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The presence of inflammatory immune cells in human
tumors raises a fundamental question in oncology: How
do cancer cells avoid the destruction by immune attack?
In principle, tumor development can be controlled by
cytotoxic innate and adaptive immune cells; however, as
the tumor develops from neoplastic tissue to clinically
detectable tumors, cancer cells evolve different mecha-
nisms that mimic peripheral immune tolerance in order
to avoid tumoricidal attack. Here, we provide an update
of recent accomplishments, unifying concepts, and future
challenges to study tumor-associated immune cells, with
an emphasis on metastatic carcinomas.

Cancer remains a major cause of death worldwide, and,
with an aging population, its annual toll of 8.2 million is
only expected to increase (Ferlay et al. 2015). In this re-
spect, carcinomas can be broadly divided into two groups:
metastatic (the principal cause of cancer-related deaths)
and nonmetastatic (Siegel et al. 2016). Traditionally, me-
tastasis has been considered to occur in later stages of
cancer progression; however, accumulating evidence has
also described metastatic dissemination during early tu-
mor formation (Hosseini et al. 2016). During metastasis,
disseminating cancer cells escape from primary tumors
and acquire cellular traits that allow them to travel
and colonize distant organs (Chambers and Werb 2015;
Lambert et al. 2017; Gonzalez et al. 2018).
Primary and metastatic tumors are complex ecosys-

tems composed of neoplastic cells, extracellular matrix
(ECM), and “accessory” nonneoplastic cells, which in-
clude resident mesenchymal support cells, endothelial
cells, and infiltrated inflammatory immune cells. Cross-
talk between cancer cells and accessory cells fuels and
shapes tumor development. During tumor formation, the

tissue architecture evolves into a highly specialized mi-
croenvironment characterized by a corrupted ECM and
chronic inflammation (Coussens and Werb 2002).
Cancer-associated inflammation, which is present at

different stages of tumorigenesis, contributes to genomic
instability, epigenetic modification, induction of cancer
cell proliferation, enhancement of cancer anti-apoptotic
pathways, stimulation of angiogenesis, and, eventually,
cancer dissemination (Hanahan and Weinberg 2011).
Studies during the last two decades have demonstrated
that inflammatory immune cells are essential players of
cancer-related inflammation. Efforts have focused on un-
derstanding how immune cells impact tumor fate in dif-
ferent stages of disease: early neoplastic transformation,
clinically detected tumors, metastatic dissemination,
and therapeutic intervention. In this review, we focus on
recent results, unifying concepts, limits, and futures chal-
lenges in studying cancer-associated inflammatory cells,
with an emphasis on metastatic carcinomas.

Cancer-related inflammatory conditions

Since 1863, when Virchow first hypothesized that cancer
develops as the product of unresolved inflammation
(Balkwill and Mantovani 2001), tumor-associated inflam-
mation has been key to shaping our modern understand-
ing of cancer progression (Fig. 1). Today, it is accepted
that chronic inflammation is a critical hallmark of cancer,
with at least 25% of cancers associated with it (Hussain
et al. 2000; Coussens and Werb 2002; Beaugerie et al.
2013), and possible underlying causes include microbial
infections, autoimmunity, and immune deregulation. For
example, human papilloma viruses (HPVs) induce inflam-
mation and are responsible for 90%–100% of all cervical
cancers (Bosch et al. 2002). Similarly, chronic infection
with Helicobacter pylori elevates the risk for gastric
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cancer (Hussain et al. 2000). In addition, the immune
deregulation seen in inflammatory bowel disease increas-
es colorectal cancer incidence (Lakatos and Lakatos 2008).
The nonhuman form of sialic acid—N-glycolylneuroa-
minic acid (Neu5Gc)—in red meat can be incorporated
into human tissue and recruit inflammatory cells (Samraj
et al. 2015). In this sense, diet may play a causal role in in-
duction of cancer-associated inflammation (Gupta et al.
2010). Importantly, tobacco and obesity, both of which
induce low-grade inflammation, give rise to elevated risks
of cancer (Howe et al. 2013); this evidence suggests that
the majority of cancers is associated with unresolved
inflammation.

While chronic inflammation has an important role in
cancer, less is known about the impact of acute inflamma-
tion on tumor progression. For example, inducing acute
inflammation locally in the bladder with a vaccine
containing an attenuated Mycobacterium bovis strain
successfully treats squamous cancer of the bladder (Aske-
land et al. 2012). Hence,with the infiltration of leukocytes
and subsequent inflammation, the impact from inflamma-
tory mediators can both initiate and, in certain cases,
eliminate tumor cells and prevent tumor development
(Shalapour andKarin 2015).This dual roleof inflammation
also becomes evident in the clinic, where immunodefi-
cient patients aremoreoftendiagnosedwith cancer (Frisch
et al. 2001). Interestingly, long-term use of nonsteroidal
anti-inflammatory drugs (NSAIDs), which suppresses the
immune system, has been linked to a lower risk of cancer
(Thun et al. 2002).

Whether or not inflammation is a cause or a conse-
quence, the tumor microenvironment (TME) is compro-
mised, triggering an immune inflammatory response,

and histopathological analyses provide evidence for the
presence of innate and adaptive immune cells in most
human tumors, which are characterized as features of
cancer progression (Fridman et al. 2012).

Role of inflammatory cells during cancer progression

The presence of tumor-associated inflammatory cells in
tumors raises an important question, which is one of the
most important challenges in oncology: How do cancer
cells avoid destruction by the immune system? Since
inflammatory cells were first observed in human tumors,
much effort has been invested in better understanding the
complex role of inflammatory cells in carcinomas. It is
currently accepted that an aberrant innate and adaptive
immune response contributes to tumorigenesis by select-
ing aggressive clones, inducing immunosuppression, and
stimulating cancer cell proliferation and metastasis (Fig.
2; Palucka and Coussens 2016). During the early stages
of tumor development, cytotoxic immune cells such
as natural killer (NK) and CD8+ T cells recognize and
eliminate the more immunogenic cancer cells (Teng
et al. 2015). This first phase of elimination selects the pro-
liferation of cancer cell variants that are less immunogen-
ic and therefore invisible to immune detection. As the
neoplastic tissue evolves to a clinically detectable tumor,
different subsets of inflammatory cells impact tumor fate.
For example, high levels of tumor-infiltrated T cells corre-
late with good prognosis in many solid cancers (Clemente
et al. 1996; Oldford et al. 2006; Dieu-Nosjean et al. 2008);
on the other hand, high levels of macrophage infiltration
correlate with a worse prognosis (Zhang et al. 2012;

Figure 1. Chronic inflammation is a necessary
consequence of cancer progression. Different
inflammatory conditions can lead to neoplastic
transformation. However, whether or not the
inflammation is present in the origin of carcino-
genesis, most tumors progress to a state of chron-
ic inflammation that fuels different aspects of
tumor progression, including genomic and epige-
nomic instability, immune evasion, angiogene-
sis, and metastatic dissemination.

