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Open chromatin defined by DNaseI and FAIRE
identifies regulatory elements that shape
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Damian Keefe,7 Zheng Liu,4 Darin London,1 Ryan M. McDaniell,4 Yoichiro Shibata,1

Kimberly A. Showers,3 Jeremy M. Simon,3 Teresa Vales,1 Tianyuan Wang,1

Deborah Winter,1 Zhuzhu Zhang,3 Neil D. Clarke,8 Ewan Birney,7,10

Vishwanath R. Iyer,4,10 Gregory E. Crawford,1,10 Jason D. Lieb,3,10 and Terrence S. Furey2,3,10

1Institute for Genome Sciences and Policy, Duke University, Durham, North Carolina 27708, USA; 2Department of Genetics, Carolina

Center for Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA; 3Department

of Biology, Carolina Center for Genome Sciences, and Lineberger Comprehensive Cancer Center, The University of North Carolina

at Chapel Hill, Chapel Hill, North Carolina 27599, USA; 4Center for Systems and Synthetic Biology, Institute for Cellular

and Molecular Biology, Section of Molecular Genetics and Microbiology, University of Texas at Austin, Austin, Texas 78712, USA;
5Department of Oncology, University of Cambridge, and Cancer Research UK, Cambridge Research Institute, Li Ka Shing Centre,

Cambridge CB2 0RE, United Kingdom; 6Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University,

SE-171 21 Solna, Sweden; 7European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD,

United Kingdom; 8Genome Institute of Singapore, Singapore 138672

The human body contains thousands of unique cell types, each with specialized functions. Cell identity is governed in
large part by gene transcription programs, which are determined by regulatory elements encoded in DNA. To identify
regulatory elements active in seven cell lines representative of diverse human cell types, we used DNase-seq and FAIRE-seq
(Formaldehyde Assisted Isolation of Regulatory Elements) to map ‘‘open chromatin.’’ Over 870,000 DNaseI or FAIRE
sites, which correspond tightly to nucleosome-depleted regions, were identified across the seven cell lines, covering nearly
9% of the genome. The combination of DNaseI and FAIRE is more effective than either assay alone in identifying likely
regulatory elements, as judged by coincidence with transcription factor binding locations determined in the same cells.
Open chromatin common to all seven cell types tended to be at or near transcription start sites and to be coincident with
CTCF binding sites, while open chromatin sites found in only one cell type were typically located away from transcription
start sites and contained DNA motifs recognized by regulators of cell-type identity. We show that open chromatin regions
bound by CTCF are potent insulators. We identified clusters of open regulatory elements (COREs) that were physically
near each other and whose appearance was coordinated among one or more cell types. Gene expression and RNA Pol II
binding data support the hypothesis that COREs control gene activity required for the maintenance of cell-type identity.
This publicly available atlas of regulatory elements may prove valuable in identifying noncoding DNA sequence variants
that are causally linked to human disease.

[Supplemental material is available for this article.]

A single genome gives rise to a multitude of cell types, each with its

own specialized pattern of gene expression. These programs are

partly governed by DNA-encoded regulatory elements. Unlike pro-

tein coding genes, DNA regulatory elements are not easy to identify

in linear DNA sequence. While nearly 70% of bases in protein-

coding DNA are evolutionary constrained, only half of all the

regulatory elements identified in the ENCODE pilot project har-

bored constrained bases at all, and among these, only 10% of the

bases were constrained (The ENCODE Project Consortium 2007).

As part of the ENCODE effort (The ENCODE Project Consortium

2007, 2011), we have continued our development of DNase-seq

(Crawford et al. 2006b; Boyle et al. 2008a; Song and Crawford

2010) and FAIRE-seq (Formaldehyde Assisted Isolation of Regula-

tory Elements)(Giresi et al. 2007; Giresi and Lieb 2009) to identify

regulatory sites across the genome. DNase-seq employs the DNaseI

enzyme to preferentially digest nucleosome-depleted sites, also

known as DNaseI hypersensitive (HS) sites (Wu et al. 1979). FAIRE-

seq enriches nucleosome-depleted DNA using formaldehyde fixa-

tion and phenol-chloroform extraction.
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Here, we call the regions identified by DNaseI or FAIRE ‘‘open

chromatin.’’ These open chromatin regions often correspond to

nucleosome-depleted regions (NDRs) (Hogan et al. 2006; Giresi

et al. 2007; Kim et al. 2007), which are often associated with reg-

ulatory factor binding. Several studies have shown that open

chromatin is associated with all known classes of active DNA regu-

latory elements, including promoters, enhancers, silencers, insula-

tors, and locus control regions (Gross and Garrard 1988; Cockerill

2011). We used DNase-seq and FAIRE-seq (Giresi et al. 2007; Xi

et al. 2007; Boyle et al. 2008a; Gaulton et al. 2010; Stitzel et al.

2010) to generate genome-wide open chromatin maps spanning

seven diverse human cell types, thereby greatly expanding the

number of human regulatory elements with experimental support.

Results

A coordinated mapping pipeline for data generation,
processing, and quality control

DNase-seq and FAIRE-seq were performed on seven cell lines in

duplicate or triplicate (Table 1) using material from cells grown in

a single batch at the same location (see Methods). DNA librar-

ies were sequenced on an Illumina sequencer, and the resulting

data were collected and processed using a standard pipeline (see

Methods). ChIP-seq data were generated using the same fixed cells

used for FAIRE-seq and analyzed using the same pipeline. In this

way, experimental and data processing differences among the

assays were minimized (Fig. 1A). Comparisons of multiple in-

dependent growths and with results from tiled microarrays on the

same material support the quality of these data (Supplemental

Methods; Supplemental Table S1).

