the lower bound is a matter of finding the correct linking 

variables and substituting them in the original objective function.  Since Lagrangean 

Relaxation scheme failed to produce reasonable upper bounds, which will be 

discussed next, we chose not to use this lower bounding strategy and stopped any 

further experimentation. 

The last lower bounding scheme is achieved through modifying the objective 

function of SAP3.2-P as follows:   
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ijkijk cMincMax 111
1

 

Taking the logarithm of the objective function does not change the optimum 

solution to the problem.  Then we have, 

( ) 







−∑∏∏

i j k

x
ijk

ijkcMin 1ln . 

Since logarithm is a concave function, )ln()ln()ln( baba +≥+ .  This implies 

that,  

( ) ( )∑ ∏∏∑∏∏ 







−≤








−

i j k

x
ijk

i j k

x
ijk

ijkijk cc 1ln1ln .   

Thus, ( )∑ ∏∏ 







−

i j k

x
ijk

ijkcMin 1ln  constitutes an upper bound for the 

minimization problem.  This would yield a lower bound for SAP3.2-P.  We include 

this lower bounding scheme in order to present the idea.  Actual solution procedure 

for SAP3.2 will be presented in the next chapter. 

Upper Bounding Strategies 

LP relaxation to SAP3.2-L produces loose upper bounds (see Table 6.1 and 

Table 6.2).  It does not lead to an efficient solution procedure for SAP3.2-L.   

Lagrangean Relaxation also failed to produce tight upper bounds.  The upper 

bounds produced by Lagrangean Relaxation were no better than the upper bounds 

produced by the LP relaxation.  We think that the failure to produce a tight upper 

bound is caused by the summation in equation (6.30); each term in the objective 
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function of the Lagrangean subproblem controlled by one Lagrangean multiplier 

depends on some other term because of the summation.  Thus, Lagrangean 

multipliers do not control and reduce the infeasibility independent of each other. 

We add valid inequalities derived from the physical nature of the problem 

with the hope of getting tighter upper bounds.  These valid inequalities are; 

kjiyx jkijk ,,  allfor ≤       (6.37) 

kjiyx
Kl

ilijk ,,  allfor ∑
∈

≤       (6.38) 

jPyx
k

kkj
i

kij   allfor 1,1, ∑∑ == ≤      (6.39) 

jyx kj
i

kij   allfor 2,2, == ≤∑       (6.40) 

jix
k

ijk ,  allfor 1≤∑       (6.41) 

iyyPx ki
k

ikk
jk

ijk   allfor 2,1 == +≤ ∑∑      (6.42) 

Constraint sets (6.37) and (6.38) are the stronger version of constraint set 

(6.30).  Surrogate constraint (6.39) limits the total number of linking variables 

emanating from a sector occupied by an AAD ship with the total number of ships in 

TG.  Constraint (6.40) limits the number of linking variables to 0 or 1 depending on 

the presence of a SD ship in the sector.  Constraint (6.41) limits the total number of 

linking variables between any pair of sectors.  Constraint set (6.37) is stronger than 

constraints (6.40) and (6.41).  Constraint (6.42) limits the total number of linking 

variables entering to each sector.  If there is a ship of any type in sector i , there 
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could be at most 11 +=kP  coverage links to that sector (i.e. the total number of AAD 

ships plus the self defense link). 

Addition of constraints (6.37)-(6.42) to SAP3.2-L do not give promising 

results in terms of tightening the upper bound.  We report the results in Table 6.3. 

 

Table 6.3. Results of the Upper Bound Improvement Process. 

Total 
Ships 

Ship 
Types1 

SAP3.2-P2 
(1) 

SAP3.2-L3 
(2) 

% Gap    
(1 vs. 2) 

SAP3.2-L3 
w/ cuts (3) 

% Gap    
(1 vs. 3) 

Reduction 
in Upper 

Bound (%) 
3  1,1,1 2.69 13.93 80.7 4.49  40.1 67.8  
4  1,1,2 3.57 14.31 75.0 5.86  39.1 59.0  
4  1,2,1 3.63 14.43 74.8 6.17  41.2 57.2  
4  2,1,1 3.88 17.00 77.2 9.74  60.1 42.7  
5  1,2,2 4.53 14.74 69.3 7.47  39.4 49.3  
5  2,1,2 4.86 17.21 71.8 11.58  58.0 32.7  
5  2,2,1 4.86 17.24 71.8 11.82  58.9 31.4  
6  2,2,2 5.85 17.37 66.3 12.84  54.5 26.1  
7  2,2,3 6.83 17.48 61.0 13.77  50.4 21.3  
8  2,3,3 7.82 17.61 55.6 14.74  47.0 16.3  
9  2,3,4 8.79 17.70 50.3 15.45  43.1 12.7  

10  2,5,3 9.77 17.84 45.2 16.27  39.9 8.8  
10   3,5,2 9.92 18.52 46.4 17.33   42.8 6.5   

1   Number of Ships of Type 1,2, and 3. 
2   SAP3.2-P Objective Calculated for SAP3.2-L Solution. 
3   Linear programming relaxation of SAP3.2-L 

 

Test problems are generated for 19 sectors.  When the number of ships is 

small compared to the number of sectors, the percent reduction in the upper bound 

and in the gap is impressive.  A maximum of 67.8% reduction in upper bound is 

achieved when TG has 3 ships.  However, the percent gap between the upper bound 

and the lower bound stayed between 39.1 and 60.1%.  The percent reduction in upper 

bound decreases as total number of ships increases.  One may consider increasing the 

number of sectors in order to decrease the ratio of total number of ships to total 
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possible sectors, but this increases the number of variables and constraints 

immensely.   

 Solution approaches for SAP3.2-P and SAP3.2-L presented above and the 

continuation of the trials in the wake of preceding approaches produced 

unsatisfactory results for SAP3.2-L (Neither the Lagrangean relaxation nor the valid 

inequalities generated sufficiently tight upper bounds.).  We present a new variant of 

SAP3.2, which maximizes the sum of coverage below.  We call new SAP3.2 as 

SAP3.2-C.  We introduce another model, SAP4 in the following sections before any 

discussion on the reasoning to use SAP3.2-C and SAP4 instead of SAP3.2-L.  SAP4 

also maximizes the sum of coverage. 

SAP3.2-C model is the same as SAP3.2-P except the objective function.  

Here in SAP3.2-C, we maximize the total coverage provided to the ships of the TG.   

 

 ∑∑∑
i j k

ijkijk xcMax      (6.43) 

subject to 

(6.28), (6.29), (6.30), (6.31), and (6.32). 

 

6.4 SAP4 - SECTOR ALLOCATION MODEL-IV 

Suppose that there are P  AAW ships with identical air defense capabilities 

and R  ND ships with no effective air defense capability, i.e. we restrict ourselves by 

two types of ships.  Let m  be the total number of sectors in which the warships 

composing the naval TG may be assigned, indexed { }mMj ,...,1=∈ .  Let i  be an 

alias for j .   
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ijc : the coverage provided by the AAW ship at sector j  to sector i . 





=
otherwise.,0

sector   toallocated is shipAAW an  if,1 j
y j  





=
otherwise.,0

sector  defend  todecide  weif,1 i
zi  





=
otherwise.,0

 sector  defend  todecide  weand  sector cover can   that sector at  ship a is  thereif,1 iij
xij

 

Then, SAP4 can be written as follows: 

∑∑
≠i ij

ijij xcMax       (6.44) 

subject to 

   Py
j

j ≤∑        (6.45) 

jijiyx jij ≠≤ ,,  allfor      (6.46) 

   Rz
i

i ≤∑        (6.47) 

jijizx iij ≠≤ ,,  allfor      (6.48) 

jzy jj   allfor 1≤+       (6.49) 

jijixij ≠≥ ,,  allfor 0      (6.50) 

{ } jy j   allfor 1,0∈       (6.51) 

{ } izi   allfor 1,0∈       (6.52) 

The objective function maximizes the sum of the coverage provided to the 

ships in TG.  Constraints (6.45) and (6.47) enforce respectively at most P ships and R 



 

116 

ships to be allocated.  Constraints (6.46) and (6.48) ensure that if there is no AAW 

ship allocated to sector j  then there can be no coverage provided from sector j , and 

if there is no demand (ND ship) at sector i  then there can be no coverage provided to 

sector i .  Constraint (6.49) ensures that each sector can have at most one ship.  

Constraints (6.50), (6.51) and (6.52) enforce binary and non-negativity restrictions 

on the decision variables. 

6.4.1 Discussion  

In this section, we elaborate on the use of coverage instead of probability of 

no-leaker in the objective function. 

In SAP, the objective is to determine a robust air defense formation for a 

naval TG with known ships and air defense capabilities.  We still need to utilize the 

coverage parameter, which is the measure of how well one ship can defend herself or 

another ship against a perceived and aggregated threat.  That is, we do not know the 

threat exactly, but we can predict the threat using information from different sources 

such as intelligence and surveillance.  Alternatively, we can estimate the coverage 

parameter by aggregating the results from a number of likely scenarios.  Although 

solving SAP using a probability of no-leaker objective function is desirable, it is 

unreasonable to accept the computational burden due to the probability of no-leaker 

objective function, considering the fact that the threat is defined vaguely.   

We have also checked the quality of the solutions produced by a coverage 

model, here SAP4, through calculating the SAP3.2-L objective function value for 
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SAP4 solution and contrasting this with the genuine objective of SAP3.2-L.  Table 

6.4 depicts the % gap, which is calculated as follows: 

100*%
2.3

2.34

LSAP

LSAPSAP

Z
ZZ

Gap
−

−−
=  

where 4SAPZ  is the SAP3.2-L objective value calculated for the solution found with 

SAP4.  Table 6.5 shows % gap between SAP3.2-L and SAP4 solutions in terms of 

the original SAP3.2-P objective function.  Maximum % gap between two solutions 

for different combinations of the ships is less than two percent for both comparisons.  

These results enable us to state that the coverage objective is a good approximation 

for the probability of no-leaker objective.  Therefore, we can try to solve SAP3.2-C 

instead of SAP3.2-P, reducing the computational burden substantially. 

 

Table 6.4. % Gap Between SAP3.2-L and SAP4 Solutions in Terms of SAP3.2-L 
Objective Function. 

Number of ND Ships Number 
of AAD 
Ships 2 3 4 5 6 8 10 

2 0.00 0.00 -0.31 -0.25 -0.03 0.00 0.00 

3 -1.33 -1.12 -0.96 -0.84 -0.74 -0.46 -0.42 

4 -0.73 -0.64 -0.56 -0.49 -0.44 -0.34 -0.28 

5 -0.58 -0.23 -0.34 -0.17 -0.17 -0.02 -0.01 

6 -0.40 -0.09 0.00 -0.07 0.00 0.00 0.00 

8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 6.5. % Gap Between SAP3.2-L and SAP4 Solutions in Terms of SAP3.2-P 
Objective Function. 

Number of ND Ships Number 
of AAD 
Ships 2 3 4 5 6 8 10 

2 0.55 0.69 1.19 1.18 1.37 1.23 1.06 

3 0.41 0.65 0.82 0.94 1.04 1.29 1.29 

4 1.10 1.22 0.15 -0.17 0.28 0.42 0.00 

5 -0.33 -0.04 -0.01 -0.06 -0.04 0.02 0.01 

6 -0.26 -0.12 -0.08 -0.10 0.26 0.02 0.01 

8 -0.03 0.00 0.01 0.02 -0.02 -0.01 1.93 
 

6.4.2 Solution Procedure 

We have added the following valid inequalities derived from the physical 

nature of the problem to SAP4 model.  These valid inequalities are; 

izPx i
j

ij   allfor ≤∑       (6.53) 

jyRx j
i

ij   allfor ≤∑       (6.54) 

Constraint (6.53) limits the number of linking variables by P , if there is a SD 

ship or ND ship in the sector.  Otherwise, the number of linking variables is limited 

to zero.  Constraint (6.54) limits the total number of linking variables by R , if there 

is an AAD ship in the sector.  Otherwise, the number of linking variables is zero. 

We can show the validity of the new inequalities, (6.53) and (6.54) using the 

following arguments: 

iij zx ≤  (constraint 6.48) then Rzx
i

i
i

ij ≤≤ ∑∑  (using constraint 6.47). 
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jij yx ≤  (constraint 6.46) then, if 0=jy , ixij ∀= 0  and if 1=jy , ixij ∀≤1 .  

Thus, jyRx j
i

ij   allfor ≤∑  (constraint 6.54).  The same reasoning is valid for 

constraint (6.53). 

Linear programming (LP) relaxation of SAP4 produced integer results after 

adding valid inequalities (6.53) and (6.54).   However, our research on unimodularity 

proof of the LP relaxation’s coefficient matrix revealed a negative result: the 

coefficient matrix is not totally unimodular.  Four out of 42 experiments shown in 

Table 6.6 gave fractional solutions.  We tried to develop additional cuts that warrant 

integer solution.  Following is another valid inequality that improves the quality of 

LP relaxation. 

kjikjixxxxxx kjjkkiikjiij ≠≠≤+++++   and  ,,  allfor 2  (6.55) 

Equation (6.55) restricts the number of links between any set of three sectors, 

i.e. if there are two AAD ships and one ND ship (or two ND ships and one AAD 

ship) in three sectors, there should be two links, otherwise there should be less than 

two links.  Addition of equation (6.55) cut three out of four fractional solutions.  

Thus, we produced 41 integer solutions out of 42 problem instances using LP 

relaxation.   
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Table 6.6.  Results of SAP4 Using LP Relaxation. 

  Number of ND Ships Number of 
AAD Ships   2 3 4 5 6 8 10 

Obj. Value 3.68 5.47 7.21 8.96 10.71 14.12 17.42 2 
*Time / **Solution 0/+ 0/+ 0/+ 0/+ 0/+ 0/+ 0/+ 
Obj. Value 5.49 8.16 10.76 13.35 15.93 20.82 25.58 3 
Time / Solution 0/+ 0/+ 0/+ 0/+ 0/+ 1/+ 1/+ 
Obj. Value 7.26 10.79 14.21 17.51 20.75 26.98 33.03 4 
Time / Solution 1/+ 0/+ 0/+ 0/+ 1/+ 0/+ 0/+ 
Obj. Value 8.96 13.18 17.42 21.48 25.44 32.97 40.31 5 
Time / Solution 0/+ 0/+ 0/+ 0/+ 1/+ 1/- 0/- 
Obj. Value 10.63 15.57 20.56 25.39 29.90 39.05 47.57 6 
Time / Solution 0/+ 0/+ 1/+ 0/+ 1/- 0/+ 0/- 
Obj. Value 13.74 20.07 26.45 32.80 38.97 50.36 60.80 8 
Time / Solution 0/+ 1/+ 0/+ 0/+ 0/+ 0/+ 1/+ 

*   Time in CPU Second.        
** + shows that solution is integer,  - shows that solution is fractional.    

 

6.5 SAP5 - SECTOR ALLOCATION MODEL-V 

Here, the objective is to maximize the minimum coverage of the ships in TG.  

A comprehensive presentation of the model is as follows:   

Suppose that there are P  AAD ships with identical air defense capabilities 

and R  ships with no effective air defense capability.  Let m  be the total number of 

sectors in which the warships composing the naval TG may be assigned, indexed 

{ }mMj ,...,1=∈ .  Let i  be an alias for j .   

ijc : the coverage provided by the AAW ship at sector j  to sector i . 

α  : decision variable. 

φ  :  a very large number. 
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=
otherwise.,0

sector   toallocated is shipAAW an  if,1 j
y j  





=
otherwise.,0

sector  defend  todecide  weif,1 i
zi  





=
otherwise.,0

 sector  defend  todecide  weand  sector cover can   that sector at  ship a is  thereif,1 iij
xij

 

Then, SAP5 can be written as follows: 

αMax        (6.56) 

subject to 

   Py
j

j =∑        (6.57) 

jiyx jij ,  allfor ≤       (6.58) 

   Rz
i

i =∑        (6.59) 

jizx iij ,  allfor ≤       (6.60) 

jzy jj   allfor 1≤+       (6.61) 

izxc i
j

ijij allfor )1( −+≤ ∑ φα     (6.62) 

jijixij ≠≥ ,,  allfor 0      (6.63) 

{ } jy j   allfor 1,0∈       (6.64) 

{ } izi   allfor 1,0∈       (6.65) 

0≥α         (6.66) 
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Equations (6.56) and (6.62) enforce the maximization of the minimum 

coverage.  The rest of the constraints are common in both SAP4 and SAP5 

formulations.   

Because of constraint (6.62), SAP5 has to be solved using MIP formulation.  

LP relaxation of SAP5 does not produce integer solutions.  All experiments we 

carried out produced fractional solutions.  Thus, the results are not reasonable in a 

maximin context.  We investigate the trade-off between using SAP4 and using SAP5 

in the next section. 

6.5.1 Discussion 

In this subsection, we elaborate on the use of sum of coverage and maximin 

coverage in the objective function.  A tactical commander at sea may be better 

informed if he or she knows the minimum coverage of the ships in TG instead of the 

sum of coverage.  (Conceptually, maximizing the minimum coverage is also closer to 

our original objective of maximizing the probability of no-leaker, which we had to 

give up due to nonlinearity.  Both objectives take a conservative approach and try to 

minimize the risk.)  Since we maximize the sum of coverage in SAP4, the model 

may produce unbalanced protection for the ships in TG.  We may have heavily 

defended some ships and poorly defended others in the optimal solution.  SAP5 

should produce more balanced coverage for all ships in TG.  However, SAP5 does 

not let us use the LP relaxation scheme and nice features of SAP4.  Thus, comparison 

of SAP4 and SAP5 in terms of maximizing the minimum coverage versus 

computation time may be helpful to determine the relative merit of SAP5 
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formulation.    Table 6.7 shows such a comparison of instances with SAP4 solutions 

calculated in terms of SAP5 objective, i.e. we report the minimum coverage obtained 

in SAP4 solution.  

There are two different SAP5 solutions in Table 6.7.  We solved SAP5 with 

relative termination criteria equals 0.1 (OPTCR=0.1) using GAMS/Cplex MIP 

solver.  In many cases OPTCR=0.1 produced inferior solutions.  We reduced relative 

termination criteria to 0.01 for those cases and reported the results in the same Table.  

SAP4 solves faster than SAP5 generally.  Table 6.8 depicts percent gap between 

SAP4 solution (in terms of SAP5 objective function) and the best SAP5 solution.  

Note that SAP5 still have inferior solutions (3 AAD ships and 2 or 10 ND ships).  

Percent gap is zero for those cases in true optimality of SAP5 solutions.   

 Table 6.8 shows that SAP4 and SAP5 solutions are comparable.  It is 

plausible to say that SAP4 does not produce solutions that are highly unbalanced.  

The maximum gap between SAP4 and SAP5 solutions in terms of maximin coverage 

is 7.0 percent.  Before a more detailed discussion on the gap between SAP4 and 

SAP5 solutions, we go back to the discussion on the integrality of the solution for LP 

relaxed SAP4 formulation.  Thirty-eight out of 42 experiments shown in Table 6.7 

gave non-fractional solutions.  We solved those instances that produce fractional 

solutions using MIP solver.  The results reported in Table 6.9 show that the LP 

relaxation of SAP4 produce tight upper bounds even for the cases that produce 

fractional solutions.  Note that, problem instances depicted in Table 6.9 produce 

fractional solutions when solved with LP relaxed formulation. 
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Table 6.7. Comparison of SAP4 and SAP5 Solutions.  SAP4 Solution Objective is 
Calculated in Terms of SAP5 Objective Function. 

