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Chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-seq) has become the dominant tech-
nique for mapping transcription factor (TF) binding regions genome-wide. We performed an integrative analysis centered
around 457 ChIP-seq data sets on 119 human TFs generated by the ENCODE Consortium. We identified highly enriched
sequence motifs in most data sets, revealing new motifs and validating known ones. The motif sites (TF binding sites) are
highly conserved evolutionarily and show distinct footprints upon DNase I digestion. We frequently detected secondary
motifs in addition to the canonical motifs of the TFs, indicating tethered binding and cobinding between multiple TFs. We
observed significant position and orientation preferences between many cobinding TFs. Genes specifically expressed in
a cell line are often associated with a greater occurrence of nearby TF binding in that cell line. We observed cell-line–
specific secondary motifs that mediate the binding of the histone deacetylase HDAC2 and the enhancer-binding protein
EP300. TF binding sites are located in GC-rich, nucleosome-depleted, and DNase I sensitive regions, flanked by well-
positioned nucleosomes, and many of these features show cell type specificity. The GC-richness may be beneficial for
regulating TF binding because, when unoccupied by a TF, these regions are occupied by nucleosomes in vivo. We present
the results of our analysis in a TF-centric web repository Factorbook (http://factorbook.org) and will continually update
this repository as more ENCODE data are generated.

[Supplemental material is available for this article.]

The genome encodes the information required for building an or-

ganism, including genes that encode proteins and functional RNAs,

and more importantly, the instructions for when, where, under

what conditions, and at what levels genes are expressed. Elaborate

regulation of gene expression is a key driving force for organismal

complexity (Levine and Tjian 2003). Transcription factors (TFs) are

a family of proteins that can execute the instructions for transcrip-

tional regulation by interacting with RNA polymerases to activate

or repress their actions (Maston et al. 2006). The fidelity of tran-

scriptional regulation ultimately relies on TFs, which can bind direct-

ly to genomic DNA with specific sequences via their DNA-binding

domains, or indirectly through interactions with other DNA-binding

TFs. The regulation of most genes requires many TFs, which may

form large complexes, and a TF typically regulates many genes.

In eukaryotic cells, transcription is regulated in the context of

chromatin, whereby genomic DNA is packaged into nucleosomes,

and TFs must compete with nucleosomes for accessibility to ge-

nomic DNA. It was discovered early on that some loosely packaged

regions of chromatin were hypersensitive to cleavage by DNase I,

and these regions might harbor regulatory DNA (Weintraub and

Groudine 1976). The advent of high-throughput genomic tech-

niques allowed systematic mapping of nucleosomes, and more recent

studies showed that most genomic DNA is nucleosomal and that

functional TF binding sites tend to be located in nucleosome-

depleted regions (Guertin and Lis 2010; John et al. 2011; Li et al.

2011). Nonetheless, some TFs are capable of remodeling nucleosomes

in the absence of additional factors, and other TFs can recruit nu-

cleosome remodelers to reposition or evict nucleosomes and expose

TF binding sites (Berger 2007; Clapier and Cairns 2009). Further-

more, it was reported that TF binding sites are flanked by multiple

well-positioned nucleosomes (Fu et al. 2008; Valouev et al. 2011).

Transcriptional regulation has been studied at the single-gene

level for several decades. TFs recognize 8- to 21-base pair (bp)

degenerate sequence motifs (Matys et al. 2003; Bryne et al.

2008), but in vivo a given TF typically only associates with a small
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subset of the genomic sites that match its binding motif. ChIP-

seq is a technique for mapping TF binding regions genome-wide

in living cells. The method combines chromatin immuno-

precipitation (ChIP), using TF-specific antibodies, with high-

throughput sequencing (seq) (Robertson et al. 2007). Dozens of

ChIP-seq data sets of mammalian TFs have been reported in the

literature by individual labs (Biggin 2011; MacQuarrie et al.

2011). The ENCODE Consortium has generated 457 ChIP-seq

data sets on 119 TFs in 72 cell lines (Supplemental Table S1) and

determined transcription levels, nucleosome occupancy, and

DNase I hypersensitivity in a subset of these cell lines (The

ENCODE Project Consortium 2011). We analyzed this rich

collection of data to characterize the sequence features of TF

binding sites and determine the local chromatin environment

around them.

Results

Identification of sequence motifs and TF binding sites

As described in Supplemental Methods, we built a computational

pipeline (Supplemental Fig. S1) to discover enriched sequence

motifs de novo using the 500 highest ranked peaks (the training

set) in each ChIP-seq data set and assessing the quality of the

motifs in two ways using the remaining peaks (nonoverlapping

testing sets). We used the MEME-ChIP software suite (Machanick

and Bailey 2011) for motif discovery (up to five motifs per ChIP-seq

data set), and 1092 motifs passed both of our quality assessment

filters. For each data set, we define the most significant motif

(lowest E-value computed by MEME) as the primary motif, and the

remaining significant motifs as secondary motifs. We manually

merged redundant motifs and consistently named motifs discov-

ered in multiple data sets, taking into account previous literature

and protein family information on the DNA-binding domains of

the TFs.

In the end, we identified 79 unique motifs (Supplemental

Fig. S2 for sequence logos; Supplemental Table S2 for position-

specific scoring matrices in MEME format), 67 of which were in the

JASPAR or TRANSFAC repositories (Matys et al. 2003; Bryne et al.

2008), while 12 were unannotated but highly significant (we named

these motifs UA1–UA12). Among the 119 TFs, 87 are involved in

Pol II-mediated transcription and have a DNA-binding domain;

these TFs are classified as sequence-specific. The motif that reflects

the sequences recognized by the DNA-binding domain of a se-

quence-specific TF is defined as the canonical motif of the TF. Note

that the primary motif (the most enriched motif discovered by

MEME) was not necessarily the canonical motif, although in most

cases it was. The reason that we discovered fewer motifs than the

total number of sequence-specific TFs is that some TFs belong to

the same family and have indistinguishable motifs (e.g., SP1 and

SP2) and other TFs are components of a functional complex (e.g.,

the heterodimer of USF1 and USF2 is the functional TF, called USF).

We also divided the peaks for each TF into two sets, those within

2 kb of transcription start sites (TSS-proximal) and those >2 kb

away from TSS (TSS-distal). We then performed motif-finding, us-

ing the top 500 TSS-proximal peaks and the top 500 TSS-distal

peaks separately, and found consistent motifs between the two sets

(data not shown).

For several TFs, ChIP-seq was performed by multiple labs or

using multiple antibodies, and we discovered nearly identical

motifs for different data sets of the same TF (Supplemental Fig. S3),

indicating that the ChIP-seq data sets are of high quality. As

described in Supplemental Methods, the motifs we discovered

tend to be more highly enriched in ChIP-seq peaks than annotated

motifs in databases (Supplemental Fig. S4) or motifs derived with

an in vitro method (protein binding microarray) (Supplemental

Fig. S5; Badis et al. 2009).

We identified significant sequence motifs for 86 of the 87

sequence-specific TFs (Fig. 1A). An AG tandem repeat was detected

for the remaining TF (ZZZ3), but we cannot confidently assess the

quality of this motif because the two ZZZ3 ChIP-seq data sets

have few peaks (740 peaks in GM12878 and 193 peaks in HeLa-S3)

(Supplemental Table S1). The canonical motifs of 76 sequence-

specific TFs have been annotated, and we identified a significant

motif that matched the annotated canonical motif for each TF. We

also identified significant noncanonical motifs for 70 of the 76

sequence-specific TFs, suggesting that other TFs also bind to the

peaks of these TFs or that these TFs bind to their target DNA by

tethering onto other TFs. We found significant motifs for 23 of the

25 non-sequence-specific TFs (Fig. 1A), which, by definition, bind

via tethering.

We computed two measures for each motif we discovered in

each data set: the percentage of ChIP-seq peaks in the [–150 bp,

+150 bp] window around the peak summit that contained a sig-

nificant site for the motif (FIMO P-value < 1 3 10�4) and the dis-

tribution of the absolute distances between the nearest edge of

motif sites and the peak summit. We plotted these two measures

with respect to the ranks of the peaks (ranked according to the

ChIP-seq signal), using SPI1 in GM12891 cells as an example (Fig.