A continuous range of signal intensities from DNase-seq and

FAIRE-seq was observed across the genome (Fig. 1B), and from this

signal, we identified discrete peaks (see Methods). For each cell

type, the number of DNase-seq or FAIRE-seq peaks ranged from

;100,000 to 225,000, covering between 0.65% and 2.99% of the

genome (Table 1). In total, over 870,000 DNaseI and FAIRE sites

were identified from the seven cell lines, covering nearly 9% of the

genome. While more FAIRE peaks than DNaseI peaks were iden-

tified, FAIRE peaks tended to span fewer bases (Table 1).

DNase-seq and FAIRE-seq identify an overlapping set
of open chromatin sites, but each also identifies unique
chromatin features

DNaseI and FAIRE assays both identify sites in the genome that

tend to be nucleosome-free or nucleosome-depleted (Hogan et al.

2006; Giresi et al. 2007; Cockerill 2011). To quantitatively evaluate

the overlap between these assays, we compared rank-ordered peaks

from each assay, with rank based on the maximum signal in-

tensity within each peak. We calculated the number of over-

lapping DNaseI and FAIRE sites for four different peak intensity

cutoffs (Fig. 2A; Supplemental Fig. S1). In each cell type, ;30%–

40% of the top 100,000 (100K) DNaseI and FAIRE peaks over-

lapped. The amount of overlap did not change substantially

when comparing the top 10,000 (10K) peaks from each assay

(20%–40% overlap). About 80% of the top 10K peaks from either

assay are found within the top 100K of the alternate assay (Fig.

2A; Supplemental Fig. S1).

We consider sites detected by both DNase-seq and FAIRE-seq

to be ‘‘cross-validated’’ and to represent high-confidence open

chromatin sites. Across the seven cell lines, there are more than

180,000 high-confidence sites covering nearly 4.5% of the genome

(Table 1). Though we found a significant enrichment of these high-

confidence sites within 2 kb of an annotated transcription start

site (TSS) (P-value < 2 3 10�5), most (80%) were far from gene starts

(see Methods) (Fig. 2B).

In a given cell type, many sites were detected by only one of

the two assays. Multiple lines of evidence suggest that these DNase-

only and FAIRE-only sites are biologically relevant and that the

assays differentially detect real chromatin features. First, ;50% of

DNase-only and 40% of FAIRE-only sites were detected in multiple

cell types (Supplemental Fig. S2) and across multiple independent

growths (Supplemental Table S1), which would be unlikely if the

peaks were spurious. Second, the differences between DNase-seq

and FAIRE-seq arise from distinct genomic regions, which may be

interrogated differentially by each method. DNaseI-only sites

were enriched within 2 kb of a TSS (P-value < 4 3 10�6) and within

59 exons and introns (P-value < 3 3 10�6) compared to FAIRE-only

sites, while FAIRE-only sites were found preferentially in internal

introns and exons and nonpromoter intergenic regions (P-value <

3 3 10�6 and 2 3 10�5, respectively) relative to DNase-only sites

(Fig. 2B; Supplemental Table S2). Third, we found that both

DNase-only and FAIRE-only sites were enriched for H3K4 mono-

methylation (H3K4me1), a mark associated with enhancers

(Heintzman et al. 2009; Ernst et al. 2011), along with H3K4 tri-

methylation (H3K4me3) and H3K9 acetylation (H3K9ac); both

marks of a TSS (Supplemental Fig. S3; Heintzman et al. 2009; Ernst

et al. 2011). DNase-only sites were more strongly associated with

H3K4me3 and H3K9ac, and FAIRE-only sites with H3K4me1.

Lastly, DNase-only and FAIRE-only sites corresponded differen-

tially to specific transcription factor binding sites, as explained in

the next section.

Table 1. Cell line descriptions

Cell line Description DNaseI sites FAIRE sites Union Open chromatin Validated sites

GM12878 Lymphoblast 103,075 (1.528%) 146,147 (0.728%) 192,891 (1.865%) 94,517 (1.566%) 47,891 (0.984%)
K562 Chromic myeloid leukemia 139,121 (2.034%) 185,705 (1.261%) 260,340 (2.746) 118,915 (2.170%) 55,177 (1.274%)
HepG2 Hepatocellular carcinoma 125,631 (1.950%) 122,188 (0.871%) 189,957 (2.349%) 104,335 (1.962%) 51,538 (1.135%)
HeLa-S3 Cervical carcinoma 142,403 (2.174%) 131,935 (0.694%) 220,999 (2.481%) 124,093 (2.096%) 57,312 (1.347%)
HUVEC Human umbilical vein

endothelial cells
133,091 (2.259%) 225,564 (1.723%) 271,789 (3.096) 125,427 (2.546%) 68,245 (1.815%)

NHEK Keratinocyte, normal
epidermal cells

141,190 (1.964%) 204,280 (1.443%) 262,941 (2.749%) 137,218 (2.269%) 72,676 (1.433%)

H1-ES Human embryonic stem cells 138,025 (3.224%) 126,439 (0.695%) 222,265 (3.660%) 114,915 (3.147%) 37,433 (1.032)
All cell lines 360,950 (6.126%) 767,795 (5.065%) 872,394 (8.844%) 356,625(6.97%) 184,569 (4.400%)

Number of sites found and fraction of genome covered by each assay. Open chromatin sites are a high-confidence (P < 0.05) subset of the union of DNaseI
and FAIRE sites (see Methods). Validated sites are the strict intersection of DNaseI and FAIRE sites.
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Together, DNase-seq and FAIRE-seq identify most of the sites
bound by regulatory factors

DNase-seq and FAIRE-seq data were compared to ChIP-seq data

generated from the same cell lines using antibodies to CTCF, MYC,

and Pol II (see Methods) (Supplemental Fig. S4). Over 96% of the

strongest CTCF and MYC ChIP sites were identified by one or both

assays (Fig. 2C,D). About 30% of CTCF and 15% of MYC sites were

captured by DNase-only or FAIRE-only sites. At any given ChIP-seq

peak cut-off, ChIP-seq signal intensity was the strongest for peaks

detected by both DNaseI and FAIRE, was weaker in sites detected by

only one assay, and the weakest for sites that overlapped neither

assay (Supplemental Fig. S5).