  # of ND Ships # of AAD 
Ships   2 3 4 5 6 8 10 

SAP5 Obj.(OPTCR=0.1) 1.80 1.71 1.63 1.7 1.61 1.70 1.532 
Time (sec.) 0 0 0 0 1 6 3 
SAP5 Obj.(OPTCR=0.01)  1.79 1.77 1.75 1.75  1.63 
Time (sec.)  0 1 1 1  5 
SAP4 Soln.Obj. 1.80 1.79 1.77 1.75 1.75 1.70 1.63 

2 

Time (sec.)/Solution 0/+ 0/+ 0/+ 0/+ 0/+ 0/+ 0/+ 
SAP5 Obj.(OPTCR=0.1) 2.67 2.58 2.55 2.59 2.58 2.35 2.23 
Time (sec.) 1 1 1 1 1 3 5 
SAP5 Obj.(OPTCR=0.01) 2.67 2.67 2.60   2.43 2.35 
Time (sec.) 1 1 1   3 7 
SAP4 Soln.Obj. 2.69 2.67 2.60 2.59 2.580 2.41 2.36 

3 

Time (sec.)/Solution 0/+ 0/+ 0/+ 0/+ 0/+ 0/+ 1/+ 
SAP5 Obj.(OPTCR=0.1) 3.56 3.42 3.42 3.30 3.25 3.01 2.97 
Time (sec.) 1 1 1 3 2 4 3 
SAP5 Obj.(OPTCR=0.01)  3.53   3.30 3.25 3.05 
Time (sec.)  1   2 5 4 
SAP4 Soln.Obj. 3.56 3.53 3.42 3.30 3.24 3.10 3.00 

4 

Time (sec.)/Solution 1/+ 0/+ 0/+ 0/+ 0/+ 0/+ 0/+ 
SAP5 Obj.(OPTCR=0.1) 4.01 4.08 4.05 3.94 4.01 3.70 3.59 
Time (sec.) 1 2 1 2 2 3 3 
SAP5 Obj.(OPTCR=0.01) 4.41 4.32 4.24 4.14  4.00 3.66 
Time (sec.) 1 2 1 2  7 3 
SAP4 Soln.Obj. 4.41 4.25 4.24 4.06 3.96 3.86 3.66 

5 

Time (sec.)/Solution 0/+ 0/+ 0/+ 0/+ 1/+ 1/- 0/- 
SAP5 Obj.(OPTCR=0.1) 5.21 5.07 4.66 4.73 4.75 4.73 4.13 
Time (sec.) 1 1 1 1 2 3 4 
SAP5 Obj.(OPTCR=0.01)   4.99 4.87   4.38 
Time (sec.)   1 2   7 
SAP4 Soln.Obj. 5.21 5.04 4.99 4.83 4.48 4.73 4.25 

6 

Time (sec.)/Solution 0/+ 0/+ 0/+ 0/+ 1/- 0/+ 0/- 
SAP5 Obj.(OPTCR=0.1) 6.315 6.35 6.03 6.35 6.115 5.52 5.38 
Time (sec.) 1 2 1 1 4 4 2 
SAP5 Obj.(OPTCR=0.01) 6.72 6.55 6.39  6.22   
Time (sec.) 1 2 1  5   
SAP4 Soln.Obj. 6.71 6.54 6.39 6.35 6.165 5.51 5.03 

8 

Time (sec.)/Solution 0/+ 1/+ 0/+ 0/+ 0/+ 0/+ 0/+ 
+ shows that solution is integer,  - shows that solution is fractional 
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Table 6.8.  % Gap Between SAP4 and SAP5 Solutions Calculated in Terms of SAP5 
Objective Function. 

# of ND Ships # of AAD 
Ships 2 3 4 5 6 8 10 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
3 -0.7 0.0 0.0 0.0 0.0 0.8 -0.4 
4 0.0 0.0 0.0 0.0 1.9 4.8 1.7 
5 0.0 1.6 0.0 2.0 1.3 3.6 0.0 
6 0.0 0.6 0.0 0.8 6.0 0.0 3.1 
8 0.1 0.2 0.0 0.0 0.9 0.2 7.0 

 

 

Table 6.9.  Comparison of Optimal Objective Values of SAP4 for LP Relaxation and 
MIP Formulations. 

  # of ND Ships # of 
AAD 
Ships   6 8 10 

Z (LP Relax.) - 33.00 40.38 
Z (MIP) - 32.95 40.31 5 

% Gap - 0.15 0.17 
Z (LP Relax.) 29.94 - 47.57 
Z (MIP) 29.87 - 47.57 6 

% Gap 0.25 - 0.00 
 

6.5.2 SAP4.5 - Sector Allocation Model-4.5 

As to the discussion on balanced coverage of the ships in TG, tilting the 

objective function of SAP4 by using an objective function weight towards SAP5 

objective is another course of action that we investigated.  We developed an 

intermediate model between SAP4 and SAP5.  Thus we refer to this model as 

SAP4.5, which is formulated below: 

ε  : objective function weight. 
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αε+∑∑
≠i ij

ijij xcMax      (6.64) 

subject to 

(6.54), (6.55), (6.56), (6.57), (6.58), (6.59), (6.60), (6.61), (6.62), and (6.63).  

 

We investigated for intermediate solutions in terms of maximin objective of 

SAP5 by using SAP4.5 with different objective function weights.  The objective 

function of SAP4.5 includes two terms, namely a maxisum term and a maximin term.  

We expected to increase the quality of solution in terms of maximizing the minimum 

coverage by incrementally increasing the objective function weight of maximin term 

while keeping maxisum term as the more influential part in the objective function.   

We implemented this idea for several cases such as 6 AAD – 6 ND ships, 8 AAD – 

10 ND ships, 4 AAD – 8 ND ships, 4 AAD – 6 ND ships, and 5 AAD – 6 ND ships.  

We failed to produce intermediate solutions for all those cases. 

6.6 DISCUSSION 

In this chapter, we have presented five different SAP models, SAP1 through 

SAP5.  SAP1 maximizes the sum of expected coverage provided to the ships in TG.  

This model identifies each individual ship as a distinct entity.  While SAP1 takes an 

indirect approach to maximization of the probability of no-leaker for the TG, SAP2 

directly maximizes the probability of no-leaker for the TG using the same set of 

constraints.  SAP3 has a major difference in handling the ships.  SAP3 uses the idea 

of sister ships that have identical weaponry.  Thus, we could categorize ships in 

several types and reduce the computational burden without sacrificing any fidelity.  

While SAP3.1 uses only one type of ship, SAP3.2 uses multiple types.  Since we 
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developed SAP3.2 further, we call the original SAP3.2 as SAP3.2-P that has a 

nonlinear objective function.  Although we prove that the objective function of 

SAP3.2-P is concave, solving a nonlinear 0-1 integer programming problem is 

considered to be out of the scope of this research.  Instead, we developed a 

linearization procedure for SAP3.2-P and named this model as SAP3.2-L.  SAP3.2-C 

model is the same as SAP3.2-P except the objective function.  In SAP3.2-C, we 

maximize the total coverage provided to the ships of the TG.  SAP4 model 

maximizes the sum of the coverage provided to the ships in TG as in SAP3.2-C.  

However SAP4 has only two types of ships (i.e. AAD ships and ND ships).  Cuts 

generated for SAP4 enable LP relaxation of SAP4 to produce integer solutions most 

of the time.  Thus SAP4 can be used to solve SAP3.2-C in a branch and bound 

scheme.  We focus on solving SAP using a branch and bound approach in the next 

chapter.  In SAP5, the objective is to maximize the minimum coverage of the ships in 

TG.  We investigate finding intermediate solutions between SAP4 and SAP5 by 

using a variation of SAP5, called SAP4.5.  Summary of features and drawbacks of 

the models are given in Table 6.10.  

Considering the models and the results presented in this chapter, we conclude 

that SAP3.2-C is the most suitable model for SAP.  We implemented a branch and 

bound solution procedure for SAP3.2-C model, which is explained in the following 

chapter.  
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Table 6.10.  Summary of SAP Models. 

Model Objective Nonlinearity 
in Obj. Func. 

Treatment 
of Ship 
Types 

Solution 
Difficulty 

SAP1 
Maximization of the 
total expected 
coverage 

Yes 
(resembles 
QAP) 

Individual Hard to solve 

SAP2 
Maximization of the 
probability of no-
leaker 

Yes Individual Hard to solve 

SAP3.1-P 
Maximization of the 
probability of no-
leaker 

Yes Single 
ship type Hard to solve 

SAP3.2-P 
Maximization of the 
probability of no-
leaker 

Yes Multiple 
ship types Hard to solve 

SAP3.1-C Maximization of the 
total coverage No Single 

ship type 
Easy with LP 
relaxation. 

SAP3.2-C Maximization of the 
total coverage No Multiple 

ship types Moderate 

SAP4 Maximization of the 
total coverage No Two ship 

types 
Easy with LP 
relaxation 

SAP5 Maximization of the 
minimum coverage No Two ship 

types 

Hard (LP 
relaxation is 
not suitable) 

SAP4.5 

Maximization of the 
weighted sum of 
total and minimum 
coverages 

No Two ship 
types 

Hard (LP 
relaxation is 
not suitable) 
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CHAPTER VII 

 

7. SOLUTION OF THE SECTOR ALLOCATION PROBLEM (SAP) 

In this chapter, we develop the solution procedure for SAP using model 

SAP3.2-C.  Our argument for the computational complexity of SAP3.2-L in 

preceding chapter is also valid for SAP3.2-C.  Without a formal proof, we can say 

that SAP3.2-C is very hard to solve in terms of computational complexity.  SAP3.2-

C has additional constraints besides the constraints similar to those of p-median, 

which is an NP-Hard problem even when the network has a simple structure (Kariv 

and Hakimi, 1979).  Thus, development of tight upper and lower bounds is very 

important for solving the problem successfully.  We discuss our lower and upper 

bounding strategies in Section 7.1 and 7.2 respectively.  We then present our 

branching strategies in the following section.  We conclude this chapter with 

computational results, after presenting the branch and bound algorithms in Section 

7.4. 

7.1 LOWER BOUNDING STRATEGIES 

We use two lower bounding strategies in the solution procedure.  One of 

those strategies is the randomized heuristic, which was introduced in previous 

chapter.  We used the randomized heuristic (taking the best of a large number of 
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randomly generated solutions) to establish a simple lower bound for SAP3.2-C.  This 

is taken as a first step towards developing tighter lower bounds.  We generate test 

problems with 19 sectors, 3 AAD ships and different combinations of SD and ND 

ships.  We use the same set of problems throughout this chapter.  We report the 

results of SAP3.2-C and Randomized Heuristic in Table 7.1.  The results reported for 

Randomized Heuristic are the best solution chosen out of 100,000 trials.  

Randomized heuristic performed well for the small test problems that we could solve 

to optimality, producing tight lower bounds for these problems.   

 

Table 7.1.  Comparison of SAP3.2-C and Randomized Heuristic Results. 

  Number of SD Ships Number of 
ND Ships   0 2 3 4 5 6 

SAP3.2C 9.49 15.40 18.40 21.39 24.37 27.25 
Random 9.49 15.29 18.24 21.14 24.19 26.69 1 
% Gap 0.00 0.71 0.87 1.17 0.74 2.06 
SAP3.2C 12.08 18.00 20.99 23.97 26.85 29.66 
Random 12.08 17.84 20.74 23.79 26.29 29.22 2 
% Gap 0.00 0.89 1.19 0.75 2.09 1.48 
SAP3.2C 14.60 20.59 23.57 26.45 29.26 32.06 
Random 14.49 20.34 23.39 25.89 28.82 31.60 3 
% Gap 0.75 1.21 0.76 2.12 1.50 1.43 
SAP3.2C 17.20 23.17 26.05 28.86 31.66 34.42 
Random 17.04 22.99 25.49 28.42 31.20 33.99 4 
% Gap 0.93 0.78 2.15 1.52 1.45 1.24 
SAP3.2C 22.37 28.06 30.86 33.62 36.32 38.95 
Random 22.19 27.62 30.40 33.19 35.90 38.59 6 
% Gap 0.80 1.57 1.48 1.27 1.15 0.92 
SAP3.2C 27.26 32.82 35.52 38.15 40.78 43.40 
Random 26.82 32.39 35.10 37.79 40.59 43.15 8 
% Gap 1.61 1.30 1.18 0.94 0.47 0.57 

 

The second lower bounding strategy is using the linear programming 

relaxation of SAP4.  SAP4 is formulated for only two types of ships, hence we need 

to group the ships into AAD ships and ND ships.  We combine SD and ND ships 
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within the group of ND ships.  Having an all integer solution for the relaxed SAP4 is 

another condition to be satisfied.  Otherwise, we cannot use this procedure for 

developing a lower bound.  If we have a fractional solution for the relaxed SAP4, the 

fractional solution constitutes an upper bound for SAP4 and we cannot guarantee that 

this solution will be a lower bound for SAP3.2-C.  If the relaxed SAP4’s solution is 

integer, we calculate the objective function value of SAP3.2-C using the solution 

generated by the relaxed SAP4 and add the coverage of the SD ships to produce a 

lower bound for SAP3.2-C.  Table 7.2 depicts the results of the lower bounding 

strategy using the relaxation of SAP4.  The second lower bounding strategy produced 

highly satisfactory results.  We attained the optimal solution of SAP3.2-C in 34 out 

of 36 cases by using the solution of the linear programming relaxation of SAP4 with 

added cuts.  The maximum percent gap between SAP3.2-C objective and the lower 

bound was 2.63.  The relaxed SAP4 produced integer solutions for all the cases 

investigated.  However, we have shown that the relaxed SAP4 could produce non-

integer solutions as reported in the preceding chapter. 
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Table 7.2.  Comparison of SAP3.2-C and Relaxed SAP4 Results. 

  Number of SD Ships Number of 
ND Ships   0 2 3 4 5 6 

SAP3.2C 9.49 15.40 18.40 21.39 24.37 27.25 
SAP4-LP* 9.24 15.40 18.40 21.39 24.37 27.25 1 
% Gap 2.63 0.00 0.00 0.00 0.00 0.00 
SAP3.2C 12.08 18.00 20.99 23.97 26.85 29.66 
SAP4-LP 11.93 18.00 20.99 23.97 26.85 29.66 2 
% Gap 1.24 0.00 0.00 0.00 0.00 0.00 
SAP3.2C 14.60 20.59 23.57 26.45 29.26 32.06 
SAP4-LP 14.60 20.59 23.57 26.45 29.26 32.06 3 
% Gap 0.00 0.00 0.00 0.00 0.00 0.00 
SAP3.2C 17.20 23.17 26.05 28.86 31.66 34.42 
SAP4-LP 17.20 23.17 26.05 28.86 31.66 34.42 4 
% Gap 0.00 0.00 0.00 0.00 0.00 0.00 
SAP3.2C 22.37 28.06 30.86 33.62 36.32 38.95 
SAP4-LP 22.37 28.06 30.86 33.62 36.32 38.95 6 
% Gap 0.00 0.00 0.00 0.00 0.00 0.00 
SAP3.2C 27.26 32.82 35.52 38.15 40.78 43.40 
SAP4-LP 27.26 32.82 35.52 38.15 40.78 43.40 8 
% Gap 0.00 0.00 0.00 0.00 0.00 0.00 

* Lower bound produced by using the solution of the linear programming relaxation of SAP4 with cut constraints. 

 

7.2 UPPER BOUNDING STRATEGIES 

We develop an upper bounding scheme for SAP3.2-C by using SAP4 and 

SAP3.1 models.  Figure 7.1 shows a graphical representation of an instance of 

SAP3.2-C, where arrows indicate the defense support that can be provided.  In 

SAP3.2-C model, AAD ships are assumed to be the global supporters of the TG.  

Self defense (SD) ships can defend themselves in addition to the support provided by 

AAD ships.  Ships with no air defense capability (ND) must receive air defense 

support from AAD ships. 
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SAP4 model accounts for the interaction between the AAD ships and the 

other ships of the TG assuming they are all ND ships.  However, we may add self 

defense contribution of each individual ship exogenously.  This is depicted in Figure 

7.2.  SAP4 can only accommodate two types of ships.  However, we can identify SD 

ships exogenously as a third ship type.  SAP4 does not capture the interaction 

between the AAD ships.  Solving the interaction among the AAD ships separately 

and adding its objective function value to SAP4 objective function value constitutes 

an upper bound for SAP3.2-C model.  Interaction between a number of identical 

ships is captured in SAP3.1 model.  Note that we assume infinite supply of rounds of 

SAM systems on board of AAD ships.  An instance of SAP3.1 is shown in Figure 

7.3.  Here SAP3.1 is used with the objective function that maximizes the total 

coverage the identical ships provided to each other. 

Area Air Defense
(AAD) Ships

Ships with Self-Defense
(SD) Capability

Ship with No Air Defense
(ND) Capability

 

Figure 7.1. Representation of an Instance of SAP3.2-C Model with Three Different 

Ship Types (i.e. 3 AAD Ships, 2 SD Ships and 1 ND Ship). 
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Area Air Defense
(AAD) Ships

Rest of the Ships in
Task Group

SD

SD

ND

 

Figure 7.2.  Representation of an Instance of SAP4 Model. 

 

Area Air Defense
(AAD) Ships

 

Figure 7.3.  Representation of an Instance of SAP3.1 Model with Three Identical 

Ships of AAD Type.  
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We have checked the quality of upper bounds produced by the above upper 

bounding scheme.  We used the same test problems with 19 sectors, 3 AAD ships 

and different combinations of SD and ND ships.  The results are given in Table 7.3.  

The % gap between upper bound and SAP3.2-C objective value is less than 3 % with 

one exception, and less than 2 % in 29 of 36 cases.  The 3.31 % gap marks the largest 

deviation.  This is a promising upper bounding scheme provided that we can easily 

solve SAP3.1 and SAP4 models. 

 We presented the linear programming relaxation of SAP4 for an efficient 

solution procedure in the preceding chapter.  However, we did not specifically 

address the solution procedure of SAP3.1-C before.  SAP3.1-C is an easier problem 

than SAP3.2-C.  We may directly solve SAP3.1-C by either using a MIP solver or 

enumerating all the solutions when the problem size is small and it warrants using 

any of those approaches in terms of computational time.  This approach may be 

reasonable considering the fact that we need to solve SAP3.1-C only once.  

However, when the number of sectors is large, solving SAP3.1-C even for a small 

number of AAD ships may require extensive computational resources.  That 

reasoning leads us to develop an efficient solution procedure for SAP3.1-C.  We 

develop valid inequalities for SAP3.1-C that enable the linear programming 

relaxation to produce efficient upper bounds for SAP3.1-C below. 
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Table 7.3. Upper Bounds for SAP3.2-C Objective Function Using SAP4 and SAP3.1 

Models. 