1B). Over 80% of the top 20,000 peaks contained sites for the motif

of SPI1 (PU.1), and this percentage decreased to around 75% for

the bottom of the ;40,000-member peak list. For comparison, we

scanned the two 300-bp regions flanking the 300-bp peak win-

dow, and 14.9% of the flanking regions contained PU.1 sites. The

median distance from the motif site to the peak summit was 7 bp

for the top-ranked peaks. This distance increased to 13 bp for the

bottom-ranked peaks, still much smaller than the 75-bp distance

expected for motifs uniformly distributed in a [–150 bp, +150 bp]

window. Thus, the majority of these bottom-ranked peaks are

likely bound by SPI1 in living cells. Supplemental Figure S6 is a

gallery of these figures for each of the 408 data sets for which a sig-

nificant motif was identified, indicating strong enrichment of one

or more de novo discovered motifs in the vast majority of the data

sets, especially those data sets that correspond to the 87 sequence-

specific TFs (first section of Supplemental Fig. S6).

We computed two additional measures for the motif sites

within ChIP-seq peaks: the DNase I footprint and evolutionary

conservation. TF binding sites tend to be located in accessible

chromatin indicated by high DNase I cleavage, yet the binding by

the TF protects the site from DNase I cleavage compared with its

flanking positions (Neph et al. 2012). Thus, TF binding sites ex-

hibit ‘‘valley in a peak’’ DNase I footprints. Such footprints become

increasingly visible with greater sequencing depth, and DNase-seq

data sets with a few hundred million reads are typically required to

see the footprints clearly. For the motifs discovered in the K562

data sets, Supplemental Figure S7 illustrates both the DNase I

footprints and conservation profile (computed with phyloP)

(Pollard et al. 2010). For motifs discovered in other cell lines, only

conservation profiles are shown because the DNase I data for these

cell lines do not have sufficient sequencing depth for footprinting.

Supplemental Figure S7 clearly shows that most motif sites in

ChIP-seq peaks show distinct DNase I footprints and strong se-

quence conservation (solid lines), compared with motif sites out-

side ChIP-seq peaks (dashed lines).
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Previously unannotated motifs

We identified 11 high-confidence motifs that did not match any

annotated motifs in the JASPAR or TRANSFAC repositories (Fig. 1C;

Supplemental Figs. S2, S6). Among these motifs, UA1–UA5 are

likely the canonical motifs for four TFs, and UA9 is likely the

canonical motif for a factor that functions in H1-hESC cells. Sup-

plemental Figure S7 shows that the sites of the previously un-

annotated motifs tend to have high evolutionary conservation

and show distinct DNase I footprints.

UA1 was detected as the primary motif of three TFs (ZBTB33,

BRCA1, and CHD2), as well as a secondary motif for ETS1. Because

ZBTB33 is a zinc finger protein that binds methylated CpG di-

nucleotides (Yoon et al. 2003) and the center of UA1 contains

CGCG, UA1 most likely is the canonical motif of ZBTB33. BRCA1

and CHD2 do not have a DNA-binding protein domain, suggesting

that they bind ZBTB33 to perform their functions in DNA repair

and genome maintenance. Indeed, the 936 ZBTB33 peaks that

contain UA1 sites and the 321 BRCA1 peaks that contain UA1 sites

have 312 peaks in common. Similarly, the 936 ZBTB33 peaks that

contain UA1 sites and the 1022 CHD2 peaks that contain UA1 sites

have 719 peaks in common.

UA2 was the primary motif for the PBX3 data set in GM12878,

with 44.3% of the 7431 peaks containing at least one UA2 site. We

did not identify any previously published description of the se-

quence motif of PBX3.

UA3 was the primary motif for the ZBTB7A data set in K562,

occupying 80.1% of the 19,942 peaks. CTCF was identified as

a secondary motif but with a lower enrichment than UA3 (Sup-

plemental Fig. S6). Genecard indicates that the consensus sequence

of ZBTB7A binding sites is 59-[GA][CA]GACCCCCCCCC-39,

which is similar to the reverse complement of the UA3 consensus

Figure 1. De novo discovery of sequence motifs. (A) Statistics of motif discovery among 119 TFs, classified into 87 Pol II-associated sequence-specific TFs
(TFSS), eight general Pol II-associated, non-sequence-specific TFs (TFNS), Pol II (Pol2), six Pol III components and Pol III-associated TFs (Pol3F), five ATP-
dependent chromatin complexes (ChromRem), three TFs involved in DNA repair (DNARep), eight histone modification complexes (HISase), and one
cyclin kinase associated with transcription (Other). The TATA box binding protein (TBP) is included in the TFNS category and its canonical motif is TATA,
corresponding to the blue bar. (B) Example result for SPI1 in GM12891 cells illustrating the percentage of peaks with the motif (left, y-axis in red) and
distribution of absolute distances of the closer edge of motif sites relative to the peak summit (right, y-axis in gray), plotted against ranks of peaks (ranked by
ChIP-seq signal). (C ) Five previously unannotated motifs that are likely to be canonical motifs of four sequence-specific TFs. Also shown are DNase I
footprint and sequence conservation profiles around the sites of UA1 (likely the canonical motif of ZBTB33). Motif sites in ChIP-seq peaks (solid lines) were
compared with motif sites outside peaks (dashed lines). DNase I and ChIP-seq data were both from K562 cells. Sequence conservation was computed
using phyloP (Pollard et al. 2010). (D) Motifs with variant spacing and extensions.

Wang et al.

1800 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on November 19, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


59-CNGAGACCCCNNCCC-39. Furthermore, the motif derived

from the in vitro protein binding microarray method for

ZBTB7B (a paralog of ZBTB7A) is very similar to UA3 (Badis et al.

2009).

UA4 and UA5 were discovered in the THAP1 data set in

K562. UA4 is a gapped motif, and it is an extended version of the

motif previously reported for the THAP family of TFs (Sabogal

et al. 2010). UA5 shares the ‘‘GGGC’’ half of UA4 but further ex-

tends it. Thus both UA4 and UA5 are likely the canonical motifs for

THAP1.

UA9 was discovered as the primary motif for NANOG (in H1-

hESC cells) and BCL11A (in H1-hESC cells but not in GM12878

cells). It does not resemble the previously identified NANOG motif

(Chen et al. 2008). We also discovered UA9 as a secondary motif

for five other TFs in H1-hESC cells (see Supplemental Fig. S6). We,

therefore, suspect that UA9 is the canonical motif of a yet unchar-

acterized TF that functions in H1-hESC cells.

We also identified two motifs that allow alternative spacing:

The two GATA3 half sites, AGAT and ATCT, can be either 3 or 4 bp

apart, and the two half sites of the AP-1 motif can be either 1 or 2 bp

apart. The variant spacing of AP-1 was previously detected by the

in vitro protein binding microarray method (Badis et al. 2009;

Supplemental Fig. S5), reflecting intrinsic flexibility of the two

leucine zippers of the heterodimeric AP-1 TF. The variant spacing

of GATA3 has not been reported previously. We identified exten-

sions of four annotated motifs—CREB, ZNF143, GATA1, and CTCF

(Fig. 1D; Supplemental Fig. S6). ZNF143-ext (Myslinski et al. 2006)

and CTCF-ext (Ohlsson et al. 2001; Rhee and Pugh 2011) have

been documented before. GATA1-ext is the motif for the TAL–

GATA1 complex (Xu et al. 2003). The extension for CREB has not

been reported.

Comparison of bound vs. unbound motif sites

Although the ChIP-seq peaks are highly enriched in motifs, there

are still many motif sites outside peaks (unbound motif sites). For

example, there are, on average, 430 times more unbound motif

sites (sites outside peaks; FIMO P-value < 1 3 10�4) than bound

motif sites (sites within peaks) for the TFs with ChIP-seq data in

K562 cells. We asked whether there were any sequence or chro-

matin features that could distinguish bound sites from unbound

sites (see Supplemental Methods for details). Indeed, we found that

the regions surrounding bound sites were more DNase I hyper-

sensitive and enriched in TF motifs, compared with the regions

surrounding unbound sites, as shown in Supplemental Figure S8

for the five cell lines with the most ChIP-seq data sets, one heat

map per cell line. The histogram of log2 (enrichment) has a heavier

right-side tail in all cell lines, indicating an overall enrichment

among all pairwise comparisons (Supplemental Fig. S8). As expected,

regions around bound A-box sites are enriched in B-box sites and

vice versa, consistent with these sites being the TFIIIC motifs in

tRNA genes (Oettel et al. 1998). The bound regions of most motifs

are enriched in sites of the same motif. Several motifs such as NRF1

are enriched in the bound sites of the majority of motifs across the

cell lines.