Figure 2. The balance between effector
and tolerogenic immune response dictates
tumor fate. During the early stages of tu-
mor development, effector immune cells
eliminate immunogenic cancer cells. Se-
lected cancer cells that survive progress to
clinically detectable tumors adopt different
strategies of peripheral immune tolerance
and recruitment of immunosuppressive im-
mune cells that can subdue other tumorici-
dal cells. For abbreviations and further
details, see the text.
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Mantovani et al. 2017; Gonzalez et al. 2018). Here, we
review the important aspects and different facets of
cancer-associated immune cells, focusing on progression
from tumor initiation to metastatic colonization

Macrophages

Macrophages are innate immune cells that differentiate
from circulating classical monocytes after extravasation
into tissues. Upon differentiation, macrophages are
equipped to sense and respond to infections and tissue
injuries, playing a key role in tissue homeostasis and
repair (Lavin et al. 2015). As crucial drivers of chronic can-
cer-associated inflammation, their involvement has been
described in every step of cancer progression, from early
neoplastic transformation throughout metastatic progres-
sion to therapy resistance (Fig. 3; Noy and Pollard 2014;
Kitamura et al. 2015; Gonzalez et al. 2018). In oncological
patients and preclinical experimental models, high-grade
tumor-associated macrophages (TAMs) correlate with
poor prognosis and reduced overall survival (Zhang et al.
2012; Noy and Pollard 2014).
Activated macrophages are referred to as either proin-

flammatory (“M1 type,” driven by LPS and IFNγ) or
anti-inflammatory (“M2-type,” driven by IL-4 or IL-13)
(Mantovani et al. 2002). During carcinogenesis, anti-
tumor macrophages display an M1-like polarization that
plays a relevant role in the elimination of more immuno-
genic cancer cells. As the tumor progresses, the TME
elicits anM2-like polarization of TAMs that is protumori-
genic (Mantovani et al. 2017). TAMs promote tumor
progression in different ways, such as stimulating angio-
genesis and lymphangiogenesis, stimulating both cancer
cell proliferation and epithelial–mesenchymal transition,
limiting the efficacy of therapies, remodeling the ECM,
promoting metastasis, and inducing immunosuppression
of anti-tumor effector immune cells (DeNardo et al.
2011; Qian et al. 2015; Mantovani et al. 2017). According-
ly, TAMs secrete cytokines such as IL-10 (Ng et al. 2013)
and TGF-β (McIntire et al. 2004) that induce immunosup-

pression, impairing the activity of effector T cells and
inhibition of dendritic cell (DC) maturation (Rubtsov
et al. 2008). TAMs also directly stimulate cancer cell
proliferation through the secretion of epidermal growth
factor (EGF) (O’Sullivan et al. 1993), promote tumor angio-
genesis by vascular EGF (VEGF) secretion (Shojaei et al.
2008), and remodel the ECM by secreting metalloprotei-
nases (MMPs) (Kessenbrock et al. 2010). For example,
macrophage-derived MMP-9 promotes tumorigenesis
and angiogenesis (Huang et al. 2002).
AlthoughTAMsmostly play protumorigenic roles, they

can also sometimes exert anti-tumoral roles. For example,
nonclassicalNR4A1+ patrollingmonocytes that, in steady
state conditions, are located in the microvasculature
of different organs inhibit lung metastasis in MMTV-
PyMT mice by direct induction of NK cell recruitment
to the metastatic site (Hanna et al. 2015). Additionally,
TAMs mediate the efficacy of the anti-tumor and anti-
metastatic effects of the histone deacetylase inhibitor
TMP195, which reprograms TAMs to a highly phagocytic
phenotype (Guerriero et al. 2017).
Similar to other tumor-associated immune cells, TAMs

have been described mostly in primary tumors. However,
understanding the roles of macrophages as promoters
or inhibitors in the metastatic cascade and their role in
metastasis is a growing field. In xenograftmodels of breast
cancer, TAMs regulate invasion of stroma and intravasa-
tion of cancer cells via cell contact-mediated signaling
(Roh-Johnson et al. 2014). Circulating CCR2+ monocytes
are attracted to metastatic sites by CCL2 secreted by can-
cer cells and endothelial cells, resulting in promotion of
metastatic seeding (Srivastava et al. 2014). In MMTV-
PyMT mice, Tie2+ metastasis-associated macrophages
(MAMs) enhance angiogenesis and tumor proliferation,
while the inhibition of angiogenesis by blocking of angio-
poetin-2 inhibits metastatic burden and induces regres-
sion of established metastases (Mazzieri et al. 2011). In a
Kras-driven mouse model of pancreatic cancer, exosomes
derived from malignant lesions induce activation of
tissue-resident macrophages called Kupffer cells, estab-
lishing a premetastatic inflammatory milieu in the liver.

Figure 3. Roles of innate immune cells
in metastatic cancers. An overview of the
protumor and anti-tumor roles of innate im-
mune cells in cancer, indicating the specific
functions and the outcomes. Processes such
as angiogenesis, ECM remodeling, and im-
mune evasion are mediated by TAMs, tu-
mor-associated neutrophils (TANs), and
immature dendritic cells (DCs), resulting
in rapid tumor progression and metastasis.
In contrast, the recruitment of cytotoxic
macrophages and neutrophils, NK cells,
andmatureDCs results ineliminationof tu-
mor cells in primary sites and after dissemi-
nation. (DTC)Disseminated tumor cell. For
other abbreviations and further details, see
the text.
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This is followed by subsequent arrest of bone marrow-
derived macrophages and neutrophils in the liver, result-
ing in a prometastatic effect, reversible by macrophage
ablation (Costa-Silva et al. 2015).

TAMs are recruited to the tumors by a range of chemo-
kines, including CCL2 (Nakatsumi et al. 2017), VEGF
(Qian et al. 2011), CCL5 (Halama et al. 2016), and CSF1
(Abrahamet al. 2010). The role of VEGF as a proangiogenic
and protumor factor is well established and accepted; for
example, VEGF ablation in monocytes decreases meta-
static burden in experimental breast cancer metastasis
(Qian et al. 2011). The role of CCL2 in cancer is more con-
troversial, as previous studies have shown contradictory
findings (Rollins and Sunday 1991; Manome et al. 1995;
Lu and Kang 2009; Takahashi et al. 2009; Granot et al.
2011; Qian et al. 2011; Bonapace et al. 2014; Espinosa
et al. 2014; Headley et al. 2016; Long et al. 2016). The in-
hibition of CCL2 in a syngeneic xenograft model of breast
cancer results in increased metastasis and accelerated
death (Bonapace et al. 2014), while tumor-derived CCL2
results in the induction of anti-metastatic neutrophils
in an MMTV-PyMT model, resulting in inhibition of
metastatic seeding in premetastatic lungs (Granot et al.
2011). Furthermore, the increase of CCL2 in a 4T1 breast
cancer model negatively regulates metastatic spread to
the bone marrow and lungs (Takahashi et al. 2009). Using
similar approaches, such as MMTV-PyMT and xenograft
models of breast cancer, high CCL2 expression correlates
with increased infiltration of CCR2 macrophages in pri-
mary tumors and metastatic sites, including the lungs
and bone, and is associated with poor prognosis (Lu and
Kang 2009; Qian et al. 2011). These apparent contradic-
tions cannot be explained merely by genetic differences
between preclinical models used and highlight the com-
plex role of CCR2 in the TME and likely heterogeneity
in phenotypes within CCR2+ TAMs/MAMs. This dichot-
omy highlights the necessity of validating these findings
in more reliable models that better represent human
tumors of cancer, such as humanized patient-derived
xenograft (PDX) models, and interrogating, at the single-
cell level, the diversity of TAMs/MAMs in human tu-
mors. Likewise, although the M1-like/M2-like paradigm
has proved to be useful, transcriptomic analysis suggests
that it is likely that a spectrum of differentiated TAMs/
MAMs exists and that the currentmodel is oversimplified
(Xue et al. 2014).

