
Continuous nonlinear dimensionality reduction by kernel eigenmaps 

Matthew Brand 
Mitsubishi Electric Research Laboratories 

Cambridge, MA 02460 USA 

Abstract 
We equate nonlinear dimensionality reduction 
(NLDR) to graph embedding with side information 
about the vertices, and derive a solution to either 
problem in the form of a kernel-based mixture of 
affine maps from the ambient space to the target 
space. Unlike most spectral NLDR methods, the 
central eigenproblem can be made relatively small, 
and the result is a continuous mapping defined over 
the entire space, not just the datapoints. A demon­
stration is made to visualizing the distribution of 
word usages (as a proxy to word meanings) in a 
sample of the machine learning literature. 

1 Background: Graph embcddings 
Consider a connected graph with weighted undirected edges 
specified by edge matrix W. Let be the posi­
tive edge weight between connected vertices i and j zero 
otherwise. Let D = diag(Wl) be a diagonal matrix where 

the cumulative edge weights into vertex /. The 
following points are well known or easily derived in spectral 
graph theory [Fiedler, 1975; Chung, 1997]: 

1. The generalized eigenvalue decomposition (EVD) 

W V = D V A (1) 

has real eigenvectors and eigenvalues 

2. Premultiplying equation (1) by D _ 1 makes the general­
ized eigenproblem into a stochastic eigenproblem 

(2) 

where is a stochastic transition matrix having 
nonnegative rows that sum to one. The largest eigen­
value of equation (1) is therefore stochastic and 
its paired eigenvector is uniform 

3. Expanding and collecting terms in WiJ reveals the geo­
metric meaning of the eigenvalues: 

(3) 

The d eigenvectors paired to eigenvalues through 
therefore give an embedding of the vertices in 

with minimal distortion vis-a-vis the weights, in the 
sense that a larger stipulates a shorter embedding 
distance. Formally, the embedding 

(4) 

(5) 

for any integer . The norm constraint = 
I sets the scale of the embedding and causes vertices of 
high cumulative weight to be embedded nearer to the 
origin. 

4. Y can be rigidly rotated in without changing its dis­
tortion. The distortion measure is also invariant to rigid 
translations, but the eigenproblem is not, thus there is 
an unwanted degree of freedom (DOF) in the solution. 
Due to stochasticity, this DOF is isolated in the uniform 
eigenvector \\, which is suppressed from the embedding 
without error (because . A d d i n g t o Y 
rigidly translates the embedding by 

5. Premultiplying by , and rearranging equates equa­
tion 1 to the EVD of the graph Laplacian D - W: 

(6) 

6. Premultiplying by connects equation 1 to the 
(symmetric) KVD of the normalized Laplacian: 

(7) 

with 
In summary: Equation 1 gives an optimal embedding of 
a graph in Rc/ via eigenvectors eigenvalue Ω-iis 
stochastic and the corresponding eigenvector \\ is uniform; 
this is an important property of the EVD solution because it 
isolates the problem's unwanted translational degree of free­
dom in a single eigenvector, leaving the remaining eigenvec­
tors unpolluted. 

Many embedding algorithms can be derived from this anal­
ysis, including the Fiedler vector [Fiedler, 1975], locally lin­
ear embeddings (LLE) [Roweis and Saul, 2000], and Lapla­
cian eigenmaps [Belkin and Niyogi, 2002]. For example, di­
rect solution of equation 1 gives the Laplacian eigenmap; as 
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a historical note, the symmetrized formulation was proposed 
by Fiedler in the 1970s and has been used for heuristic graph 
layout since the 1980s [Mohar, 1991]. 

2 Transformational embeddings 
Now consider a more general problem: We are given some 
information about the vertices in a matrix Z = [z\, • • • ,zN] c 
RJxN, whose columns are generated by applying a vector-
valued function z(-) —► z £ Rd to each vertex of the graph. 
We seek a linear operator which transforms Z to the optimal 
graph embedding: G(Z) —♦ Y. We will call this the "transfor­
mational embedding," to distinguish it from the "direct em­
bedding" discussed above. 