Cobinding and tethered binding between different TFs

Many eukaryotic genes are coregulated by multiple TFs in a cell-

type–specific manner (Maston et al. 2006). For 70 of the 87

sequence-specific TFs, we discovered the canonical motifs as

well as significant secondary motifs that were distinct from the

canonical motifs of the TFs in question and that correspond to the

canonical motifs of other TFs. Two scenarios may result in sec-

ondary motifs: Two TFs bind to neighboring sites (cobinding), or

one TF protein binds to another that, in turn, binds to DNA (teth-

ered binding). To distinguish between these scenarios, we computed

the percentages of peaks in a ChIP-seq data set that contain sites for

the canonical TF only, a noncanonical TF only, or both, and then

we sorted the data sets by the percentages of peaks with only non-

canonical motif sites (Fig. 2A; see Supplemental Table S3 for the

underlying data). We reasoned that if sites of a noncanonical motif

were frequently found to be in the same ChIP-seq peaks as ca-

nonical motif sites (hence, adjacent to them), the two TFs are likely

to interact at the protein level and influence each other in binding

to their DNA sites. Conversely, if the majority of the peaks contain

only sites for noncanonical motifs, then tethered binding is a more

plausible model. In this fashion, we identified 151 potential teth-

ered binding and 104 cobinding sequence-specific TF pairs (255

in total). We then compared the pairs we discovered with experi-

mentally detected pairs reported in a mammalian two-hybrid study

(Ravasi et al. 2010) and in the BIOGRID database (Stark et al. 2006)

and found evidence for physical interaction for 27 (10.6%) of the

pairs. Eighteen of the 151 tethered binding predictions were vali-

dated in the mammalian two-hybrid data. We randomly picked 151

TF pairs for 5000 trials, and on average, 4.19 pairs were validated in

the mammalian two-hybrid experiments (maximum 13 pairs), in-

dicating that our predicted TF pairs were highly significant (P-value

< 2 3 10�4). Thus, our results both recapitulated previously reported

observations and revealed novel potential interactions that can be

tested by experimentation (see Supplemental Table S3 for summary

of all pairs).

SP1 (or SP2) and NF-Y (heterodimer of NF-YA and NF-YB)

constitute an example of cobinding. (SP1 and SP2 mostly bind to

common sites in the genome, and their motifs are indistinguish-

able.) The SP2 ChIP-seq data set in K562 cells contains 3025 peaks,

of which 2496 peaks contain SP1/2 sites and 1711 peaks contain

NF-Y sites, sharing 1512 peaks. Furthermore, 1562 of the 1711 NF-Y

site-containing peaks overlap with the peaks in the NF-Y ChIP-seq

data set in K562 cells, confirming that these NF-Y sites are, indeed,

bound by the NF-Y protein. Thus, SP2 and NF-Y prefer to cobind

neighboring sites in the genome. Similarly, the SP1 ChIP-seq data

sets in K562 and GM12878 cells indicate cobinding between SP1

and NF-Y. In the next section, we show that NF-Yand SP1/2 binding

sites tend to be within 30 bp of one another. Indeed, Roder et al.

showed that NF-Yand SP1 proteins bind to each other and that they

cobind to the same promoter (Roder et al. 1999). In another ex-

ample, YY1 was shown to interact with MYC, and cooperatively, the

two TFs regulate the expression of the ITGA3 gene of the a3b1-

integrin complex in human osteosarcoma cells (de Nigris et al.

2007). We found that the cobinding of YY1 and MYC was not

limited to the ITGA3 promoter. In K562 cells, 484 MYC peaks

(11.9%) contain both YY1 and MYC motifs, and these peaks are

bound by YY1 as well. Novel predictions of cobinding TF pairs in-

clude ESRRA and HNF4 in HepG2 cells and NFKB and SPI1 in

GM12878 cells (Supplemental Table S3).

Tethered binding facilitates combinatorial regulation by ad-

ditional sequence-specific TFs and is necessary for recruiting

chromatin remodelers and other regulatory proteins that do not

bind DNA directly. We describe examples of tethered binding be-

tween sequence-specific TFs here, and discuss the tethering of non-

sequence-specific TFs onto sequence-specific TFs in a subsequent

section. ATF3 contains a basic leucine zipper DNA-binding domain

whose canonical motif is the CREB motif. However, 51.2%, 48.6%,
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Figure 2. Interactions between TFs. (A) Different modes of interaction between TFs are shown. Each bar indicates the canonical TF and one non-
canonical TF whose motifs were identified in the same ChIP-seq data set, and the red, blue, and black segments of the bar indicate percentage of peaks in
the ChIP-seq data set that contain only canonical motif sites, only noncanonical motif sites, or both. Cartoons depict examples of different models for TF-TF
interactions. (B) Circos plot (Krzywinski et al. 2009) on the left depicts pairs of motifs (connected by an arch) with significant distance preferences between
their sites. The thickness of a connection is proportional to the normalized frequency of the pair. A connection is depicted as blue, black, or red when the
motif pair is discovered in different data sets, the same data set, or both, respectively. The heat map on the right shows the distributions of distances
between motif pairs. Each row is a motif pair in a particular ChIP-seq data set, and each column represents an edge-to-edge distance (from 0 bp to 99 bp).
(C ) Similar to B except showing motif pairs discovered in repetitive regions.
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46.9%, and 49.5% of the peaks in the four ATF3 ChIP-seq data sets

(in GM12878, H1-hESC, HepG2, and K562 cells, respectively) con-

tain USF sites but not CREB sites, and 98.35%–98.95% of these

peaks overlap with peaks of USF1 or USF2 in the respective cell lines,

indicating that they are bound by USF (USF is the heterodimer of

USF1 and USF2). USF belongs to the basic helix-loop-helix leucine

zipper family, and its motif does not resemble the CREB motif

(Supplemental Fig. S2). Thus, the above analysis suggests that ATF3

tethers to USF, which binds DNA directly. Although ATF3 and USF

have been reported to coregulate the same promoters (Runkel

et al. 1991), it has yet to be shown that these TFs physically in-

teract with each other independent of target DNA. As another

example, in K562 cells, NFE2 binds 75.98% of its ChIP-seq peaks

directly and tethers through USF for 15.59% of the peaks. In-

terestingly, the peaks that involve tethered binding show the

strongest ChIP signal for this data set (Supplemental Fig. S6), per-

haps because the NFE2 proteins that bind to DNA directly adopt

a different conformation from those involved in tethered binding,

and because the antibody used to perform the ChIP experiments

has a lower affinity for NFE2 in the direct DNA-binding confor-

mation. This is an exception because, for most TFs, the peaks that

contain sites for the canonical motif show the strongest ChIP-seq

signal (Supplemental Fig. S6). Other examples of tethered binding

include SP1 tethering to HNF4 in HepG2 cells and STAT3 tethering

to CEBPB in HeLa cells, both with literature support (Kardassis et al.

2002; Zhou et al. 2010). Novel predictions of tethering include

TCF12 to FOXA and HNF4 in HepG2 cells, IRF1 to NF-Y in K562

cells, SREBF1 to RFX5 in HepG2 cells, and SIX5 to ZNF143 in

GM12878 cells (Supplemental Table S3).

As a special case of cobinding, TFs that belong to the same

protein family usually share identical or similar motifs and may

compete for sites that match both motifs. MYC/MAX and USF

(the USF1/USF2 heterodimer) both contain basic helix-loop-helix

leucine zipper DNA-binding domains, but they do not cross-

dimerize (Sawadogo et al. 1999). Their motifs share the CACGTG

core, but the USF motif contains two additional nucleotides

(gtCACGTG) that have a moderate sequence preference (Sup-

plemental Fig. S2). The USF motif was discovered as a secondary

motif in all five MAX ChIP-seq data sets, and 77.37%–92.75% of

USF sites identified in the MAX data sets overlap with peaks in

the USF1 or USF2 ChIP-seq data sets in the same cell line. These

results suggest that USF and MYC/MAX compete for these sites.

It was reported that both USF and MYC/MAX can bind an E-box

motif in the promoter of the hamster cad gene, but only the

binding of MYC/MAX is required for the transcription of cad

(Boyd and Farnham 1997).

