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Abstract
We introduce an approach to autonomously cre-
ating state space abstractions for an online rein-
forcement learning agent using a relational repre-
sentation. Our approach uses a tree-based function
approximation derived from McCallum’s [1995]
UTree algorithm. We have extended this approach
to use a relational representation where relational
observations are represented by attributed graphs
[McGovern et al., 2003]. We address the chal-
lenges introduced by a relational representation by
using stochastic sampling to manage the search
space [Srinivasan, 1999] and temporal sampling to
manage autocorrelation [Jensen and Neville, 2002].
Relational UTree incorporates Iterative Tree Induc-
tion [Utgoff et al., 1997] to allow it to adapt to
changing environments. We empirically demon-
strate that Relational UTree performs better than
similar relational learning methods [Finney et al.,
2002; Driessens et al., 2001] in a blocks world do-
main. We also demonstrate that Relational UTree
can learn to play a sub-task of the game of Go
called Tsume-Go [Ramon et al., 2001].

1 Introduction
This paper introduces a method that combines the expressive
power of a relational representation with the learning power
of reinforcement learning (RL). The goal is to autonomously
learn a relational state space approximation while simultane-
ously learning to act optimally. A relational representation
enables an agent to reason at a higher level, which can allow
an agent to learn in more difficult problems [Kaelbling et al.,
2001]. RL is an ideal technique for real-world control be-
cause it can learn to achieve a goal without being told how
to accomplish it. There has been considerable recent inter-
est in combining these techniques [Tadepalli et al., 2004; van
Otterlo, 2005].

The primary contribution of this paper is the introduc-
tion of an online RL method, Relational UTree, that can au-
tonomously construct its own tree-based function approxi-
mation using a relational representation. UTree [McCallum,
1995] develops its own tree-based state space, allowing it to
focus on the most important aspects of observations and to

ignore irrelevant ones. Traditionally, a state representation is
either designed by the user or learned from the policy.

Learning in a relational representation introduces two key
challenges. The first is the exponential growth in search space
and the second is that relational environments tend to have a
high degree of autocorrelation. This has been shown to cause
a selection bias that makes distinctions to appear useful when
they are not [Jensen and Neville, 2002]. Relational UTree
compensates for the size of the search space by using stochas-
tic sampling [Srinivasan, 1999]. Autocorrelation violates the
independent and identically distributed assumption made by
many statistical techniques. We compensate for the effects of
temporal autocorrelation by temporally sampling.

We separately address the need to adapt to changes in the
environment by incorporating efficient tree restructuring [Ut-
goff et al., 1997]. This allows Relational UTree to create
more compact trees with the same representational power and
helps to prevent overfitting in stochastic environments.

The most similar works are the G [Finney et al.,
2002; Chapman and Kaelbling, 1991] and TG algorithms
[Driessens, 2004; Driessens et al., 2006]. There are several
major differences between TG, which is based in part on G-
Algorithm, and Relational UTree. The primary difference is
that Relational UTree can dynamically restructure its trees
while TG must build a new tree from scratch. This allows
Relational UTree to adapt to changes in the environment and
to correct early mistakes made in the tree. While Relational
UTree uses graphs to represent observations, TG uses first or-
der logic predicates. In addition, TG creates a separate policy
tree (called a P-tree) while Relational UTree derives its policy
from the Q-value tree. Finney et al.’s [2002] approach is also
based on G algorithm but uses a deictic representation, while
Relational UTree makes use of a full relational representation
and incorporates tree restructuring. We empirically compare
the performance of Relational UTree to these approaches on
blocks world environments.

2 Algorithm Description
The Relational UTree algorithm follows the UTree algorithm
closely. We use the standard RL and partially observable
Markov decision process (POMDP) notation where, at each
time step t, the agent executes an action at ∈ A , and receives
an observation ot+1 ∈ O, and a reward rt+1 ∈ ℜ [Sutton and
Barto, 1998; Kaebling et al., 1998].
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Figure 1: a) Example blocks world configuration. b) Partially
observable blocksworld1 [Finney et al., 2002] observation. c)
Fully observable blocksworld2 [Driessens et al., 2001] obser-
vation.