We examined the correspondence of published ChIP-seq data

in matching cell types (Fujiwara et al. 2009; Motallebipour et al.

2009; Frietze et al. 2010; Kouwenhoven et al. 2010; Raha et al.

2010) with our open chromatin data. DNase-seq and FAIRE-seq

captured >80% of sites (>90% of the strongest sites) for TP63 in

NHEK, FOXA1, and FOXA3 in HepG2, and GATA1 in K562 (Sup-

plemental Fig. S6), and ;70% of the ZNF263 sites in K562. We note

that FOXA1, FOXA3, and GATA1 were better identified by FAIRE-

seq, while ZNF263 was found more often by DNase-seq.

We next evaluated our Pol II ChIP-seq data in conjunction

with RNA expression data generated from the same cells. For each

gene with RNA data in each cell line, we determined whether there

was a significant signal for Pol II binding and/or open chromatin in

the region 1000 bases upstream of and 500 bases downstream from

an annotated transcription start site. We found that 81% of all TSSs

harbored accessible chromatin, consistent with previous estimates

that 70%–80% of all genes are either ac-

tive or poised (Guenther et al. 2007).

We divided genes into highly expressed

(46% of genes, log2 RNA > 7; Methods),

moderately expressed (29%, log2 RNA

between 5 and 7), and lowly or not

expressed (25%, log2 RNA < 5). We found

that nearly all highly expressed genes had

Pol II binding and open chromatin at

their TSS (Fig. 2E). About 60% of the

moderately expressed genes showed Pol II

and open chromatin signals, while an

additional 30% showed just open chro-

matin signal. About half of the lowly or

nonexpressed genes showed evidence of

Pol II or open chromatin, while the re-

maining half had no evidence of either

signal. In all, open chromatin identifies

the TSS of nearly all of expressed genes

and indicates that a large fraction of

the remaining genes may be poised for

transcription.

A combined open chromatin atlas
reveals chromatin similarities between
functionally related cell types

To take advantage of the strengths of each

assay, we created a combined annotation

for each of the seven cell lines by in-

tegrating data from DNaseI and FAIRE

(see Methods). Our open chromatin atlas

contains sites strongly identified by both

assays, high confidence peaks present in

only one assay, and lower confidence peaks supported by both

assays (Table 1). The number of combined significant open chro-

matin sites ranged from 100,000 to 125,000 (P < 0.05; Methods) for

each cell line. Between any two cell types, ;30%–40% of open

chromatin sites are shared (Supplemental Table S3).

Using open chromatin sites, we performed hierarchical clus-

tering of the cell lines (see Methods) (Supplemental Fig. S7A). The

clustering appears to reflect functional and lineage similarities in

cell types and almost perfectly matches cell-line clustering based

on gene expression data (Supplemental Fig. S7B). For example, we

find that the two cell types of hematopoietic lineage, GM12878

(lymphoblastoid cell line) and K562 (chronic myeloid leukemia),

clustered together using either expression or chromatin data.

Embryonic stem cells do not have a considerably different number

of open chromatin sites and do not contain a superset of open

chromatin sites found in other more differentiated cell types.

However, embryonic stem cell open chromatin sites tended to be

larger and covered a greater fraction of the genome than other cell

types (Table 1).

The discovery of human regulatory elements by open
chromatin mapping is far from saturation

We created union sets for every possible combination of 2, 3, 4, 5,

6, and 7 cell types and plotted the rate at which new sites appeared

(Fig. 3A). Regardless of the threshold used to call the sites, the

number of new sites identified does not abate as the number of cell

lines analyzed increases. In contrast, performing the same analysis

Figure 1. Identification of open chromatin in seven human cell lines. (A) A schematic representation
of the experiment and analysis design. (B) DNaseI (y-axis fixed at Parzen signal value 0.15) and FAIRE
(y-axis fixed at 0.04) data from seven cell lines surrounding the HNF4A locus (145 kb; UCSC Genome
Browser) shows both ubiquitous and cell-type selective open sites that are especially prevalent in HepG2
cells. Pol II, CTCF, and MYC ChIP-seq peaks that overlap open chromatin are highlighted.

Human open chromatin defined by DNaseI and FAIRE
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on DNase-seq data from lymphoblastoid lines derived from seven

different individuals (McDaniell et al. 2010) shows clear signs of

saturation after the third cell line (Supplemental Fig. S8). This in-

dicates that testing additional cell types is necessary and will

continue to uncover new open chromatin sites.

Open chromatin sites found in all seven cell types
are characterized by high signal

The number of open chromatin sites held in common among these

seven cell lines, referred to as ubiquitous sites, was much higher

than would be expected by chance (Fig. 3B). These sites tended to

have the strongest signals in some or all cell types. For example, of

the union set of the 25K strongest combined open chromatin

peaks in each cell type (64,400 sites total), nearly 52% (33,466)

were present in each of the seven cell lines (Fig. 3B; Supplemental

Table S4). Of the union set of the top 50K (139,133 total) and

100K (301,235 total) sites, 32% (44,750) and nearly 16% (49,009)

were ubiquitous, respectively (Fig. 3B; Supplemental Table S4).