  Number of SD Ships Number of 
ND Ships  0 2 3 4 5 6 

1 SAP3.2C 9.49 15.40 18.40 21.39 24.37 27.25 
 SAP4+SAP3.1 9.65 15.81 18.81 21.80 24.78 27.66 
  % Gap 1.69 2.66 2.23 1.92 1.68 1.50 
2 SAP3.2C 12.08 18.00 20.99 23.97 26.85 29.66 
 SAP4+SAP3.1 12.34 18.41 21.40 24.38 27.09 30.07 
  % Gap 2.15 2.28 1.95 1.71 0.89 1.38 
3 SAP3.2C 14.60 20.59 23.57 26.45 29.26 32.06 
 SAP4+SAP3.1 15.01 21.00 23.98 26.86 29.67 32.47 
  % Gap 2.81 1.99 1.74 1.55 1.40 1.28 
4 SAP3.2C 17.20 23.17 26.05 28.86 31.66 34.42 
 SAP4+SAP3.1 17.61 23.58 26.46 29.27 32.07 34.83 
  % Gap 2.38 1.77 1.57 1.42 1.30 1.19 
6 SAP3.2C 22.37 28.06 30.86 33.62 36.32 38.95 
 SAP4+SAP3.1 22.78 28.47 31.27 34.03 36.73 39.36 
  % Gap 1.83 1.46 1.33 1.22 1.13 1.05 
8 SAP3.2C 27.26 32.82 35.52 38.15 39.87 43.40 
 SAP4+SAP3.1 27.67 33.23 35.93 38.56 41.19 43.81 
  % Gap 1.50 1.25 1.15 1.07 3.31 0.94 

 

 The valid inequalities for SAP3.1-C are; 

jixyy ijji ,  allfor    1+≤+      (7.1) 

jixx jiij ,  allfor =       (7.2) 

iPyx i
j

ij   allfor ≤∑      (7.3) 

Constraint (7.1) limits the total number of AAD ships in two sectors by one 

plus the value of linking variable between the two sectors.  If there is no link between 

two sectors, there could be at most one sector with an AAD ship.  Constraint (7.2) 

equalizes the value of linking variable from sector i  to sector j  to the value of 
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linking variable from sector j  to sector i .  Constraint (7.3) limits the number of 

linking variables by P , if there is an AAD ship in the sector.  Otherwise, the number 

of linking variables is limited to zero.   

Table 7.4.  Comparison of Solving SAP3.1-C Using CPLEX MIP Solver and LP 
Relaxation of SAP3.1-C with Cuts. 

CPLEX MIP SOLVER LP Relax. of SAP3.1-C Number of 
AAD Ships Obj. Value Time (sec) Obj. Value Time (sec) 

2 3.12 5.0 3.12 0.0 
3 6.85 7.0 6.87 0.0 
4 12.02 12.0 12.02 0.0 
5 18.44 17.0 18.44 0.0 
6 26.08 20.0 26.08 0.5 
7 34.82 25.0 34.82 0.0 
8 44.80 21.0 44.80 0.5 
9 55.92 21.0 55.92 0.0 

      10 67.82 16.0 67.82 0.5 
* Runs carried out on a personal computer with 2.1 GHz CPU and 256 MB RAM 

  

The quality of upper bounds produced by the linear programming relaxation of 

SAP3.1-C after adding the valid inequalities above depicted in Table 7.4.  The 

second and third columns of Table 7.4 show the optimal value and the elapsed time 

of SAP3.1-C solution using MIP solver of CPLEX.  Upper bounding scheme 

produces the optimal objective function value of SAP3.1-C for 8 out of 9 test 

problems.  Percent gap between the upper bound and the optimal solution for the 

problem with 3 AAD ships is 0.35 percent.  Thus, the quality of the upper bound is 

satisfactory.  We then can use as an upper bound for SAP3.2-C the sum of the 

objective function values of relaxed SAP4 and relaxed SAP3.1-C with added cuts. 
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7.3 BRANCHING STRATEGIES 

We consider six different branching strategies when we branch at a node in 

the branch and bound tree.  We explain each one of those strategies below. 

Branching Strategy 1 (BS1):  In this strategy, we first branch on AAD ships.  

After AAD ships, we branch on SD ships and ND ships respectively.  At each node 

we consider, we first check for non-integer optimal solution values for AAD ships.  

If there is any, we branch on that variable.  If there is no non-integer variable for 

AAD ships, we check for non-integer variables for SD ships.  If there is any, we 

branch on that variable, otherwise we branch on a non-integer variable for ND ships, 

if there is any.   

Branching Strategy 2 (BS2):  This strategy is very similar to BS1.  In this 

strategy we just change the order of the precedence of AAD ships.  We first branch 

on SD ships, then AAD ships and finally ND ships. 

Branching Strategy 3 (BS3):  In this strategy we first branch on SD ships, 

then ND ships and finally AAD ships.  

In the next three strategies, we try to branch on the variables corresponding to 

different ship types in a cyclic manner.  We first branch on one ship of each ship type 

then the second ship of each type and so on.  At each node, we first check the last 

variable that was fixed and the corresponding ship type.  We branch on a variable 

corresponding to the next ship type of the branching strategy, if there is any non-
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integer variable corresponding to that ship type.  Otherwise, we continue with the 

variables corresponding to the next ship type in order of the branching strategy. 

Branching Strategy 4 (BS4):  In BS4, we consider the order of AAD, SD, and 

ND ship types.  Assume that we last branched on a variable corresponding to an 

AAD ship.  Then, we try to find a non-integer variable corresponding to SD ships.  If 

there is any, we branch on that variable.  If there is no non-integer variable for SD 

ships, we check for non-integer variables for ND ships.  If there is any, we branch on 

that variable, otherwise we branch on a non-integer variable for AAD ships. 

Branching Strategy 5 (BS5):  This strategy is very similar to BS4.  In this 

strategy we branch first according to SD ship, and then AAD ship, and finally ND 

ship.  If the last variable that was fixed corresponds to a ND ship, we try to branch on 

a variable corresponding to a SD ship, thus start the precedence order from the 

beginning again.   

Branching Strategy 6 (BS6):  In this strategy we branch according to SD ship, 

and then ND ship, and finally AAD ship order.  If the last variable that was fixed 

corresponds to a AAD ship, we try to branch on a variable corresponding to a SD 

ship, starting the precedence order from the beginning again.   

7.4 BRANCH AND BOUND (B&B) ALGORITHM 

In this section, we present two different versions of a branch and bound 

algorithm for SAP3.2-C.  In one version, we use depth first search (DFS) branch 
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selection strategy.  Best node first search (BNFS) branch selection strategy is used in 

the second version.  

7.4.1 Depth First Search Branch Selection Strategy 

Let G  be an ordered set of (partial) integer programs { }iIP , each of which is 

of the form { }ii
IP SxcxZ ∈= :max  where SS i ⊆  and S  is the polytope defined by 

the constraints of problem SAP3.2-C.  Associated with each problem in G  there is 

an upper bound i
IP

i
ZZ ≥ . 

Step 1 // Initialization // 

 { }IPG = , SS =0 . 

 Find a lower bound, IPZ  for the original problem; 

• Find lower bound, LB1 by random heuristic 

• Solve SAP4 and calculate LB2 from that solution by using SAP3.2-C 

objective function 

• Set { }21,max LBLBZ IP =  

Step 2 // Termination test // 

 If ∅=G , then the solution 0x  that yielded 0cxZ IP =  is optimal, i.e. if there 

is no sub-problem to be solved then the best solution found is the optimal solution. 
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Step 3 // Branch selection and solution // 

 Select and delete the first sub-problem iIP  from G .  Solve its linear 

relaxation, iRP .  Let i
RZ  be the optimal objective function value and let i

Rx  be an 

optimal solution to iRP  if one exists.   

Step 4 // Pruning // 

a. If iRP  is infeasible then prune that node and go to Step 2. 

b. If IP
i
R ZZ ≤  then prune that node and go to Step 2. 

c. If ii
R Sx ∉ , i.e. the solution is fractional, and IP

i
R ZZ >  then find 

upper bound, 
i

Z .  If IP
i

ZZ ≤  then prune that node and go to Step 2, 

otherwise go to Step 5. 

d. If ii
R Sx ∈ , i.e. the solution is integer, and IP

i
R Zcx > , let i

RIP cxZ = .  

Delete from G  all sub-problems with IP
i

ZZ ≤  and IP
i
R ZZ ≤ .  Prune 

that node and go to Step 2. 

Step 5 // Branching // 

Select a fractional variable, α  to branch on.  Add those two new sub-

problems where 0=α  and 1=α  into the front of set G  and go to Step 3. 

 

7.4.2 Best Node First Search Branch Selection Strategy 

Let G  be a collection of (partial) integer programs { }iIP , each of which is of 

the form { }ii
IP SxcxZ ∈= :max  where SS i ⊆  and S  is the polytope defined by the 
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constraints of problem SAP3.2-C and nΒ  is the set of n-dimensional binary vectors.  

Associated with each problem in G  there is an upper bound i
IP

i
ZZ ≥ . 

Step 1 // Initialization // 

Find a lower bound, IPZ  for the original problem; 

• Find lower bound, LB1 by randomized heuristic 

• Solve SAP4 and calculate LB2 from that solution by using SAP3.2-C 

objective function 

• Set { }21,max LBLBZ IP =  

Solve SAP3.2-C using LP relaxation.  If n
Rx Β∉ , i.e. the solution is 

fractional, add the original problem to G , { }IPG = , SS =0 .  Otherwise stop, i.e. 

LP relaxation produced integer optimal solution. 

Step 2 // Termination test // 

 If ∅=G , then the solution 0x  that yielded 0cxZ IP =  is optimal, i.e. if there 

is no sub-problem to be solved then the best solution found is the optimal solution. 

Step 3 // Branch selection// 

 Select and delete the best sub-problem (i.e. the LP relaxed sub-problem that 

has the largest objective function value) from G .  If IP
i
R ZZ ≤  then, restart Step 3 to 

select another sub-problem from G . 
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Step 4 // Branching // 

Select a fractional variable, α  to branch on.  Create two new sub-problems 

with 0=α  and 1=α  respectively. 

For each new sub-problem do Step 5 and Step 6: 

Step 5 // Solution // 

Solve linear relaxation of the sub-problem i , iRP .  Let i
RZ  be the optimal 

objective function value and let i
Rx  be an optimal solution to iRP  if one exists.   

Step 6 // Pruning // 

If iRP  is infeasible then  

prune that node, 

else if IP
i
R ZZ ≤  then  

prune that node, 

else if ni
Rx Β∉ , i.e. the solution is fractional, and IP

i
R ZZ >  then  

find upper bound, 
i

Z  and if IP
i

ZZ ≤  then prune that node, otherwise 

add the sub-problem to G , 

else if ii
R Sx ∈ , i.e. the solution is integer, and IP

i
R Zcx >  then,  

set i
RIP cxZ =  and prune that node. 

Step 7 // Continue// 

Go back to Step 2. 

 



 

144 

7.5 COMPUTATIONAL RESULTS 

In this section, we present the computational results for the solution 

procedure of SAP3.2-C.  To test the solution procedure proposed in this chapter, we 

implemented the B&B algorithm in C.  We solved the linear programming sub-

problems by calling GAMS (General Algebraic Modelling Language) with CPLEX 

LP solver from C.  We used the same set of test problems presented in preceding 

sections. 

In order to make a decision on the branching strategy, we made 36 runs for 

three different problems.  Each problem was solved for two different branch 

selection and six different branching strategies.  The results of tests for this part are 

summarized in Table 7.5.  Detailed results including the changes in percent of nodes 

pruned by lower and upper bounding schemes as the iterations continue are given in 

Appendix G. 

As shown in Table 7.5, BS1 dominates the other branching strategies in terms 

of elapsed time end efficiency.  In reaching the optimal solution, BS1 explores a 

fraction of nodes compared to the other branching strategies.  Thus, we decide to use 

BS1 for further computational experiments.  DFS branch selection strategy performs 

better than BNFS branch selection strategy when we use BS1.  However, BNFS 

performs better than DFS for some other branch selection strategies.  We continue 

using both of the branch selection strategies in the following experiments in order to 

explore the performance of those strategies better.  
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Table 7.5.  Computational Results for Branching and Branch Selection Strategies. 

1LB 2UB LB  UB  LB  UB  

BS1 30.97 19.47 113 9.3 34.15 14.63 41 3.3 34.15 14.63 41 3.2

BS2 25.38 24.70 591 47.9 19.82 29.03 217 19.5 21.11 28.36 469 43.5

BS3 24.50 25.50 6313 435.5 20.10 29.85 4657 391.2 19.76 30.19 5905 498.8

BS4 26.06 23.94 8713 707.9 30.15 19.83 2909 224.6 28.08 21.85 4975 387.7

BS5 25.08 24.93 9075 621.2 25.16 24.78 6133 494.0 25.88 24.07 7739 618.4

BS6 24.77 25.20 9305 765.6 26.36 23.59 5481 432.9 23.53 26.44 7229 627.7

BS1 30.97 19.47 113 10.4 21.05 28.07 57 5.3 21.05 28.07 57 5.3

BS2 25.38 24.70 591 51.6 18.40 31.20 375 34.2 20.12 29.82 815 77.5

BS3 24.50 25.50 6313 539.9 17.25 30.91 12577 1068.1 16.97 30.94 17365 1476.1

BS4 32.32 17.69 5489 400.2 19.61 30.38 5105 435.8 20.85 29.13 7909 700.9

BS5 29.20 20.80 6773 512.0 20.10 29.87 7255 657.6 20.46 29.51 9181 781.7

BS6 29.01 20.99 6597 504.1 16.65 33.35 5473 474.5 22.72 26.46 9925 806.3
1  LB: Lower Bound
2  UB: Upper Bound
3  Total number of nodes explored to find the optimal solution.
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 The test problems with 19 sectors, 3 AAD ships and different combinations 

of SD and ND ships are solved using GAMS/CPLEX MIP solver and proposed B&B 

algorithm, using DFS and BNFS with BS1.  We used CPLEX with default settings.  

CPLEX uses best-bound search for branch selection, which chooses the unprocessed 

node with the best objective function of the associated LP relaxation.  CPLEX 

automatically selects the branching strategy in default setting.  That branching 

strategy allows CPLEX to select the best rule based on the problem and its progress.   
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Table 7.6.  Computational Results of the Solution Procedures for SAP3.2-C. 

0 2 3 4 5 6
Obj.1 9.49 15.40 18.40 21.39 24.37 27.25
Nodes3 6132 68813 1128490 90086 484814 222429
Time4 20.00 150.77 2035.00 158.00 823.00 417.00
Nodes 251 161 113 67 25 25
Time 21.42 13.05 9.47 5.69 2.10 2.60
Nodes 391 161 113 67 57 25
Time 32.13 12.89 10.21 5.34 5.28 2.59
Obj. 12.08 18.00 20.99 23.97 26.85 29.66
Nodes 41124 48083 516661 15070 383980 14886
Time 70.00 86.00 938.00 234.00 874.00 34.00
Nodes 237 113 67 41 25 15
Time 17.08 9.28 5.96 3.66 2.08 2.57
Nodes 293 113 67 57 25 15
Time 24.18 10.52 5.70 5.26 2.24 1.38
Obj. 14.60 20.59 23.57 26.45 29.26 32.06
Nodes 382827 56684 649829 1194060 1052971 94087
Time 615.00 104.00 1248.00 2029.00 2359.00 158.00
Nodes 161 67 41 25 15 11
Time 11.94 5.64 3.20 3.31 1.58 2.11
Nodes 161 67 57 25 15 11
Time 12.95 5.72 5.26 2.17 1.68 1.47
Obj. 17.20 23.17 26.05 28.86 31.66 34.42
Nodes 230535 212275 769433 2632150 103972 43882
Time 388.00 389.00 1286.00 5058.00 173.00 75.00
Nodes 113 41 25 15 11 11
Time 8.71 3.28 2.03 1.13 1.26 0.99
Nodes 113 57 25 15 11 11
Time 10.46 5.29 2.13 1.48 0.99 1.07
Obj. 22.37 28.06 30.86 33.62 36.32 38.95
Nodes 845652 547233 308749 181122 27460 4599
Time 1322.00 993.00 493.00 312.00 47.00 9.00
Nodes 61 15 11 11 11 11
Time 4.39 1.28 1.21 1.10 0.99 0.86
Nodes 57 15 11 11 11 11
Time 4.97 1.45 1.10 1.05 0.86 1.01
Obj. 27.26 32.82 35.52 38.15 40.78 43.40
Nodes 1477829 354538 6296 3124 220 24
Time 2909.00 578.00 13.00 7.00 2.00 2.00
Nodes 15 11 11 11 11 11
Time 1.22 1.03 1.01 0.91 0.93 0.95
Nodes 15 11 11 11 17 29
Time 1.77 1.84 0.77 0.95 1.26 2.94

1  Objective function value.
2  GAMS/CPLEX solver with default settings.
3  Total number of nodes explored to find the optimal solution.
4  Time in second for a personal computer with 2 GHz CPU and 256 MB of RAM.
5  Depth First Search.
6  Best Node First Search.
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 Table 7.6 depicts the computational results of the proposed solution 

procedures for SAP3.2-C.  B&B solution procedures using DFS and BNFS 

performed better than CPLEX in term of elapsed time and number of nodes explored.  

Although our implementation for solving the LP relaxed sub-problems in the B&B 

tree is not efficient in terms of time, we still perform better than CPLEX, since we 

need to explore only a very small fraction of nodes compared to CPLEX.  Our 

solution procedure would solve faster if we could embed an LP solver for sub-

problems within the procedure.   

 Tight lower and upper bounding schemes, and the efficient branching strategy 

enabled us to produce highly satisfactory results for the solution procedures.  
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CHAPTER VIII 

 

8. INTEGRATED SOLUTION APPROACH FOR ROBUST SECTOR 

ALLOCATION 

In this chapter, we present an integrated solution approach to attain a robust 

sector allocation for a naval TG by using MAP results within SAP.   

As we discussed before, SAP requires sector-to-sector coverage values 

provided by an AAD ship.  Thus, we need to feed SAP with this information.  

Sector-to-sector coverage values for a specified scenario can be generated using 

MAP.  Then we can find the best formation against the specified threat using SAP.  

We can find a robust formation against two or more scenarios by aggregating the 

sector-to-sector coverage values of MAP solutions, and then by solving SAP using 

the aggregated sector-to-sector coverage values.  In Section 2.3, we introduced two 

different interaction models between MAP and SAP.  Integrated solution approach 

proposed above uses the Interaction Model-1.   

In Interaction Model-1, we solve MAP for each sector pair and a number of 

representative attack scenarios and using aggregated results as input, we solve SAP.  

Information on the enemy inventory of warships and their weapon systems and the 

intelligence coming from different sources may be used to generate representative 
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scenarios.  Pairwise coverage values from MAP are input to SAP.  Coverage values 

are calculated in a restrictive scenario having only one AAD and one ND ship.  

In Interaction Model-2, we assume that we determine the formation of TG 

using sector allocation model and operate at sea.  Then, in the presence of an 

immediate ASM threat, we solve MAP to optimize our air defense against the threat.  

Thus, we do not need to use SAP and MAP on-line.   

We present our integrated solution approach on a sample problem.  Assume 

that  we need  to allocate  three AAD ships,  two SD ships,  and two ND ships to 19  
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Figure 8.1.  Geometry of a Sample SAP. 
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sectors with 2000 m. sector spacing and 60 degrees of bearing difference.  Figure 8.1 

depicts the geometry of the sample problem.  Ships are assumed to be stationed at the 

center of the assigned sectors.  Numbers at the center of the sectors represent the 

sector numbers. 

 We generated 6 different attack scenarios coming between 000 and 090 

bearings (between North and East directions).  For each attack scenario, we 

calculated the coverage provided by an AAD ship to a ND ship for every sector pair 

using MAP.  Thus, we solved MAP using one AAD and one ND ships for a total of 

19*19=361 times.  Note that we allow ships to be stationed at the same sector in 

order to be able to calculate the self-defense capability of AAD ships.  We take self-

defense capability of the SD ships as half of the defense capability of AAD ships.  

Calculated coverage parameters for each scenario are reported in Appendix H.  We 

then solved SAP with the coverage parameters for each scenario under consideration.   