An observation takes the form of an attributed graph G =
〈V,E,A(V ),A(E),T (V ),T (E)〉. V is the set of all objects in
the environment, represented by vertices in the graph and E
is the set of all relationships, represented by edges [McGov-
ern et al., 2003]. A(V ) and A(E) are the set of attributes for
the vertices and edges respectively, the elements of which are
discrete or real valued attributes. A(V ) and A(E) may contain
zero or more elements. T (V ) and T (E) are required discrete
valued types for vertices and edges. Example observations
for blocks world are shown in Figure 1. Some attributes and
relationships are omitted for readability. The graphical repre-
sentation used does not place individual identifiers on objects,
but instead objects are identified by their type, attributes, and
relationships to other objects. This property of graphical rep-
resentations is advantageous for generalizing concepts.

Our Relational UTree description uses McCallum’s [1995]
notations. We refer to the set of distinctions that lead to a tree
node and the state represented by a leaf node as s. A transition
instance, Tt = 〈Tt−1,at−1,ot ,rt〉, represents one step of the
agent’s experience. The set of instances contained in a leaf
node s is denoted T (s), and the set of instances contained in
a leaf node s where the next action is a is T (s,a). The time
ordered set of all transition instances is H = {T0,T1, ...,T|H|}.
The leaf node to which a specific transition instance belongs
is denoted by L(Tt).

2.1 Relational Utile Distinctions
We refer to a distinction as being utile if and only if
the distinction statistically separates the set of transition
instances so that the agent is better able to predict re-
ward. The sets of possible distinctions are: Object ex-
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Figure 2: Example variable memory creation as the instance
from Figure 1c is dropped down the tree.

istence {(x,h) | x ∈ T (V ),h ∈ N}, relationship existence
{(x,o1,o2,h) | x ∈ T (E),o1 �= o2∀o1,o2 ∈M(V ),h ∈N}, and
attribute value {(a, valuea,o1,h) | (a,valuea) ∈ A(o1),o1 ∈
{M(V )∪M(E)},h ∈ N}, where h is the history index, M is
the memory, x is a parameter limiting the number of previ-
ous observations that can be considered, and N is the set of
natural numbers.

The variables o1 and o2 are pointers to variable memories.
Variable memories reference previous distinctions in s, al-
lowing simple distinctions to be used to construct complex
queries. For each type of distinction, the set of variable mem-
ories created when an instance is dropped down a node with
that distinction is given by: {v ∈ Vi | T (v) = X} for object
distinctions, {(e,v1,v2) ∈ Ei | T (e) = X ,v1 �= v2,v1,v2 ∈ Vi}
for relationship distinctions, and {p ∈ Vi ∪Ei | (a,valuea) ∈
A(v),a = X ,valuea = Y} for attribute value distinctions.

Figure 2 shows an example of how Relational UTree uses
variable memories. As the observation shown in Figure 1(c)
falls down the root node, blocks are added to the variable
memory. The second node selects blocks from this list with
“Color = Green” and saves the matches.

Relational UTree allows static objects to be referenced so
that their non-static attributes may be accessed. The set of
static objects is defined as S =

T

H Vi. A focal object, f ∈ V ,
can be incorporated to allow an agent to reason deictically.
Let M(V,N) be the set of object variable memories for the
node N. At the root node, Nr, M(V,Nr) = S∪{ f}. The set of
object variable memories created by the distinction at a given
node, N, is denoted m(V,N). If we let Np be the parent node
to N, then the set of object variable memories at any node, N,
is defined as M(V,N) = M(V,Np)∪m(V,Np). We similarly
define M(E,N), given M(E,Nr) = /0.

2.2 The Relational UTree Algorithm
The Relational UTree algorithm works as follows:

1. Create a tree with no distinctions. Initialize T (s) = /0
and H = /0.

2. Take one step of experience in the environment. Choose
the action at−1 to be the policy action of L(Tt−1), with
ε probability of choosing a random action. Record the
experience as Tt = 〈Tt−1,at−1,ot ,rt〉 and H = H ∪{Tt}.
Using standard decision tree methods, drop Tt down the
tree. Save Tt to the leaf node, L(Tt) = s, setting T (s) =
T (s)∪{Tt}. Mark all tree node N ∈ s as stale, where a
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stale node indicates that the distinction at that node may
need to be changed during restructuring.