Distance and orientation preferences between the sites
of cobinding TFs

Cobinding TFs bind to neighboring sites in the genome. For some

TFs, multiple molecules of the same TF also can occupy neigh-

boring sites. We asked whether these neighboring sites prefer to

be on the same strand or opposite strands and whether they prefer

to be in a specific range of distances. In addition to the analysis

presented in the previous section, which compared the canonical

motif with each noncanonical motif discovered in the same data

set, we also compared motifs discovered in different data sets col-

lected using the same cell line. In Figure 2B,C, we summarize the

heterotypic and homotypic TF pairs that show statistically signif-

icant orientation or distance preferences separately in nonrepetitive

and repetitive regions of the genome (the underlying data are in

Supplemental Table S4). Out of the 78 motifs discovered from

ChIP-seq data sets, 36 motifs (92 pairs; 62 heterotypic pairs and 30

homotypic pairs) are included in Figure 2B, suggesting that pre-

ferred arrangements of nearby TF binding sites are a common phe-

nomenon. The neighboring sites for many heterotypic TF pairs

(e.g., CTCF–NF-Y, ELF1–GABP, and FOXA–HNF4) as well as the

neighboring homotypic sites of many TFs (e.g., AP-1, CTCF, and

USF) show a strong preference for an edge-to-edge distance of

<30 bp and varying degrees of preference for one orientation over

the other. For example, neighboring NF-Y sites prefer to be in the

same orientation. NF-Y also prefers one orientation to the other

when cobinding with SP1, PBX3 (its motif is UA2), and USF. We

hypothesized that these 92 TF pairs are more likely to represent

protein–protein interactions than the TF pairs we identified in the

previous section without testing for position or orientation pref-

erences. Indeed, 14 heterotypic pairs and 17 homotypic pairs

(33.7%) were detected in the aforementioned mammalian two-

hybrid study (Ravasi et al. 2010) or in the BIOGRID database (Stark

et al. 2006).

TFs tend to bind gene-rich regions of the genome due to their

role in regulating target gene expression (Carroll et al. 2006).

Nonetheless, repetitive elements are known to harbor functional

TF binding sites, especially when such elements occur near genes.

We systematically compared our compilation of TF binding sites

with all repeats annotated in the human genome, and the results

are summarized in Figure 3A. We confirmed the previously re-

ported enrichment of STAT1, NF-Y, and CTCF binding sites in vari-

ous repetitive elements (Bourque et al. 2008; Schmid and Bucher

2010), and we uncovered many more TFs whose binding sites are

enriched in certain repetitive elements, e.g., UA1 sites in THE1B

and THE1D retrotransposons. It was shown that a long terminal

repeat (LTR) region of the THE1D retrotransposon was recruited as

an alternative promoter for the human IL2RB gene and that the

activity of this alternative promoter is regulated by DNA methyl-

ation (Cohen et al. 2011). The UA1 motif we identified in ZBTB33

peaks contains a prominent CGCG center (Fig. 1C) and ZBTB33 is

known to bind methylated CpG dinucleotides (Yoon et al. 2003),

raising the interesting possibility that the THE1B/D retrotransposons

spread ZBTB33 binding sites across the genome and that the reg-

ulation of the newly recruited target genes can be modulated by

the DNA methylation mechanism. Figures 2C and 3B summarize

all motif pairs that show statistically significant distance or orien-

tation preference in repetitive regions of the genome. The NF-Y–

USF site pairs that typically have an end-to-end distance of 5–6 bp

are nearly all located in the MLT1 family of retrotransposons.

Similarly, the NF-Y–NF-Y site pairs at a 9-bp distance are found

most often in LTR12 retrotransposons. There are 181 copies of the

MLT1J transposon in the genome that contain sites for the NF-Y,

USF, and ZNF143 motifs simultaneously, bound directly by NF-Y,

USF, and ZNF143 TFs, respectively. The relative distance among the

sites are nearly invariant (Fig. 2C), indicating recent duplications

of MLT1J. Our results suggest a mechanism whereby retrotransposons

amplify functional TF site pairs across the genome through trans-

position, potentially bringing new genes under the regulation of

those TFs.

Cell-type–specific binding of sequence-specific TFs

The majority of the ENCODE ChIP-seq data was produced using

five cell lines: K562, GM12878, HepG2, H1-hESC, and HeLa. In-

tegrating ChIP-seq data with RNA-seq data for these five cell lines,

we asked whether genes that are preferentially expressed in a given
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cell line (defined by the average expression level in one cell line

being more than 10-fold higher than that in any of the remaining

four cell lines) show enriched TF binding sites in the corresponding

cell line. This is, indeed, the case for a large fraction of genes, and

Figure 4A shows five examples, one per cell line. (1) FCER2 (the

low-affinity receptor for IgE) is a key gene for B-cell function. It is

highly and specifically expressed in GM12878. Its promoter region

and gene body are bound by nine TFs in GM12878, including SPI1.

(2) The G protein-coupled receptor GPRC5A plays a role in epi-

thelial cell differentiation. It is highly and specifically expressed in

HeLa cells, and accordingly, its promoter region and gene body are

bound by seven TFs in HeLa cells. (3) The Abd-B homeobox family

member HOXB9 is a sequence-specific transcription factor. It is

highly and specifically expressed in K562 cells, and accordingly, its

promoter regions and gene body are bound by seven TFs including

GATA1-TAL1 in K562 cells. (4) SERPINA1 encodes a serine protease

inhibitor, and defects in this gene can cause liver diseases. It is four

orders of magnitude more highly expressed in HepG2 than in the

other four cell lines. FOXA, HNF4, RXRA, TCF7L2, and eight other

TFs bind near this gene in HepG2 but not in other cell lines. (5)

AC104304 encodes for a putative teratocarcinoma-derived growth

factor that plays an important function in embryonic development.

It is highly expressed in H1-hESC and bound by eight TFs, including

NANOG.

We then asked whether the noncanonical motifs we discov-

ered also reflect cell type specificity. Figure 4B plots the noncanonical

motifs (circles) detected in the ChIP-seq data sets of sequence-

specific TFs for each of the five cell lines (squares) with the most

ENCODE ChIP-seq data sets. Cell-line–specific, noncanonical

motifs are placed close to their respective

cell lines in Figure 4B. We defined cell-

line–specific motifs as those that were

discovered three times more often in one

cell line than in any other cell line. The

remaining noncanonical motifs are placed

in the center of the figure, and these motifs

correspond to TFs that cooperate with

other sequence-specific TFs across multi-

ple cell lines. The thickness of the solid

line connecting a noncanonical motif to

a cell line indicates the proportion of data

sets in that cell line that revealed the

motif as a noncanonical motif.

We highlight several motifs that were

frequently discovered as noncanonical

motifs in a particular cell line. (1) PU.1 was

most frequently discovered in GM12878

cells. Its corresponding TF SPI1, a member

of the ETS family, activates gene expres-

sion during myeloid and B-lymphoid cell

development. The SPI1 gene is expressed

in both GM12878 and K562 cells (RPKM

= 4 and 9, respectively), but not in the

other three cell lines (RPKM < 0.1). On the

other hand, another member of the ETS

family, SPIB, is only expressed in GM12878

cells, and the SPIB gene shows extensive

TF binding sites specifically in GM12878

cells (bottom inset in Fig. 4B). SPIB and

SPI1 have the same canonical motif (PU.1)

and are both essential for B cell devel-

opment (Sokalski et al. 2011). (2) GATA1

was the most frequently discovered noncanonical motif in K562

cells. It is bound by the GATA family of TFs, which are essential for

erythroid development by regulating the fetal-to-adult switch of

hemoglobin production (Takahashi et al. 1997). The GATA1 gene is

highly expressed in K562 cells but not in the other four cell lines

and shows extensive binding sites only in the K562 cell line (top

right inset in Fig. 4B). (3) FOXA and HNF4 are the most frequently

identified noncanonical motifs in HepG2 cells. Their correspond-

ing TFs (FOXA1 and HNF4) are activators of many liver-specific

genes and are essential for hepatocyte function (Lemaigre and

Zaret 2004). Both the FOXA1 and HNF4 genes are more than 10-

fold more highly expressed and show more extensive TF binding

sites in the HepG2 cell line than in the other four cell lines (FOXA1

is shown in the middle right inset in Fig. 4B). (4) The SOX2-OCT4

combined motif was the most frequently identified noncanonical

motif in H1-hESC cells. OCT4 is the canonical motif of POU5F1,

a POU homeodomain-containing TF required for embryonic stem

cell pluripotency. Their corresponding TFs (POU5F1 and SOX2)

form a protein–protein complex and are required for embryonic

stem cell pluripotency (Kashyap et al. 2009). Both POU5F1 and

SOX2 are exclusively expressed in H1-hESC cells and extensively

regulated by a large number of TFs, including by themselves

(POU5F1 is shown in the lower left inset of Fig. 4B).

Tethered binding of non-sequence-specific TFs

In Figure 4B, we also included all non-sequence-specific TFs (di-

amonds) for which there are ChIP-seq data in these cell lines.