 In Scenario 1, the air threat is one MM-38 Exocet ASM, which is coming 

from true North (000 degrees) and is initially detected at 21213.2 m. distance by the 

AAD ship.  We use constant initial detection distance from the AAD ship for each 

run of MAP with a different sector pair.  Figure 8.2 shows the result of SAP using 

MAP input for Scenario 1.  Note that none of the centers of our sectors do lie on the 

flight path of the attacking ASM.  Thus, SAP chooses the closest sectors to the 

attacker’s line of flight for allocating the AAD ships.  The resulting sector allocation 

is reasonable from a tactical point of view.   
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Figure 8.2.  Sector Allocation for Scenario 1.  AAD, SD, and ND Represent the 
Sectors of the Corresponding Ships in the Figure. 

 

 In Scenario 2, the air threat is again one MM-38 Exocet ASM, which is 

initially detected at 21213.2 m. distance by the AAD ship.  However, the ASM is 

coming from 045 bearing in this case.  Figure 8.3 shows the result of SAP using 

MAP input for Scenario 2.  Similar to the result of Scenario 1, SAP chooses the 

closest sectors to the attackers line of flight for allocating the AAD ships.   
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Figure 8.3.  Sector Allocation for Scenario 2. 

 

 In Scenario 3, the Exocet ASM is coming from 090 (East) bearing.  Figure 

8.4 shows the result of SAP using MAP input for Scenario 3.  Similar to the result of 

Scenario 1 and 2, SAP chooses the closest sectors to the attackers line of flight for 

allocating the AAD ships.  However, AAD ships are allocated to the sectors with 

centers directly on the line of flight of the attacking ASM in this case.  This condition 

enables the AAD ships in Scenario 3 to provide stronger coverage than the AAD 
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ships in Scenario 1 and 2 (e.g. the objective function value in Scenario 3 is 12.338 as 

opposed to 9.767 in Scenario 1 and 9.336 in Scenario 2). 
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Figure 8.4.  Sector Allocation for Scenario 3. 

 

 Assume that the first three scenarios are the representative scenarios for the 

expected threat.  That is, we expect one ASM from bearing 000-090, but we do not 

know the exact bearing.  Now, we need to aggregate the results in order to produce a 

robust formation that is reasonably strong against all the scenarios but not necessarily 

the best one against any of the scenarios.  
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 Taking average of the coverage values for each sector pair across the 

scenarios is a candidate aggregation procedure.  The resulting SAP solution for that 

approach is depicted in Figure 8.5.  Sector allocation in Figure 8.5 may not overlap 

with what is expected.  As we mention before, AAD ships provide stronger coverage 

in Scenario 3 compared to the Scenarios 1 and 2.  Thus, the aggregated sector 

allocation is heavily affected by the results of Scenario 3.  This result is reasonable 

considering the fact that we use small number of sectors and three scenarios. 
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Figure 8.5.  Aggregated Sector Allocation for Scenarios 1, 2, and 3 by Averaging the 
Coverage Values for Each Sector Pair. 
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Sectors, especially the outer ones, cover large areas.  Thus the resolution of 

locations in sample problem is very low.  In order to overcome this drawback, we 

need to use more sectors with small areas of control, and fine-tuned and relatively 

large number of representative scenarios. 

 Taking the necessary precautions by assuming the worst case may be an 

attractive approach to handling risks from a military perspective.  This idea leads us 

to another aggregation procedure.  For each sector pair, we can use the minimum 

sector-to-sector coverage across all the scenarios.  Then, we maximize the minimum 

coverage in SAP.  Thus we employ a risk averse approach in aggregating MAP 

results in order to produce a robust formation for TG.  We present the results of this 

approach in Figure 8.6.  The risk averse aggregation procedure produces more 

reasonable solutions than the averaging procedure.  AAD ships are allocated to the 

sectors roughly in the middle of the representative attack scenarios.   

 We show the effect of formations on the solution of MAP in Table 8.1.  For 

each formation generated above, we solve MAP using the attack Scenarios 1, 2 and 

3.  Note that the fist three formations are optimized for the corresponding attack 

scenarios.  Thus, MAP attains the highest objective function values, when the 

disposition of the TG is optimized for the specific attack scenario.  Robust 1-3 

formation in Table 8.1 represents the formation produced by the risk averse 

aggregation scheme.  Since the Robust 1-3 formation and the formation for Scenario 

2 are very similar to each other, they produce the same results for MAP.  Robust 

formation does not perform much better than those based on specific attack scenario.  
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However, the robust formation provides insurance against doing very poorly against 

a range of attack scenarios.  
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Figure 8.6.  Aggregated Sector Allocation for Scenarios 1, 2, and 3 by Taking the 
Minimum Coverage Value for Each Sector Pair. 
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Table 8.1.  Objective Function Values of MAP for Attack Scenarios and Formations. 

Attack 
Formation 

Scenario 1 Scenario 2 Scenario 3 
Scenario 1 0.487 0.265 0.185 
Scenario 2 0.337 0.431 0.265 
Scenario 3 0.185 0.302 0.693 
Robust 1-3 0.337 0.431 0.265 

 

In the next three scenarios, we use two different attacking ASMs coming 

from North, North-East, and East directions with approximately 10 degrees of 

bearing difference.  We have one Harpoon ASM in addition to one MM-38 Exocet 

ASM.  Harpoon is another widely used ASM in navies.  Its parameters such as speed 

and probability of being shot down are similar to that of an Exocet.  The initial 

detection distances of ASMs from AAD ship are approximately the same.   

 In Scenario 4, one Exocet and one Harpoon ASMs are coming from 000 

(North) and 010 bearings respectively.  Figure 8.7 shows the result of SAP using 

MAP input for Scenario 4.  Similar to the result of Scenario 1, SAP chooses the 

closest sectors to the attackers line of flight for allocating the AAD ships.   

 In Scenario 5, one Exocet and one Harpoon ASMs are coming from 045 

(North-East) and 055 bearings respectively.  Figure 8.8 shows the result of SAP 

using MAP input for Scenario 5.  Similar to the result of Scenario 2, SAP chooses 

the closest sectors to the attackers line of flight for allocating the AAD ships.  

However, the sectors of SD and ND ships are different from those in Scenario 2. 
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Figure 8.7.  Sector Allocation for Scenario 4. 

 

 In Scenario 6, one Exocet and one Harpoon ASMs are coming from 090 

(East) and 080 bearings respectively.  Figure 8.9 shows the result of SAP using MAP 

input for Scenario 6.  The sectors of the ships are almost the same as in Scenario 2.   
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Figure 8.8.  Sector Allocation for Scenario 5. 

 

Risk averse aggregation of the coverage results of Scenarios 4, 5, and 6 

produces similar output to the aggregation of Scenarios 1, 2, and 3, according to 

Figure 8.10.  AAD ships are allocated to the sectors roughly in the middle of the 

representative attack scenarios.   

 Table 8.2 depicts the results of MAP for attack scenarios 4, 5, and 6 and the 

corresponding formations.  The results are very similar to the ones in Table 8.1.  
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Robust 4-6 formation produces reasonable results.  The robust formation enables the 

TG to increase its worst-case performance against a variety of attack scenarios. 
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Figure 8.9.  Sector Allocation for Scenario 6. 

 

In this chapter, we have shown an integrated solution approach for MAP and 

SAP on sample scenarios.  Two different coverage aggregation procedures in the 

development of the robust formation were presented.  Aggregation schemes 

produced reasonable formations.  We have shown the effect of robust formations on 

MAP solutions.  We can define an integrated solution process for robust sector 

allocation as follows: 
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Figure 8.10.  Aggregated Sector Allocation for Scenarios 4, 5, and 6 by Taking the 
Minimum Coverage Value for Each Sector Pair. 

 

Table 8.2.  Objective Values of MAP for Attack Scenarios and Formations. 

Attack 
Formation 

Scenario 4 Scenario 5 Scenario 6 
Scenario 4 0.391 0.245 0.141 
Scenario 5 0.280 0.346 0.180 
Scenario 6 0.103 0.219 0.394 
Robust 4-6 0.280 0.346 0.180 

 



 

162 

Step 1: Define the representative attack scenarios using the intelligence 

information on general direction of threat, threat size, and enemy inventory of ASMs. 

Step 2: For each scenario, find the sector-to-sector coverage values by 

solving MAP. 

Step 3: Aggregate the sector-to-sector coverage values using an aggregation 

procedure. 

Step 4: Solve SAP for the TG using aggregated coverage values. 
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CHAPTER IX 

 

9. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH 

In this dissertation, we developed solution methods for the air defense 

problem of a naval TG.  We considered two interdependent problems, MAP and 

SAP.  MAP can be defined as the optimal allocation of a set of defensive missile 

systems of a naval TG to a set of attacking air targets.  SAP on the other hand, 

determines the air defense formation for a naval TG by locating ships in predefined 

sectors on the surface.  We discussed special properties, assumptions, and 

environments of the problems.  We also characterized the interaction between MAP 

and SAP. 

We formulated three different missile allocation models and several 

variations.  The first was the missile allocation model with no time dimension 

(MAP1).  We treated MAP with a discretized time dimension (MAP2) in the second 

model.  In the last model, we used continuous time dimension (MAP3).  Theoretical 

development of those models and proposed solution approaches were given.   

However, the mathematical programming models that were developed have 

not explicitly been used to solve MAP.  Although mathematical programming 

models do guarantee an optimal solution (without loss of generality), they usually 
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take much more than a few seconds in which we have to find solution for real time 

application of MAP.   

MAP requires real time solution and very fast implementation without even 

sacrificing a single second.  Thus, any solution procedure has to produce reasonable 

and high quality solutions in no more than several seconds.  This is a must have 

feature of any solution algorithm that is eligible to be used in TEWA module of a 

warship.  

Solving MAP for a large number of cases is a prerequisite for successfully 

solving SAP.  Since this process requires running MAP many times for a single SAP 

solution, non-real time use of MAP also requires fast and high quality solutions. 

Our solution approach for MAP uses construction and improvement 

heuristics.  We developed two greedy construction algorithms for MAP.  First of 

those algorithms, BEC heuristic, allocates SAM systems to incoming anti-ship 

missiles according to a measure called engagement potential.  In QUC algorithm, we 

aim to engage each threat ASM at least once.  Thus, we give precedence to the ASM 

that has the lowest number of SAM systems that can engage to it.   

We developed two improvement heuristics, OC and 2OX.  Our purpose in 

OC algorithm is to find the engagements that would increase the objective function 

value by changing the target ASM of an engagement under consideration and 

simultaneously considering the enhancement of the effectiveness of defense by 

increasing the total number of SAM missiles launched against target ASMs.  

Changing the target ASM means that an ASM will get one less shot while another 
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ASM will get one more shot.  The ASM that gets one less shot after change is 

considered for another shot observing the SLS tactic. 

Our purpose in 2OX algorithm is to find the engagement pairs that would 

increase the objective function value by exchanging the target ASMs of the SAMs in 

the engagements.  With each exchange, we also try to increase the number of 

engagements done against the ASMs under consideration.   

We tested our solution approach for 125 sample problems.  Solution 

procedure gave highly successful results.  We attained 121 optimal solutions out of 

125 test problems.  We generated 12 large test problems in order to be able to test the 

performance of improvement heuristics (OC, 2OX, OC+2OX, and 2OX+OC) in 

terms of computation time.  The largest run time recorded was 1.17 seconds.  Run 

times of the improvement heuristics for most of the other problems (44 out of 48 

problems) were less than half a second. 

We developed five different sector allocation models and several variations 

for SAP.  We also investigated the validity of different objective functions.  We 

identified the most suitable model for SAP.  We developed cuts for linear 

programming relaxation of the models and proposed branch and bound solution 

approaches.  Branch-and-bound solution approaches employ various branching and 

branch selection strategies along with the methods for deriving tight lower and upper 

bounds on the problem, in order to compose a viable solution strategy. The approach 

has been tested on some randomly generated problems.  Our solution procedure 

performed better than CPLEX in term of computation time and number of nodes 

explored.  Although our implementation for solving the LP relaxed sub-problems in 



 

166 

the branch and bound tree is not efficient in terms of time, we still perform better 

than CPLEX, since we need to explore only a very small fraction of nodes compared 

to CPLEX.  We owe this to tightness of our bounds and our problem specific 

branching strategy.  Our solution procedure could solve even faster by using an 

embedded LP solver for sub-problems.   

We have investigated SAP under two different assumptions: no information 

about the exact attack direction, and information coming from intelligence and 

surveillance sources about the direction of the attack.  Our solution approach can 

solve SAP using any of those assumptions.  Note that we need to define 

representative scenarios for the first assumption.  In that case, we expect the possible 

attack from any direction between 000 and 360 degrees.  Thus, solving SAP with the 

first assumption enables us to solve SAP with the second assumption and vice versa. 

We integrated MAP and SAP problems together in order to come up with a 

robust sector allocation for a naval TG by using MAP results within SAP.  Two 

different coverage aggregation procedures in the development of the robust 

formation were presented.  Aggregation schemes produced reasonable formations.  

We have shown the effect of robust formations on MAP solutions. 

Missile allocation model may be used in several areas such as in TEWA 

module of an AAW commander ship (on-line) as well as in decision-making process 

of the procurement of new air defense ships and in evaluating the capabilities of 

ships in inventory and the effectiveness of present tactics (off-line).  Sector allocation 

model may be used to develop new formations and tactics to counter the perceived 
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air threat likewise.  Since these models are intended for use by the military planners, 

we addressed the ways of capturing the reality at the maximum extent. 

The proposed solution approach for the TG air defense problem can be 

enhanced along several directions: 

Comparison of the proposed methodology with the existing air defense policy 

and procedures may reveal more insight on the utility of the approach.   

In addition to computational time requirement, solution quality of MAP for 

large problems needs to be investigated provided that an exact solution procedure for 

large size problems is developed. 

We considered SLS firing policy in the solution procedures for MAP.  

Solution procedures may be developed to include other firing policies such as shoot-

shoot-look-shoot-shoot (SSLSS) and shoot-shoot-look-shoot (SSLS) policies.   

SLS firing policy has an implicit cost consideration.  We only refire, if we do 

not shot down the threat ASM.  Thus, we do not consume SAM rounds, if it is not 

necessary.  However, we may consider cost component explicitly in a bicriteria 

optimization setting.  This approach allows scrutinized investigation of alternative 

solutions for MAP in terms of both probability of no-leaker and cost. 

Increasing the number of sectors by decreasing the bearing and sector spacing 

increases the resolution of sector allocations.  Experimentation with increased sector 

resolution may help to understand the effect of relatively small changes in sector 

allocations. 
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Analyzing the sector allocations using the tools developed in this research 

and creating template formations for assumed attack sizes and different TG 

compositions would be beneficial to the commander of TG at sea.  Large number of 

representative scenarios and different number of ship combinations with different air 

defense capabilities can be used in such an off-line study.  Thus, we can create 

libraries of solutions for possible attack and defense scenarios.  This might also 

provide improved guidelines on prescribing sector allocations. 

We solve MAP in a static environment, assuming simultaneous attack.  

However, both simultaneous and sequential attack waves can occur in the dynamic 

environment of a real combat situation.  Also attack size degrades as we shoot down 

some of the incoming ASMs, and this leaves some defensive capacity free to allocate 

against the surviving ASM threat.  One way of allocation of the free capacity is 

solving MAP again with remaining ASMs and SAM rounds.  High resolution 

simulation models can be developed to investigate the best use of MAP solutions in 

such a dynamic environment and thus, improve the solutions for SAP.  Besides the 

single shot kill probabilities simulation model may include other stochastic elements 

such as acquisition distance of the threat by search radar, system reliability by each 

component, weather conditions, sea state.  In order to treat both dynamism and 

stochasticity involved, an alternate approach based on simulation optimization may 

be used.  

Finally, the integrated use of MAP and SAP in off-line analysis of various 

potential threats may produce results usable in developing a cost effective weapon 

and ammunition planning methodology. 
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APPENDIX A 

A. OPT-CHANGE (OC) ALGORITHM 

Step 0: Select an initial feasible engagement list: 

{
}kkiiLkLktt

VjilLkjijijiE

kkjiji
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kkkk
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2211  

where Ni ∈ , Mj ∈ , ),( kk jit  is the time of the engagement ),( kk ji  and V  is 

the set of valid combinations of ASM and SAM systems, i.e. Vji ∈),(  if SAM 

system j  can engage ASM i .  Let the corresponding objective function value be 

( )EZ . 

Step 1: Set 0=k ,  EE =* , where *E  is the best engagement schedule that has 

been found so far.  Set the logical variables “add1” and “add2” to “false”. 

Step 2: Set 1+= kk .  i.e. take the next engagement in the engagement list of E . 

Step 3: Check the possibility of the change of target ASM for the engagement 

( )kk ji ,  in the engagement list for all possible targets except ki , i.e. set 

{ } { }121 ,...,,\ −== nk fffiNF .  Let { }1,...,2,1 −=∈ nHh  and set 1=h . 
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Step 4: If 1>h , then set 1+= hh .  If ( ) Vjf kh ∈,  then go to Step 5 to find a SAM 

missile for ASM ki  to enhance the defense against it, otherwise go to Step 11. 

Step 5: If there is at least one SAM system that can engage ASM ki  and has 

missiles left, then check the possibility of enhancement using all possible SAMs, i.e. 

set { } { }121 ,...,,\ −== mk gggjMG .  Let { }1,...,2,1 −=∈ mTt  and set 1=t .  Set the 

logical variable “change” to “false”. 

Step 6: If 1>t , then set 1+= tt .   

Step 7: If 0>
tgd  and ( ) Vgi tk ∈,  then go to Step 8, otherwise go to Step 9.  Note 

that 
tgd  is the number of available rounds on SAM system tg . 

Step 8: Define a new engagement list, ( ){ }{ } ( ) ( ){ }tkkhkk gijfjiEE ,,,,\ ∪= .  Note 

that, ( )tk gi ,  will be the last engagement of the engagement list.  Check the feasibility 

of new engagement list E  and calculate the objective function value, ( )EZ .  If E  is 

feasible and ( ) ( )*EZEZ >  then change the engagement list, EE =* , update the 

objective function value ( ) ( )EZEZ =* .  Set tgg =− , the variables “add1” and 

“change” to “true”, and “add2” to “false”. 

Step 9: If 1−= mt  then go to Step 10. 

 Else, go to Step 6. 

Step 10: If the variable “change” has value “false” then, define a new engagement 

list, ( ){ }{ } ( ){ }khkk jfjiEE ,,\ ∪= .  Check the feasibility of new engagement list E  
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and calculate the objective function value, ( )EZ .  If E  is feasible and ( ) ( )*EZEZ >  

then change the engagement list, EE =* , update the objective function value 

( ) ( )EZEZ =* .  Set the variable “add1” and “add2” to “false”. 

Step 11: If 1−= nh  then go to Step 12. 

 Else, go to Step 4. 

Step 12: Consider changing the defending SAM for the engagement ( )kk ji , .  Set 

1=t . 

Step 13: If 1>t , then set 1+= tt .   

Step 14: If 0>
tgd  and ( ) Vgi tk ∈,  then go to Step 15, otherwise go to Step 16. 

Step 15: Define a new engagement list, ( ){ }{ } ( ){ }tkkk gijiEE ,,\ ∪= .  Note that, 

we change ( )kk ji ,  to ( )tk gi ,  in the engagement list E .  Check the feasibility of new 

engagement list E  and calculate the objective function value, ( )EZ .  If E  is 

feasible and ( ) ( )*EZEZ >  then change the engagement list, EE =* , update the 

objective function value ( ) ( )EZEZ =* .  Set tgg =− , kjg =+ , the variables “add1” 

to “false” and “add2” to “true”. 