In some environments, observations ot and ot+1 are au-
tocorrelated. For example, in the blocksworld2 environ-
ment shown in Figure 1 (c), the objects and relationships
will remain largely the same regardless of the next action
performed. This is an example of temporal autocorrela-
tion, and can cause a feature selection bias [Jensen and
Neville, 2002]. In these situations, we remove autocor-
relation through temporal sampling. Every c steps, Tt is
forgotten, where c is a user defined value.

3. With the leaves of the tree representing the states, per-
form one step of value iteration using Equations 1 - 4.
The equations for estimated immediate reward and esti-
mated probability of arriving in state s′ after executing
action a in state s are given in Equation 3 and 4 and di-
rectly follow McCallum’s equations.

Q(s,a)← R(s,a)+ γ∑
s′

Pr(s′|s,a)U(s′) (1)

U(s) = max
a∈A

Q(s,a) (2)

R(s,a) =
∑Ti∈T (s,a) ri

|T (s,a)| (3)

Pr(s′|s,a) =
|∀Ti ∈ T (s,a) s.t. L(Ti+1) = s′|

|T (s,a)| (4)

4. Update the tree every k steps by first ensuring the quality
of current distinctions, followed by expanding the tree
by adding new distinctions at the leaves. All stale tree
nodes N are updated as follows.

(a) First, stochastically generate a set of distinction trees
Φ. Include the existing distinction tree, φN , in the set Φ,
with Φ = Φ∪{φN}. A distinction tree is made up of one
or more distinctions on a set of instances, organized into
a tree structure. We consider distinction trees with depth
up to some constant k, and consider larger depths only if
no utile distinction trees are found. Each distinction tree
φ ∈Φ defines a set of fringe leaf nodes L .

For each fringe leaf node s ∈ L , the set of expected fu-
ture discounted rewards for s makes up a distribution
δ(s) given by Equation 5 [McCallum, 1995].

δ(s) = {rti + γU(L(ti+1)) | ti ∈ T (s)} (5)

Calculate the Kolmogorov-Smirnov distance between
each pair of distributions, denoted KS(δ0,δ1). Let Pφ
be the set of these p-values, given by Equation 6.

Pφ = {KS(δ(si),δ(s j)) | ∀si,s j ∈ L} (6)

Choose the best distinction tree from among Φ and the
current distinction tree, φN , using Equation 7.

φ′ = min
φ∈Φ

∑p∈Pφ log(p)

|Pφ| (7)
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Figure 3: Let N be the current node, and C(N) = {N1,N2}
denote the children of N. a) φN1

= φN2
= φ′. Perform tree

transposition by setting φ′N1
= φ′N2

= φN and φ′N = φ′. b)
φN1

= φ′ and C(N2) = /0. Set φN = φ′ and C(N) = C(N1).
Reclassify the instances T (N2) using the N0 subtree. c)
C(N1) = C(N2) = /0. Set φN = φ′, and use φ′ to reclassify
the instances T (N1)∪T (N2)

If there is no p ∈ Pφ′ below the user specified value, then
N is pruned from the tree. We used p = 0.001 for this
paper. Otherwise, φN is replaced by φ′ through a series of
tree transpositions. For distinction trees of depth greater
than one, the distinctions are ’pulled-up’ one at a time,
beginning with the root distinction.

(b) Once the best distinction tree at a given node is de-
termined, the tree is restructured following Utgoff et al.
[1997]. If the current distinction at N is already the best,
φN = φ′, then we are done. Otherwise, a recursive depth
first traversal of the tree is applied until one of the base
cases, shown in Figure 3, is reached. At this point, the
utile distinction, φ′, is ”pulled-up” by recursively per-
forming the tree transposition steps shown in the figure.
After a single ”pull-up” has been performed, the next
base case in the tree is addressed until the best distinc-
tion tree, φ′, is at the target node, N.

When the tree restructuring operation has completed for
N, mark it as not stale. If the node has changed through
tree restructuring, then mark all nodes in its subtree as
stale. Continue to apply step 4 to each stale child node
of N. This process continues until no branches are stale,
and the quality of the distinctions in the tree are ensured.
Finally, perform value iteration until convergence.