A natural candidate for the algebraic statement of the trans­
formational embedding problem is the generalized EVD 

(ZWZ T )V = (ZDZT )VA, (8) 

because setting Y = V T Z makes this equivalent to the orig­
inal direct embedding problem. Again, there is an equiva­
lent symmetric eigenproblem: Make Cholesky1 decomposi­
tion RTR <- ZDZ T into upper-triangular R G Rdxd and let 

B= (R- ' Z W Z 1 I T 1 ) eRuxd. (9) 

Then 
BV' = V'A (10) 

with 
(in 

This gives an embedding , and a computational 
advantage: is a short m a t r i x , the origi­
nal N x N eigenproblem can be reduced to a very small d xd 
problem, and the matrix multiplications also scale as 0(d2N) 
rather than 0(N3), due to the sparsity of W and D. 

2.1 Correcting problematic eigenstructure 
It is generally the case that —there is no lin­
ear combination of the rows of Z giving Y, so the desired lin­
ear mapping G(Z) —* Y does not exist. Equations 8-11 give 
the optimal least-squares approximation 
This approximation can have a serious flaw: I 
then the first eigenvector vi is not uniform; it cannot be dis­
carded as the unwanted translational DOF. Worse, all the 
other eigenvectors will be variously contaminated by the un­
wanted DOF, resulting in an embedding polluted with arti­
facts. For this reason, we call direct solution of equation 8 a 
raw approximation. 

Our options for remedy are limited to those that modify 
the row-space of Z to reintroduce the uniform eigenvector. 
For reasons that wil l become obvious below, we wil l restrict 
ourselves to operations that can be applied to any column of 
Z without knowing any other column. 

The simplest such operation is to append a uniform row to 
Z, so that . This makes the relation between Z 

1 Any gram-like factorization will work. For example, given EVD 
. The Cholesky is especially attrac­

tive for its numerical stability, sparsity, and easy invertibility. 

and Y affine and guarantees that is uniform, but it can 
also force the eigenvectors to model additional variance that 
is not part of the problem. 

Working backward from the desiderata that the leading col­
umn of V Z should be uniform, let such 
that ZK is a modified representation of the vertices with val­
ues of z ( ) reweighted on a per-vertex basis: 
Clearly has a uniform first column, since each row 
is divided by its first element. 

It follows immediately that the related eigenproblem 

(12) 

is stochastic, and , is an embedding 
with the unwanted translational degree of freedom totally re­
moved. Note that the raw and stochastic approximations are 
orthogonal (under metric is a diagonal matrix; 
the other methods are not. 

It should be noted that—when scaled to have equal norm 
— none of these approximations has uniformly 

superior distortion scores; but in Monte Carlo trials with ran­
dom graphs, wc find a clear ordering from lowest to highest 
distortion: reweighted, affine, stochastic, raw (see figure 1). 

Figure 1: Comparison of methods for modifying the row-
space of Z. The graph shows distortion from the optimal 
embedding, averaged over 106 trials with 50-node matrices 
having random edge weights and random Z e_ R4x50. 

The raw approximation is suboptimal because information 
about the d-dimensional embedding is spread over d + 1 
eigenvectors, no subset of which is optimal. The stochas­
tic approximation is also suboptimal—it optimizes a differ­
ent measure implied by equation 12. In practice, when com­
puting embeddings of graphs whose embedding structure is 
known a priori, wc find that the reweighted and stochastic 
approximations give results that are clearly very similar, and 
superior to the other approximations. 

The need for any such correction stems from the fact 
that—the literatures of spectral graph theory and NLDR 
notwithstanding—equation 1 is not a completely correct 
statement of the embedding problem. We wil l show in a 
forthcoming paper that, as a statement of the embedding 
problem, equation 1 is both algebraically underconstraincd 
and numerically ill-conditioned. In particular, point #2 is 
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not strictly true: The stochastic eigenvalue is not always 
paired to a uniform eigenvector. This leads to patholo­
gies that can ruin the embedding, whether obtained from the 
basic or derived formulations. NLDR algorithms that can 
be derived from equation 1 (e.g., [Roweis and Saul, 2000; 
Belkin and Niyogi, 2002; Teh and Roweis, 2003]) do not re­
mediate the problem. 

