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Abstract 
Many optimization problems can be expressed us­
ing some form of soft constraints, where different 
measures of desirability arc associated with differ­
ent combinations of domain values for specified 
subsets of variables. In this paper we identify a 
class of soft binary constraints for which the prob­
lem of finding the optimal solution is tractable. In 
other words, we show that for any given set of 
such constraints, there exists a polynomial time al­
gorithm to determine the assignment having the 
best overall combined measure of desirability. This 
tractable class includes many commonly-occurring 
soft constraints, such as "as near as possible" or "as 
soon as possible after", as well as crisp constraints 
such as "greater than'1. 

1 Introduction 
The constraint satisfaction framework is widely acknowl­
edged as a convenient and efficient way to model and solve a 
wide variety of problems arising in Artificial Intelligence, in­
cluding planning and scheduling, image processing and natu­
ral language understanding. 

In the standard framework a constraint is usually taken to 
be a predicate, or relation, specifying the allowed combina­
tions of values for some fixed collection of variables: we will 
refer to such constraints here as crisp constraints. A num­
ber of authors have suggested that the usefulness of the con­
straint satisfaction framework could be greatly enhanced by 
extending the definition of a constraint to include also soft 
constraints, which allow different measures of desirability to 
be associated with different combinations of values [Bistarelli 
et al., 1999]. In this extended framework a constraint can 
be seen as a function, mapping each possible combination of 
values to a measure of desirability or undesirability. Finding 
a solution to a set of constraints then means finding an as­
signment of values to all of the variables which has the best 
overall combined desirability measure. 

Example 1,1 For example, consider an optimization prob­
lem where we have 2n variables, v1,v2,. .-,V2n, and we 
wish to assign each variable an integer value in the range 
1,2, . . . , n, subject to the following restrictions: 

• Each variable v1 should be assigned a value that is as 
close as possible to i/2. 

• Each pair of variables v1 v2, should be assigned a pair 
of values that are as similar as possible. 

To model this situation we might impose the following soft 
constraints: 

• A unary constraint on each v1 specified by a function 
where 

• A binary constraint on each pair v1,v2i specified by a 
function 

We would then seek an assignment to all of the variables 
which minimizes the sum of these constraint functions, 

LJ 

The cost of allowing additional flexibility in the specification 
of constraints, in order to model requirements of this kind, is 
generally an increase in computational difficulty. In the case 
of crisp constraints there has been considerable progress in 
identifying classes of constraints which are tractable, in the 
sense that there exists a polynomial time algorithm to deter­
mine whether or not any collection of constraints from such a 
class can be simultaneously satisfied [Feder and Vardi, 1998; 
Jeavons et ail 1997]. In the case of soft constraints there 
has been a detailed investigation of the tractable cases for 
Boolean problems (where each variable has just 2 possible 
values) [Creignou et al, 2001], but very little investigation of 
the tractable cases over larger domains1, even though there 
are many significant results in the literature on combina­
torial optimization which are clearly relevant to this ques­
tion [Nemhauser and Wolsey, 1988]. 

In this paper we make use of the idea of a submodular func­
tion [Nemhauser and Wolsey, 1988; Topkis, 1978] to iden­
tify a general class of soft constraints for which there exists 
a polynomial time solution algorithm. Submodular functions 
are usually defined as real-valued functions on Boolean tu­
ples (=sets) [Nemhauser and Wolsey, 1988], but we consider 

'The only previous work we have been able to find on non-
Boolean tractable soft constraints is [Khatib et ai, 2001], which 
describes a family of tractable soft temporal constraints. 
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the more general case of functions on tuples over an arbitrary 
finite domain. We also allow our functions to take infinite 
values. By establishing a new decomposition result for this 
general class of binary submodular functions (Theorem 4.4), 
we obtain a cubic time algorithm to find the optimal assign­
ment for any set of soft constraints defined by such functions. 