Step 16: If 1−= mt  then go to Step 17. 

 Else, go to Step 13. 

Step 17: If lk =  then go to Step 18. 

 Else, go to Step 2. 
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Step 18: If ( ) ( )*EZEZ =  then stop. 

 Otherwise, set *EE = , ( ) ( )*EZEZ = , if variable “add1” has value “true”, 

then set 1+= ll , 1−= −− gg
dd , if variable “add2” has value “true”, then set 

1−= −− gg dd , 1+= ++ gg dd  and go to Step 1. 

 

[ ])1()1( −+− mmnl  different cases are considered for change and enhancement in 

each iteration of the algorithm.  The computational complexity for OC algorithm is 

( )lmnO  per iteration. 
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APPENDIX B 

B. 2-OPT-EXCHANGE (2OX) ALGORITHM 

Step 0: Select an initial feasible engagement list: 

{
}kkiiLkLktt

VjilLkjijijiE

kkjiji

kkll

kkkk
′<=⇔∈′∀∈∀<

∈=∈=

′′′
  and     and  

,),(},,...,1{|),(),...,,(),,(

),(),(

2211  

where Ni ∈ , Mj ∈ , ),( kk jit  is the time of the engagement ),( kk ji  and V  is 

the set of valid combinations of ASM and SAM systems, i.e. Vji ∈),(  if SAM 

system j  can engage ASM i .  Let the corresponding objective function value of the 

engagement list E  be ( )EZ .  Set EE =* , where *E  is the best engagement 

schedule that has been found so far.   

Step 1: Set 1=k  and 1=h .  Set the logical variables “add1” and “add2” to 

“false”.  Those logical variables are used to control whether the best engagement 

schedule that may be found has additional launhes against ASMs exchanged or not.  

Step 2: Check the possibility of exchange of SAM allocation of the engagements 

k  and hk +  in the engagement list:  If ( ) ( ){ } ,or    , VjiVji khkhkk ∉∉ ++  go to Step 18. 
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Step 3: Define a new engagement list, ( ) ( ){ },...,,...,,..., khkhkk jijiE ++= .  Check the 

feasibility of new engagement list E  and calculate the objective function value, 

( )EZ .  If E  is infeasible, then go to Step 18. 

Step 4: If ( ) ( )*EZEZ >  then reset the best engagement list, EE =* , update the 

objective function value and set variables “add1” and “add2” to “false”.   

Step 5:  Check for additional assignment against ASM ki , i.e. set 

{ }mgggMG ,...,, 21== .  Let { }mTt ,...,2,1=∈  and set 1=t .  Note that, we do not 

exclude SAM kj  from consideration, since change in a previous engagement may 

enable us to launch the same engagement ),( kk ji  as the last engagement against 

ASM ki .  Set the logical variable “change” to “false”.  The variable “change” is used 

to control whether ASM ki  has additional launches against itself. 

Step 6: If 1>t , then set 1+= tt .   

Step 7: If 0>
tgd  and ( ) Vgi tk ∈,  then go to Step 8, otherwise go to Step 10.  

Note that 
tgd  is the number of available rounds on SAM system tg . 

Step 8: Define a new engagement list, ( ){ }tk giEE ,∪= .  Note that, ( )tk gi ,  will be 

the last engagement of the engagement list.  Check the feasibility of new engagement 

list E  and calculate the objective function value, ( )EZ .  If E  is feasible then set the 

variable “change” to “true”, tchange gg =  and go to Step 9, otherwise go to Step 10. 
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Step 9: If ( ) ( )*EZEZ >  then reset the best engagement list, EE =* , update the 

objective function value ( ) ( )EZEZ =* .  Set tgg =*1 , the variable “add1” to “true” 

and “add2” to “false”. 

Step 10: If mt =  then go to Step 11. 

 Else, go to Step 6. 

Step 11:  Check for additional assignment against ASM hki + .  Set 1=t . 

Step 12: If 1>t , then set 1+= tt . 

Step 13: If the variable “change” has value “true” go to Step 14, otherwise go to 

Step 16. 

Step 14: If changet gg =  and 1>
tgd  then go to Step 15,  

 else if changet gg ≠  and 0>
tgd  then go to Step 15, 

 otherwise go to Step 17. 

Step 15: If ( ) Vgi thk ∈+ ,  then define a new engagement list, ( ){ }thk giEE ,+∪= .  

Check the feasibility of new engagement list E  and calculate the objective function 

value, 





 EZ .  If E  is feasible and ( )*EZEZ >






  then change the engagement list, 

EE =* , update the objective function value ( ) 





= EZEZ * , set tgg =*2 , the 

variables “add2” “true”, otherwise go to Step 17. 
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Step 16: If 0>
tgd  then define a new engagement list, ( ){ }thk giEE ,+∪= .  Check 

the feasibility of new engagement list E  and calculate the objective function value, 

( )EZ .  If E  is feasible and ( ) ( )*EZEZ >  then change the engagement list, EE =* , 

update the objective function value ( ) ( )EZEZ =* .  Set tgg =*2 , the variable “add2” 

to “true” and “add1” to “false”. 

Step 17: If mt =  then go to Step 18. 

 Else, go to Step 12. 

Step 18: If lk =+1 , then go to Step 19.   

 Else, 

  if lhk =+  then set 1=t , 1+= kk  and go to Step 2. 

  if lhk <+  then set 1+= hh  and go to Step 2. 

Step 19: If ( ) ( )*EZEZ =  then go to step 20. 

 Otherwise, set *EE = , ( ) ( )*EZEZ = , if variable “add1” has value “true”, 

then set 1+= ll , 1** 11
−=

gg
dd , if variable “add2” has value “true”, then set 1+= ll , 

1** 22 −= gg dd , and go back to Step 1. 

Step 20: For each possible ASM pair, try changing all the engagements of those 

ASMs.  If there is an improvement, update the engagement list E  and go back to 

Step1, otherwise stop. 



 

184 

( )12
2

)1(
+

− mll  different neighboring engagement lists are checked for exchange for 

each iteration of the algorithm.  If an exchange is made, then the algorithm starts 

over again.  Algorithm stops when no exchange is possible.  Note that an undesirable 

exchange may be desirable after a change in the engagement list.  Thus, we continue 

until no desirable exchange is left for the engagement list.  The computational 

complexity for 2OX algorithm is ( )mlO 2  per iteration. 

 

 



 

185 

APPENDIX C 

C. DATA FOR SAMPLE MAP GENERATION 

Table C.1. Parameters of the Sample SAM Systems Used for Problem Generation. 

Name Speed  
(m/sec) 

Minimum  
Range (km) 

Maximum  
Range (km) Type 

SeaSparrow 850 1.5 16 Self-Defense 
ESSM 1224 1.5 18 Self-Defense 
Aster-15 986 1.5 30 Self-Defense 
Barak 680 1.5 12 Self-Defense 
SM-1 680 5.0 38 Area Air Defense 
SM-2 850 5.0 170 Area Air Defense 
Aster-30 1394 3.0 100 Area Air Defense 

 
 

Table C.2. Parameters of the Sample ASMs Used for Problem Generation. 

Name Speed  
(m/sec) 

Maximum  
Range (km) 

Harpoon 289 130 
MM-38 Exocet 306 41 
Polyphem 221 61 
Gabriel 238 19 
Penguin 238 18 
SS-N-26 1190 290 
Maveric 850 25 

 

Steps of the sample MAP generation are as follows: 

1. Choose required number of SAM systems from sample list.  Generate at least 

one area air defense SAM system for the problems having two or more SAM 

systems. 
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2. Determine the initial number of missiles of each SAM system in the 

launchers (no more than 9 missiles for each SAM system). 

3. Choose an ASM from the sample list. 

4. Determine the target ship of the threat ASMs. 

5. Determine the initial detection range of the threat ASM from its target ship 

ranging from 5 to 40 km. 

 Note that we randomly generate all the information above using different 

random number streams. 
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APPENDIX D 

D. RESULTS OF CONSTRUCTION HEURISTICS 

Table D.1.  Comparison of Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH). (First Set) 

  SAM ASM 
  1 2 3 4 5 
IE Obj 0.640 0.874 0.874 0.874 0.927 
BH Obj 0.640 0.874 0.874 0.874 0.927 
IE Sched.* 11 / 11 211 / 111 211 / 111 233 / 111 553 / 111 
BH Sched.* 11 / 11 211 / 111 212 / 111 233 / 111 253 / 111 
IE Time** 0.00 0.00 0.00 0.00 0.00 

1 

BH Time** 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.160 0.416 0.559 0.416 0.602 
BH Obj 0.160 0.416 0.559 0.416 0.602 
IE Sched. 11 / 11 211 / 122 33211 / 22111 332 / 112 5553 / 1121 
BH Sched. 11 / 21 211 / 122 23311 / 12211 233 / 211 2553 / 2111 
IE Time 0.00 0.00 0.63 0.62 1.75 

2 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.164 0.120 0.307 0.166 0.452 
BH Obj 0.164 0.120 0.307 0.166 0.452 
IE Sched. 11111 / 11223 211 / 312 33211 / 22311 3321 / 1123 55532 / 11213 
BH Sched. 11111 / 32121 211 / 321 23131 / 32121 2313 / 2131 25553 / 32111 
IE Time 0 0 0.422 0.422 9.812 

3 

BH Time 0 0 0 0 0 
IE Obj 0.051 0.339 0.096 0.118 0.383 
BH Obj 0.051 0.284 0.096 0.065 0.383 
IE Sched. 11111 / 11234 2211111 / 3411122 33211 / 24311 443321 / 221143 555332 / 123114 
BH Sched. 11111 / 32412 2211111 / 3241241 23311 / 32411 24433 / 32411 255533 / 324111 
IE Time 0.50 41.90 0.00 1.99 1294.61 

4 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.016 0.138 0.159 0.037 0.225 
BH Obj 0.016 0.089 0.143 0.021 0.173 
IE Sched. 11111 / 12345 2211111 / 3411225 32211111 / 23411155 443321 / 221543 555332 / 234115 
BH Sched. 11111 / 32415 2211111 / 3241524 22311111 / 3241515 241433 / 123451 255533 / 324151 
IE Time 0.22 228.77 7008.60 4.96 8503.29 

5 

BH Time 0.00 0.00 0.00 0.00 0.00 
 *  IE or BH Sched: SAM Engagement Order / Target ASM Order   
 ** Elapsed time in seconds.   
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Table D.2.  Comparison of Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Second Set) 

  SAM ASM 
  1 2 3 4 5 
IE Obj 0.640 0.940 0.940 0.940 0.900 
BH Obj 0.640 0.940 0.940 0.940 0.900 
IE Sched.* 11 / 11 21/11 21/11 21/11  2/1 
BH Sched.* 11 / 11 21/11 21/11 21/11 2/1 
IE Time** 0.00 0.00 0.00 0.00 0.00 

1 

BH Time** 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.080 0.705 0.705 0.705 0.675 
BH Obj 0.080 0.705 0.705 0.705 0.675 
IE Sched. 11/12 221/121 221/121 221/121 22/12 
BH Sched. 11/12 221/121 221/211 221/211 22/12 
IE Time 0.00 0.00 0.63 0.00 0.00 

2 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.041 0.645 0.645 0.203 0.504 
BH Obj 0.038 0.645 0.645 0.203 0.474 
IE Sched. 1111/1233 222211/123313 222211/123313 221/123 44222/33123 
BH Sched. 1111/2131 222121/123133 222121/213133 221/213 2224/1233 
IE Time 0 2.76 2.82 0 0.11 

3 

BH Time 0 0.6 0 0 0 
IE Obj 0.007 0.420 0.419 0.198 0.281 
BH Obj 0.007 0.378 0.399 0.184 0.281 
IE Sched.  1111/1234 222211/123434 222211/123433 3333221/2444133 44222/44123 
BH Sched. 1111/1234 222211/123414 222211/241313 2213333/1234444 22244/12344 
IE Time 0.60 11.49 10.45 216.30 0.33 

4 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.008 0.232 0.232 0.106 0.070 
BH Obj 0.007 0.143 0.143 0.106 0.070 
IE Sched. 1111111/1233445 222211/124533 222211/124533 3333221/4455123 44222/45123 
BH Sched. 1111111/1234515 222211/215431 222211/245131 2213333/1234554 22244/12345 
IE Time 1755.26 46.97 38.60 1127.91 2.15 

5 

BH Time 0.00 0.00 0.00 0.00 0.00 
 *  IE or BH Sched: SAM Engagement Order / Target ASM Order   
 ** Elapsed time in seconds.   

 

Table D.3.  % Gap Between Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Second Set) 

SAM ASM 
1 2 3 4 5 

1 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 0.0 0.0 
3 5.9 0.0 0.0 0.0 6.0 
4 0.0 10.1 4.8 7.2 0.0 
5 11.4 38.6 38.6 0.0 0.0 
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Table D.4.  Comparison of Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Third Set) 

  SAM ASM 
  1 2 3 4 5 
IE Obj 0.360 0.520 0.520 0.400 0.400 
BH Obj 0.360 0.360 0.360 0.400 0.400 
IE Sched.* 11/11 21/11 21/11 4/1 4/1 
BH 
Sched.* 11/11 11/11 11/11 4/1 4/1 
IE Time** 0.00 0.00 0.00 0.00 0.00 

1 

BH Time** 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.072 0.320 0.370 0.348 0.160 
BH Obj 0.072 0.256 0.282 0.348 0.160 
IE Sched. 111/112 21112/11222 21122/11222 44444/12222 44/12 
BH Sched. 111/121 12121/12122 12122/12122 44444/12222  44/12 
IE Time 0.00 0.60 3.52 0.16 0.00 

2 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.018 0.156 0.216 0.251 0.072 
BH Obj 0.018 0.150 0.184 0.246 0.072 
IE Sched. 111/123 22111/13222 22211/12312 44444/12223 441/123 
BH Sched. 111/123 12211/12312 12212/12312 44444/12323 441/123 
IE Time 0 0.11 40.7 2.92 0.11 

3 

BH Time 0 0.6 0 0 0 
IE Obj 0.030 0.039 0.069 0.123 0.000 
BH Obj 0.030 0.035 0.046 0.108 0.000 
IE Sched. 1111111/1122344 22111/14223 22211/13422 44444/12234 - 
BH Sched. 1111111/1234142 12211/12341 12212/12344 44444/12344 441/123 
IE Time 413.99 0.44 269.35 10.11 0.33 

4 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.006 0.009 0.052 0.069 0.000 
BH Obj 0.006 0.007 0.035 0.054 0.000 
IE Sched. 1111111/1122345 22111/15234 3322211/5513422 444443/123455 55441/55123 
BH Sched. 1111111/1234515 12211/12345 1221332/1234554 444434/123454 44155/12355 
IE Time 2190.99 2.82 1245.94 37.91 1.10 

5 

BH Time 0.00 0.00 0.00 0.00 0.00 
 *  IE or BH Sched: SAM Engagement Order / Target ASM Order   
 ** Elapsed time in seconds.   

 

Table D.5.  % Gap Between Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Third Set) 

SAM ASM 
1 2 3 4 5 

1 0.0 30.8 30.8 0.0 0.0 
2 0.0 20.0 23.8 0.0 0.0 
3 0.0 4.1 14.8 2.0 0.0 
4 0.0 11.1 33.3 12.5 0.0 
5 8.3 22.2 33.3 22.2 0.0 



 

190 

Table D.6.  Comparison of Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Fourth Set) 

  SAM ASM 
  1 2 3 4 5 
IE Obj 0.784 0.400 0.880 0.450 1.000 
BH Obj 0.784 0.400 0.880 0.450 1.000 
IE Sched.* 111 / 111 2/1 32/11 4/1 55555/11111 
BH Sched.* 111/111 2/1 32/11 4/1 55555/11111 
IE Time** 0.00 0.00 0.00 0.00 0.00 

1 

BH Time** 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.204 0.263 0.449 0.135 0.899 
BH Obj 0.204 0.263 0.449 0.135 0.899 
IE Sched. 111/122 2111/1222 3211/1122 41/12 55555/11222 
BH Sched. 111/122 2111/1222 3211/1122 41/12 55555/12212 
IE Time 0.00 0.00 0.00 0.00 0.27 

2 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.062 0.033 0.062 0.171 0.168 
BH Obj 0.062 0.033 0.062 0.171 0.168 
IE Sched. 111111/122333 22111/13222 211111/122333 433111/133222 55221/12332 
BH Sched. 111111/123323 22111/13222 211111/123323 33111/31222 55221/12332 
IE Time 1.21 0.6 0.17 4.45 0.00 

3 

BH Time 0 0 0 0 0 
IE Obj 0.037 0.013 0.021 0.098 0.065 
BH Obj 0.037 0.013 0.021 0.067 0.000 
IE Sched. 1111111/1122334 22111/22134 211111/211334 331111/231144 55221/34221 
BH Sched. 1111111/1234231 22111/22134 211111/211334 331111/231431 55122/12322 
IE Time 57.18 0.50 1.10 37.86 0.60 

4 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.007 0.002 0.222 0.021 0.012 
BH Obj 0.007 0.002 0.222 0.020 0.010 
IE Sched. 1111111/1122345 22111/45123 3333332/1123451 331111/152234 55221/45132 
BH Sched. 1111111/1234514 22111/45123 3333332/2345111 331111/514234 55122/41235 
IE Time 512.35 0.11 229.59 166.42 0.11 

5 

BH Time 0.00 0.00 0.00 0.00 0.00 
 *  IE or BH Sched: SAM Engagement Order / Target ASM Order    
 ** Elapsed time in seconds.     

 

Table D.7.  % Gap Between Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Fourth Set) 

SAM ASM 
1 2 3 4 5 

1 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 0.0 0.0 
3 0.0 0.0 0.0 0.0 0.0 
4 0.0 0.0 0.0 31.3 100.0 
5 5.9 0.0 0.0 5.9 23.1 
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Table D.8.  Comparison of Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Fifth Set) 

  SAM ASM 
  1 2 3 4 5 
IE Obj 0.760 0.852 0.760 0.698 0.098 
BH Obj 0.760 0.852 0.760 0.698 0.098 
IE Sched.* 1111/1111 2211/1111 1111/1111 22/11 55/11 
BH Sched.* 1111/1111 2211/1111 1111/1111 22/11 55/11 
IE Time** 0.00 0.00 0.00 0.00 0.00 

1 

BH Time** 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.410 0.690 0.515 0.667 0.492 
BH Obj 0.410 0.690 0.515 0.595 0.456 
IE Sched. 1111/1122 22111/12112 333111/111222 444422/111122 5441154/2112211 

BH Sched. 1111/1221 22111/12212 311313/122121 224444/211111 411454/122121 

IE Time 0.00 0.00 1.28 0.00 0.28 

2 

BH Time 0 0.00 0.00 0.00 0.00 
IE Obj 0.082 0.320 0.125 0.288 0.111 
BH Obj 0.077 0.302 0.125 0.288 0.111 
IE Sched. 1111/1233 22111/12333 333111/333112 444422/333312 5444115/1333121 

BH Sched. 1111/1231 22111/12313 113133/123133 224444/123333 1145454/1231313 

IE Time 0.00 0.5 5.62 0.17 4.6 

3 

BH Time 0 0 0 0 0 
IE Obj 0.027 0.143 0.044 0.277 0.062 
BH Obj 0.027 0.118 0.044 0.277 0.062 
IE Sched. 1111/1234 22111/13224 333111/222134 322224/312342 5544411/3322214 

BH Sched. 1111/1234 22111/12343 131133/123422 222234/142332 5141544/3124322 

IE Time 0.00 0.50 31.20 1.26 26.76 

4 

BH Time 0.00 0.00 0.00 0.00 0.00 
IE Obj 0.014 0.037 0.014 0.058 0.014 
BH Obj 0.014 0.034 0.014 0.058 0.013 
IE Sched. 11111/12345 22111/24135 3333111/1155234 432222/521234 5544411/2211534 

BH Sched. 11111/12345 22111/12345 3111333/1234551 222243/341252 5411445/2134552 

IE Time 0.22 1.28 159.79 6.26 151.83 

5 

BH Time 0.00 0.00 0.00 0.00 0.00 
 *  IE or BH Sched: SAM Engagement Order / Target ASM Order   
 ** Elapsed time in seconds.     