A forthcoming paper makes a full analysis of these is­
sues, identifies the correct problem statements for both equa­
tions 1 & 8, and gives closed-form optimal solutions to both 
problems. The approximation methods discussed in this sec­
tion are still useful in that they are faster and give reasonably 
high-quality embeddings. For the NLDR method and datasets 
considered below, the result of the reweighted approxima­
tion is almost numerically indistinguishable from the optimal 
embedding, and requires substantially less calculation. The 
reweighting method can also be justified as a Pade approxi­
mation of the optimal solution. 

3 Nonlinear dimensionality reduction 
Let . , ] be a set of points sampled from a 
low-dimensional manifold embedded in a high-dimensional 
ambient space. A reduced-dimension embedding Y = 

is a set of low-dimensional 
points with the same local neighborhood structure. We de­
sire instead a mapping which will general­
ize the correspondence to the whole continuum, with rea­
sonable interpolation and extrapolation to be expected in the 
neighborhood of the data. Spectral methods for NLDR typ­
ically require solution of many and/or very large eigenvalue 
or generalized eigenvalue problems [Kruskal and Wish, 1978; 
Kambhatla and Leen, 1997; Tcnenbaum et al., 2000; Roweis 
and Saul, 2000; Belkin and Niyogi, 2002], and with the ex­
ception of [Teh and Roweis, 2003; Brand, 20031, offer em-
beddings of points rather than mappings between spaces. 

Here we show how a leverage the transformational embed­
ding of section 2 into a continuous NLDR algorithm, specifi­
cally a kernel-based mixture of affine maps from the ambient 
space to the target space. To do so, we must show how the 
edge weight matrix W and vertex matrix Z are specified. Let 

iff x; and Xj satisfy some locality criterion, 
otherwise As stated above, an 

embedding Y of X should satisfy 

where larger Wy penalize large distances between y,- and y,. 
How should Wij be computed? / is a measure of similar­

ity: The graph-theoretic literature usually takes / ( • , ) = 1. 
while NLDR methods typically take 

to be a Gaussian kernel, on analogy to heat dif­
fusion models [Belkin and Niyogi, 2002]. The uninforma-
tive setting Wij = 1 is only usable when there is a very large 
number of points (and edges), so that connectivity informa­
tion alone suffices to determine metric properties of the em­
bedding. The Gaussian setting has a complementary weak­
ness: It can be very sensitive to small variations in distance 
to neighbors (that may be introduced by the curvature of the 
data manifold or measurement noise in the ambient space). 

/ should be monotonically decreasing, relatively insensitive 
to noise ( d / should be small), and it should lead to exact re­
constructions of data sampled from manifolds that are already 
flat. Straightforward calculus shows that equation 13 has the 
desired minimum when , or more gen­
erally, the multiplicative inverse of whatever distance mea­
sure is appropriate in the ambient space2. (By contrast, the 
LLE weightings are not correlated with distances.) To make 
the problem scale invariant, we scale W such that its largest 
nonzero off-diagonal value is 1 (consequently every­
where / is computed). 

Let us now situate some Gaussian kernels p*(x) = 
on the manifold. In this paper, we will take a 

random subset of data points as kernel centers, and set all 
; these kernels are radial basis functions. Let vector 

(14) 

be the kth local homogeneous coordinate of Xi scaled by 
the posterior of the kth kernel. K; is an optional local 
dimensionality-reducing linear projection. Let representation 
vector 

(15) 
be the vertical concatenation of all such local coordinate vec­
tors. Collect all such column vectors into a basis matrix 

To summarize thus far, our goal now is to find a linear 
transform of the basis (kernel-weighted coor­
dinates) that is maximally consistent with our local distance 
constraints, specifically 

(16) 

This is isomorphic to the graph embeddings of section 2; the 
methods developed there apply directly to W and Z. The con­
tinuous mapping from ambient to embedding space immedi-
atly follows from the continuity and smoothness of z{-): 

where the EVD determines the transformation G = 
of the continuous kernel representation de­

fined over the entire ambient space: 

(17) 

2Proof: Consider three p o i n t s o n a 1 D 
manifold. What similarity measure causes the 
distortion to have a global minimum 
at Without loss of generality, we fix the global location and 
scale of the embedding by fixing the endpoints: 
Solving for the unique zero of the distortion's first derivative, we 
obtain the optimum at y2 = W23 W12 -I- W23). Since this is a har­
monic relation, the unique continuous satisficing measure is 

. This sets and ; some 
simple algebra confirms that indeed .at the optimum. The 
induction to multiple points in multiple dimensions is direct. 
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As a matter of numerical prudence, we recommend using 
the reweighted approximation: 

(18) 

At first blush, it would seem that reweighting should not be 
necessary: By construction, ), thus — 
and the denominator—should be uniform at the datapoints. 
However, as mentioned above, even when the algebra predicts 
this structure, numerical eigensolvers may not find it. 