We give a number of examples to illustrate the many dif­
ferent forms of soft constraint that can be defined using bi­
nary submodular functions, and we also show that this class is 
maximal, in the sense that no other form of binary constraint 
can be added without sacrificing tractability. 

2 Definitions 
To identify a tractable class of soft constraints we will need to 
restrict the set of functions that are used to specify constraints. 
Such a restricted set of possible functions will be called a soft 
constraint language. 

Definition 2.1 Let D and E be fixed sets. A soft constraint 
language over D with evaluations in E is defined to be a set 
of functions, T, such that each is a function from Dk 

to E, for some where k is called the arity of 

For any given choice of soft constraint language, T we define 
an associated soft constraint satisfaction problem, which we 
will call sCSP(r), as follows. 

Definition 2.2 Let T be a soft constraint language over D 
with evaluations in E. An instance V of sCSP(r) is a triple 
(V,D,C), where: 

• V is a finite set of variables, which must be assigned 
values from the set D. 

• C is a set of soft constraints. Each is a pair (a, d>) 
where: is a list of variables, called the scope of c and 

is an element of T of arity , called the evaluation 
function of c. 

Note that, for any constraint the arity of the con­
straint is given by the length of the constraint scope. The 
evaluation function will be used to specify some measure 
of desirability or undesirability associated with each possible 
tuple of values over 

To complete the definition of a soft constraint satisfac­
tion problem we need to define how the evaluations obtained 
from each evaluation function are combined and compared, 
in order to define what constitutes an optimal overall solu­
tion. Several alternative mathematical approaches to this is­
sue have been suggested in the literature: 

• In the semiring based approach [Bistarelli et al, 1999], 
the set of possible evaluations, E, is assumed to be an 
algebraic structure equipped with two binary operations, 
satisfying the axioms of a semiring. 

• In the valued CSP approach [Bistarelli et al, 1999], the 
set of possible evaluations E is assumed to be a totally 
ordered algebraic structure with a top and bottom ele­
ment and a single monotonic binary operation known as 
aggregation. 

For our purposes in this paper we require the same proper­
ties as the valued CSP approach, with the additional require­
ment that the aggregation operator has a partial inverse (so 
that any evaluation can be "subtracted" from any larger eval­
uation). For concreteness, we shall simply assume through­
out this paper that the set of evaluations E is either the set of 
non-negative integers together with infinity, or else the set of 
non-negative real numbers together with infinity. Hence, for 
any two evaluations the aggregation of p1 and p2 

is given by we also have 
(Note that we set 

The elements of the set E wil l be used to represent dif­
ferent measure of undesirability, or penalties, associated with 
different combinations of values. This allows us to complete 
the definition of a soft constraint satisfaction problem with 
the following simple definition of a solution to an instance. 

Definition 2.3 For any soft constraint satisfaction problem 
instance V — (V, D, C), an assignment for V is a mapping 
t from V to D. The evaluation of an assignment t, denoted 

is given by the sum (i.e., aggregation) of the evalua­
tions for the restrictions of t onto each constraint scope, that 
is, 

A solution to V is an assignment with the smallest possible 
evaluation, and the question is to find a solution. 

Example 2.4 For any standard constraint satisfaction prob­
lem instance V with crisp constraints, we can define a cor­
responding soft constraint satisfaction problem instance V in 
which the range of the evaluation functions of all the con­
straints is the set . For each crisp constraint c of P, we 
define a corresponding soft constraint cofV with the same 
scope; the evaluation function of c maps each tuple allowed 
by c to 0, and each tuple disallowed by c to oo. 

In this case the evaluation of an assignment t for equals 
the minimal possible evaluation, 0, if and only ift , satisfies all 
of the crisp constraints in V. D 

Note that the problem of finding a solution to a soft con­
straint satisfaction problem is an NP optimization problem, 
that is, it lies in the complexity class NPO (see [Creignou 
et al, 2001] for a formal definition of this class). If there 
exists a polynomial-time algorithm which finds a solution to 
all instances of sCSP(T), then we shall say that sCSP(T) is 
tractable. On the other hand, if there is a polynomial-time re­
duction from some NP-complete problem to sCSP(T), then 
we shall say that sCSP(r) is NP-hard. 