Neutrophils

Neutrophils are recognized as key players during inflam-
mation. They are among the first immune cells to be
recruited to damaged tissue, where they can eliminate
pathogens and modulate inflammation by mechanisms
such as phagocytosis, secretion of antibacterial proteins,
deposit of neutrophil extracellular traps (NETs), and
exocytosis of protease-containing granules (Kolaczkow-
ska and Kubes 2013). In cancer patients, high levels of
tumor-associated neutrophils (TANs), high levels of neu-
trophilia, and/or high neutrophil/lymphocyte ratios have

been associated with an adverse prognosis in differentma-
lignances (Keizman et al. 2012; Donskov 2013). Similar to
the M1/M2 phenotype of macrophages, it has been pro-
posed that TANs exist in two polarization states, called
“N1” and “N2,” to describe protumor and anti-tumor
populations, respectively (Fridlender et al. 2009). This par-
adigm is still a matter of debate due to the lack of specific
markers to identify these two populations. However, it is
clear that TANs display functional heterogeneity. The re-
cruitment of TANs to the TME is thought be mediated
mainly by CXCR2 ligands such as CXCL1, CXCL2 and
CXCL5 (Jamieson et al. 2012; Katoh et al. 2013), secreted
by cancer and stromal cells; TGF-β has also been associat-
ed with recruitment and reprogramming to protumor
TANs (Fridlender et al. 2009).

In xenograft models of melanoma and lung cancer,
TANs expressing hepatocyte growth factor receptor
(c-MET) play important anti-tumor and anti-metastatic
roles. Interestingly, c-MET expression is induced by tu-
mor-derived tumor necrosis factor-α (TNFα) (Finisguerra
et al. 2015), and it is likely that NK and effector T cells
are a source of TNF-α within the TME. Similarly, in
human colorectal cancer, high levels of CD66b+ TANs
have been associated with better prognosis by enhancing
the tumoricidal capacity of CD8+ T cells (Governa et al.
2017). Neutrophils also exert a tumoricidal function
during radiotherapy. As they are rapidly and transiently
recruited to tumor sites in syngeneic xenograft breast can-
cer models, the concurrent administration of granulocyte
colony-stimulating factor (G-CSF) enhances radiotherapy
effectiveness (Takeshima et al. 2016).

In contrast, TANs are thought to contribute to nascent
inflammation during cancer initiation and progression.
In a Kras-driven lung adenocarcinoma mouse model,
IL-17-responsive TANs promote tumor growth (Chang
et al. 2014). Also, neutrophil elastase acts as a potent
elastolytic enzyme that, when secreted in a site of inflam-
mation, promotes tumor cell invasion, angiogenesis, and
cancer cell proliferation (Houghton et al. 2010; Gong
et al. 2013). Moreover, TANs contribute to the tumor an-
giogenesis by the secretion of MMP9 and VEGF in genetic
mouse models of pancreatic and colon cancer (Bergers
et al. 2000; Shojaei et al. 2007, 2008). In gastric cancer,
TANs induce direct immunosuppression in T cells by
PD-L1 expression induced by tumor-derived granulocyte
macrophage-CSF (GM-CSF) (Wang et al. 2017). A popula-
tion of cells phenotypically and morphologically similar
to neutrophils, called polymorphonuclear myeloid-de-
rived suppressor cells (PMN-MDSCs), has been identified
in cancer patients and preclinical models (for review, see
Gabrilovich 2017). The presence of PMN-MDSCs in
tumors is associated with induction of chronic inflamma-
tion and antigen-specific tolerance byT cells (Marigo et al.
2010). Using the MMTV-PyMT transgenic breast cancer
model, we described that the production of tumor-derived
G-CSF during tumor progression induces the systematic
differentiation and activation of PMN-MDSCs, character-
ized by CD11b+ Rb1lo Ly6G+ (Casbon et al. 2015).

Neutrophils have been proposed to be pioneer cells in
the lung premetastatic niche, supporting the arrival of
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disseminated cells in the MMTV-PyMT model (Wculek
and Malanchi 2015). Moreover, in response to the secre-
tion of IL-7 by γδ T cells, neutrophils are recruited to the
lungs, where they support the survival and proliferation
of disseminated cancer cells by suppressing effector
CD8+ T cells (Coffelt et al. 2015). This prometastatic
motif is also seen during liver metastasis in the KPCmod-
el of pancreatic cancer (Steele et al. 2016). These results
demonstrate that the protumor and anti-tumor functions
of TANs are highly context-dependent and likely depend
on immune cross-talk with other tumor-associated im-
mune cells.
In recent years, the presence of NETs in the TME has

been linked to cancer progression in animal models and
cancer patients (Cools-Lartigue et al. 2013, 2014; Tohme
et al. 2016), NETs are extracellular networks released by
neutrophils—composed mostly of chromatin, proteases
(such as elastase, cathepsin G, andMMP9), and intracellu-
lar proteins—that immobilize pathogens to facilitate their
subsequent elimination (Papayannopoulos 2018). An in-
crease inNET formation has been correlatedwith progres-
sion to metastatic disease in colorectal cancer patients
after surgery (Tohme et al. 2016). Additionally, NETs
trap circulating cancer cells, increasing the adhesion
within hepatic sinusoids, which favors extravasation and
parenchyma colonization (Cools-Lartigue et al. 2013). In
breast cancer, NETs accumulate around metastatic cells
that have reached the lungs of mice. Notably, targeting
NETs in vivo with DNase I-coated particles reduces
metastatic burden (Park et al. 2016). NETs seem to play
a protumor role by the direct activity of NET-derived
proteases and also by holding cancer cells in place, likely
facilitating the concentration and localization of cancer
effectors that result in increased degradation of the
ECM,migration, and invasion (Cools-Lartigue et al. 2014).
There is a growing recognition of neutrophils as

relevant players at different steps of cancer progression;
however, a better characterization of the phenotypic
heterogeneity and plasticity of cancer-associated neutro-
phils is needed, considering that they are the most abun-
dant immune cells in circulation. The understanding of
where and how the neutrophils are programmed or repro-
grammed to be protumor and/or anti-tumor will lead to
rational designing of targeted therapies.