In contrast, when we randomly permuted the genomic coor-

dinates of the top 100K sites for each cell line across the genome,

over 85% appeared in only a single cell type, while <0.02%

were ubiquitous (Fig. 3B; Supplemental Table S4). Overall, open

chromatin sites with the strongest signals tend to be detected

across cell types, while cell-type selective sites tend to produce

weaker signals (Fig. 3C). Indeed, the distributions of –log10

(P-values) for open chromatin sites categorized by the number of

cell lines in which the sites appeared were found to be correlated

(Supplemental Fig. S9), with ubiquitous sites having significantly

higher amplitude than all other categories (P < 10�16; pairwise

T-tests). No single cell type dominates the cell-type selective

signal (Fig. 3C).

Ubiquitous open chromatin sites tend to be near TSSs
and are often bound by CTCF, while cell-type selective
sites are distal with little CTCF binding

We examined the location of ubiquitous and cell-type selective

open chromatin relative to genes, considering for this analysis the

union of the top 100K combined open chromatin sites across all

cell types. We found that ;30% of ubiquitous sites was located

near transcription start sites, ;35% was within intergenic regions,

and ;35% was within transcribed regions (see Methods for defi-

nitions of categories) (Fig. 4A). Ubiquitous open chromatin sites

were much more likely to occur near TSSs, while cell-type selective

sites were rarely found near TSSs (Fig. 4A). This suggests that cell-

type selective gene regulation is controlled through distal regula-

tory elements.

CTCF has been shown to perform diverse regulatory func-

tions, but it is primarily identified as an insulator that blocks in-

teraction between promoters and enhancers. Overall, CTCF bind-

ing occurred in 28% of this union set of open chromatin sites but

was bound to >55% of ubiquitous open chromatin sites (Fig. 4A).

In contrast, CTCF bound to <5% of cell-type selective open chro-

matin sites. We hypothesized that open chromatin sites with evi-

dence of CTCF binding should be more likely to function as in-

sulators than open chromatin sites without CTCF. We tested 15

open chromatin sites with strong CTCF ChIP-seq signals for in-

sulator activity (see Methods) (Supplemental Table S5). Seven of

the sites were previously described (Xi et al. 2007). Five were

chosen specifically based on the absence of the 20-bp CTCF

binding motif to test for insulator function even in the absence of

this motif. We also tested three open chromatin sites that lacked

evidence of CTCF binding and six sites with no strong evidence of

CTCF binding or open chromatin in K562 cells (Supplemental

Table S5).

Figure 2. DNase-seq and FAIRE-seq identify overlapping and unique sets of open chromatin. (A) Comparisons of the top 10K, 25K, 50K, and 100K
DNase-seq and FAIRE-seq peaks from a single cell line (GM12878), with overlap indicated below each Venn diagram. (B) Average percentage of DNaseI
and/or FAIRE peaks, as well as permuted coordinates, in defined positional categories based on their relationship to annotated genes. Error bars represent
the standard deviation over seven cell types. Several categories deviated significantly from random (Supplemental Table S2). (C ) The percentage of CTCF
ChIP-seq peaks that overlap DNaseI and/or FAIRE sites in all seven cell types. The x-axis values indicate different signal thresholds for calling sets of CTCF
peaks, where the threshold is increasingly more stringent from left to right. (D) The same as C, except for MYC ChIP-seq data. (E ) Percentage of TSSs with
overlapping Pol II ChIP-seq, DNaseI, and/or FAIRE peaks in seven cell types. x-axis represents expression values for corresponding genes indicating high
(7+), medium (5–7), or low/no (0–5) expression.
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The majority of open chromatin sites also bound by CTCF

displayed insulator activity (Fig. 4B). The absence of a canonical

CTCF binding motif did not appear to impact insulator function.

To support this finding, we deleted the CTCF motif(s) from three

potent insulators to determine the effect of removing the known

binding site on insulator activity. We found that for one construct,

the deletion of the CTCF site completely ablated insulator activity.

However, deleting the CTCF binding sequence from the other two

sites had no significant effect on insulator activity (Supplemental

Fig. S10). At these sites, CTCF may bind to DNA through an un-

known motif or protein intermediate. It is also possible that an-

other unknown protein or chromatin configuration provides in-

sulator function at these sites.

Cell-type selective open chromatin harbors DNA sequence
motifs corresponding to master regulators of cell identity

Regulatory elements far from the TSS have been shown, typically

through single-gene experiments, to control tissue-specific and

cell-type selective gene expression (Deal et al. 2006). Using the top

100K combined open chromatin sites, we used two approaches to

characterize and discover DNA sequence motifs in cell-type-selec-

tive DNase-seq and FAIRE-seq sites located away from the TSS.

Known transcription factor binding motifs were identified

genome-wide using publicly available position weight matrices

(PWMs) from the Transfac database (Matys et al. 2006). For each

cell type, we determined the top 10 PWMs that were significantly

enriched in distal open chromatin sites specific to that single cell

type (see Methods) (Supplemental Table

S6). Among these are PWMs that match

the binding specificities of factors known

to function in processes that occur in

the corresponding cell type. For example,

the binding sites for IRF1 and IRF7 and

the interferon-stimulated responsive ele-

ment ISRE are enriched in lymphoblasts,

which are interferon-responsive. Other

examples include GATA family members,

which regulate hematopoiesis, in K562;

BACH1, necessary for DNA repair and

linked to several cancers, in HelaS3;

HNF1A and HNF4A, transcription factors

critical for liver development, in HepG2;

ELK1, involved in endothelial cell differ-

entiation, in HUVEC; and PLXNA2 fam-

ily members critical for pluripotency and

SP1 in embryonic stem cells.