Example 2.5 Let Y be a soft constraint language over D, 
where = 2. In this case sCSP(r) is a class of Boolean 
soft constraint satisfaction problems. 

If we restrict T even further, by only allowing functions 
with range as in Example 2.4, then sCSP(r) corre­
sponds precisely to a standard Boolean crisp constraint sat­
isfaction problem. Such problems are sometimes known as 
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GENERAL IZED SATISFIABIL ITY problems [Schaefer, 1978]. 
The complexity of sCSP(F) for such restricted sets T has 
been completely characterised, and the six tractable cases 
have been identified [Schaefer, 1978; Creignou et al, 2001]. 

Alternatively, if we restrict Y by only allowing functions 
with range {0,1) , then sCSP(r) corresponds precisely to a 
standard Boolean maximum satisfiability problem, in which 
the aim is to satisfy the maximum number of crisp constraints. 
Such problems are sometimes known as M A X - S A T prob­
lems [Creignou et al, 2001]. The complexity of sCSP(r) 
for such restricted sets F has been completely characterised, 
and the three tractable cases have been identified (sec Theo­
rem 7.6 of [Creignou et al., 2001]). 

We note, in particular, that when T contains just the single 
binary function defined by 

then sCSP(r) corresponds to the M A X - S A T problem for the 
exclusive-or predicate, which is known to be NP-hard (see 
Lemma 7.4 of LCreignou et al., 2001]). □ 

Example 2.6 Let T be a soft constraint language over D, 
where and assume that T contains just the set of 
all unary functions, together with the single binary function 

defined by 

Even in this very simple case it can be shown that sCSP(T) 
is NP-hard [Cohen et al, 2002], by reduction from the 
M I N I M U M M U L T I T H R M I N A L C U T problem [Dahlhausc/a/., 
1994]. u 

The examples above indicate that generalizing the constraint 
satisfaction framework to include soft constraints docs indeed 
increase the computational complexity, in general. For exam­
ple, the standard 2 -SAT ISF IAB IL ITY problem is tractable, but 
the soft constraint satisfaction problem involving only the sin­
gle binary Boolean function, defined at the end of Ex­
ample 2.5, is NP-hard. Similarly, the standard constraint sat­
isfaction problem involving only crisp unary constraints and 
equality constraints is clearly trivial, but the soft constraint 
satisfaction problem involving only soft unary constraints and 
a soft version of the equality constraint, specified by the func­
tion ΦEQ defined at the end of Example 2.6, is NP-hard. 

However, in the next two sections we wil l show that it 
is possible to identify a large class of functions for which 
the corresponding soft constraint satisfaction problem is 
tractable. 

3 Generalized interval functions 
We begin with a rather restricted class of binary functions, 
with a very special structure. 

Definition 3.1 Let D be a totally ordered set. A binary func­
tion, Φ : D2 —> E wil l be called a generalized interval func­
tion on D if it has the following form: 

We can explain the choice of name for these functions by con­
sidering the unary function . This function returns 
the value p if and only if its argument lies in the interval [a, b]; 
outside of this interval it returns the value 0. 

We shall write TGI to denote the set of all generalized in­
terval functions on D, where D = { 1 , 2 , . . . , M} with the 
usual ordering. 

The main result of this section is Corollary 3.6, which 
states that S C S P ( T G I ) is tractable. To establish this result we 
first define a weighted directed graph2 associated with each 
instance of sCSP(Ff;/). 

Definition 3.2 Let V = (V, { 1 , . . . , M } , C) be an instance 
of sCSP(Tgi). We define the weighted directed graph G-p 
as follows. 