NK cells

NK cells are innate immune cells that display rapid and
potent cytolytic activity in response to infected or trans-
formed cells (Cerwenka and Lanier 2016). NK cells have
a wide array of inhibitory and stimulatory receptors on
their cell surface that are used for immune surveillance.
The inhibitory receptors target cancer cells lacking major
histocompatibility class I (MHC-I), marking them for pro-
grammed cell death (Marcus et al. 2014). In contrast, in
healthy cells, the binding of MHC-I molecules to their
receptors on NK cells has a profound inhibitory effect on
NK cell function (Bix et al. 1991; Liao et al. 1991; Colonna
et al. 1992; Karlhofer et al. 1992; Wagtmann et al. 1995;

Lanier 2005). NK cells have a well-documented anti-
tumor effect (Marcus et al. 2014; Iannello et al. 2016). In
this regard, the presence of NK cell infiltration in colorec-
tal (Coca et al. 1997) and gastric (Ishigami et al. 2000)
tumors correlates with a favorable outcome. Hence, there
appears to be an intricate link between incipient tumor
transformation and the ability of innate immune cells
to recognize it. Indeed, in mice, aberrant cell proliferation
induces production of the ligand retinoic acid early tran-
script 1 (RAE1), which is recognized by the stimulatory
receptor NKG2D, expressed on NK cells (Raulet et al.
2013). Besides aberrant cell proliferation, DNA damage
(Gasser et al. 2005) and RAS pathway activation (Liu
et al. 2012b) induce production of ligands in tumor cells,
which are recognized by NKG2D on NK cells. In line
with the important role of NKG2D for immune surveil-
lance,mice deficient inNKG2D receptor aremore suscep-
tible to tumor development (Guerra et al. 2008). Besides
NKG2D,NK cells have a repertoire of different stimulato-
ry cell surface receptors, which, upon binding to their
tumor-derived ligands, activate NK cells (Cerwenka
et al. 2000; Diefenbach et al. 2000, 2001; Raulet 2003).
In a mouse model of hepatic carcinoma, the restoration
of the tumor suppressor p53 in cancer cells promotes
the elimination of senescent cells (Iannello et al. 2013).
Upon activation, NK cells mediate the tumor killing
mainly by releasing cytotoxic perforin (Voskoboinik
et al. 2006) and granzyme, eliminating tumor cells and
also triggering apoptotic pathways in tumor cells through
the production of TNFα or via direct cell–cell contact
through activation of the TRAIL and FASL pathways.
Densely granulated NK cells are recruited into large solid
tumors by tumor-produced IL-15, where they successfully
eliminate established tumors (Liu et al. 2012a). The natu-
ral cytotoxicity receptor NKp46 and inhibitory receptor
Ly49 on NK cells prevent metastatic outgrowth in mela-
noma, lung, and fibrosarcoma models (Andrews et al.
2012; Glasner et al. 2012). These data highlight the impor-
tance of NK cells’ function in controlling cancer progres-
sion. Future efforts should be addressed to define the
regulatory circuits of the innate and adaptive immunity
that results in tumor killing by NK cells.

DCs

These specialized antigen-presenting cells (APCs) that
represent the interface between innate and adaptive im-
munity are able to present endogenous and exogenous
antigens to T cells in the context of MHC molecules.
With the exception of the brain parenchyma, DCs are
located in every tissue across the body (Mildner and
Jung 2014). During tumor development, DCs prime naïve
and memory T cells, and, depending on the inflammatory
context and the costimulatory signals, the antigen presen-
tation can result in antigen tolerance or priming and
triggering of an effector T-cell response. Tumor-infiltrat-
ing DCs have been described in many cancer types
(Tran Janco et al. 2015), and, although their activity is
necessary to explain the role of T cells during cancer
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progression, DC involvement in cancer progression re-
mains understudied.

Insights into DC mechanisms are limited. A mouse
model of fibrosarcoma lacking CD8a+ DCs shows im-
paired tumor rejection mediated by CD4+ and CD8+

T cells (Hildner et al. 2008). This anti-tumor effect of
CD8a+ DCs priming effector T cells is selectively depen-
dent on type I interferon production (Diamond et al.
2011). CD103+ DCs have critical roles in tumor antigen
presentation in transgenic and xenograft mouse models
of melanoma and breast and cervical cancer (Broz et al.
2014; Moynihan et al. 2016; Roberts et al. 2016). During
chemotherapy-induced anti-tumor immune responses,
ATP and damage signals released by necrotic cells induce
the recruitment of myeloid cells; this is followed by
local differentiation to CD11c+ CD11b+ Ly6Chi DCs that
efficiently engulf tumor antigens in situ and prime the
anti-tumor effector T-cell response (Ma et al. 2013).Mech-
anistically, the expression of formyl-peptide receptor 1 on
DCs favors the recognition and stable interaction with
dying cancer cells followed by maturation, engulfing,
and antigen presentation in breast and colorectal cancer
(Vacchelli et al. 2015). Intravital imaging analysis identi-
fied lung-resident CD103+ DCs as direct suppressors of
metastatic melanoma cells (Headley et al. 2016). These
findings highlight the essential role of DCs.

Between 1995 and 2004, several clinical trials in phases
I, II, and II have tested the use of autologous DCs pulsed
with tumor antigens (DC vaccine) to initiate an anti-tu-
mor T-cell response, with promising but limited success,
especially in melanoma and prostate cancer (Mukherji
et al. 1995; Nestle et al. 1998; Beer et al. 2011). The limi-
tations in the use of DC vaccines include ex vivo manip-
ulation such as antigen loading, which impacts DC
function in vivo, and also the lack of deep insights into
DC subsets and their functional specialization in cancer
(for review, see Santos and Butterfield 2018). More recent-
ly, a phase II study in 39 melanoma patients showed
that the combination of an intradermal DC vaccine com-
bined with CTLA-4 blockade resulted in eight complete
and seven partial therapeutic responses (Wilgenhof et al.
2016). The combination of DCvaccines and the amplifica-
tion of immunity by the use of checkpoint blockade (see
“T cells” below) is an attractive strategy worthy of further
testing.

Overall, DCs play a key role in the priming and consol-
idation of anti-tumor adaptive immune response; a better
understanding of suchmechanismswill shed light on how
the anti-tumor T-cell attack fails to eliminate and contain
the tumor development. In this sense, massive parallel
single-cell analysis in early lung adenocarcinoma (stage
I) has identified a selective depletion of CD141+ DCs
(compared with normal lung tissue) that correlates with
impaired NK and T-cell activity, which favors tumor pro-
gression (Lavin et al. 2017). Recently, it has been shown
that in melanoma, breast, and colorectal mouse models,
tumor cells impair DC recruitment to TME by secretion
of prostaglandin E2, which impairs the function of tu-
mor-associated NK cells and results in impaired NK
cell-dependent DC recruitment (Bottcher et al. 2018).