 

Table D.9.  % Gap Between Implicit Enumeration (IE) and the Best of Construction 
Heuristics (BH).  (Fifth Set) 

SAM ASM 
1 2 3 4 5 

1 0.0 0.0 0.0 0.0 0.0 
2 0.0 0.0 0.0 10.7 7.3 
3 5.9 5.7 0.0 0.0 0.0 
4 0.0 17.9 0.0 0.0 0.0 
5 0.0 7.7 0.0 0.0 5.6 



 

 192 

APPENDIX E 

E. RESULTS OF IMPROVEMENT HEURISTICS 

 

 In this appendix, we report the detailed run results for the improvement 

algorithms.  We generated 125 problems in order to measure the performance of the 

construction algorithms.  Construction algorithms produced optimal solutions for 87 

test problems.  Using improvement algorithms, we solved 38 test problems for which 

the construction algorithms produced non-optimal solutions.  For each test problem 

and solution algorithm pair, we report objective function value, engagement 

schedule, and the elapsed CPU time for the solution algorithm. 
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Table E.1.  Results of Construction Heuristics and the Best Construction Heuristic (BH).  (Problems I.4.2 – II.3.5) 

*Problem # Optimal BH OC 2OX OC+2OX 2OX+OC 
Obj.Func. 0.3387 0.2844 0.2867 0.2918 0.3387 0.3387 
**Schedule 2211111 / 3411122 2211111 / 3241241 2211111/3241141 2211111/3421241 2211111/3421121 2211111/3421211 I.4.2 
***Time 41.90 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.1175 0.0648 0.1161 0.0648 0.1175 0.1161 
Schedule 443321 / 221143 24433 / 32411 244331/244113 24433/32411 244331/422113 244331/244113 I.4.4 
Time 1.99 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.1382 0.0889 0.1170 0.1382 0.1382 0.1382 
Schedule 2211111 / 3411225 2211111 / 3241524 2211111/3241514 2211111/3412521 2211111/3421512 2211111/3412521 I.5.2 
Time 228.77 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.1588 0.1433 0.1433 0.1588 0.1588 0.1588 
Schedule 32211111 / 23411155 22311111 / 3241515 22311111/32415151 22311111/34215151 22311111/34215151 22311111/34215151 I.5.3 
Time 7008.60 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0367 0.0213 0.0363 0.0276 0.0367 0.0276 
Schedule 443321 / 221543 241433 / 123451 241433/243451 241433/523411 241433/423251 241433/523411 I.5.4 
Time 4.96 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.2246 0.1733 0.2139 0.2246 0.2139 0.2246 
Schedule 555332 / 234115 255533 / 324151 255533/241355 255533/245311 255533/241355 255533/245311 I.5.5 
Time 8503.29 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0408 0.0384 0.0408 0.0384 0.0408 0.0408 
Schedule 1111/1233 1111/2131 1111/3231 1111/1231 1111/3231 1111/3231 II.3.1 
Time 0.00 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.5043 0.4742 0.4742 0.4742 0.4742 0.4742 
Schedule 44222/33123 2224/1233 2224/1233 2224/1233 2224/1233 2224/1233 II.3.5 
Time 0.11 0.00 0.00 0.00 0.00 0.00 

* Problem #: Roman numeral shows the number of problem set, 2nd numeral shows the ASM number and 3rd numeral shows SAM system number  
** Schedule: SAM engagement order / target ASM order     
*** Time: Seconds for personal computer with AMD Athlon XP2000+ CPU    
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Table E.2.  Results of Construction Heuristics and the Best Construction Heuristic (BH).  (Problems II.4.2 – III.2.3) 

*Problem # Optimal BH OC 2OX OC+2OX 2OX+OC 
Obj.Func. 0.4204 0.3781 0.4204 0.3781 0.4204 0.4204 
**Schedule 222211/123434 222211/123414 222211/123434 222211/123414 222211/123434 222211/123434 II.4.2 
***Time 11.49 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.4194 0.3992 0.4194 0.3992 0.4194 0.4194 
Schedule 222211/123433 222211/241313 222211/241333 222211/241313 222211/241333 222211/241333 II.4.3 
Time 10.45 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.1983 0.1840 0.1840 0.1840 0.1840 0.1840 
Schedule 3333221/2444133 2213333/1234444 2213333/1234444 2213333/1234444 2213333/1234444 2213333/1234444 II.4.4 
Time 216.30 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0083 0.0074 0.0083 0.0074 0.0083 0.0083 
Schedule 1111111/1233445 1111111/1234515 1111111/3234415 1111111/1234515 1111111/3234415 1111111/3234415 II.5.1 
Time 1755.26 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.2324 0.1428 0.2324 0.2106 0.2324 0.2106 
Schedule 222211/124533 222211/215431 222211/215433 222211/235411 222211/215433 222211/235411 II.5.2 
Time 46.97 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.2324 0.1428 0.2324 0.2106 0.2324 0.2106 
Schedule 222211/124533 222211/245131 222211/245133 222211/245311 222211/245133 222211/245311 II.5.3 
Time 38.60 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.3203 0.2563 0.2563 0.3203 0.3203 0.3203 
Schedule 21112/11222 12121/12122 12121/12122 12121/21221 12121/21221 12121/21221 III.2.2 
Time 0.60 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.3702 0.2822 0.2822 0.3702 0.3702 0.3702 
Schedule 21122/11222 12122/12122 12122/12122 12122/21122 12122/21122 12122/21122 III.2.3 
Time 3.52 0.00 0.00 0.00 0.00 0.00 

* Problem #: Roman numeral shows the number of problem set, 2nd numeral shows the ASM number and 3rd numeral shows SAM system number  
** Schedule: SAM engagement order / target ASM order     
*** Time: Seconds for personal computer with AMD Athlon XP2000+ CPU    
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Table E.3.  Results of Construction Heuristics and the Best Construction Heuristic (BH).  (Problems III.3.2 – III.5.2) 

*Problem # Optimal BH OC 2OX OC+2OX 2OX+OC 
Obj.Func. 0.1562 0.1498 0.1498 0.1498 0.1498 0.1498 
**Schedule 22111/13222 12211/12312 12211/12312 12211/22311 12211/22311 12211/22311 III.3.2 
***Time 0.11 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.2163 0.1843 0.1843 0.2163 0.2163 0.2163 
Schedule 22211/12312 12212/12312 12212/12312 12212/21312 12212/21312 12212/21312 III.3.3 
Time 40.70 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.2509 0.2458 0.2509 0.2458 0.2509 0.2509 
Schedule 44444/12223 44444/12323 44444/12223 44444/12323 44444/12223 44444/12223 III.3.4 
Time 2.92 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0389 0.0346 0.0346 0.0389 0.0389 0.0389 
Schedule 22111/14223 12211/12341 12211/12341 12211/12431 12211/12431 12211/12431 III.4.2 
Time 0.44 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0691 0.0461 0.0691 0.0653 0.0691 0.0653 
Schedule 22211/13422 12212/12344 12212/12314 12212/42341 12212/12314 12212/42341 III.4.3 
Time 269.35 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.1229 0.1075 0.1229 0.1075 0.1229 0.1229 
Schedule 44444/12234 44444/12344 44444/12324 44444/12344 44444/12324 44444/12324 III.4.4 
Time 10.11 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0061 0.0056 0.0061 0.0056 0.0061 0.0061 
Schedule 1111111/1122345 1111111/1234515 1111111/1234215 1111111/1234515 1111111/1234215 1111111/1234215 III.5.1 
Time 2190.99 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0086 0.0067 0.0067 0.0086 0.0086 0.0086 
Schedule 22111/15234 12211/12345 12211/12345 12211/12543 12211/12543 12211/12543 III.5.2 
Time 2.82 0.00 0.00 0.00 0.00 0.00 

* Problem #: Roman numeral shows the number of problem set, 2nd numeral shows the ASM number and 3rd numeral shows SAM system number  
** Schedule: SAM engagement order / target ASM order     
*** Time: Seconds for personal computer with AMD Athlon XP2000+ CPU    
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Table E.4.  Results of Construction Heuristics and the Best Construction Heuristic (BH).  (Problems III.5.3 – IV.2.4) 

*Problem # Optimal BH OC 2OX OC+2OX 2OX+OC 
Obj.Func. 0.0518 0.0346 0.0518 0.0490 0.0518 0.0490 
**Schedule 3322211/5513422 1221332/1234554 1221332/1231554 1221332/4234551 1221332/1231554 1221332/4234551 III.5.3 
***Time 1245.94 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0691 0.0538 0.0691 0.0538 0.0691 0.0691 
Schedule 444443/123455 444434/123454 444434/123554 444434/123454 444434/123554 444434/123554 III.5.4 
Time 37.91 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0979 0.0673 0.0979 0.0979 0.0979 0.0979 
Schedule 331111/231144 331111/231431 331111/231441 331111/231441 331111/231441 331111/231441 IV.4.4 
Time 37.86 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0648 0.0000 0.0518 0.0000 0.0648 0.0518 
Schedule 55221/34221 55122/12322 55122/14322 55122/12322 55122/34122 55122/14322 IV.4.5 
Time 0.60 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0073 0.0069 0.0073 0.0069 0.0073 0.0073 
Schedule 1111111/1122345 1111111/1234514 1111111/1232514 1111111/1234514 1111111/1232514 1111111/1232514 IV.5.1 
Time 512.35 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0212 0.0200 0.0212 0.0200 0.0212 0.0212 
Schedule 331111/152234 331111/514234 331111/512234 331111/514234 331111/512234 331111/512234 IV.5.4 
Time 166.42 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0125 0.0096 0.0096 0.0125 0.0125 0.0125 
Schedule 55221/45132 55122/41235 55122/41235 55122/45231 55122/45231 55122/45231 IV.5.5 
Time 0.11 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.6668 0.5954 0.6668 0.5954 0.6668 0.6668 
Schedule 444422/111122 224444/211111 224444/221111 224444/211111 224444/221111 224444/221111 V.2.4 
Time 0.00 0.00 0.00 0.00 0.00 0.00 

* Problem #: Roman numeral shows the number of problem set, 2nd numeral shows the ASM number and 3rd numeral shows SAM system number  
** Schedule: SAM engagement order / target ASM order     
*** Time: Seconds for personal computer with AMD Athlon XP2000+ CPU    
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Table E.5.  Results of Construction Heuristics and the Best Construction Heuristic (BH).  (Problems V.2.5 – V.5.5) 

*Problem # Optimal BH OC 2OX OC+2OX 2OX+OC 
Obj.Func. 0.4917 0.4560 0.4560 0.4560 0.4560 0.4560 
**Schedule 5441154/2112211 411454/122121 411454/122121 411454/122121 411454/122121 411454/122121 V.2.5 
***Time 0.28 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0816 0.0768 0.0816 0.0768 0.0816 0.0816 
Schedule 1111/1233 1111/1231 1111/3231 1111/1231 1111/3231 1111/3231 V.3.1 
Time 0.00 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.3203 0.3022 0.3203 0.3022 0.3203 0.3203 
Schedule 22111/12333 22111/12313 22111/12333 22111/12313 22111/12333 22111/12333 V.3.2 
Time 0.50 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.1434 0.1177 0.1177 0.1434 0.1434 0.1434 
Schedule 22111/13224 22111/12343 22111/12343 22111/13242 22111/13242 22111/13242 V.4.2 
Time 0.50 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0366 0.0338 0.0338 0.0366 0.0366 0.0366 
Schedule 22111/24135 22111/12345 22111/12345 22111/42315 22111/42315 22111/42315 V.5.2 
Time 1.28 0.00 0.00 0.00 0.00 0.00 
Obj.Func. 0.0138 0.0131 0.0138 0.0131 0.0138 0.0138 
Schedule 5544411/2211534 5411445/2134552 5411445/2134152 5411445/2134552 5411445/2134152 5411445/2134152 V.5.5 
Time 151.83 0.00 0.00 0.00 0.00 0.00 

* Problem #: Roman numeral shows the number of problem set, 2nd numeral shows the ASM number and 3rd numeral shows SAM system number  
** Schedule: SAM engagement order / target ASM order     
*** Time: Seconds for personal computer with AMD Athlon XP2000+ CPU    
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APPENDIX F 

F. STATISTICAL COMPARISON OF IMPROVEMENT HEURISTICS 

WILCOXON SIGNED RANK TEST 
Table F.1.  Summary of Calculations Required by Wilcoxon Test. 

OC+2OX 2OX+OC Best *Problem 
Number 

Optimal 
Solution Solution Ratio Solution Ratio Solution Ratio 

I.4.2 0.3387 0.3387 1.000 0.3387 1.000 0.3387 1.000 
I.4.4 0.1175 0.1175 1.000 0.1161 0.988 0.1175 1.000 
I.5.2 0.1382 0.1382 1.000 0.1382 1.000 0.1382 1.000 
I.5.3 0.1588 0.1588 1.000 0.1588 1.000 0.1588 1.000 
I.5.4 0.0367 0.0367 1.000 0.0276 0.753 0.0367 1.000 
I.5.5 0.2246 0.2139 0.952 0.2246 1.000 0.2246 1.000 
II.3.1 0.0408 0.0408 1.000 0.0408 1.000 0.0408 1.000 
II.3.5 0.5043 0.4742 0.940 0.4742 0.940 0.4742 0.940 
II.4.2 0.4204 0.4204 1.000 0.4204 1.000 0.4204 1.000 
II.4.3 0.4194 0.4194 1.000 0.4194 1.000 0.4194 1.000 
II.4.4 0.1983 0.1840 0.928 0.1840 0.928 0.1840 0.928 
II.5.1 0.0083 0.0083 1.000 0.0083 1.000 0.0083 1.000 
II.5.2 0.2324 0.2324 1.000 0.2106 0.906 0.2324 1.000 
II.5.3 0.2324 0.2324 1.000 0.2106 0.906 0.2324 1.000 
III.2.2 0.3203 0.3203 1.000 0.3203 1.000 0.3203 1.000 
III.2.3 0.3702 0.3702 1.000 0.3702 1.000 0.3702 1.000 
III.3.2 0.1562 0.1498 0.959 0.1498 0.959 0.1498 0.959 
III.3.3 0.2163 0.2163 1.000 0.2163 1.000 0.2163 1.000 
III.3.4 0.2509 0.2509 1.000 0.2509 1.000 0.2509 1.000 
III.4.2 0.0389 0.0389 1.000 0.0389 1.000 0.0389 1.000 
III.4.3 0.0691 0.0691 1.000 0.0653 0.944 0.0691 1.000 
III.4.4 0.1229 0.1229 1.000 0.1229 1.000 0.1229 1.000 
III.5.1 0.0061 0.0061 1.000 0.0061 1.000 0.0061 1.000 
III.5.2 0.0086 0.0086 1.000 0.0086 1.000 0.0086 1.000 
III.5.3 0.0518 0.0518 1.000 0.0490 0.944 0.0518 1.000 
III.5.4 0.0691 0.0691 1.000 0.0691 1.000 0.0691 1.000 
IV.4.4 0.0979 0.0979 1.000 0.0979 1.000 0.0979 1.000 
IV.4.5 0.0648 0.0648 1.000 0.0518 0.800 0.0648 1.000 
IV.5.1 0.0073 0.0073 1.000 0.0073 1.000 0.0073 1.000 
IV.5.4 0.0212 0.0212 1.000 0.0212 1.000 0.0212 1.000 
IV.5.5 0.0125 0.0125 1.000 0.0125 1.000 0.0125 1.000 
V.2.4 0.6668 0.6668 1.000 0.6668 1.000 0.6668 1.000 
V.2.5 0.4917 0.4560 0.927 0.4560 0.927 0.4560 0.927 
V.3.1 0.0816 0.0816 1.000 0.0816 1.000 0.0816 1.000 
V.3.2 0.3203 0.3203 1.000 0.3203 1.000 0.3203 1.000 
V.4.2 0.1434 0.1434 1.000 0.1434 1.000 0.1434 1.000 
V.5.2 0.0366 0.0366 1.000 0.0366 1.000 0.0366 1.000 
V.5.5 0.0138 0.0138 1.000 0.0138 1.000 0.0138 1.000 

* Problem Number: Roman numeral shows the number of problem set, 2nd numeral shows the ASM number and 
3rd numeral shows SAM system number 
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Table F.2.  Test of OC+2OX Against 2OX+OC. 

OC+2OX 2OX+OC   Signed Rank Problem 
Number xi yi xi-yi of |xi-yi| 

4.2 0.00 0.00 0.00  
4.4 0.00 1.23 -1.23 -1 
5.2 0.00 0.00 0.00  
5.3 0.00 0.00 0.00  
5.4 0.00 24.71 -24.71 -8 
5.5 4.78 0.00 4.78 2 
.3.1 0.00 0.00 0.00  
.3.5 5.97 5.97 0.00  
.4.2 0.00 0.00 0.00  
.4.3 0.00 0.00 0.00  
.4.4 7.21 7.21 0.00  
.5.1 0.00 0.00 0.00  
.5.2 0.00 9.37 -9.37 -5.5 
.5.3 0.00 9.37 -9.37 -5.5 
I.2.2 0.00 0.00 0.00  
I.2.3 0.00 0.00 0.00  
I.3.2 4.10 4.10 0.00  
I.3.3 0.00 0.00 0.00  
I.3.4 0.00 0.00 0.00  
I.4.2 0.00 0.00 0.00  
I.4.3 0.00 5.56 -5.56 -3.5 
I.4.4 0.00 0.00 0.00  
I.5.1 0.00 0.00 0.00  
I.5.2 0.00 0.00 0.00  
I.5.3 0.00 5.56 -5.56 -3.5 
I.5.4 0.00 0.00 0.00  
V.4.4 0.00 0.00 0.00  
V.4.5 0.00 20.00 -20.00 -7 
V.5.1 0.00 0.00 0.00  
V.5.4 0.00 0.00 0.00  
V.5.5 0.00 0.00 0.00  
.2.4 0.00 0.00 0.00  
.2.5 7.26 7.26 0.00  
.3.1 0.00 0.00 0.00  
.3.2 0.00 0.00 0.00  
.4.2 0.00 0.00 0.00  
.5.2 0.00 0.00 0.00  
.5.5 0.00 0.00 0.00  
      W= -32 

 
)()(:)()(:0 iiaii yExEHyExEH <=  

2605.0 −=W  

Since αWW < , we reject the null hypothesis. 
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Table F.3.  Test of “Best” Against 2OX+OC. 