We also performed de novo motif

finding using the cERMIT (Georgiev et al.

2010) and CisFinder (Sharov and Ko

2009). We analyzed the top five motifs

returned from each cell line by each

algorithm. Using the software STAMP

(Mahony and Benos 2007), we searched for

motifs in the Transfac (Matys et al. 2006),

JASPAR (Bryne et al. 2008), UniPROBE

(Newburger and Bulyk 2009), and hPDI

(Xie et al. 2010) databases that corre-

sponded to each discovered motif

(P-value < 10�9) (Fig. 5A). Consistent with

our analysis above, both cERMIT and

CisFinder detected the GATA1 motif in

K562, HNF1/4A motifs in HepG2, FOS and TP53 in NHEK, and

ETS/ELK motifs in HUVEC. CisFinder identified a highly enriched

POU5F1 motif in the embryonic stem cell line.

For each of the transcription factors corresponding to the

discovered motifs, we determined their RNA expression levels in

each of the seven cell types (Supplemental Table S7). In 10 of 13

instances, the cell type in which the motif was identified expressed

that gene at the highest or second highest level among all seven

cell types (Fig. 5A). In nearly all cases, the associated transcription

factor has been functionally linked to the corresponding cell type

(Fig. 5A; Hall et al. 1995; Nichols et al. 1998; Jessen et al. 2000;

Taniguchi et al. 2001; Dejana et al. 2007; Shimizu et al. 2008;

Bolotin et al. 2010). Both cERMIT and CisFinder also identified

motifs that did not match any motifs in the databases we used—for

example, a CCCCT motif in H1-ES (a stress-responsive element in

yeast) and a CCAGCCTGG motif in HelaS3 cells, a core sequence in

Alu repeats.

We repeated the above motif analyses in distal FAIRE-only

or DNase-only sites and found biologically relevant motifs. For

example, DNase-only sites are most enriched for the same motifs

as the combined open chromatin set in K562, GM12878, NHEK,

and HepG2 (GATA1, STAT1, AP-1, and HNF4A, respectively).

Likewise, FAIRE-only sites are enriched for many of the same

motifs detected in the combined open chromatin set in HepG2,

HelaS3, and H1-ES (HNFs, PITX2, and POU5F1, respectively). In

ES cells, the POU5F1 motif was found in FAIRE-only sites but not

in DNase-only sites. Furthermore, not every motif found in the

FAIRE-only or DNase-only sets matched those from the union set.

Figure 3. Distribution of open chromatin regions across cell types. (A) Saturation of total open
chromatin sites discovered as a function of the number of cell types tested (x-axis). The rate of new top
25K sites per cell type was lower than for top 50K and 100K sites, likely reflecting more ubiquitous sites in
this top fraction. (B) Percentage of the top 25K, 50K, and 100K combined open chromatin sites (y-axis)
detected in one to seven of the cell types tested (x-axis). Over 50% of the top 25K open chromatin sites
were ubiquitous, while more top 50K and 100K peaks were cell type selective. (C ) Top 100K combined
open chromatin sites partitioned by number of cell types in which they appear (y-axis). Color intensity
indicates strength of open chromatin signal in that cell type.
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For example, the K562 FAIRE-only sites are enriched for a well-

defined NFE2L2 motif (Chen et al. 2010) that does not get

picked up by DNase-only or the union set. In summary, the

most highly enriched motifs are held in common between the

assays, but each assay provides independent, biologically relevant

information.

Open chromatin specific to a cell type occurs near genes
that are expressed specifically in that cell type

If a substantial fraction of open chromatin sites function as posi-

tive regulators of transcription, one would expect increased ex-

pression of genes near open chromatin sites. To test this, we first

identified distal cell-type selective sites present in only one of the

tested cell types that were further than 2 kb from a TSS of a nearby

gene. For each cell type, we calculated the average and median

expression values of all genes mapped to each distal site. In all

cases, expression levels of genes linked to distal cell-type selective

sites for that cell type were significantly higher than in the

remaining cell types (pairwise T-tests) (Fig. 5B). This was similarly

true for six of seven cell types when considering proximal cell-type

selective open chromatin sites within 2 kb of a TSS (Supplemental

Fig. S11).

Cell-type selective open chromatin often occurs near genes
that govern cellular identity and function

A number of cell-type selective open chromatin sites reside near

genes encoding transcription factors that play critical roles in cell-

type specific gene expression and function. In many cases, the

motifs recognized by these proteins were themselves enriched in

cell-type selective open chromatin (Fig. 5A). For example, in H1

embryonic stem cells, we identified a number of ES-cell specific

open chromatin sites around the POU5F1 and NANOG genes,

which are known to control pluripotency (Supplemental Fig. S12).

The upstream NANOG open chromatin site was recently iden-

tified as a poised enhancer, which is consistent with our assays

(Rada-Iglesias et al. 2010). Other notable examples include a K562

cell-type selective open chromatin site upstream of the GATA1

transcription factor gene (Supplemental Fig. S13) and a number of

HepG2 cell-type selective open chromatin sites within and around

the HNF4A transcription factor gene (Fig. 1B). In this latter case, we

detect open chromatin at the two annotated TSSs (Fig. 1B), both of

which are utilized in FT0-2B, another hepatocellular carcinoma

cell line (Thomas et al. 2001). These are singular examples, but our

chromatin atlas identifies tens of thousands of such putative reg-

ulatory elements in each of the cell types we have studied.