5. Every k steps, expand the tree at the leaves. For each leaf
node of the tree, s, determine the best distinction tree for
the instances at that node using the process outlined in
step 4 (a). If the new distinction tree is utile, then expand
the tree by adding a subtree at the leaf s and dropping the
instances T (s) down the new distinction tree. This re-
moves s from the list of leaves and adds the set of leaves
L to that list. Continue expanding the tree until it is no
longer utile to do so. Perform value iteration until con-
vergence after expansion is done.

6. Repeat at step 2 until stopped.
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2.3 Stochastic Sampling
We use stochastic sampling [Srinivasan, 1999] to address the
large space of possible distinctions introduced with a rela-
tional representation. Srinivasan shows that if we can sample
tests stochastically that we can look at only a small fraction
of the total and still be highly confident in finding one that
is among the best possible. The number of tests that must be

sampled is given by n≥ ln(1−α)
ln(1−k) , where α is the probability of

finding a test in the top (100× k)% [Srinivasan, 1999]. The
key to this equation is that the sample size does not depend
on the number of possible distinctions.

For this paper, we have used k = 0.01 and α = 0.99 to be
99% confident in finding a distinction in the top 1%. In this
situation we only need to sample 458 distinctions. By grad-
ually reducing k, we can move the search for distinctions to-
ward an exhaustive search. With our values, it took under
a second to expand a leaf node containing 5000 instances.
When we reduce k to 0.001, it takes two minutes to do the
same expansion. Similarly, with k = 0.0001 the expansion
time for the leaf node is almost 13 minutes. This demon-
strates that an exhaustive search of the distinction space is
not feasible. To compensate, we use stochastic sampling.

2.4 Tree Restructuring
In the early stages of learning, an agent will have only seen
a fraction of the environment and may create a state repre-
sentation that is not well suited to the true nature of the en-
vironment. To prevent the tree from over-fitting and to allow
it to adapt to changing environments, Relational UTree im-
plements online tree restructuring based on the Iterative Tree
Induction algorithm [Utgoff et al., 1997]. Iterative Tree In-
duction ensures that the best split for the instances is used at
each node of the tree, beginning with the root and working its
way to the leaves.

The original ITI algorithm kept track of a list of statistics
for each possible test at every tree node. Because Relational
UTree is instance based, this would be redundant. While ITI
looked at the list of statistics for a node to decide the current
best test at that node, Relational UTree regenerates tests for
the node and decides which is best directly. Keeping track
of all possible tests is not a practical solution in this situa-
tion because of the large search space for distinctions in rela-
tional environments. This large search space is a well known
problem for inductive logic programming [Dzeroski et al.,
2001]. Although it is more computationally expensive to re-
compute the tests, restructuring leads to significantly smaller
trees which reduces overall computation time.

3 Experimental Results
3.1 Blocks World Results
We apply Relational UTree to two versions of the blocks
world domain. The first, blocksworld1, is a partially observ-
able blocksworld task with low-level actions and two blocks,
as in Finney et al. [2002]. The second, blocksworld2, is a
fully observable domain with high-level relational actions and
three blocks, as in Driessens et al. [2001]. Both domains con-
tain moveable colored blocks and unmovable table blocks.

Example observations for both domains are shown in Fig-
ure 1.

In the blocksworld1 domain, the agent has a focus marker
and a deictic marker. The agent perceives all attribute in-
formation for the focused object but none for the marked
object. The marker is only observable if it is adjacent to
the focus marker. For example, if the marker is below the
focus block, then the agent will observe a block object, a
marker object, and a relationship indicating the block ob-
ject is on the marker object. The small difference from
Finney’s domain arise from the translation from a deictic rep-
resentation to a truly relational one. The goal is to pick up
the green block, which requires first removing any blocks
covering it. The actions available to the agent are identi-
cal to that of Finney: move-focus(direction), focus-on(color),
pick-up(), put-down(), marker-to-focus(marker), and focus-
to-marker(marker). The agent is given a reward of +10 for
reaching the goal, a penalty of -0.2 for invalid moves and -0.1
per time step.

The second domain, blocksworld2, is fully observable and
the task is to stack the green block on the red block. The
actions are move(x,y) for unique blocks x and y. As with
Driessens, the agent received a reward of 1 for reaching the
goal in the minimal number of steps and a 0 otherwise.