T cells

T cells are components of the adaptive immune system
that act as orchestrators and effectors of immunity. De-
pending on the immunological context, T cells can
acquire functional and effector phenotypeswhose activity
has direct inflammatory or anti-inflammatory conse-
quences (Speiser et al. 2016). As the second most frequent
immune cell type found in human tumors besides TAMs,
T cells are extensively studied in diverse cancer types
(Speiser et al. 2016; Donadon et al. 2017). During the early
stages of tumor initiation, if enough immunogenic anti-
gens are produced, naïve T cells will be primed in the
draining lymph nodes, followed by their concomitant
activation and migration to the TME. From there, they
mount a protective effector immune response, eliminat-
ing immunogenic cancer cells. Histopathological analyses
of human tumors show that tumor-associated T cells
extend beyond the invasive edge of the tumor and also pre-
dominate in its hypoxic core (Halama et al. 2011; Kirilov-
sky et al. 2016). A high level of T-cell infiltration in
tumors is associatedwith a favorable prognosis inmelano-
ma (Clemente et al. 1996) and breast (Oldford et al. 2006),
lung (Dieu-Nosjean et al. 2008), ovarian (Kusuda et al.
2005), colorectal (Tosolini et al. 2011), renal (Kondo
et al. 2006), prostate (Vesalainen et al. 1994), and gastric
(Ubukata et al. 2010; Fridman et al. 2012; Kitamura
et al. 2015) cancer.

CD8+ T cells are the most prominent anti-tumor cells.
Upon priming and activation by APCs, the CD8+ T cells
differentiate into cytotoxic T lymphocytes (CTLs) and,
through the exocytosis of perforin- and granzyme-con-
taining granules, exert an efficient anti-tumoral attack, re-
sulting in the direct destruction of target cells (Hanson
et al. 2000; Matsushita et al. 2012). Meanwhile, the
CD4+ T helper 1 (Th-1)-mediated anti-tumoral response
—through secretion of high amounts of proinflammatory
cytokines such as IL-2, TNF-α, and IFN-γ—promotes not
only T-cell priming and activation and CTL cytotoxicity
but also the anti-tumoral activity of macrophages and
NK cells and an overall increase in the presentation of
tumor antigens (Kalams and Walker 1998; Pardoll and
Topalian 1998; Shankaran et al. 2001). The presence of
tumor-infiltrating CD8+ T cells and Th-1 cytokines in
tumors correlates with a favorable prognosis in terms of
overall survival and a disease-free survival in manymalig-
nancies (Fridman et al. 2012).

If the T cells are highly effective at killing malignant
transformed cells, how do some cancer cells manage to
overcome the attack by these effector T cells? Preclinical
investigations in patients and mouse models suggest that
cancer cells exploit the immunosuppressive properties
of T cells while impairing the effector functions of anti-
tumor T cells, such as their ability to infiltrate tumors
and their survival, proliferation, and cytotoxicity (Fig. 4;
Grivennikov et al. 2010). The antigen-dependent nature
of the effector T cells implies that the effectiveness of
the anti-tumor T-cell immune response depends on both
the ability of the tumor antigen to induce an immune re-
sponse (immunogenic) and the presence—or absence—of
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inhibitory signals that can impair the T cells’ functions
(Speiser et al. 2016). Accordingly, it is widely accepted
that, in a T-cell-dependent process, most neoplastic cells
expressing highly immunogenic antigens will be recog-
nized and killed during the early stages of tumor develop-
ment (Matsushita et al. 2012). The less immunogenic
cancer cells escape the immune control of T cells and sur-
vive, a process termed cancer immune editing (Teng et al.
2015). The final outcome is that the surviving cancer cells
adopt an immune-resistant phenotype. In parallel, during
tumor development, cancer cells evolvemechanisms that
mimic peripheral tolerance and are able to prevent the
local cytotoxic response of effector T cells as well as those
of other cells, such asTAMs,NK cells, andTANs (Palucka
and Coussens 2016).
During immune homeostasis, a crucial mechanism of

peripheral tolerance is the regulation of effector T-cell re-
sponse via immune checkpoints on CTLs and activated
CD4+ T cells to protect tissue from inflammatory damage.
The two better described checkpoint molecules CTLA-4
and PD-1 act as negative regulators of T-cell function
and have been associated with immune evasion in cancer
(Pardoll 2012). The involvement of CTLA-4 signaling in
cancer has been described in melanoma (Bouwhuis et al.
2010) and lung (Khaghanzadeh et al. 2010), breast (Erfani
et al. 2006), gastric (Hadinia et al. 2007), and colorectal
(Hadinia et al. 2007; Dilmec et al. 2008) cancer. Further-
more, the engagement of PD1 with its coreceptor, PDL-1
(expressed by other immune cells, mesenchymal cells,

vascular cells, and cancer cells), results in the down-regu-
lation of T-cell activity, which inhibits their anti-tumor
activities such as T-cellmigration, proliferation, secretion
of cytotoxic mediators, and restriction of cell killing
(Topalian et al. 2015). Over the past few years, the use of
immune checkpoint inhibitors such as anti-PD1 (pembro-
lizumab and nivolumab), anti-PD-L1 (MPDL3280A), and
anti-CTLA4 (ipilimumab) has had remarkable success
enhancing the effector anti-tumor response in different
malignancies (Gotwals et al. 2017), especially in melano-
ma and lung cancer (Hamid et al. 2013; Herbst et al. 2014;
Topalian et al. 2015).
As the tumor grows and the TMEchanges, newantigens

are produced, and the ability of the immune system to
prime new repertoires of T cells and direct them toward
the tumor changes, thus altering the efficacy of tumor
containment. As the immune system functions to stall
tumor growth, cancer cells and the TME simultaneously
suppress anti-tumor function by engaging immune check-
points and the recruitment of regulatory CD4+ T cells
(Tregs). Tregs are responsible for suppressing the priming,
activation, and cytotoxicity of other effector immune
cells, such as Th1 CD4 T cells, CTLs, macrophages,
NK cells, and neutrophils (Ward-Hartstonge and Kemp
2017). The Treg-mediated immunosuppression is orches-
trated by contact-dependent mechanisms such as the
expression of PDL-1, LAG-3, CD39/73, CTLA4, or PD1,
with the latter two even enhancing suppressive activity
(Walker and Sansom 2015), and by contact-independent
mechanisms, which involve the sequestration of IL-2
and production of immune-suppressive molecules such
as IL-10, TGF-β, prostaglandin E2, adenosine, and galec-
tin-1 (Francisco et al. 2009; Campbell 2015). In squamous
cell carcinoma, the inhibition of focal adhesion kinase
(FAK)—a cell contact-independent mechanism—results
in CCL5 secretion by cancer cells that induces the recruit-
ment of Tregs to the tumor site, where they suppress
the cytotoxic anti-tumor CD8+ T cells (Serrels et al.
2015). In breast and lung adenocarcinoma, Tregs suppress
T-cell activation and the anti-tumor immune response
in tumor-associated tertiary structures. Notably, specific
Treg depletion results in tumor cell death and increased
production of IFN-γ (Bos et al. 2013; Joshi et al. 2015).
Indeed, infiltration of Tregs in breast cancer was correlat-
ed recently with worse patient outcome (Allaoui et al.
2017).
In metastasis, CTLs exert an anti-metastatic effect in

bone metastasis (Bidwell et al. 2012), while prospective
analyses of lung and breast cancer patients established
an opposite correlation between the level of circulating
cancer cells and T cells in peripheral blood (Mego et al.
2016; Sun et al. 2017). These data extend to clinical trials
reporting the therapeutic efficacy of immune checkpoint
inhibition in metastatic carcinomas (Di Giacomo et al.
2012; Queirolo et al. 2014; Motzer et al. 2015; Furudate
et al. 2016; Goldberg et al. 2016; Pai-Scherf et al. 2017).
Interestingly, checkpoint inhibitors are significantly ef-
fective in treating brain metastatic tumors from melano-
ma and lung cancer, especially when considering the
lack of the adaptive immune response in the central