Dashed lines connect non-sequence-specific TFs to the motifs

Figure 3. Binding sites of certain TFs or TF pairs are enriched in repeats. (A) Enrichment of TF binding
sites in repetitive elements. The redness of each grid point is proportional to the negative logarithm of
enrichment P-value. Repetitive elements are color-coded by family. (B) Enrichment of motif pairs that
strongly prefer a narrow distance range in various repetitive elements (Fig. 2C).
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Figure 4. Cell-type–specific binding of sequence-specific and non-sequence-specific TFs. (A) Abundant TF binding sites are observed near cell-line–
specific transcripts. Binding sites are shown as vertical bars and colored by cell line (dark blue for K562, red for HepG2, brown for GM12878, green for H1-
hESC, and cyan for HeLa-S3). (Bottom, right) Expression levels (in RPKM) for example cell-line–specific transcripts across the five cell lines with the most
ChIP-seq data. (B) Secondary motifs identified in the ChIP-seq data sets of sequence-specific TFs and their enrichment in the ChIP-seq peaks of non-
sequence-specific TFs. The five cell lines are indicated with color-coded squares, noncanonical motifs of sequence-specific TFs are shown in pink circles and
a solid line connecting each motif to the respective cell line. The thickness of the solid line is proportional to the normalized frequency in which a non-
canonical motif is discovered in a particular cell line. Non-sequence-specific TFs are shown in diamonds whose colors match the color of the cell line if there
is a ChIP-seq data set of the TF in that cell line. Dashed lines connect non-sequence-specific TFs and noncanonical motifs, indicating that a noncanonical
motif of a sequence-specific TF is enriched in the ChIP-seq peaks of the non-sequence-specific TF. (Four insets) Expression profiles of sequence-specific TFs
whose canonical motifs are found to be specific to a cell type and the TF binding sites around the genes that encode these TFs in the appropriate cell line.
The expression levels in each cell line are assigned a similar color as the cell line. For four cell lines, two biological replicates were available for RNA-seq data;
hence, there are two bars for each of these cell lines. Only one biological replicate was available for H1-hESC.
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discovered in their ChIP-seq peaks. Two non-sequence-specific

TFs show cell-line–specific enrichment in motifs: the enhancer-

binding protein EP300 and the histone deacetylase HDAC2. There

are seven data sets for EP300 in seven different cell lines and three

data sets for HDAC2 in three different cell lines. Distinct motifs

were found in different cell lines: SPI1 for EP300 in GM12878 cells;

GATA1 (and GATA1-ext) for both EP300 and HDAC2 in K562 cells;

FOXA and HNF4 for HDAC2, and FOXA and TCF7L2 for EP300 in

HepG2 cells; SOX2-OCT4 and UA9 for HDAC2, and TEAD1 for

EP300 in H1-hESC cells; and CEBPB, AP-1, and CREB for EP300 in

HeLa cells. As described in the previous section, many of these

motifs were most frequently and specifically observed as secondary

motifs for sequence-specific TFs in the respective cell lines. Because

non-sequence-specific TFs do not bind DNA directly, they tether

onto sequence-specific TFs to bind target DNA. EP300 is known

to interact with AP-1 and CEBPB (Mink et al. 1997; C-C Wang et al.

2007) and HDAC2 with TAL1-GATA (the motif is GATA1-ext)

(Hu et al. 2009). Our results highlight that the interactions of

EP300 and HDAC2 with sequence-specific TFs are highly cell type

dependent.

We further analyzed the subsets of peaks of the sequence-

specific TFs through which EP300 and HDAC2 might tether in

a cell-type–specific fashion. For example, in GM12878, 4.9% (1745

out of 35,821) of the SPI1 peaks were associated with EP300 (i.e.,

overlapping with the EP300 peaks in the same cell line by at least

1 bp). We asked whether these peaks differed from the remaining

95.1% of SPI1 peaks by performing two types of analysis. First, we

tested whether these EP300 or HDAC2-associated peaks were dif-

ferentially enriched in any of our collection of 78 motifs (with

enrichment defined in the Supplemental Methods). Second, we

performed de novo motif finding on the top 500 of the subsets of

peaks (ranked by ChIP-seq signal) using MEME-ChIP.

For EP300-associated peaks, we observed differential enrich-

ment in a number of known motifs (Supplemental Fig. S8), and

a subset of these motifs were also found by MEME-ChIP. For ex-

ample, the 1745 SPI1 peaks that were associated with EP300 were

more enriched in 18 motifs than all SPI1 peaks in GM12878 (cf. the

PU.1–EP300 row and the PU.1 row in the GM12878 heat map in

Supplemental Fig. S8), and MEME-ChIP identified AP-1, SP1, and

RUNX1, in addition to the canonical motif of SPI1 (PU.1), which

were among the 18 motifs. Similar results were observed for the

GATA1 peaks that were associated with EP300 in K562 cells and the

FOXA1 peaks that were associated with EP300 in HepG2 cells (see

Supplemental Fig. S8 for results on enrichment; the MEME-ChIP

results are not shown).

For HDAC2-associated peaks, we did not observe differential

enrichment of any annotated motifs (for example, cf. the GATA1

row and the GATA1–HDAC2 row in the K562 heat map of Sup-

plemental Fig. S8). For the HNF4 peaks associated with HDAC2

in HepG2 cells, MEME-ChIP only identified the HNF4 motif. In-

triguingly, MEME-ChIP identified UA9 from the subset of POU5F1

peaks associated with HDAC2 in H1-hESC cells (in addition to

POU5F1’s canonical motif SOX2-OCT4). In comparison, MEME-

ChIP did not identify UA9 from the overall top 500 POU5F1 peaks

but identified UA9 from the overall top 500 HDAC2 peaks in H1-

hESC cells (Supplemental Fig. S6), indicating that UA9 is specific to

the regions bound by HDAC2. Indeed, 199 of the 473 HDAC2-

associated POU5F1 peaks (42.1%) contain significant UA9 sites,

compared with 23.1% in the POU5F1 peaks not associated with

HDAC2 (Supplemental Fig. S9). Furthermore, MEME-ChIP iden-

tified another previously unannotated palindromic motif (Sup-

plemental Fig. S9). This motif was significantly enriched in the

HDAC2-associated GATA1 peaks in K562 cells compared to a set

of randomly chosen genomic regions with matching GC% and

lengths (P-value = 1.1 3 10�8, using only the 1078 peaks that were

not used as input to MEME-ChIP). This motif was distinct from all

of the 78 motifs that were identified in the overall top 500 ChIP-

seq peaks; thus, we named it UA12 and added it to our collection

(Supplemental Fig. S2). Indeed, 36.9% of the HDAC2-associated

GATA1 peaks in K562 cells contained UA12 sites (Supplemental

Fig. S9), which was higher than the percentage of GATA1 peaks not

associated with HDAC2 (32.1%) and the flanking regions (26.1%).

The ChIP-seq peaks of several non-sequence-specific TFs were

enriched in the same motifs, regardless of cell line. The best ex-

ample is the chromodomain helicase DNA-binding protein CHD2,

for which the UA1 motif (likely the canonical motif of ZBTB33)

was prominently discovered in GM12878, HepG2, and K562 cells,

suggesting that CHD2 functions by interacting with ZBTB33. REST

is highly enriched in the ChIP-seq peaks of SIN3A in H1-hESC cells.

Accordingly, SIN3A is known to associate with REST and repress

neuronal genes in nonneuronal cells (Huang et al. 1999).

The ChIP-seq peaks of many TFs are flanked
by positioned nucleosomes

After analyzing the motif content of TF binding peaks, we set out to

investigate the chromatin structure around these peaks. It is well

known that transcription has a profound impact on nucleosome

occupancy: Active TSSs in all eukaryotes are flanked by an up-

stream nucleosome-depleted region and several well-positioned

downstream nucleosomes (Radman-Livaja and Rando 2010). We

previously reported that the binding sites of the insulator binding

protein CTCF were flanked by an array of strongly positioned

nucleosomes, shown as a periodic oscillatory pattern in the aver-

age nucleosome occupancy profile centered on CTCF binding sites

(Fu et al. 2008). Another study showed that NRSF (also called REST)

binding sites are flanked by positioned nucleosomes in CD4+ T

cells, CD8+ T cells, and granulocytes (Valouev et al. 2011).