Best 2OX+OC   Signed Rank Problem 
Number xi yi xi-yi of |xi-yi| 
I.4.2 0.00 0.00 0.00  
I.4.4 0.00 1.23 -1.23 -1 
I.5.2 0.00 0.00 0.00  
I.5.3 0.00 0.00 0.00  
I.5.4 0.00 24.71 -24.71 -7 
I.5.5 0.00 0.00 0.00  
II.3.1 0.00 0.00 0.00  
II.3.5 5.97 5.97 0.00  
II.4.2 0.00 0.00 0.00  
II.4.3 0.00 0.00 0.00  
II.4.4 7.21 7.21 0.00  
II.5.1 0.00 0.00 0.00  
II.5.2 0.00 9.37 -9.37 -4.5 
II.5.3 0.00 9.37 -9.37 -4.5 
III.2.2 0.00 0.00 0.00  
III.2.3 0.00 0.00 0.00  
III.3.2 4.10 4.10 0.00  
III.3.3 0.00 0.00 0.00  
III.3.4 0.00 0.00 0.00  
III.4.2 0.00 0.00 0.00  
III.4.3 0.00 5.56 -5.56 -2.5 
III.4.4 0.00 0.00 0.00  
III.5.1 0.00 0.00 0.00  
III.5.2 0.00 0.00 0.00  
III.5.3 0.00 5.56 -5.56 -2.5 
III.5.4 0.00 0.00 0.00  
IV.4.4 0.00 0.00 0.00  
IV.4.5 0.00 20.00 -20.00 -6 
IV.5.1 0.00 0.00 0.00  
IV.5.4 0.00 0.00 0.00  
IV.5.5 0.00 0.00 0.00  
V.2.4 0.00 0.00 0.00  
V.2.5 7.26 7.26 0.00  
V.3.1 0.00 0.00 0.00  
V.3.2 0.00 0.00 0.00  
V.4.2 0.00 0.00 0.00  
V.5.2 0.00 0.00 0.00  
V.5.5 0.00 0.00 0.00  

      W= -28 
 

)()(:)()(:0 iiaii yExEHyExEH <=  

2205.0 −=W  

Since αWW < , we reject the null hypothesis. 



 

201 

APPENDIX G 

G. COMPUTATIONAL RESULTS FOR BRANCHING AND BRANCH 

SELECTION STRATEGIES 

 

Table G.1.  Branching and Branch Selection Strategy Performances for the Problem 
with 3 AAD, 2 SD, 2 ND Ships. 

1000 2000 3000 4000 5000 6000 7000 8000 Total
** 31.0

19.5
25.4
24.7

26.0 25.4 26.6 26.4 25.4 24.7 24.5
23.9 24.5 23.3 23.6 24.5 25.3 25.5
27.1 29.1 28.3 27.5 27.2 26.9 26.6 26.3 26.1
22.6 20.8 21.6 22.4 22.8 23.1 23.3 23.7 23.9
24.9 26.5 26.7 26.3 25.9 26.0 25.9 25.6 25.1
24.8 23.4 23.2 23.7 24.0 24.0 24.0 24.4 24.9
26.2 26.8 26.3 26.4 26.5 26.1 25.7 25.3 24.8
23.5 23.1 23.7 23.6 23.5 23.9 24.2 24.7 25.2

31.0
19.5
25.4
24.7

0.0 0.0 0.0 3.3 12.7 20.6 24.5
30.1 37.2 41.4 40.3 32.2 26.8 25.5
0.0 5.8 12.2 18.2 25.7 32.3

36.1 31.8 27.3 23.9 19.4 17.7
0.0 0.0 1.0 8.0 15.0 20.8 29.2

32.7 37.1 39.5 33.5 28.1 23.5 20.8
0.0 0.0 1.5 8.9 15.9 22.1 29.0

31.8 37.7 39.1 33.1 27.6 23.1 21.0
*  Numbers show the % of nodes pruned by lower bound and the upper bound respectively.
** Empty cells show that the optimal solution is found before the corresponding number of nodes explored.

6597

400.23

511.96

504.14

6313 539.94

5489

6773

113 10.37

591 51.62

707.86

9075 621.21

9305 765.57

BS6

Total Nodes 
Explored Time (sec.)

113 9.31

591 47.88

6313 435.45
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% for the Number of Nodes Explored*

D
ep

th
 F

irs
t S

ea
rc

h
Be

st
 N

od
e 

Fi
rs

t S
ea

rc
h

BS1

BS2

BS3

BS4

BS5

BS6

BS1

Branching 
Strategy

BS2

BS3

BS4

BS5

 

 

 



 

202 

 

 

 

Table G.2.  Branching and Branch Selection Strategy Performances for the Problem 
with 3 AAD, 3 SD, 3 ND Ships. 

1000 2000 3000 4000 5000 6000 7000 8000 Total
** 34.2

14.6
21.1
28.4

20.0 21.0 21.1 21.2 20.7 19.8
29.6 28.8 28.8 28.7 29.1 30.2
30.0 29.9 29.4 28.8 28.1
19.5 19.7 20.4 21.0 21.9
28.8 29.6 29.1 28.3 27.8 27.5 26.4 25.9
20.7 20.2 20.7 21.5 22.1 22.4 23.5 24.1
25.2 23.9 23.7 24.1 24.8 24.3 23.8 23.5
24.5 25.9 26.1 25.8 25.1 25.6 26.1 26.4

21.1
28.1
20.1
29.8

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.9
0.0 0.0 0.7 3.1 5.5 8.4 13.7 20.9

30.3 30.0 35.1 32.4 32.9 34.0 32.4 29.1
0.0 0.0 0.0 0.5 2.6 4.5 7.5 12.5 20.5

30.8 31.9 33.8 35.7 33.9 31.7 33.2 32.8 29.5
0.0 0.0 0.0 0.6 2.9 4.9 7.6 12.0 22.7

30.7 32.5 34.4 35.9 33.6 33.3 33.8 31.6 26.5
*  Numbers show the % of nodes pruned by lower bound and the upper bound respectively.
** Empty cells show that the optimal solution is found before the corresponding number of nodes explored.

BS6 9925 806.31

BS4 7909 700.94

BS5 9181 781.71
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BS2 815 77.48

BS3 17365 1476.15

BS5 7739 618.39

BS6 7229 627.68

BS3 5905 498.77

BS4 4975 387.73

% for the Number of Nodes Explored* Total Nodes 
Explored Time (sec.)
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Table G.3.  Branching and Branch Selection Strategy Performances for the Problem 
with 3 AAD, 2 SD, 4 ND Ships. 

1000 2000 3000 4000 5000 6000 7000 8000 Total
** 34.2

14.6
19.8
29.0

19.4 21.3 21.3 20.9 20.1
30.1 28.4 28.5 28.9 29.9
32.3 31.5 30.2
17.2 18.4 19.8
29.0 28.7 28.1 27.4 26.3 25.4 25.2
20.4 21.0 21.7 22.5 23.5 24.5 24.8
26.3 26.5 26.5 27.2 26.9 26.4
23.2 23.3 23.3 22.7 22.9 23.6

21.1
28.1
18.4
31.2

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 17.3
26.5 29.6 32.2 35.3 37.8 39.7 41.1 42.2 30.9
0.0 0.0 3.7 8.4 18.0 19.6

31.9 35.6 36.1 36.1 31.0 30.4
0.0 0.0 0.6 3.3 6.3 10.9 17.2 20.1

30.2 33.5 36.0 33.4 32.2 33.5 31.0 29.9
0.0 0.0 0.5 3.2 10.5 16.7

32.7 33.9 36.6 40.0 36.5 33.4
*  Numbers show the % of nodes pruned by lower bound and the upper bound respectively.
** Empty cells show that the optimal solution is found before the corresponding number of nodes explored.

% for the Number of Nodes Explored* Total Nodes 
Explored Time (sec.)
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h

BS1 41 3.28

BS2 217 19.52

4657 391.16

BS4 2909 224.60

6133 494.00

BS6 5481 432.90
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h

BS1 57 5.29

BS2 375 34.15

BS3 12577 1068.10

5473 474.54

BS4 5105 435.79

BS5 7255 657.64

Branching 
Strategy

BS6

BS5

BS3
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APPENDIX H 

H. CALCULATED COVERAGE VALUES FOR SAMPLE SCENARIOS 

 
 

 In this appendix, we report the coverage values calculated by using MAP for 

six different sample scenarios.  Sample problem has 19 sectors.  We solve MAP for 

each coverage value (i.e. coverage provided by an AAD ship from sector j to sector 

i.).  A total of 361 instances of MAP are to be solved for every scenario.  We have 

one AAD and one ND ship in each MAP.  Detail parameters of the scenarios are 

given below the corresponding tables.  
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Table H.1.  Coverage Values Calculated for Scenario 1. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.337 0.431 0.265 0.226 0.226 0.265 0.431 0.370 0.226 0.185 0.185 0.226 0.370 0.337 0.185 0.143 0.143 0.185 0.337
2 0.226 0.337 0.226 0.185 0.185 0.185 0.265 0.431 0.185 0.143 0.143 0.185 0.302 0.370 0.185 0.098 0.098 0.143 0.302
3 0.265 0.431 0.337 0.226 0.185 0.226 0.302 0.693 0.265 0.185 0.143 0.185 0.302 0.487 0.226 0.143 0.098 0.143 0.265
4 0.431 0.693 0.431 0.337 0.265 0.302 0.370 0.487 0.302 0.226 0.185 0.226 0.337 0.431 0.226 0.185 0.143 0.185 0.337
5 0.431 0.370 0.302 0.265 0.337 0.431 0.693 0.337 0.226 0.185 0.226 0.302 0.487 0.337 0.185 0.143 0.185 0.226 0.431
6 0.265 0.302 0.226 0.185 0.226 0.337 0.431 0.302 0.185 0.143 0.185 0.265 0.693 0.265 0.143 0.098 0.143 0.226 0.487
7 0.226 0.265 0.185 0.185 0.185 0.226 0.337 0.302 0.185 0.143 0.143 0.185 0.431 0.302 0.143 0.098 0.098 0.185 0.370
8 0.185 0.226 0.185 0.143 0.143 0.143 0.185 0.337 0.185 0.098 0.098 0.143 0.226 0.431 0.143 0.098 0.050 0.098 0.226
9 0.226 0.302 0.265 0.185 0.185 0.185 0.226 0.370 0.337 0.185 0.143 0.143 0.226 0.487 0.265 0.143 0.098 0.143 0.226

10 0.370 0.487 0.693 0.431 0.302 0.302 0.337 0.693 0.370 0.337 0.226 0.226 0.337 0.512 0.302 0.226 0.185 0.185 0.302
11 0.370 0.337 0.302 0.302 0.431 0.693 0.487 0.337 0.226 0.226 0.337 0.370 0.693 0.302 0.185 0.185 0.226 0.302 0.512
12 0.226 0.226 0.185 0.185 0.185 0.265 0.302 0.226 0.143 0.143 0.185 0.337 0.370 0.226 0.143 0.098 0.143 0.265 0.487
13 0.185 0.185 0.143 0.143 0.143 0.185 0.226 0.226 0.143 0.098 0.098 0.185 0.337 0.226 0.098 0.050 0.098 0.143 0.431
14 0.143 0.185 0.143 0.098 0.098 0.098 0.143 0.226 0.143 0.098 0.050 0.098 0.185 0.337 0.143 0.050 0.050 0.098 0.185
15 0.185 0.226 0.226 0.185 0.143 0.143 0.185 0.302 0.265 0.143 0.098 0.143 0.185 0.337 0.337 0.143 0.098 0.098 0.185
16 0.337 0.431 0.487 0.370 0.302 0.265 0.337 0.512 0.487 0.431 0.226 0.226 0.302 0.693 0.337 0.337 0.185 0.185 0.302
17 0.337 0.337 0.265 0.302 0.370 0.487 0.431 0.302 0.226 0.226 0.431 0.487 0.512 0.302 0.185 0.185 0.337 0.337 0.693
18 0.185 0.185 0.143 0.143 0.185 0.226 0.226 0.185 0.143 0.098 0.143 0.265 0.302 0.185 0.098 0.098 0.143 0.337 0.337
19 0.143 0.143 0.098 0.098 0.098 0.143 0.185 0.185 0.098 0.050 0.098 0.143 0.226 0.185 0.098 0.050 0.050 0.143 0.337

Sector jSector i

Scenario: MM-38 Exocet ASM, SM-1 Area Defense SAM System, Detection Distance of ASM From AAD Ship 21213.2 m., ASM's Bearing From ND Ship 000.  
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Table H.2.  Coverage Values Calculated for Scenario 2. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.337 0.512 0.370 0.265 0.226 0.226 0.302 0.460 0.337 0.185 0.143 0.185 0.265 0.431 0.302 0.143 0.143 0.143 0.226
2 0.226 0.337 0.265 0.185 0.143 0.185 0.226 0.512 0.265 0.143 0.143 0.143 0.226 0.460 0.265 0.143 0.098 0.098 0.185
3 0.226 0.302 0.337 0.226 0.185 0.185 0.226 0.337 0.370 0.185 0.143 0.143 0.185 0.337 0.337 0.143 0.098 0.098 0.185
4 0.302 0.337 0.512 0.337 0.226 0.226 0.265 0.337 0.487 0.265 0.185 0.143 0.226 0.337 0.370 0.185 0.143 0.143 0.185
5 0.512 0.460 0.487 0.370 0.337 0.302 0.337 0.431 0.370 0.265 0.226 0.226 0.265 0.431 0.337 0.185 0.143 0.143 0.226
6 0.370 0.487 0.337 0.265 0.265 0.337 0.512 0.582 0.302 0.185 0.185 0.226 0.337 0.676 0.265 0.185 0.143 0.185 0.265
7 0.265 0.370 0.265 0.185 0.185 0.226 0.337 0.487 0.265 0.143 0.143 0.185 0.302 0.582 0.226 0.143 0.098 0.143 0.265
8 0.143 0.226 0.185 0.143 0.143 0.143 0.185 0.337 0.185 0.098 0.098 0.098 0.185 0.512 0.185 0.098 0.050 0.098 0.143
9 0.185 0.226 0.226 0.185 0.143 0.143 0.143 0.265 0.337 0.143 0.098 0.098 0.143 0.265 0.370 0.143 0.098 0.098 0.143

10 0.265 0.265 0.337 0.302 0.226 0.185 0.226 0.265 0.460 0.337 0.185 0.143 0.185 0.265 0.582 0.265 0.143 0.098 0.143
11 0.460 0.431 0.582 0.487 0.512 0.337 0.337 0.431 0.431 0.337 0.337 0.265 0.265 0.401 0.370 0.265 0.226 0.185 0.226
12 0.337 0.370 0.302 0.265 0.265 0.370 0.487 0.431 0.265 0.185 0.185 0.337 0.460 0.487 0.226 0.143 0.143 0.226 0.337
13 0.185 0.265 0.185 0.143 0.143 0.185 0.265 0.337 0.185 0.143 0.098 0.143 0.337 0.370 0.185 0.098 0.098 0.143 0.302
14 0.143 0.143 0.143 0.098 0.098 0.098 0.143 0.226 0.143 0.098 0.050 0.098 0.143 0.337 0.143 0.050 0.050 0.050 0.143
15 0.143 0.143 0.185 0.143 0.098 0.098 0.143 0.185 0.226 0.143 0.098 0.098 0.098 0.226 0.337 0.143 0.050 0.050 0.098
16 0.226 0.226 0.265 0.265 0.185 0.185 0.185 0.226 0.337 0.302 0.143 0.143 0.143 0.226 0.431 0.337 0.143 0.098 0.143
17 0.431 0.431 0.676 0.582 0.460 0.337 0.337 0.401 0.487 0.370 0.512 0.265 0.265 0.401 0.401 0.302 0.337 0.226 0.226
18 0.302 0.337 0.265 0.226 0.265 0.337 0.370 0.370 0.226 0.185 0.185 0.370 0.582 0.401 0.226 0.143 0.143 0.337 0.431
19 0.143 0.185 0.185 0.143 0.143 0.143 0.185 0.265 0.143 0.098 0.098 0.143 0.265 0.302 0.143 0.098 0.050 0.143 0.337

Sector i Sector j

Scenario: MM-38 Exocet ASM, SM-1 Area Defense SAM System, Detection Distance of ASM From AAD Ship 21213.2 m., ASM's Bearing From ND Ship 045.  
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Table H.3.  Coverage Values Calculated for Scenario 3. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.337 0.337 0.693 0.337 0.226 0.226 0.226 0.265 0.693 0.265 0.185 0.143 0.185 0.265 0.693 0.265 0.143 0.098 0.143
2 0.226 0.337 0.337 0.226 0.185 0.185 0.226 0.337 0.401 0.226 0.143 0.143 0.185 0.265 0.431 0.185 0.098 0.098 0.143
3 0.226 0.226 0.337 0.226 0.185 0.143 0.185 0.226 0.693 0.226 0.143 0.098 0.143 0.226 0.693 0.226 0.098 0.098 0.098
4 0.226 0.226 0.337 0.337 0.226 0.185 0.185 0.226 0.401 0.337 0.185 0.143 0.143 0.185 0.431 0.265 0.143 0.098 0.098
5 0.337 0.265 0.401 0.693 0.337 0.226 0.226 0.265 0.431 0.401 0.226 0.185 0.185 0.226 0.431 0.302 0.185 0.143 0.143
6 0.693 0.401 0.693 0.401 0.337 0.337 0.337 0.302 0.693 0.302 0.226 0.226 0.226 0.265 0.693 0.265 0.185 0.143 0.185
7 0.337 0.693 0.401 0.265 0.226 0.226 0.337 0.401 0.431 0.265 0.185 0.185 0.226 0.302 0.431 0.226 0.143 0.143 0.185
8 0.185 0.226 0.226 0.185 0.143 0.143 0.185 0.337 0.265 0.185 0.098 0.098 0.143 0.337 0.302 0.143 0.098 0.098 0.143
9 0.143 0.185 0.226 0.185 0.143 0.098 0.143 0.185 0.337 0.185 0.098 0.098 0.098 0.185 0.693 0.185 0.098 0.050 0.098

10 0.185 0.185 0.226 0.226 0.185 0.143 0.143 0.185 0.265 0.337 0.143 0.098 0.098 0.143 0.302 0.337 0.143 0.098 0.098
11 0.265 0.265 0.302 0.401 0.337 0.226 0.226 0.226 0.337 0.693 0.337 0.185 0.185 0.185 0.370 0.431 0.226 0.143 0.143
12 0.693 0.431 0.693 0.431 0.401 0.693 0.401 0.337 0.693 0.337 0.265 0.337 0.265 0.302 0.693 0.302 0.226 0.226 0.226
13 0.265 0.401 0.302 0.265 0.226 0.226 0.337 0.693 0.337 0.226 0.185 0.185 0.337 0.431 0.370 0.185 0.143 0.143 0.226
14 0.143 0.185 0.185 0.143 0.098 0.098 0.143 0.226 0.226 0.143 0.098 0.098 0.143 0.337 0.265 0.143 0.050 0.050 0.098
15 0.098 0.143 0.143 0.143 0.098 0.098 0.098 0.143 0.226 0.143 0.098 0.050 0.098 0.143 0.337 0.143 0.050 0.050 0.050
16 0.143 0.143 0.185 0.185 0.143 0.098 0.098 0.143 0.226 0.226 0.143 0.098 0.098 0.143 0.265 0.337 0.098 0.050 0.050
17 0.265 0.226 0.265 0.302 0.265 0.226 0.185 0.185 0.302 0.431 0.337 0.185 0.143 0.185 0.302 0.693 0.337 0.143 0.143
18 0.693 0.431 0.693 0.431 0.431 0.693 0.431 0.370 0.693 0.370 0.302 0.693 0.302 0.302 0.693 0.302 0.265 0.337 0.265
19 0.265 0.302 0.265 0.226 0.185 0.226 0.265 0.431 0.302 0.185 0.143 0.185 0.337 0.693 0.302 0.185 0.143 0.143 0.337