Figure 4. Dual role of T cells in cancer and metastasis. During
the early stages of tumorigenesis, the T-cell response against tu-
mor-derived antigens controls tumor progression, characterized
by secretion of Th-1 cytokines (IFN-γ, IL-2, and IL-12), NK cell re-
cruitment, and the presence of CTLs. As a consequence of the
constant selective pressure of the effector response, tumor vari-
ants are selected and escape immune recognition. These tumor
cells enter a phase of outgrowth that is not blocked by effector im-
mune cells. Concomitantly, the tumor induces the recruitment
of regulatory CD4+ T cells (Tregs) that counteract anti-tumor im-
mune cells by diverse mechanisms. Tumors with high infiltra-
tion of Tregs are associated with the worst prognosis. For
abbreviations and further details, see the text.
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nervous system (Queirolo et al. 2014; Goldberg et al. 2016;
Di Giacomo et al. 2017). Recent evidence suggests that
the effectiveness of checkpoint inhibition in melanoma
brain metastasis depends on extracranial disease and pe-
ripheral activation of CD8+ T cells (Taggart et al. 2018).
On the other hand, a high level of circulating Tregs has
been associated with a higher risk of metastasis in non-
small lung carcinoma patients. (Erfani et al. 2012). Similar
associations have been described in breast cancer (Metelli
et al. 2016), colorectal carcinoma metastasis (Wang et al.
2014), and hepatocellular carcinoma (Ye et al. 2016).

The cutting-edge technology of immunotherapy boasts
impressive clinical potential and poses an opportunity to
exploit the antigen specific T-cell attack to fight cancer.
The challenge faced now is to better understand themech-
anisms that cancer cells undergo to evade T-cell attack.
Also, elucidating themechanisms thatmediate the gener-
ation of antigenic heterogeneity of tumors will lead to
defining better immunotherapies for patients, expanding
access to therapies to already metastasized patients.

Invariant NK T (iNKT) cells

An unconventional subset of T cells, iNKT cells, recog-
nizes lipid antigens presented by CD1d molecules and
shares some characteristics with NK cells, among which
is the potential for activation in the absence of TCR
stimulation. Upon activation, iNKT cells secrete effector
cytokines such as IFN-γ, IL-4, and IL-17 (Lee et al. 2015). In
breast cancer cells, the down-regulation of CD1d leads to
decreased iNKT-mediated cytotoxicity and metastatic
progression (Hix et al. 2011). However, in renal cell carci-
noma patients, the expression of CD1b is associated with
high relapse and poor prognosis (Chong et al. 2015). The
administration of retinoic acid and αGalCer (iNKT ago-
nist) alone or the transfusion of αGalCer-loaded DCs
reduces the tumor size and the number of metastatic
foci in a mouse model of breast cancer by enhancing
CD8+ T-cell cytotoxicity (Chen and Ross 2012; Gebreme-
skel et al. 2015). A phase I–II study on patients with
advanced lung cancer arrived at similar conclusions
(Motohashi et al. 2009). These findings are remarkable
in that they illustrate the impact of iNKT activation and
how the monospecific nature of iNKT cells and the ther-
apeutic use of αGalCer can be used to reprogram the
anti-tumor immune response.

B cells

Upon activation in the germinal centers in lymphoid or-
gans, B cells expressing high-affinity antibodies differenti-
ate into antibody-secreting plasma cells and memory
B cells thatmediate humoral immunity against pathogens
(De Silva and Klein 2015). Although the presence of B cells
in the TMEhas been described in different carcinomas (in-
cluding melanoma and breast, ovarian, and prostate can-
cer, among others) (Chin et al. 1992; Yang et al. 2013;
Woo et al. 2014; Pylayeva-Gupta et al. 2016), the role of
B cells in cancer progression is much less understood

than that of T cells. Accumulating evidence indicates
that B cells promote and support tumor growth; for exam-
ple, using a transgenic mouse model of epithelial carcino-
genesis, Coussens and colleagues (de Visser et al. 2005)
demonstrated that the lack of mature B cells decreases tu-
mor progression. Notably, the adoptive transfer of B cells
restores chronic inflammation, angiogenesis, and tumor
growth. Different mechanisms have been described to
explain the protumor role of B cells, from immunosup-
pression via secretion of IL-10 (Schioppa et al. 2011) and
TGFβ (Olkhanud et al. 2011) to direct stimulation of
tumor cell proliferation by B-cell-derived IL-35 in human
pancreatic neoplasia and Kras-driven pancreatic neo-
plasms in mice (Pylayeva-Gupta et al. 2016). Also, by
deposition of immunoglobulins in the TME, B cells indi-
rectly stimulate angiogenesis and chronic inflammation
by activating myeloid cells via FcRγ (Andreu et al. 2010).
It is unclear howmany different phenotypes of B cells co-
exist in theTMEorwhether the B cells are recruited as im-
mune suppressors or are reprogrammed into the TME.
The subsets of B cells that induce immunosuppression
are termed regulatory B cells due to their function, al-
though there is no consensus about this classification
due to the lack of specific markers, similar to FoxP3 and
CD25 in Tregs.

Cross-talk between immune cells sculpts the response
to the tumor

An aspect that has received less attention is the cross-talk
between different immune cells within the TME and how
it impacts the outcome of the subsequent immune re-
sponse. There is growing evidence that tumor-associated
immune cells act in concert to both control and promote
the tumor formation. In this sense, during the phase of
elimination, NK cells exert a strong tumoricidal role;
secretion of CCL5 and XCL1 by NK cells promotes the re-
cruitment of conventionalDCs (cDCs) to theTME, result-
ing in increased priming and activation of new repertoires
of anti-tumor T cells, stimulating the overall effector im-
mune response (Moretta et al. 2005; Bottcher et al. 2018).
Additionally, the reciprocal interplay between NK cells,
effector T cells, and anti-tumor macrophages by the
secretion of IFN-γ and TNF-α in the tumor site boosts
the differentiation of CTLs, increases macrophage phago-
cytosis, increases the recruitment of cytotoxic cMET+

neutrophils, and enhances the cytotoxic ability of NK
cells (Finisguerra et al. 2015; Showalter et al. 2017).
Dectin-1, a pattern recognition receptor on macrophages
and DCs, recognizes N-glycan structures on tumor cells,
which activate the IRF5 pathway responsible for enhanc-
ing the killing capacity of NK cells (Chiba et al. 2014).
Moreover, CX3CR-1+ patrolling monocytes inhibit meta-
static progression through the recruitment of NK cells
to the metastatic site, and then NK cell-derived IFN-γ
reprograms macrophages into a tumoricidal effector
macrophage state (O’Sullivan et al. 2012).