In order to investigate where TF binding peaks were located

with respect to nucleosomes, we computed an average nucleosome

occupancy profile centered on the peak summits of each TF with

available ChIP-seq data in GM12878 or K562 cells (Fig. 5A,B for

YY1 in GM12878 cells; Supplemental Fig. S10 for all data sets). We

had ChIP-seq data for 51 TFs in GM12878 cells, 73 TFs in K562

cells, and 32 TFs in both cell lines. Some TFs were tested by mul-

tiple labs in the same cell line, and we included all these data sets.

To account for the impact of transcription, we computed the av-

erage nucleosome profile anchored on TSS-proximal and TSS-distal

peak summits separately. Nucleosome profiles anchored on TSS-

proximal peaks were oriented such that the nearest transcript is

downstream from the anchor. We further stratified peaks in each

data set as top, middle, and bottom thirds according to the ChIP-

seq signal, reflecting the extent to which a peak is bound by the

TF (averaged over a population of cells). We distinguish nucleo-

some occupancy and nucleosome positioning, with occupancy

defined as the area under the occupancy profile and positioning

defined as the regularity of the oscillatory pattern in the occupancy

profile. Thus, the regions around TSS-proximal summits tend to

show lower nucleosome occupancy and lower nucleosome posi-

tioning than regions around TSS-distal summits (cf. Fig. 5A,B;

similarly the proximal and distal panels in Supplemental Fig. S10;

note the difference in the y-scale). This difference may reflect the

effects of RNA polymerase on chromatin structure (Weiner et al.

2010). Within the proximal and distal categories, the top, middle,

Wang et al.

1806 Genome Research
www.genome.org

 Cold Spring Harbor Laboratory Press on November 19, 2024 - Published by genome.cshlp.orgDownloaded from 

http://genome.cshlp.org/
http://www.cshlpress.com


and bottom third peaks, which correspond to the peaks with

strongest, medium, and weakest TF binding, tended to show the

greatest, medium, and weakest nucleosome positioning (Fig. 5A,B;

Supplemental Fig. S10). Thus regions that are more strongly bound

by TFs are flanked by better-positioned nucleosomes.

The cohesin components SMC3 and RAD21 (Supplemental

Fig. S10) show the most striking patterns of positioned flanking

nucleosomes, similar to what we previously reported for CTCF

(Fu et al. 2008), to which these factors bind (Parelho et al. 2008).

Two other TFs—CTCFL (a paralog of CTCF) and ZNF143 (a zinc-

finger protein with a long motif)—also show striking patterns of

positioned flanking nucleosomes. The binding sites for ;70% of

the tested TFs are flanked by positioned nucleosomes (Supple-

mental Fig. S10), indicating that this is a general phenomenon for

Figure 5. Chromatin structure and GC content around TF binding regions. (A,B) Nucleosome occupancy profiles anchored on the summits of TSS-
proximal (A) and TSS-distal (B) peaks of YY1 grouped by ChIP-seq signal strength: top (green), middle (red), and bottom (blue) third peaks in terms of
ChIP-seq signal. Nucleosome depletion for the top third peaks is shown as D in each panel. (C ) Distribution of nucleosome depletion ‘‘D’’ across all tested
TFs, with peaks stratified according to TSS proximity (proximal or distal) and ChIP-seq signal strength (top, middle, or bottom third). P-values for pairwise
comparisons based on paired Wilcoxon rank-sum tests are: P1 = 8.2 3 10�17, P2 = 7.6 3 10�21, P3 = 3.8 3 10�23, P4 = 8.8 3 10�10, P5 = 1.1 3 10�9, P6 =
1.1 3 10�11, and P7 = 6.6 3 10�22. (D) TF binding is correlated with significantly more nucleosome depletion than TSS. Wilcoxon rank-sum test P-values
are shown separately for GM12878 and K562 cells. For the box plots in C and D, only those subcategories with 200 or more peaks are included, and
whiskers represent the 1.5 inter-quartile range. (E ) Nucleosome occupancy genome-wide is correlated with GC%. The smoothed density scatter plot
contains 40,000 data points; each data point is a randomly chosen 250-bp region of the human genome. (Black dots) Those regions that overlap with
ChIP-seq peaks. (Black line) Least square fit. Pearson correlation coefficient = 0.62; P-value < 2.2 3 10�16. (F ) Comparison of in vivo (green) and in vitro
(black) nucleosome occupancy profiles around peak summits of YY1. GC% profile around the same summits is plotted in orange. Note elevated GC% at
summit coincides with high in vitro nucleosome occupancy and low in vivo nucleosome occupancy.
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most TFs. To quantify the regularity of nucleosome positioning

around TF binding sites, we applied Fourier transforms to the nu-

cleosome occupancy profiles, yielding power spectra. The height

of the power spectrum at the spatial frequency corresponding to

the nucleosomal repeat length was used as an indicator of how

periodically nucleosomes were positioned (an example power spec-

trum is shown in Supplemental Fig. S11B). The spectrum height

correlated significantly with the extent of positioning of the –1

and +1 nucleosomes (measured as the maximum of the nucleo-

some occupancy profile) (Supplemental Fig. S11C). Thus, how well

the –1 and +1 nucleosomes are positioned strongly predicts how

periodically the flanking nucleosomes are positioned.

Most TFs bind at GC-rich, nucleosome-depleted,
and DNase I-accessible regions

The nucleosome occupancy profile dips at the peak summits of

most TFs (Fig. 5A,B; Supplemental Fig. S10), indicating that TFs

prefer to bind nucleosome-depleted regions or that the binding of

a TF excludes nucleosomes. In the vicinity of TSS-proximal summits,

lower nucleosome occupancy is seen in the direction of transcrip-

tion than upstream of transcription. We define nucleosome deple-

tion as the amount that nucleosome occupancy dips at the peak

summit, as compared to the nucleosome occupancy at 2 kb from the

summit (considered as background). TSS-proximal summits show

significantly greater nucleosome depletion than TSS-distal summits

(Fig. 5C). It is well known that the binding of the transcriptional

machinery to the TSS excludes nucleosomes to a considerable extent

(Radman-Livaja and Rando 2010). Indeed, average nucleosome

occupancy anchored on the TSS shows an overall loss of nucleo-

somes (Supplemental Fig. S12). Interestingly, we observed that TSS-

proximal TF peak summits show a significantly greater depletion in

nucleosome occupancy than do TSSs (Fig. 5D). The median nucle-

osome depletion at the summits of TSS-proximal peaks is 0.56 for

GM12878 cells and 0.59 for K562 cells, significantly greater than the

maximal nucleosome depletion around TSS (0.42 for GM12878 cells

and 0.48 for K562 cells; Wilcoxon rank-sum test P-value = 7.1 3

10�28 and 1.1 3 10�22, respectively). Within the proximal and distal

categories, the top, middle, and bottom third peaks showed greatest,

medium, and weakest nucleosome depletion, respectively (Fig. 5C).

This result indicates that TFs and nucleosomes compete for the ge-

nomic DNA and that stronger TF binding is correlated with greater

nucleosome depletion, above and beyond the effect of transcription.

The peaks of seven TFs (BRF2, HDAC8, TRIM28, SETDB1,

WRNIP1, ZNF274, and ZZZ3) do not show nucleosome depletion,

nor are these peaks flanked by well-positioned nucleosomes, in-

dicating these TFs tend to bind nucleosomal DNA (Supplemental

Fig. S10). Three of these TFs function with each other to repress

transcription. SETDB1 is a histone methyltransferase that catalyzes

H3K9me3, which signals for the silencing of euchromatic genes

(Bilodeau et al. 2009). TRIM28 (commonly known as KAP1) re-

presses transcription by recruiting SETDB1 (C Wang et al. 2007).

ZNF274 is a zinc-finger containing TF that binds to the 39 end of

zinc-finger coding genes and recruits chromatin-modifying pro-

teins such as SETDB1 and TRIM28, which leads to transcriptional

repression (Frietze et al. 2010). HDAC8 is a histone deacetylase and

a transcriptional repressor. We caution that the HDAC8 ChIP-seq

data set had only 287 peaks. BRF2 is a component of the RNA Pol III

machinery (Moqtaderi et al. 2010). WRNIP1 (commonly known as

WHIP) regulates DNA synthesis. ZZZ3 is a component of the ATAC

complex and a histone H3 acetyltransferase and has been shown to

acetylate both free and nucleosomal H3 (Wang et al. 2008).

We next asked whether the intrinsic DNA sequence properties

of ChIP-seq peaks contribute to nucleosome depletion. In an ear-

lier study, we reported a strong correlation between GC-rich se-

quences and their potential to form nucleosomes (Peckham et al.