Clusters of open regulatory elements coordinate cell-type
selective gene expression

Our analyses above focused on individual cell-type selective open

chromatin sites and their relation to genes with a known function.

However, we noticed regions in which multiple open chromatin

sites in a given genomic region were coordinately present or absent

across one or more cell types (Fig. 1B; Supplemental Figs. 12, 13).

This was consistent with previous reports of clustered FAIRE sites

called clusters of open regulatory elements (COREs) (Gaulton et al.

2010). To detect COREs systematically in our data set, we calcu-

lated pairwise correlations of open chromatin signals using data

from all seven cell types (see Methods) (Fig. 6A,B). Using these

correlations, we designed a hidden-Markov model to define 181

high-confidence COREs (see Methods) (Supplemental Table S9;

Supplemental COREs figures; Supplemental COREs table). COREs

varied in size from 32 kb to 6.6 Mb.

We hypothesized that COREs represent coordinated nucleo-

some depletion events caused by multiple regulatory elements

participating in the regulation of a nearby gene or genes. We de-

termined in which cell line(s) each CORE was active using the

Mann-Whitney Wilcoxon rank sum test (see Methods) (Fig. 6C).

Ninety-five COREs (52%) had increased open chromatin within

primarily one cell-type, while 78 COREs (43%) were characterized

by increased open chromatin within at least two cell types (Sup-

plemental Table S9). In the remaining eight COREs (5%), no cell

type had significantly more open chromatin signal relative to

the others, as defined by our threshold. We examined genes inside

or within 10 kb of each CORE and found that, for 75 of the 114

COREs with at least one gene with expression data, the cell type

with the highest expression also contained significantly more

open chromatin (Supplemental Table S9). Among the 67 COREs

not associated with any genes for which we had expression data,

the aggregate Pol II signal was greatest in a cell type with signifi-

cantly enriched open chromatin (Supplemental Table S9). Con-

sidering all COREs, the highest cumulative CTCF signal was in

a cell type with enriched open chromatin 77% (140/181) of the

time. These relations with expression and Pol II and CTCF binding

also hold when COREs are analyzed in aggregate (Supplemental

Figure 4. Ubiquitous and cell-type selective sites differ related to
transcription start sites and presence of CTCF. (A) Percentage of ubiq-
uitous and cell-type selective open chromatin sites in positional cate-
gories relative to annotated genes. Light bars represent open sites
overlapping CTCF. (B) Insulator assays performed on sites with (1)
DNase-seq, FAIRE-seq, and CTCF ChIP-seq signal and a CTCF motif (filled
red squares); (2) signal in all three assays but without a CTCF motif
(blue diamonds); (3) DNase-seq and FAIRE-seq signal, but not CTCF
ChIP-seq (open red squares); and (4) no signal in any assay (gray tri-
angles). y-axis indicates the signal from CTCF ChIP-seq in K562 cells.
Enhancer blocking values (x-axis) were calculated as described (Sup-
plemental Methods), with a value of zero equaling the measured activity
of a known insulator.
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Fig. S14). In 18 of 175 COREs, open chromatin levels did not cor-

respond to gene expression, CTCF binding, or Pol II binding. For

these cases, we may not have correctly identified a distant target

gene associated with the CORE, or the open chromatin regions

may not be acting as enhancers.

To demonstrate the utility of identifying COREs, we show one

typical CORE in detail (Fig. 6A). This CORE extends over 1.2 Mb,

but GYPC is the only annotated gene found in this region, so

we focused on the 90 kb surrounding the gene (Fig. 6B). GYPC

encodes both glycophorin-C and glycophorin-D, which func-

tion in membrane stability of human erythrocytes and lympho-

cytes (Walker and Reid 2010). Open chromatin is detected at the

GYPC TSS in nearly all cell types. However, nucleosome-depletion

events unique to GM12878 and K562

occur ;10 kb upstream of the TSS and

within the transcribed region of GYPC

(Fig. 6B). These are accompanied by in-

creased FAIRE and DNaseI signal (Fig. 6C),

expression of GYPC (Fig. 6D), and higher

Pol II signal (Fig. 6E–G). Thus, this CORE

is typical, showing coordinated nucleo-

some depletion, gene expression, and

transcription factor binding, and iden-

tifies several key regions that may be re-

sponsible for the cell-type specific regu-

lation of this gene.

Many other COREs reveal putative

regulatory elements surrounding genes

with cell-type specific functions. For ex-

ample, CORE 70 defines a 600-kb region

on chromosome 1 that contains several

genes with specific functions in kerati-

nocytes, including ‘‘late cornified enve-

lope’’ (LCE) genes and small proline rich

proteins (SPRR). Within CORE 70, NHEK

cells exhibit significantly more nucleo-

some depletion, higher expression of

these genes, greatly increased amounts of

Pol II signal, and greater CTCF signal

(Supplemental COREs figures). In other

cases, unannotated genes within COREs

can be associated with a specific cell type.

For example, CORE 60 is a 325-kb region

encompassing the sparsely annotated

RNF152 (ring finger protein 152) gene.

Increased nucleosome depletion, expres-

sion of this gene, and Pol II signal are ob-

served specifically in HUVEC and NHEK

cells (Supplemental COREs figures.).

Discussion
We produced maps of open chromatin in

seven diverse human cell types using

DNase-seq and FAIRE-seq. DNase-seq and

FAIRE-seq are independent methods that

provide strong cross-validation. Perform-

ing both assays on cells collected from the

same culture in each replicate helps to

ensure that the differences we observe are

due to the assay specificities, rather than

experimental variation. We present evi-

dence that sites detected by a single assay are biologically relevant

and functional. In each cell type, we identify 100,000–200,000

open chromatin regions covering 1%–2% of the genome.