Once the tumors have escaped from initial tumoricidal
immunity, they undergo different strategies that tip the
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balance toward immune tolerance,with theTAMs and tu-
mor-associated Tregs as key orchestrators of this process,
as they dampen the effect of innate and adaptive effector
immune cells at various levels and through different
mechanisms. For example, TAMs and Tregs boost an im-
mune-tolerant TME by secretion of immune-suppressive
molecules such as IL-10, TGF-β, and prostaglandins;
they also inhibit the secretion of IL-12 by DCs, avoiding
themounting of a Th-1 response and excludingNK and ef-
fector T cells (Ruffell et al. 2014; Speiser et al. 2016; Fry-
drychowicz et al. 2017; Mantovani et al. 2017; Tauriello
et al. 2018). Recently, a combination immunotherapy—
including a tumor antigen targeting antibody, a recombi-
nant interleukin-2 with an extended half-life, anti-PD-1,
and a T-cell vaccine—efficiently eliminated established
largemetastatic tumors inmultiple cancermodels; subse-
quent analysis showed that the efficacy was dependent on
an orchestrated response of both innate and adaptive im-
mune cells (Moynihan et al. 2016). These data further
highlight the importance of therapies designed to stimu-
late an orchestrated immune effector response.
Understanding the in situ cross-talk of different tumor-

associated immune cells in the different stages of cancer
progression will provide insights that could increase the
efficiency of current immunotherapies. Additionally, the
use of massive single-cell genomic and proteomic data
will allow a system-level view of the tumor-associated im-
mune function in the years to follow.

Cancer heterogeneity and anti-tumor
immunosurveillance

Analysis of human primary and metastatic tumors has
shown high levels of genomic, phenotypic, and antigenic
heterogeneity (Swanton 2012), which contribute to thera-
py failure and disease progression. This poses an arduous
clinical and technical challenge (Bedard et al. 2013; Kreso
and Dick 2014). Various mechanisms have been proposed
to explain intratumor heterogeneity: Genomic instability
(McGranahan and Swanton 2015), hierarchical organiza-
tion arising from initiating cancer stem cells (Kreso and
Dick 2014), and selective pressure imposed by the im-
mune system likely impact antigen heterogeneity of the
tumor (Quail and Joyce 2013). Through cancer immune
editing, the immune system eliminates the more immu-
nogenic cancer cells, thus promoting the development of
clonal tumors and thereby decreasing the heterogeneity.
In contrast, the lack of immune selection likely increases
the neoantigen heterogeneity. Recent analysis of neoanti-
gen heterogeneity in tumor samples from lung cancer
and melanoma patients demonstrated that patients with
clonal tumors (∼78% of clonality) are more susceptible
to T-cell attack and have a more sensitive tumor check-
point inhibition compared with more heterogeneous
tumors (∼8% of clonality) (McGranahan et al. 2016).
Moreover, analysis of different areas of heterogeneous
tumors showed different levels of antigen-specific CD8+

T cells in different tumor regions (McGranahan et al.
2016). Increases in themutational burden and heterogene-

ity of neoantigens in vivo as well as the priming of new
anti-tumor T-cell repertoires (Rizvi et al. 2015; Germano
et al. 2017) result from the inactivation of the DNA repair
system in colorectal, breast, and pancreatic cell lines.
Interestingly, tumors with high neoantigen burden corre-
late with good prognosis in lung cancer patients treated
with anti-PD1 (Rizvi et al. 2015).
As genomic tumor heterogeneity increases, so too does

the probability of subclonal generations escaping immune
attack. In this sense, metastatic progression and therapy
resistance usually proceed from rare clones in primary
tumors (Gupta and Massague 2006). Consistent with
this view, a deep analysis of intrapatient metastases in a
patient with ovarian cancer showed that regressing meta-
static tumors were associated with an immune infiltrate
characterized byCD4+ andCD8+ T cells and higher tumor
mutation and neoepitope load compared with progressing
lesions that are associated with T-cell exclusion (Jimenez-
Sanchez et al. 2017). This case study provides evidence
of the clinical impact of the relationship between tumor
heterogeneity and anti-tumor immune surveillance. It is
unclear whether the cancer heterogeneity observed in pa-
tients is the end result the immune system’s inability to
stop tumor progression or whether themutational burden
promotes heterogeneity that leads to immune evasion.
Furthermore, the evolving mutation burden, the selective
pressure of chemotherapy, and the rapid turnover of in-
flammatory cells within the primary and metastatic tu-
mor, in conjunction with the nonuniform distribution
of immune cells throughout the tumor, likely promote
differential selective pressures in disparate tumor regions,
allowing for the development of heterogeneous tumors
(McGranahan et al. 2016). The success of current immu-
notherapies depends on the ability of the immune system,
particularly T cells, to recognize and eliminate tumors
with multiclonal or subclonal neoantigens. These find-
ings highlight the importance of better understanding
the complex relationships between cancer cells and im-
mune attack and how these relationships drive the devel-
opment of cancer heterogeneity.

How tumor cells evade the immune response

Tumor cells evade the immune attack using two main
strategies: avoiding the immune recognition and instigat-
ing an immunosuppressive TME. In the first, cancer cells
may lose the expression of tumor antigens on the cell
surface, thus avoiding the recognition by cytotoxic T
cells. For example, 40% of non-small cell lung cancers
hold a loss of heterozygosity in human leukocyte antigens
(HLAs), which leads to immune escape by presenting few-
er antigens (McGranahan et al. 2017). Notably, HLA loss
has been associated with resistance to T-cell transfer ther-
apy in metastatic colorectal cancer (Tran et al. 2016) and
poor outcome response to checkpoint blockade immuno-
therapy in melanoma and lung cancer patients (Chowell
et al. 2018). In this sense, mutations and deletions may
result in down-regulation of the antigen-presenting ma-
chinery and likely confer resistance to T-cell effector

Roles of the immune system in cancer

GENES & DEVELOPMENT 1275

 Cold Spring Harbor Laboratory Presson November 19, 2024 - Published by Downloaded from 

http://www.cshlpress.com


molecules such as TNF-α and IFN-γ (Patel et al. 2017). Ad-
ditionally, to overcome the attack of NK cells in experi-
mental metastasis, breast and lung cancer cells down-
regulate cell surface NK activators, becoming invisible
to detection by NK cells (Malladi et al. 2016).