2007). In vitro data also indicate that GC-rich sequences promote

nucleosome formation (Valouev et al. 2011). Indeed, there is pos-

itive correlation between nucleosome occupancy and GC content

for randomly chosen 250-bp regions of the genome (r = 0.62 and

P-value < 2.2 3 10�16) (Fig. 5E). Many of those regions that over-

lap ChIP-seq peaks (Fig. 5E, black dots) are located above and to the

left of the best-fit line, indicating that they have high GC% and

low nucleosome occupancy. Compared with the average GC con-

tent of 40% in the human genome, ChIP-seq peaks are consider-

ably more GC rich (61 6 5% for TSS-proximal peaks and 53 6 6%

for TSS-distal peaks across the TFs). The high GC content may be

due to the GC-richness of some TF motifs, but the motif sites are

much smaller than peaks (8–21 bp vs. ;250 bp), and we found

similar GC patterns around TF summits without a motif site (data

not shown). We conclude that TFs tend to bind GC-rich regions in

the genome, regardless of the distance from the TSS. These results

are seemingly contradictory—GC content is highly predictive of

sequences that promote nucleosome formation, yet the GC-rich

sequences surrounding TF binding sites are nucleosome-depleted

in vivo.

To determine whether TF binding sites are, indeed, favorable

sites for nucleosome formation, we used recent data from in vitro

reconstitution of human genomic DNA into nucleosomes (Valouev

et al. 2011) to construct in vitro nucleosome occupancy profiles

around ChIP-seq peaks, confirming that in vitro nucleosome oc-

cupancy is much higher on the peak compared with flanking re-

gions for the vast majority of TFs (Fig. 5F for YY1; Supplemental

Fig. S13 for all TFs). Thus, TFs or their cofactors (such as chroma-

tin remodelers) prevent the formation of nucleosomes or evict

nucleosomes at these GC-rich locations of the genome.

Chromatin structure around cell-line–specific TF
binding regions

In order to further investigate the relationship between TF binding

and chromatin structure, we examined two sets of cell-line–spe-

cific ChIP-seq peaks for each TF—the set of peaks detected in

GM12878 but not in K562 and the set of peaks detected in K562

but not in GM12878. We computed nucleosome occupancy pro-

files and DNase I cleavage profiles anchored on the summits of

these two sets of peaks separately in each cell line (Fig. 6A,B for

YY1; Supplemental Fig. S14 for all TFs). Strikingly, the peaks that

were occupied by a TF in GM12878 (or K562) but not occupied

by the TF in K562 (or GM12878) tend to be occupied by a nucleo-

some in K562 (or GM12878), similar to the in vitro nucleosome

profiles of these peaks (Supplemental Fig. S15). Accordingly, the in-

crease in nucleosome occupancy is reflected in decreased DNase I

cleavage in K562 (or GM12878). For many TFs, the ChIP-seq peaks

that were occupied by a TF in GM12878 (or K562) but not occupied

by the TF in K562 (or GM12878) were no longer flanked by posi-

tioned nucleosomes in K562 (or GM12878), yet positioned nu-

cleosomes were observed for other TFs, albeit at a lesser extent of

positioning than the nucleosomes flanking TF-occupied peaks

(Supplemental Fig. S14). Thus, for the same set of genomic se-

quences in two cell lines, TF binding level deviates from thermo-

dynamic preference for nucleosome formation—TF binding either

was enabled by, or caused, cell-type–specific depletion of nucleo-

somes from intrinsically favorable genomic locations.
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We further partitioned the peaks occupied by a TF in GM12878

(or K562) but not occupied by the TF in K562 (or GM12878)

into two subsets: group 1 peaks that overlapped with one or more

ChIP-seq peaks of any other TF tested in K562 (or GM12878), and

group 2 peaks that did not overlap any ChIP-seq peaks in K562

(or GM12878). For the vast majority of the TFs, nucleosome occu-

pancy profiles for the group 2 peaks show high nucleosome occu-

pancy on the peak and no positioned nucleosomes flanking the

peak. In contrast, the group 1 peaks show nucleosome depletion on

the peak and well-positioned nucleosomes flanking the peak (Fig.

6C,D; Supplemental Fig. S16). The ChIP-seq data we have only cover

up to 10% of TFs in a particular cell line, thus group 2 peaks can still

be bound by other TFs for which we had no data, which could ac-

count for any residual pattern of nucleosome positioning. These

results further strengthen the correlation between TF-binding and

flanking positioned nucleosomes and indicate that such correlation

can be regulated in a cell-type–specific manner.

Factorbook

The analysis presented here, in addition to forthcoming new

types of analysis will be performed on an ongoing basis as more

ENCODE data are produced. For example, the ENCODE Consor-

tium has generated 743 ChIP-seq data sets as of March 2012. The

results of the continual analysis are presented via a web-accessible

wiki-based TF-centric repository called Factorbook (http://factorbook.

org). At present, Factorbook also includes the profiles of all histone

modifications assayed by the ENCODE Consortium anchored on

TF ChIP-seq peaks in the corresponding cell lines.

Discussion
The ENCODE Consortium has produced the largest collection of

ChIP-seq data sets of human TFs to date: 457 data sets on 119 TFs

in the January 2011 freeze. The majority of these data are of high

Figure 6. Chromatin structure around YY1 ChIP-seq peaks occupied differentially between GM12878 and K562. (A) Nucleosome occupancy profiles
(solid lines) and DNase I cleavage profiles (dashed lines) anchored on the summits of YY1 peaks in GM12878 but not in K562. Note the average nu-
cleosome occupancy at these peaks (x = 0) is lower in GM12878 than in K562, while the average DNase I cleavage at these peaks is higher in GM12878
than in K562. (B) Same as A, but around the summits of YY1 peaks in K562 but not in GM12878. (C ) Nucleosome occupancy profiles in K562 anchored on
the summits of the ChIP-seq peaks occupied by YY1 in GM12878 but not in K562. These 11,079 peaks were divided into two groups: 6754 peaks were
bound by one or more TFs in K562 (dashed line), and 4325 peaks were not bound by any TF for which we had ChIP-seq data in K562 (solid line). Note high
nucleosome occupancy at the summits of the unoccupied peaks (x = 0) and the lack of positioned nucleosomes flanking the unbound peaks, in sharp
contrast to the lack of nucleosome occupancy at the peak summits and well-positioned nucleosomes flanking the peaks bound by other TFs. (D) Same as C,
but around the summits of the ChIP-seq peaks occupied by YY1 in K562 but not in GM12878.
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quality, and we were able to detect sequence motifs with high

confidence. Of the 87 Pol II-associated sequence-specific TFs, the

canonical motifs of 76 TFs were annotated in the JASPAR or

TRANSFAC databases (Matys et al. 2003; Bryne et al. 2008), and we

discovered the canonical motifs de novo from ChIP-seq peaks for

all of these TFs. Furthermore, we discovered 12 high-confidence

unannotated motifs, and five of them are likely the canonical

motifs for four TFs. The sites of these unannotated motifs show

strong sequence conservation and high chromatin accessibility,

and some motifs show distinct DNase I footprints, suggesting that

these are functional motifs.

In a separate study (Whitfield et al. 2012), we performed

functional assays to test 455 binding sites for several TFs in pro-

moters in four cell lines. We transiently transfected a construct

with an ;1-kb fragment containing a wild-type promoter and

a luciferase reporter and measured the luminosity. We also tested

a construct with a mutagenized TF binding site. A significant dif-

ference between the wild-type and mutant luminosities suggests

that the site is functional. At an FDR cutoff of 0.025, the valida-

tion rate was 36%–49% in a particular cell line, and ;70% of TF

binding sites were validated in at least one of four cell lines, sug-

gesting that most of the motif sites are functional. In that study, we

also found that secondary motifs can distinguish functional from

nonfunctional binding instances of CTCF and STAT1.

We observed a general agreement between the strength of

ChIP-seq signal and motif content among the peaks in the same

ChIP-seq data set. Peaks that are ranked highly according to ChIP-

seq signal tend to be more likely to contain motif sites, and these

sites are more tightly positioned around the peak summits, com-

pared to low-ranked peaks. Thus, the motif sites likely correspond

to the base pairs of genomic DNA with which the TF protein forms

atomic contacts. Different TFs vary greatly in total numbers of

ChIP-seq peaks, from hundreds to tens of thousands. CTCF,

CEBPB, FOXA1, and SPI1 are among the TFs with the most peaks

(>40,000 peaks in some cell lines); nonetheless, even the bottom-

ranked peaks are strongly enriched in motifs (Fig. 1B; Supplemen-

tal Fig. S6), suggesting that most of the peaks are bound by the

TFs. MacQuarrie et al. and Biggin discussed the biological signifi-

cance of the vast number of peaks and suggested that binding of

TFs may have biological roles in addition to direct transcriptional

target regulation (MacQuarrie et al. 2011; Biggin 2011).