• The vertices of G-p are as follows: 

• The edges of Gp are defined as follows: 
- For each there is an edge from S to with 

weight 
- For each , there is an edge from with 

weight 

there is an edge from vci to Vd+\ with weight 
- For each constraint there is an 

edge from with weight p. These edges 
are called "constraint edges". 

Example3.3 Let V = ( {x ,y , z}, {1 ,2 ,3 ,4} ,C) be an in­
stance of sCSP(TGI) with the following four constraints: 

The corresponding weighted directed graph Gp, is shown in 
Figure 1. U 

Figure 1: The graph Gp associated with the instance V de­
fined in Example 3.3. 

2This construction was inspired by a similar construction for cer­
tain Boolean constraints described in [Khanna et al., 2000]. 
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Any set of edges C in the graph Gp whose removal leaves 
the vertices S and T disconnected will be called a cut. If 
every edge in C is a constraint edge, then C will be called a 
proper cut. The weight of a cut C is defined to be the sum of 
the weights of all the edges in C. 

Example 3.4 Consider the graph Gp shown in Figure 1. 
The set {(y3,20)} is a proper cut in Gp with weight 
7, which is minimal with respect to inclusion. The set 
{ (x 4 ,y 2 ) , (z3 ,y3)} is a proper cut in Gp with weight 5, 
which is again minimal with respect to inclusion. D 

Proposition 3.5 Let V be any instance of sCSP{Tgi)> and 
let Gp be the corresponding weighted directed graph. 

1. For each minimal proper cut in Gp with weight there 
is an assignment for V with evaluation 

2. For each assignment t for V with evaluation , there is 
a proper cut in Gp with weight 

Proof: 
1. Let C be any minimal proper cut of the graph Gp, and 

let Cs be the component of Gp \ C connected to S. 
Define the assignment tc as follows: 

(Note that tc is well-defined because Cs always con­
tains vM, and never contains V0, by construction.) 
By the construction of Gp, it follows that: 

Now consider any constraint of P, 
and its associated edge e in Gp. By the definition 
of generalized interval constraint and the choice of tc, 

if and only if and 
I - J 

and hence if and only if e joins a vertex in Cs 
to a vertex not in Cs- Since C is minimal, this happens 
if and only if Hence, the total weight of the cut 
C is equal to the evaluation of tc-

2. Conversely, let t be an assignment to P, and let A' be the 
set of constraints in V with a non-zero evaluation on t. 
Now consider any path from S to T in Gp. If we ex­
amine, in order, the constraint edges of tnis path, and 
assume that each of the corresponding constraints eval­
uates to 0, then we obtain a sequence of assertions of the 
following form: 

Since the second disjunct of each assertion contradicts 
the first disjunct of the next, these assertions cannot all 
hold simultaneously, so one of the corresponding con­
straints must in fact give a non-zero evaluation on t. 
Hence, every path from S to T includes at least one edge 

corresponding to a constraint from K and so the edges 
corresponding to the set K form a cut in Gp. Further­
more, by the choice of K the weight of this cut is equal 
to the evaluation of/ . 

D 
Hence, by using a standard efficient algorithm for the MIN-
IMUM W E I G H T E D C U T problem [Goldberg and Tarjan, 
1988], we can find an optimal assignment in cubic time. 

Corollary 3.6 The time complexity of sCSP(TGI) is 
, where n is the number of variables. 

4 Submodular functions 
In this section we wil l consider a rather more general class of 
functions, as described in [Topkis, 1978]. 

It is easy to check that all unary functions and all generalized 
interval functions are submodular. For binary functions, the 
definition of submodularity can be simplified, as follows. 

It follows from Definition 4.1 that the sum of any two sub-
modular functions is submodular. This suggests that in some 
cases it may be possible to express a submodular function as 
a sum of simpler submodular functions. For example, for any 
unary function : D —► E we have 

The main result of this section is Theorem 4.4, which states 
that any binary submodular function can also be expressed as 
a sum of generalized interval functions. 