Differences in DNase-seq and FAIRE-seq may be due to the

specific regulatory complexes bound at each open chromatin site,

which could affect the ability of DNaseI to cut or formaldehyde to

crosslink. DNase-only sites tended to occur at transcription start

sites while FAIRE-only sites were more often found in distal regions.

It is possible that FAIRE cannot detect some nucleosome-depleted

regions that are bound very tightly by nonhistone proteins if those

complexes support a level of crosslinking similar to that of a nucle-

osome. However, FAIRE appears to capture chromatin structures

away from promoters that the DNaseI enzyme cannot easily cut.

Figure 5. Distal cell-type selective open chromatin contains functionally relevant motifs and is linked
to cell-type specific expression. (A) Top motifs enriched (P-value < 1 3 10�9) in cell-type selective open
chromatin. Expression rank reflects the transcription factor’s expression level in that cell type relative to
all other cell types. (B) Distribution of expression values for genes closest to distal cell-type selective open
chromatin sites (>2 kb from a TSS) from each cell type (x-axis) for that cell type (blue box plots). Similar
distributions were calculated for these genes in the six other cell types lacking the distal open chromatin
sites (green box plots). Asterisk indicates significant difference (pairwise T-tests).
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Most binding sites of regulatory proteins we examined were

within open chromatin sites, suggesting that, in general, open

chromatin sites are indicators of regulatory proteins operating in

each cell type. Between any two cell types, 23%–48% of open

chromatin sites are shared. Among the seven cell types, nearly 9%

of the genome was identified as an open chromatin site by DNase-

seq and/or FAIRE-seq, and the identification of open chromatin

sites is not complete. Continued experimentation on new cell

types is a cost-effective strategy to find new regulatory elements

and determine the fraction of the genome associated with a regu-

latory function.

DNase-seq and FAIRE-seq cannot directly reveal the function

of the identified nucleosome-depleted regions, or the regulatory

proteins that are bound to them. ChIP-seq, such as we performed

for Pol II, MYC, and CTCF, provides a degree of functional anno-

tation, as does association with certain histone modifications.

Motif enrichment can provide guidance for selecting specific

transcription factors to confirm by ChIP. We and others have

shown that DNase-seq identifies DNaseI footprints, which reveal

the location and identity of a bound motif with great accuracy

(Hesselberth et al. 2009; Boyle et al. 2010; Pique-Regi et al. 2010).

DNaseI footprinting will be critical in inferring binding at

Figure 6. Open chromatin patterns form clusters of open regulatory elements (COREs). (A) Pairwise correlations between 500 open chromatin sites
from chromosome 2 show three blocks of correlated sites (see Methods). Each row and column represents an open chromatin region found by both
DNase-seq and FAIRE-seq in at least one of the seven cell types. Red indicates high correlation, white indicates no correlation, and blue indicates negative
correlation. Vertical and horizontal lines show CORE boundaries. (B) DNase-seq (y-axis fixed at 0.1) and FAIRE-seq (y-axis fixed at 0.04) signals for a 90-kb
subsection of CORE 98 containing the GYPC gene. GYPC is the only gene in this CORE. Highlighted are open chromatin sites found in all cell types, only
GM12878 and K562 together, and GM12878 and K562 individually. (C ) Boxplots show the distributions of open chromatin levels within open chromatin
sites with CORE 98. GM12878 and K562 both have significantly higher levels of open chromatin (*; Mann-Whitney Wilcoxon rank sum test). (D) Relative
expression levels (y-axis) of GYPC show increased expression in GM12878 and K562 cell lines. (E ) Open chromatin sites within CORE 98 also show higher
normalized Pol II ChIP-seq read counts in GM12878 and K562 cell types. (F ) Normalized CTCF ChIP-seq read counts do not show significant differences
between GM12878 and K562 and other cell types CORE98. (G) Pol II and CTCF signals in this 90-kb region (shown in B) provide preliminary annotations of
similar and differential open chromatin sites.
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individual open chromatin sites, but it cannot identify proteins

that associate indirectly with DNA. As more proteins are mapped

by ChIP-seq in relevant cell types, we can more fully annotate the

open chromatin sites we report here.

Another challenge is mapping regulatory elements to the

genes they regulate. Assuming that the nearest gene is the most

likely target is clearly naı̈ve, as demonstrated by counter-examples

in the literature (i.e., Spilianakis et al. 2005). We showed that

clusters of open regulatory elements defined by multiple sites

spanning tens of thousands of bases show good correspondence

between open chromatin and levels of gene expression, Pol II

signal, and/or CTCF signal. Analysis suggests that COREs encom-

pass noncoding DNA elements that act coordinately to regulate

genes important for cell type identity and function. In many

cases, the identification of COREs can guide candidate target gene

selection, and methods like 3C, 4C, 5C, Hi-C, and ChIA-PET (van

Steensel and Dekker 2010) will continue to be important in

solving this difficult problem. Finally, low-throughput functional

assays (similar to our insulator assays) will continue to be critical

for understanding the biological activity of open chromatin sites,

but assays that can test thousands of DNA segments in parallel

will be required to make any significant progress in characterizing

how these regulatory sites work together in a given biological

context.