Sector i Sector j

Scenario: MM-38 Exocet ASM, SM-1 Area Defense SAM System, Detection Distance of ASM From AAD Ship 21213.2 m., ASM's Bearing From ND Ship 090.  
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Table H.4.  Coverage Values Calculated for Scenario 4. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.245 0.370 0.180 0.126 0.126 0.165 0.346 0.317 0.141 0.089 0.089 0.126 0.284 0.280 0.103 0.055 0.055 0.089 0.245
2 0.126 0.245 0.126 0.089 0.089 0.089 0.165 0.370 0.103 0.055 0.055 0.089 0.188 0.317 0.089 0.027 0.027 0.055 0.188
3 0.165 0.346 0.245 0.126 0.089 0.126 0.188 0.394 0.180 0.089 0.055 0.089 0.188 0.391 0.141 0.055 0.027 0.055 0.165
4 0.346 0.394 0.370 0.245 0.165 0.188 0.284 0.391 0.219 0.126 0.089 0.126 0.245 0.370 0.141 0.089 0.055 0.089 0.229
5 0.370 0.317 0.219 0.180 0.245 0.346 0.394 0.280 0.141 0.103 0.126 0.188 0.391 0.270 0.103 0.068 0.089 0.126 0.331
6 0.180 0.219 0.141 0.103 0.126 0.245 0.370 0.219 0.103 0.068 0.089 0.165 0.394 0.193 0.068 0.038 0.055 0.126 0.391
7 0.126 0.180 0.103 0.089 0.089 0.126 0.245 0.219 0.089 0.055 0.055 0.089 0.346 0.219 0.068 0.027 0.027 0.089 0.284
8 0.089 0.126 0.089 0.055 0.055 0.055 0.089 0.245 0.089 0.027 0.027 0.055 0.126 0.370 0.068 0.027 0.008 0.027 0.126
9 0.126 0.188 0.165 0.089 0.089 0.089 0.126 0.284 0.245 0.089 0.055 0.055 0.126 0.391 0.180 0.055 0.027 0.040 0.126

10 0.284 0.391 0.394 0.346 0.188 0.188 0.245 0.394 0.317 0.245 0.126 0.126 0.229 0.394 0.219 0.126 0.089 0.089 0.188
11 0.317 0.280 0.219 0.219 0.370 0.394 0.391 0.270 0.141 0.141 0.245 0.284 0.394 0.242 0.103 0.089 0.126 0.188 0.394
12 0.141 0.141 0.103 0.089 0.103 0.180 0.219 0.141 0.068 0.055 0.089 0.245 0.317 0.141 0.055 0.027 0.055 0.165 0.391
13 0.089 0.103 0.068 0.055 0.055 0.089 0.126 0.141 0.055 0.027 0.027 0.089 0.245 0.141 0.038 0.014 0.027 0.055 0.346
14 0.055 0.089 0.055 0.027 0.027 0.027 0.055 0.126 0.055 0.027 0.008 0.027 0.089 0.245 0.055 0.008 0.008 0.027 0.089
15 0.089 0.126 0.126 0.089 0.055 0.055 0.089 0.188 0.165 0.055 0.027 0.040 0.089 0.245 0.245 0.055 0.027 0.027 0.089
16 0.245 0.331 0.391 0.284 0.188 0.165 0.229 0.394 0.391 0.346 0.126 0.126 0.188 0.394 0.280 0.245 0.089 0.089 0.188
17 0.280 0.270 0.193 0.219 0.317 0.391 0.370 0.242 0.141 0.141 0.370 0.391 0.394 0.232 0.103 0.103 0.245 0.245 0.394
18 0.103 0.103 0.068 0.068 0.089 0.141 0.141 0.103 0.055 0.038 0.068 0.180 0.219 0.103 0.038 0.027 0.055 0.245 0.280
19 0.055 0.068 0.038 0.027 0.027 0.055 0.089 0.089 0.027 0.014 0.027 0.055 0.126 0.103 0.027 0.008 0.008 0.055 0.245

Sector i Sector j

Scenario: MM-38 Exocet and Harpoon ASM, SM-1 Area Defense SAM System, Detection Distance of ASMs From AAD Ship 21213.2 m., ASMs' Bearing From ND Ship 000 and 010.  
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Table H.5.  Coverage Values Calculated for Scenario 5. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.245 0.394 0.297 0.165 0.126 0.126 0.205 0.383 0.259 0.103 0.068 0.089 0.147 0.346 0.219 0.068 0.055 0.055 0.126
2 0.126 0.245 0.165 0.089 0.068 0.089 0.126 0.394 0.180 0.068 0.055 0.055 0.126 0.383 0.180 0.055 0.027 0.027 0.089
3 0.126 0.205 0.245 0.126 0.089 0.089 0.126 0.245 0.297 0.089 0.055 0.055 0.089 0.245 0.259 0.068 0.027 0.027 0.072
4 0.205 0.245 0.394 0.245 0.126 0.126 0.147 0.245 0.391 0.165 0.089 0.068 0.126 0.229 0.317 0.103 0.055 0.055 0.089
5 0.394 0.383 0.391 0.297 0.245 0.205 0.245 0.346 0.317 0.180 0.126 0.126 0.165 0.331 0.270 0.103 0.068 0.068 0.126
6 0.297 0.391 0.259 0.180 0.165 0.245 0.394 0.394 0.219 0.103 0.089 0.126 0.245 0.394 0.193 0.089 0.055 0.089 0.165
7 0.165 0.297 0.180 0.103 0.089 0.126 0.245 0.391 0.180 0.068 0.055 0.089 0.205 0.394 0.141 0.055 0.027 0.055 0.147
8 0.068 0.126 0.089 0.055 0.055 0.055 0.089 0.245 0.103 0.038 0.027 0.027 0.089 0.394 0.103 0.027 0.008 0.027 0.068
9 0.089 0.126 0.126 0.089 0.055 0.055 0.068 0.147 0.245 0.068 0.027 0.027 0.055 0.165 0.297 0.055 0.027 0.027 0.055

10 0.147 0.165 0.245 0.205 0.126 0.089 0.126 0.165 0.383 0.245 0.089 0.055 0.089 0.165 0.394 0.165 0.055 0.027 0.055
11 0.383 0.346 0.394 0.391 0.394 0.245 0.245 0.331 0.370 0.259 0.245 0.147 0.165 0.308 0.317 0.180 0.126 0.089 0.126
12 0.259 0.317 0.219 0.180 0.180 0.297 0.391 0.370 0.193 0.103 0.103 0.245 0.383 0.391 0.154 0.068 0.068 0.126 0.245
13 0.103 0.180 0.103 0.068 0.068 0.089 0.165 0.259 0.103 0.055 0.038 0.068 0.245 0.317 0.103 0.038 0.027 0.055 0.205
14 0.055 0.068 0.055 0.027 0.027 0.027 0.055 0.126 0.068 0.027 0.008 0.027 0.055 0.245 0.068 0.014 0.008 0.008 0.055
15 0.055 0.068 0.089 0.055 0.027 0.027 0.055 0.089 0.126 0.055 0.027 0.027 0.027 0.126 0.245 0.055 0.008 0.008 0.027
16 0.126 0.126 0.165 0.147 0.089 0.072 0.089 0.126 0.245 0.205 0.068 0.055 0.055 0.126 0.346 0.245 0.055 0.027 0.055
17 0.346 0.331 0.394 0.394 0.383 0.245 0.229 0.308 0.391 0.317 0.394 0.165 0.165 0.292 0.353 0.219 0.245 0.126 0.126
18 0.219 0.270 0.193 0.141 0.180 0.259 0.317 0.317 0.154 0.103 0.103 0.297 0.394 0.353 0.141 0.068 0.068 0.245 0.346
19 0.068 0.103 0.089 0.055 0.055 0.068 0.103 0.180 0.068 0.038 0.027 0.055 0.165 0.219 0.068 0.027 0.014 0.055 0.245

Sector i Sector j

Scenario: MM-38 Exocet and Harpoon ASM, SM-1 Area Defense SAM System, Detection Distance of ASMs From AAD Ship 21213.2 m., ASMs' Bearing From ND Ship 045 and 055.  
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Table H.6.  Coverage Values Calculated for Scenario 6. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
1 0.245 0.259 0.394 0.245 0.126 0.126 0.141 0.193 0.394 0.165 0.089 0.068 0.103 0.180 0.394 0.147 0.055 0.038 0.068
2 0.126 0.245 0.245 0.126 0.089 0.089 0.126 0.259 0.308 0.126 0.055 0.055 0.089 0.193 0.331 0.089 0.027 0.027 0.055
3 0.126 0.141 0.245 0.126 0.089 0.068 0.089 0.141 0.394 0.126 0.055 0.038 0.055 0.141 0.394 0.126 0.027 0.027 0.038
4 0.141 0.141 0.259 0.245 0.126 0.089 0.103 0.141 0.344 0.245 0.089 0.055 0.068 0.103 0.370 0.165 0.055 0.027 0.038
5 0.259 0.193 0.344 0.394 0.245 0.141 0.141 0.180 0.370 0.308 0.126 0.089 0.103 0.141 0.370 0.205 0.089 0.055 0.068
6 0.394 0.344 0.394 0.308 0.245 0.245 0.259 0.232 0.394 0.205 0.126 0.126 0.141 0.193 0.394 0.165 0.089 0.068 0.103
7 0.245 0.394 0.308 0.165 0.126 0.126 0.245 0.344 0.331 0.147 0.089 0.089 0.141 0.232 0.331 0.108 0.055 0.055 0.103
8 0.089 0.126 0.126 0.089 0.055 0.055 0.089 0.245 0.165 0.072 0.027 0.027 0.068 0.259 0.205 0.055 0.027 0.027 0.055
9 0.068 0.089 0.126 0.089 0.055 0.038 0.055 0.103 0.245 0.089 0.027 0.027 0.038 0.103 0.394 0.089 0.027 0.008 0.027

10 0.103 0.103 0.141 0.141 0.089 0.055 0.068 0.089 0.193 0.245 0.068 0.038 0.038 0.068 0.232 0.245 0.055 0.027 0.027
11 0.193 0.180 0.232 0.344 0.259 0.141 0.141 0.141 0.280 0.394 0.245 0.103 0.089 0.103 0.317 0.331 0.126 0.055 0.055
12 0.394 0.370 0.394 0.331 0.308 0.394 0.344 0.280 0.394 0.229 0.165 0.245 0.193 0.232 0.394 0.188 0.126 0.126 0.141
13 0.165 0.308 0.205 0.147 0.126 0.126 0.245 0.394 0.229 0.108 0.072 0.089 0.245 0.370 0.251 0.089 0.055 0.055 0.141
14 0.055 0.089 0.089 0.055 0.027 0.027 0.055 0.126 0.126 0.055 0.027 0.027 0.055 0.245 0.147 0.040 0.008 0.008 0.038
15 0.038 0.055 0.068 0.055 0.027 0.027 0.027 0.055 0.126 0.055 0.027 0.008 0.027 0.068 0.245 0.055 0.008 0.008 0.008
16 0.068 0.068 0.103 0.103 0.055 0.038 0.038 0.055 0.141 0.141 0.055 0.027 0.027 0.055 0.180 0.245 0.038 0.008 0.014
17 0.180 0.141 0.193 0.232 0.193 0.141 0.103 0.103 0.232 0.370 0.259 0.103 0.068 0.103 0.232 0.394 0.245 0.068 0.055
18 0.394 0.370 0.394 0.331 0.331 0.394 0.370 0.317 0.394 0.251 0.205 0.394 0.232 0.232 0.394 0.188 0.147 0.245 0.180
19 0.147 0.205 0.165 0.108 0.089 0.126 0.165 0.331 0.188 0.089 0.055 0.089 0.245 0.394 0.188 0.072 0.040 0.055 0.245

Sector i Sector j

Scenario: MM-38 Exocet and Harpoon ASM, SM-1 Area Defense SAM System, Detection Distance of ASMs From AAD Ship 21213.2 m., ASMs' Bearing From ND Ship 080 and 090.  
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Operations Officer to the Commodore of the 1st FPBG Squadron, Turkish Navy FPB 
Command, Umuryeri, İstanbul, July 1994 – December 1994. 

Communications Officer, TCG Turgutreis, 1st Frigate Squadron Command, Gölcük, 
Kocaeli, August 1991 – July 1994. 

 
Journal Article 
Karasakal O. and E. Karasakal, “A Maximal Covering Location Model in the 

Presence of Partial Coverage”, Computers and Operations Research 
(forthcoming). 
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Articles in Proceedings 
Karasakal O., “An Investigation on Defense Acquisition Systems”, Defense R&D 

Seminar Proceedings, Ankara, Turkey, 13 November 1999 (in Turkish). 

Karasakal O. and E. Sayın, “An Application Oriented BPR Approach for Public 
Sector”, 20th National Operations Research and Industrial Engineering 
Conference Proceedings CD, Ankara, Turkey, 8-9 June 1999 (in Turkish). 

Karasakal O., “Optimizing the Acquisition Process for Aircraft and Air Dropped 
Munitions”, Turkish Armed Forces Modeling and Simulation Seminar 
Proceedings, Ankara, Turkey, 1-3 April 1998 (in Turkish). 

Karasakal O., “Status and Requirements for Modeling and Simulation in the Turkish 
Navy”, Turkish Armed Forces Modeling and Simulation Seminar Proceedings, 
Ankara, Turkey, 1-3 April 1998 (in Turkish). 

 
Technical Reports 
Say Y. and O.Karasakal, “Analysis on Compulsory Service Period”, Dz.K.K.lığı 

BİLKARDES D.Bşk.lığı, Project Report PR-2003/04, December 2003 (in 
Turkish). 

Kaplan A.C. and O. Karasakal, “A Model for Allocating Communication Budget and 
Time Series Analysis for the Year 2003”, Dz.K.K.lığı BİLKARDES D.Bşk.lığı, 
Project Report PR-2002/06, December 2002 (in Turkish). 

Çağlayan A. and O. Karasakal, “A Comparative Investigation on Current and 360-
Degree Performance Evaluation Sytems”, Dz.K.K.lığı BİLKARDES D.Bşk.lığı, 
Project Report PR-2002/05, December 2002 (in Turkish). 

Eliiyi D. Türsel, E. Erdem and O. Karasakal, “Integrated Locational Planning of 
Schools in Turkey”, Technical Report No:02-05, Industrial Engineering 
Department, Middle East Technical University, May 2002. 

Karasakal O. and S. Akgün, “Operational Requirements Prioritization Model 
(HİSA)”, Dz.K.K.lığı BİLKARDES D.Bşk.lığı, Project Report PR-2002/01, 
July 2002 (in Turkish). 

Karasakal O., “Analysis of Officer Billets Authorized for Promotion Using System 
Dynamics”, Dz.K.K.lığı BİLKARDES D.Bşk.lığı, Project Report No: 
DZBİLKARDES:TR-04, December 2001 (in Turkish). 

Karasakal E. and O. Karasakal, “Multicriteria Decision Making Methods”, Maritimes 
Regional Advisory Process Working Paper 2001/46, Department of Fisheries 
and Oceans, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, 
Canada, June 2001. 

Karasakal O. and E. Karasakal, “Locating the Search and Rescue Bases in the 
Presence of Partial Coverage”, DOR (MLA) Research Note RN-2001/03, 
Operational Research Division, Department of National Defence, Ottawa, July 
2001. 

Karasakal O., “A Literature Review of Operational Research Methods for Modeling 
the Air Defence Problem”, DOR (MLA) Research Note RN-2001/02, 
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Operational Research Division, Department of National Defence, Ottawa, May 
2001. 

Karasakal O. and S. Akgün, “System and Equipment Selection Using the Analytic 
Hierarchy Process and Criteria Template for Selected Systems and Equipment”, 
Technical Report No: DZBİLKARDES:TR-03, R&D Department, Turkish 
Navy HQs, June 2000 (in Turkish). 

Karasakal O., “Optimization of Loading in Amphibious Operations: The HAMULE 
Model”, Technical Report No: DZBİLKARDES: TR-02, R&D Department, 
Turkish Navy HQs, December 1999 (in Turkish) 

 
Presentations at Conferences 
Karasakal O. and E. Karasakal, “A Maximal Covering Location Model in the 

Presence of Partial Coverage”, 23rd Operations Research and Industrial 
Engineering National Conferece, 3-5 July 2002, İstanbul. 

Karasakal O. and E. Karasakal, “Locating the Search and Rescue Bases in the 
Presence of Partial Coverage”, CORS 2001, Quebec City, Canada, 6-9 May 
2001. 

Karasakal O., “An Investigation on Defense Acquisition Systems”, Defense R&D 
Seminar, Ankara, Turkey, 13 November 1999 (in Turkish) 

Karasakal O. and E. Sayın, “An Application Oriented BPR Approach for Public 
Sector”, 20th National Operations Research and Industrial Engineering 
Conference, Ankara, Turkey, 8-9 June 1999 (in Turkish). 

Karasakal O., “Optimizing the Acquisition Process for Aircraft and Air Dropped 
Munitions”, Turkish Armed Forces Modeling and Simulation Seminar, Ankara, 
Turkey, 1-3 April 1998 (in Turkish). 

Karasakal O., “Status and Requirements for Modeling and Simulation in the Turkish 
Navy”, Turkish Armed Forces Modeling and Simulation Seminar, Ankara, 
Turkey, 1-3 April 1998 (in Turkish). 

 
Seminar 
Karasakal O., “Optimal Air Defense Strategies for a Naval Task Group”, Department 

of Industrial Engineering, METU, Ankara, 5 April 2002. 
 
Workshop and Conferences Participated 

Yeditepe University- IIASA-DAS Conference on Multicriteria Decision Making, 
Istanbul, Turkey, 31 August-5 September 1998. 

23rd Operations Research and Industrial Engineering National Conference, Yeditepe 
University, İstanbul, 3-5 July 2002. 

2001 CORS (Canadian Operational Research Society) Conference, Quebec City, 
Canada, 6-9 May 2001. 

1999 Command and Control Research and Technology Symposium, United States 
Naval War College, Newport, RI, 29 June-1 July 1999. 
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1999 International Symposium on Modeling and Analysis of Command and Control, 
Paris, France, 12-14 January 1999. 

 
Activities 
Member of NATO RTO Simulation, Analysis and Studies (SAS) Panel Technical 

Team on Helicopter Mission Planning (SAS-045), September 2001 – Present. 

Member of NATO RTO Simulation, Analysis and Studies (SAS) Panel Technical 
Team on Small Scale Contingencies (SAS-027), February 2000 – August 2000. 

Member of NATO RTO Simulation, Analysis and Studies (SAS) Panel Technical 
Team on Long Term Defence Planning (SAS-025), June 1999 – August 2000. 

Member of Institute for Operations Research and the Management Sciences 
(INFORMS), March 1996- Present. 

Member of Decision Analysis Society of INFORMS, November 1998 - December 
2002. 

Member of Simulation Society of INFORMS, March 1996 - December 2002. 

Member of Military Applications Society of INFORMS, March 1996 – Present. 

Member of Optimization Society of INFORMS, March 1996 – December 1998. 
 
Awards and Honours 
Canadian Defense Research Fellow, September 2000-August 2001. 

Ranking the second out of 196 students in the graduating class of Naval Academy, 
August 1991. 

US Navy–Turkish Navy Exchange Cadet for on-job training on board USS Ponce at 
the US Navy 6th Fleet, June-July 1991. 

Naval Academy High Honour Student, Fall 1987, Spring 1988, Fall 1988, Spring 
1989, Fall 1989, Spring 1990, Fall 1990, Spring 1991. 

 