Theorem 4.4 Let D be a totally ordered finite set. A binary 
function, : D2 —► E is submodular if and only if it can be 
expressed as a sum of generalized interval functions on D. 
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Proof: The proof is by reduction from 
to w h e r e i s the binary function 
defined in Example 2.5. It was pointed out in Example 2.5 
that corresponds to the M A X - S A T problem 
for the exclusive-or predicate, which is known to be NP-
hard [Creignou et al., 2001]. Hence is also 
NP-hard. Details of the reduction are given in [Cohen et al., 
2002]. D 

5 Applications 
In this section we give a number of examples to illustrate 
the wide range of soft constraints which can be shown to be 
tractable using the results obtained in the previous sections. 

Definition 5.1 For any k-ary relation R on a set D, we define 
an associated function, as follows: 

By Corollary 4.6, any collection of crisp constraints, where 
each constraint is specified by a relation It for which ΦR 
is unary or binary submodular, can be solved in polynomial 
time, even when combined with other soft constraints that are 
also unary or binary submodular. 

Example 5.2 The constraint programming language CHIP 
incorporates a number of constraint solving techniques for 
arithmetic and other constraints. In particular, it provides a 
constraint solver for a restricted class of crisp constraints over 
natural numbers, referred to as basic constraints [van Henten-
ryck et al, 1992]. These basic constraints are of two kinds, 
which are referred to as "domain constraints" and "arithmetic 
constraints". The domain constraints described in [van Hen-
tenryck et al, 1992] are unary constraints which restrict the 
value of a variable to some specified finite subset of the nat­
ural numbers. The arithmetic constraints described in [van 
Hentenryck et ai, 1992] have one of the following forms: 

where variables are represented by upper-case letters, and 
constants by lower case letters, all constants are non-negative 
real numbers and a is non-zero. 

For each of these crisp constraints the associated func­
tion given by Definition 5.1 is unary or binary submodular, 
hence, by Corollary 3.6, any problem involving constraints of 
this form can be solved in cubic time. Moreover, any other 
soft constraints with unary or binary submodular evaluation 
functions can be added to such problems without sacrificing 
tractability (including the examples below). D 

Now assume, for simplicity, that D — { 1 , 2 , . . . , M}. 

Example 5.3 Consider the binary linear function defined 

This function is submodular and hence, by Corollary 3.6, 
any collection of such binary linear soft constraints over the 
discrete set D can be solved in polynomial time. 
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The next result shows that the tractable class identified in 
Corollary 4.6 is maximal. 

Combining Theorem 4.4 with Corollary 3.6, gives: 

We remark that this decomposition is not unique - other de­
compositions exist, including the symmetric decomposition 

Proof: By the observations already made, any function 
which is equal to a sum of generalized interval functions 
clearly submodular. 



Example 5,4 The Euclidean length function is 
submodular, and can be used to express the constraint that 
a 2-dimensional point (x , y) is "as close to the origin as pos­
sible". G 

One of the several possible cuts wi th this weight is indi­
cated by the gray line across the graph, which corresponds to 
the solution 

□ 
Example 5.5 The fo l lowing functions are all submodular: 

The function can be used to express the constraint 
that: "The values assigned to the variables x and y 
should be as similar as possible". 

The function can be used to express the constraint 
that: "The value of x is either less than or as near as 
possible to y'' 

The function can be used to express the temporal 
constraint that: "x occurs as soon as possible after y" . 

D 

Example 5.6 Reconsider the optimization problem defined 
in Example 1.1. Since is unary, and is binary submod­
ular (Example 5.5), this problem can be solved in cubic time, 
using the methods developed in this paper. 

Let V be the instance w i th n = 3 and r = 2. The values of 
are given by the fo l lowing table: 

Hence, 

Using this decomposition for we can construct the graph 
Gp corresponding to the instance P, as follows. 
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