To obtain an approximate inverse mapping, we map the 
means and covariances of each kernel into the target 
space to obtain kernels there. Then, 
breaking fc j into blocks corresponding to each 
kernel, take the Moore-Penrose pseudo-inverse of each, and 
set If using the reweighted map, the ap­
proximate inverse map is 

4 Illustrative example 

Figure 2: The swiss roll. 

We will use a variant of the 
"swiss rol l", a standard test man­
ifold in the NLDR community, to 
illustrate the arguments and meth­
ods developed in this paper. We 
sampled a twisted version of the 
manifold regularly on a 30 x 30 
grid and added a small amount 
of Gaussian isotropic noise. Fig­
ure 2 shows the ideal R2 param­
eterization and two views of the 
ambient R3 embedding. Points 
are shown joined into a line to aid 
visual interpretation of the em-
beddings. Al l experiments in this 

section use a W matrix that was generated using the 12 near­
est neighbors to each point and the inverse distance function. 

The Laplacian eigenmap 
embedding (figure 3) shows 
the embedding specified by 
the W matrix. Note 
that it exhibits some fold­
ing at the corners and 
top and bottom edges, due 
partly to problems with the 
uniform eigenvector and 
exacerbated by the fact 
that spectral embeddings 
tend to compress near the 
boundaries. The Laplacian 
eigenmap requires solution Figure 3: Laplacian eigenmap 
of a large 900 x 900 eigen- embedding, 
problem, and offers no mapping off the points. Kernel eigen-
maps wil l be approximations to this embedding. 

We now show some kernel eigenmaps computed using the 
transformational embedding of section 2. Al l embedding 
methods are given the same inputs. 

Figure 4 shows a raw 
kernel eigenmap embedding 
computed using a basis (Z 
matrix) created from 64 
Gaussian unit-a kernels 
placed on random points. 
This required solving a 
much more manageable 
256 x 256 eigenproblem. 
100 trials were performed 
with different sets of ran­
domly placed kernels. In all 
trials, the reweighted and 
stochastic maps gave the 

Figure 4: Kernel eigenmap 
embedding, raw result. 

the raw and affine maps exhibited substantial folding at the 
edges and corners of the embedding. 

Figure 5 shows a 
reweighted kernel eigen­
map computed from the 
same W and Z as figures 3 
& 4. The result is smoother 
and actually exhibits less 
folding than the original 
Laplacian eigenmap. 

The problem can be reg­
ularized by putting positive 
mass on the diagonal of W 
(e.g., W + W +1), thereby 
making the recovered ker­
nel eigenmap more isomet­
ric (bottom figure 5). This 
regularization is appropri­
ate when it is believed 
that all neighborhoods are 
roughly the same size. 

The recently proposed 
Locality Preserving Projec­
tion (LPP) [He and Niyogi, 
2002], is essentially the raw 
approximation (direct solu­
tion of equation 8) with 

and Z = X, thereby giving a linear pro­
jection from the ambient space to the target space that best 
preserves local relationships. 

LPP is admirably simple, 
but it can be shown that the 
affine approximation from 
section 2 wil l always have 
less distortion. LPP can also 
suffer from loss of the uni-

Figure 6: LPP embedding and f o r m eigenvector. Figure 6 
our affine upgrade. show embeddings of the 
swiss roll produced by LPP and by an affine modification of it 
that is equivalent to our method with a trivial single uniform-

Figure 5: Kernel eigenmap 
embedding, reweighted and 
regularized results. 
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density kernel. Upgrading LPP to an affinc projection cap­
tures more of the data's structure. Even so, there is no affine 
"view" of this manifold that avoids folding. 