Although anecdotal evidence for cooperative interactions

between TFs abounds in the literature, it remains unclear if such

interactions are a common strategy in transcriptional regulation.

High quality ChIP-seq data from the ENCODE Consortium allowed

us to examine this aspect of TF function in a systematic manner.

We identified noncanonical motifs for the vast majority of the

sequence-specific TFs and the non-sequence-specific TFs, revealing

a spectrum of cobinding and tethered binding of multiple TFs

to genomic DNA. The TFs in some of the predicted pairs may both

be components of a large multiunit transcriptional complex with-

out physically contacting each other, and other TFs may bind to

neighboring sites that are not close enough for the TFs to form

protein–protein contacts. We expanded the analysis by comparing

the sites of all discovered motifs, in the same or different data sets,

and discovered 92 pairs of motifs whose binding sites showed

significant distance and/or orientation preferences. Some TFs prefer

to bind to sites with a broad distribution of edge-to-edge distances

of <30 bp, suggesting that these TFs interact with each other on the

protein level, yet the interactions permit some variation in the

distance between their DNA sites. Other TFs prefer to bind neigh-

boring sites positioned in a narrow distribution of distances, and

some of these TF pairs show an orientation preference, suggesting

more restrictive interactions between these TFs. Taken together,

our results indicate that TF-TF interactions are prevalent and can

take on a variety of forms.

The majority of the ENCODE ChIP-seq data sets were gener-

ated using five cell lines, thus we investigated cell-line–specific

TF binding sites and integrated the results with cell-line–specific

gene expression using the RNA-seq data in the corresponding cell

lines. The results of our systematic analysis support the model that

cell-type–specific transcription can be regulated in three ways: (1)

Sequence-specific TFs can bind to distinct sites and thus regulate

different genes in different cell types; (2) some sequence-specific

TF proteins are highly expressed in a cell type, and these TFs bind

to the target regions of many other TFs in the same cell type, per-

haps because the chromatin at these regions are already accessible;

and (3) some non-sequence-specific TF proteins bind to cell-type–

specific sequence-specific TF proteins to exert another layer of

regulation. There have been many reported examples of TFs and

target genes for each mode of regulation, yet an integrative analysis

like ours has the power of illustrating all three modes of regulation

across a large number of TFs and over multiple cell lines.

We further integrated the ChIP-seq data with nucleosome

positioning and DNase I cleavage data in two cell lines (GM12878

and K562) to study the interplay between TF binding and chro-

matin structure. We found that the ChIP-seq peaks of most TFs cor-

respond to GC-rich, nucleosome-depleted, and DNase I-accessible

regions, flanked by well-positioned nucleosomes. We may have

underestimated the number of TFs whose binding regions are

flanked by positioned nucleosomes, because we simply averaged

over all peaks in each ChIP-seq data set. If subsets of peaks are

flanked by well-positioned nucleosomes, and the positions of the

nucleosomes are offset from each other between the subsets, then

averaging may mask the signal. Another ENCODE companion

paper clusters peaks by the flanking nucleosome occupancy pat-

terns and reports that subsets of peaks are flanked by positioned

nucleosomes for almost every TF (Kundaje et al. 2012). That paper

also investigated the positional patterns of nucleosomes with

modified histones.

We further investigated the regions that were bound by a TF in

GM12878 but not in K562 and vice versa and found that these

regions are typically occupied by a nucleosome in the cell line that

the TF does not bind, and the increase in nucleosome occupancy is

perfectly correlated with a decrease in DNase I cleavage. Consistent

with previous findings that GC-rich sequences tend to form nu-

cleosomes (Peckham et al. 2007), we found that TF binding regions

show locally elevated in vitro nucleosome occupancy compared

to flanking regions, indicating that these regions are intrinsically

nucleosomal unless they are bound by TFs. Indeed, He et al. found

that androgen treatment dismissed a central nucleosome, which

was flanked by a pair of marked nucleosomes, to reveal androgen

receptor binding sites (He et al. 2010). Taken together, our results

show that a strong correlation between TF binding and positioning

of nearby nucleosomes is likely a universal phenomenon for all

TFs. The binding of a single TF is unlikely to position flanking

nucleosomes (a single TF is thought to have lower affinity for DNA

than a nucleosome) (Felsenfeld 1996), but multiple TFs tend to

bind to neighboring regions, and they collectively may be able to

position nucleosomes. Alternatively, chromatin remodelers may

have configured the chromatin structures around TF binding re-

gions in a cell-type–specific fashion to facilitate TF binding. It is

also possible that TFs and chromatin remodelers work together to

establish the chromatin structure.
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Recent work compared chromatin accessibility before and

after induction of the Drosophila heat shock transcription factor

(HSTF) (Guertin and Lis 2010) and the mammalian glucocorticoid

receptor (GR) (John et al. 2011); these studies concluded that the

chromatin was already accessible prior to induction. Our results go

beyond these studies by showing that positioned nucleosomes

constitute the chromatin structure around the binding regions of

most TFs. We suggest that the GC-richness of TF binding regions

may be a mechanism for preventing unintended TF-binding, in that

a nucleosome would tend to occupy the region until it is evicted,

possibly by chromatin remodelers or by multiple TFs in concert.

Methods

ENCODE ChIP-seq, MNase-seq, and DNase-seq data sets
Members of the ENCODE Consortium generated 457 ChIP-seq
data sets on 119 human transcription factors (TFs) in 72 cell lines
(Supplemental Table S1; The ENCODE Project Consortium 2011).

In this study, we integrated the following additional ENCODE
data sets: the nucleosome occupancy profiles in GM12878 and
K562 (Kundaje et al. 2012), RNA-seq data (Djebali et al. 2012), and
DNase-seq data (Neph et al. 2012).

De novo sequence motif discovery in ChIP-seq peaks

We constructed a de novo motif discovery pipeline as illustrated in
Supplemental Figure S1 and described in detail in Supplemental
Methods. Briefly, we separated the peaks in each ChIP-seq data
set into independent training and testing sets to ensure the quality
of the motif discovery. We used the MEME-ChIP software suite
(Machanick and Bailey 2011) to identify enriched sequence motifs
in the [–50 bp, +50 bp] window around the summits of the top 500
peaks (the training set) for each ChIP-seq data set. We asked MEME
to report up to five significant motifs per data set. Then, we per-
formed further testing to ensure the quality of the motifs, as de-
scribed in Supplemental Methods. In total, we identified 1092
motifs. We compared the discovered motifs with annotated motifs
in the JASPAR (Bryne et al. 2008) and TRANSFAC (Matys et al.
2003) databases using TOMTOM (Gupta et al. 2007). We manually
merged similar motifs and identified 79 distinct motifs, which
included 11 previously unannotated motifs (UA1–UA11) that we
felt most confident about because they were highly enriched in
one or more ChIP-seq data sets or were supported by the litera-
ture. We further identified another motif, UA12, in the subset of
HDAC2-associated GATA1 peaks in K562.

Distance and/or orientation preferences between motif sites

For all pairs of motifs, we computed the edge-to-edge distance and
relative orientation and computed a P-value using the Kolmogorov-
Smirnov test, as described in Supplemental Methods. The analysis
was also applied to peaks in nonrepetitive regions and repetitive
regions of the genome separately. For motif pairs in repetitive
regions that had exactly the same distance as the mode distance
of the observed distribution, we tested their enrichment in vari-
ous repetitive elements using a hypergeometric test. All P-values
were corrected for multiple testing, and an FDR cutoff of 0.025
was applied throughout.

Characterization of chromatin structure around
TF binding regions

We computed and plotted average nucleosome occupancy profiles
anchored on summits of ChIP-seq peaks of each TF, as described

in Supplemental Methods. We defined nucleosome depletion as
the dip in nucleosome occupancy at the peak summit compared
with signal between background and the peak summit. We applied
a fast Fourier transform (FFT) on the nucleosome occupancy pro-
files, and the output of an FFT is a power spectrum. In the context
of a nucleosome profile, the magnitude of the FFT power spectrum
at the frequency component that corresponds to the period of
positioned nucleosomes indicates the strength of the nucleosome
positioning (the higher the magnitude, the more periodic the
nucleosome occupancy profile).
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