In the second, cancer cell-derived factors instigate an
immune-tolerant TME by (1) secretion of suppressive
molecules such as IL-10, TGF-β, prostaglandin E2, and
VEGF (Gabrilovich et al. 1996; Massague 2008; Domi-
nguez-Soto et al. 2011; Bottcher et al. 2018); (2) expression
of inhibitory checkpointmolecules such as PD-L1, CTLA-
4, and V domain immunoglobulin suppressor of T-cell
activation (VISTA) (Topalian et al. 2012; Snyder et al.
2014; Boger et al. 2017); and (3) induction of the recruit-
ment of TAMs, MDSCs, and Tregs by tumor-derived che-
mokines such as CCL2, CSF1, CCL5, CCL22, CXCL5,
CXCL8, and CXCL12 (Weitzenfeld and Ben-Baruch 2014;
Kumar et al. 2016; Mantovani et al. 2017; Tanaka and
Sakaguchi 2017). Combined, these strategies result in a
complex and efficient system for immune evasion. There-
fore, multimodal therapies aimed at disrupting different
aspects of the immune-tolerant apparatus in cancer may
improve the efficiency of current immunotherapies. In
this regard, two studies showed recently that the TGF-β
blocking increases the therapeutic response of anti-PD-
L1 therapy, resulting in tumor regression in EMT6 breast
carcinomamodels (Mariathasan et al. 2018) and complete
elimination of established livermetastases froma colorec-
tal cancer model (Tauriello et al. 2018).

Challenges in studying cancer-associated
inflammatory cells

Developing a reliable experimental model that accurately
resembles the cancer-associated immune surveillance ob-
served in patients poses the biggest challenge. Xenograft
models generated by injecting immune-deficient mice
with patient-derived human cancer cell lines are practical
models to study therapeutics. Despite their ease of use
and consistent tumor growth, these models have some
important limitations, such as being unable to mount
an effective immune response; the inability to represent
cancer cell heterogeneity present in human tumors accu-
rately, which is known to impact tumor evolution; and
resistance to chemotherapy and subsequent chemothera-
py-induced anti-tumor immune response. In this sense,
the generation of PDX models overcomes some limita-
tions, as surgically derived human tumor samples are im-
planted in mice (Hylander et al. 2013). For example, fat
pad transplanted breast cancer PDX samples grown in
NOD-SCIDmice resemble the architecture of the original
tumors, promote vascularization, and mimic metastatic
behavior observed in patients (DeRose et al. 2011). Suc-
cessful PDX engraftments have also been described for
colorectal, lung, pancreatic, gastric, renal, and prostate
cancer (Jung et al. 2018). However, the use of immune-
deficient mice hinders their utility for immune-based
therapies; also, the cross-talk between tumor and host
is limited due to species mismatch (Byrne et al. 2017).

Conclusions related to immune oncology generated using
xenograft or PDXmodels should be restricted to questions
related to innate immune responses, and the validation in
immune-competent models is needed.

Genetically engineered mouse models (GEMMs) that
express known oncogenes or inactivate tumor suppressor
genes combined with genetic perturbations in stromal
cells have proved to be useful to study tumor immune
surveillance in a genetically controlled system. Examples
of GEMMs are the MMTV-PyMT breast cancer model
andKras- andTrp53-drivenmousemodels of lung, pancre-
atic, and colorectal cancer (Gopinathan et al. 2015;
Zitvogel et al. 2016), among others. Thesemodels develop
spontaneous tumors, metastasis, and immune-sufficient
response and display levels of cellular and antigenic het-
erogeneity. However, they have some limitations, such
as the long lead time of generation and poor tropismofme-
tastasis compared with patients (for example, bone and
brain metastasis). More recently, the generation of hu-
manized PDXmodels offers a more sophisticated alterna-
tive. In this model, irradiated immune-deficient mice are
reconstituted with a human immune system (Rongvaux
et al. 2014; Verma et al. 2017)). As an example, human he-
patocellular carcinoma (HCC) PDX tumors implanted in
irradiated NOD-SCID Il2rg−/− (NSG) mice reconstituted
with human CD34+ hematopoietic stem cells exhibit hu-
man leukocytes infiltrated in tumors, phenotypes associ-
ated with immune exhaustion, and therapeutic response
to pembrolizumab and ipilimumab (Zhao et al. 2018).
Although there is no perfect experimental model, the
ideal preclinical model to study tumor-associated cancer
cells should maintain the cellular and antigenic heteroge-
neity present in human tumors and mimic not only their
innate and adaptive immune surveillance but also the
metastatic behavior observed in patients.

Another major challenge is determining whether the
current insights into cancer-associated immune response
from primary tumors can be used to infer molecular
mechanisms that explain the cancer cell–immune cell
cross-talk in metastatic tumors. Those cells that success-
fully reach the post-dissemination phase of themetastatic
cascade differ in some respects from their counterparts in
primary tumors; for example, cancer cells can acquire
mutations and evolve independently (Yates et al. 2017).
Also, it is likely that cancer cells that have successfully
colonized a distant organ have already been selected
as therapy-resistant (Doherty et al. 2016). While it is
clear that metastatic cells must develop mechanisms to
avoid immune attack in the new colonized organ, little
is known about the immune-related mechanisms operat-
ing at this level. The lack of reliable preclinical models
of spontaneous metastasis leaves current research depen-
dent mainly on the better described lung metastasis mod-
els, while other metastases—bone, brain, liver, intestine,
and adrenal—remain woefully understudied. Further-
more, depending on the type of metastatic carcinoma
and the level of its spread, the current treatments include
chemotherapy, hormone therapy, and radiotherapy, leav-
ing surgery as an option for few patients, thus limiting
the access to metastatic specimens for further
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characterization. With the advent of new single-cell tech-
nologies in transcriptomics and proteomics, future efforts
should be focused on understanding the landscapes of im-
mune infiltration in humanmetastatic tumors, as dissect-
ing the complex interactions between the immune
population and disseminated cancer cells could lead to
the description of predictive biomarkers to identify dor-
mantmicrometastases in patients and, ultimately, the de-
velopment of new immunotherapies to target metastatic
tumors.

Concluding remarks

Immunological experiments during the last two decades
have answered many important questions related to the
causal relationship between chronic inflammation and
carcinogenesis. Today, oncoimmunology is a field of rapid
evolution and maturation. The development of new pre-
clinical models and high-resolution technologies has
provided otherwise inaccessible data, opening up exciting
new avenues, exemplified by how targeting the immune
system to fight cancer is becoming a reality, as evidenced
by the relative success of current immunotherapies.
There clearly remains much work to be done, and there

are many challenges to face. First, it will be necessary to
develop high-fidelity immuno-sufficient preclinical mod-
els that incorporate the cellular and antigenic heterogene-
ity of cancer cells observed in patients. Second, a better
understanding of the immune cross-talk that results in
tumoricidal immunity will lead to the rational design of
targeted therapies that will improve the efficiency of the
current immunotherapies. Third, since >90% of cancer-
associated deaths result from development of metastasis
(Jemal et al. 2008; Siegel et al. 2016), we need to verify
whether the data generated in primary tumors can be
used to infer molecular insights into metastatic tumors.
Last, a significant effort into learningmore about immune
surveillance associated with less-studiedmetastasic sites,
including liver, bone, and brain metastasis, is needed.
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