There is a nearly inexhaustible number of combinations of

human cell types, genotypes, disease states, and environmental

conditions. Genome-wide association studies (GWAS) have linked

variation in numerous noncoding regions with different diseases

(Gaulton et al. 2010; Hindorff et al. 2009). It is likely that many of

these associations are due to polymorphisms that affect gene reg-

ulation. Our atlas can be used immediately to guide further char-

acterization of regulatory elements that may be causally linked to

disease risk (Gaulton et al. 2010; Stitzel et al. 2010). Furthermore,

we have shown previously that identification of open chromatin

sites in the same cell type derived from different individuals can

identify individual-specific gene regulatory elements (McDaniell

et al. 2010). Larger studies with hundreds or thousands of in-

dividuals will allow identification of connections between DNA

sequence variation, chromatin organization, transcriptional reg-

ulation, and disease risk on a population level.

Methods

Cell culture
Vendor information and standard cell growth protocols can be
found at the UCSC ENCODE site (http://genome.ucsc.edu/
ENCODE/cellTypes.html) (see Supplemental Methods).

Experimental protocols

DNase-seq (Song and Crawford 2010), DNase-ChIP (Crawford
et al 2006a; Shibata and Crawford 2009), FAIRE (Giresi et al. 2007;
Giresi and Lieb 2009), ChIP (Bhinge et al. 2007; The ENCODE
Project Consortium 2007), and the insulator/enhancer blocking
(Bell et al. 1999) assays were performed as previously described
with slight modifications (see Supplemental Methods). Exon
arrays were processed following a standard protocol for the
ENCODE Consortium (see Supplemental Methods).

Data processing

For sequence data from all experiments, (1) sequences were aligned
to the human reference genome (NCBI Build 36) using MAQ (Li

et al. 2008), and (2) filtered to remove artifacts, (3) replicates were
compared for reproducibility, then combined, and (4) base-pair
signal was generated using F-seq (Boyle et al. 2008b) and discrete
peaks called (see Supplemental Methods). Gene-relative categories
were defined as follows: (1) promoter: overlaps 2 kb upstream of
any TSS; (2) 59: overlaps first exon or first intron; (3) intragenic
region: overlaps internal exon or intron; (4) 39: overlaps last exon
or 2 kb downstream from end of transcription; and (5) intergenic:
not within any previous category. Sites were assigned to the first
category whose criterion was satisfied. Cell type selective and
ubiquitous open chromatin sites were calculated using the top
100K sites from each cell type. Combined union sets of DNase-seq
and FAIRE-seq sites were created with significance calculated using
Fisher’s combined probability test (Fisher 1925). Affymetrix Exon
1.0 STarray data (available at GEO, GSE15805) was processed using
the Affymetrix Expression Console (see Supplemental Methods).

Motif finding

Cell-type selective distal peaks were defined as present in a single
cell type, at least 2 kb upstream of any TSS, and downstream from
59 exons and introns. Enriched motifs were determined in two
ways: (1) Motif scanning was performed using public transcription
factor position weight matrices from Transfac (version 7.0; (Matys
et al. 2006) with enrichment defined as the ratio of predicted
binding site frequency per kb in peaks from one cell type vs. cell-
type selective peaks in the other six cells, and significance de-
termined using a x2 test (P-value < 6.6 3 10�3); and (2) de novo
motif finding was performed using cERMIT (Georgiev et al. 2010)
and CisFinder (Sharov and Ko 2009). For cERMIT, the combined
open chromatin –log(P-value) was used as experimental evidence.
The union set of cell-type selective peaks from the other six cell
lines served as the background. The online version of CisFinder
(http://lgsun.grc.nia.nih.gov/CisFinder/) was used with default
parameter settings, except ‘‘clustered’’ motifs rather than the ‘‘el-
ementary’’ ones. FASTA files of cell-type selective distal peaks were
the foreground set and the union set of distal peaks from the other
six cell lines was the background set. Top motifs from cERMIT and
CisFinder were annotated using the STAMP web server (http://
www.benoslab.pitt.edu/stamp/ [Mahony and Benos 2007]), with
the ‘‘selected eukaryotic’’ option, and included Transfac (Matys
et al. 2006), JASPAR 2010 (Portales-Casamar et al. 2009), UniPROBE
(http://the_brain.bwh.harvard.edu/uniprobe), and a few organ-
ism-specific databases. Additional comparisons were done to the
hPDI database, (Xie et al. 2010) using a custom PWM file, and to
the ‘‘predicted human’’ database in STAMP (Mahony and Benos
2007).

Clusters of open regulatory elements

Open chromatin sites found by both DNase-seq and FAIRE-seq in
at least one cell type were considered. Each site was represented by
a vector of seven combined open chromatin values, one for each
cell type and quantile-normalized across cell types. Pairwise cor-
relations were calculated between each site and 500 surrounding
sites. One hundred and eighty-one high-confidence COREs were
defined by a two-state HMM, using the average correlation across
five adjacent open regions as the observable. Transition and
emission probabilities were set manually. In each CORE, cell types
with significantly more open chromatin signal were determined
using pairwise Mann-Whitney tests (P-value < 0.05 vs. at least four
cell types). Genes (UCSC knownGene annotation) overlapping
and within 10 kb were assigned to each CORE for expression
comparisons. CTCF and Pol II ChIP-seq signal were calculated as
normalized sequence read counts mapped inside COREs. To
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eliminate background signals, only reads located within the top
20K Pol II or top 10K CTCF peaks were considered.

Data access
All data from this atlas are publicly available on the UCSC Genome
Browser (http://genome.ucsc.edu; [Kent et al. 2002]), the Gene
Expression Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/,
GSE30227 [Edgar et al. 2002]), and the NCBI Sequence Read Ar-
chive (SRA, http://www.ncbi.nlm.nih.gov/Traces/sra/, SRP007348,
SRP007349, SRP007350, SRP002002, SRP004453 [Wheeler et al.
2008]).
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