5 Visualizing word usages 
In statistical analyses of natural language, similar usage pat­
terns for two words are taken to indicate that they have sim­
ilar meanings or strongly related meanings. Latent semantic 
analysis (LSA) is a linear dimensionality reduction of a term-
document co-occurence matrix. The principal components of 
this matrix give an embedding in which similarly used words 
are similarly located. Literally, co-location is a proxy for col­
location (the propensity of words to be used together) and 
synonymy. We may expect that the kernel eigenmap offers a 
more powerful nonlinear analysis: 

The NIPS 12 corpus3 features a matrix counting occur­
rences of 13000+ words in 1700+ documents. We mod­
eled the first 1000 words and the last 200 documents in the 
matrix. This roughly corresponds to one year's papers, a 
reasonable "snapshot" of the ever-changing terminology of 
the field. We stemmed the words and combined counts for 
the same roots, then determined distance between two word 
roots as the cosines of the angles between their log-domain-
transformed occurrence vectors (x,, —* log2(l + xij)). The W 
matrix was generated by adding an edge from each word to 
its 30 closest neighbors in cosine-space. The representation 
Z was made using 4 random words as kernel centers. Fig­
ure 7 discusses the resulting 2D embedding, in which techni­
cal terms arc clearly grouped by field and many of the more 
common English words arc tightly clustered by common se­
mantics. The first two LSA dimensions (also shown in fig­
ure 7) of the same data arc reveal significantly less semantic 
structure. 

6 Discussion 
The kernel eigenmap generates continuous nonlinear map­
ping functions for dimensionality reduction and manifold re­
construction. Suitable choices of kernels can reproduce the 
behavior of several other NLDR methods. One could put a ker­
nel at every local group of points, perform local dimensional­
ity reduction (e.g., a PC A) at each kernel, and thereby obtain 
from equations 8 and 17 an NLDR algorithm much like chart­
ing [Brand. 2003] or automatic alignment [Teh and Roweis, 
2003]. Or, as in the demonstrations above, the kernel eigen­
map can simultaneously determine the local dimensionality 
reductions and their global merger. 

The kernel eigenmap typically substitutes a small dense 
CVD for the the large sparse LVD of graph embedding prob­
lems. In the sparse case, a specialized power method can 
compute the desired eigenvectors in significantly less than the 
0(N3) time required for a full EVD. In the kernel setting, 
similar efficiencies apply because both W and Z are typically 
sparse, allowing fast construction of the reduced EVD prob­
lem Z W Z 1 ; this too is amenable to fast power methods. Of 
course, the most important efficiency of the kernel method 
is its ability to embed new points quickly via the function 

3Courtesy S. Roweis, available from the U. Toronto website. 

G(x)—there is no need to compute a new global embedding 
or revise the EVD. 

The reweighting scheme, although theoretically mooted by 
our subsequent discovery of a better problem formulation and 
closed-form solution, is still practically viable as a fast ap­
proximation for large problems, and as a post-conditioning 
step for unavoidable numerical error of any NLDR algorithm 
based on eigenvalue decompositions. 

In this paper we have used random kernels. There are nu­
merous avenues to discovering stronger methods by investi­
gating placement and tuning of the kernels, stability of the 
embedding and its topological structure, and sample com­
plexity. In short, all the issues that proved fertile ground 
for research in classification and regression can be studied 
anew in the context of estimating the geometry and topology 
of manifolds. 
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Figure 7: ABOVE: A 2D kernel eigenmap of word usages in recent NIPS papers. To improve legibility we show just a subset 
of the data; some labels have been shifted slightly to reduce overlap. Word roots are shown in their first occurring unstemmed 
variant. The three lobes of the distribution roughly correspond to favored terminology in the submission areas of Algorithms & 
Architectures (left), Neuroscience (right), and Theory (top). Words with broader usage are more tightly distributed in the center 
(presumably because they are more likely to co-occur in general discourse), with several clusters of words having strongly 
related meanings. Three of these clusters have been colored: red for publishing terms (IEEE, conference, number, paper, 
proceedings, volume), green for probability terms (b.iyc>ian.. NhnwK\ independent. map. ni.ji.iiin.tL posterior, joint, statistical), 
and blue for locations (Cambridge, department, institute, university). BELOW, SMALLER: A linear embedding obtained from 
a latent semantic analysis of the same data. Though collocated words are often co-located, when compared with the kernel 
eigenmap result, semantic structures are far less obvious. 
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