The performance of Relational UTree with and without tree
restructuring for both domains is shown in Figure 4 (left pan-
els). Empirical performance is ε-optimal, with ε = 0.10, for
both domains. These results are averages across 30 runs. Be-
cause this is online performance, large changes to the tree’s
structure are reflected as temporary drops in performance.
This happens less frequently as the tree converges.

In the more difficult blocksworld1 domain, Relational
UTree converges faster than Finney’s approach with more ac-
curate results. After 100,000 training instances Finney’s per-
formance was approximately 68% with final convergence to
80%. Our method converges to 90% of optimal, due to the
use of ε-greedy exploration methods, and does so within the
first 100,000 steps.

Comparatively, the actions in the blocksworld2 domain are
higher level which allows the agent to discover the goal much
faster than in blocksworld1. The performance of Driessens’
TG algorithm on the same domain was comparable. TG does
not explore the environment, and does not use an ε-greedy
exploration method like we do. This allows their algorithm to
converge to an average reward of 1, while we converge to an
average reward per trial of 0.9.

Figure 4 (right panels) compares the tree sizes with and
without tree restructuring for the two domains. In both do-
mains, performance is comparable but the average tree size
is considerably smaller when tree restructuring is used. The
agent is able to construct a smaller tree to capture the same
amount of information because it can remove irrelevant in-
formation gained early in learning. The use of restructuring
introduces an increased variance due to the temporary loss
in performance directly following a large tree restructuring.
However, smaller trees result in a significant improvement in
running time.
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Figure 4: Learning curves for Relational UTree in the blocksworld1 and blocksworld2 domains. Tree sizes, with and without
tree restructuring, are shown for both domains on the right.

3.2 Autocorrelation
To detect potential temporal autocorrelation, we used ran-
domization on sets of observations. We perform 10000
randomizations on this data, each time performing a
Kolmogorov-Smirnov test. The test statistics form a distri-
bution which can be analyzed to find the effective sample
size, similar to what was done with χ2 by Jensen and Neville
[2002]. If there is no autocorrelation, the effective sample
size should match the actual sample size used in the tests.

The Kolmogorov-Smirnov test compares two distributions,
of sizes N1 and N2. The total size of the data, N1 + N2, re-
mains constant throughout, while the proportion of data split
into either distribution can change from one distinction to the
next. In our experiment, the actual number of instances var-
ied but the proportions that a specific distinction created was

held constant. We use p = max(N1,N2)
(N1+N2) to represent the rela-

tive sizes of the two distributions. By substituting p into the
original equation for KS, given by [Sachs, 1982], we obtain

R = (2×(Kα)2)
Dα

and NE = 2× R
(4×(p−p2)) for the effective sam-

ple size NE . Kα and Dα are the critical values for the KS test.
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Figure 5: Effective sample size relative to actual sample size
with variable amounts of sampling.

Figure 5 shows the results of our detection and removal
of the temporal autocorrelation in the blocks world domain.
The top pie chart for each group is the effective sample size
without sampling. The lower two pie charts are for removing
every 15th or every 10th instance. Effective sample sizes for
an object existence, relationship, and action test are shown.

The effective sample size is dramatically lower without sam-
pling and small amounts of sampling dramatically increase
the sample size. Tests on actions have no temporal autocorre-
lation because there is no direct correlation between what ac-
tion will be performed and what the most recent action was.
Since autocorrelation causes a feature selection bias [Jensen
and Neville, 2002], Relational UTree used sampling to re-
move the autocorrelation.

3.3 Tsume Go Results
The Tsume Go domain is a sub-task of the game of Go
where stones have already been placed in different configu-
rations. The task is to identify the best move for protecting
the player’s stones or capturing the opponent’s stones. Rela-
tional UTree learns to play the best first move of a Tsume Go
game. Relational UTree is trained on a set of 30000 randomly
sampled problems from the GoTools database [Wolf, 1996],
and then tested on a set of 10000 randomly sampled indepen-
dent problems from the same database. The agent receives a
reward between 0 and 1 for correct answers depending on the
quality of the move and is penalized −0.5 for incorrect at-
tempts. It is also penalized with −1.0 for invalid moves such
as placing a stone on top of another stone or trying to move
off the board.

Similar to Ramon et al.’s [2001] approach, we test Rela-
tional UTree’s approximation by ranking moves using the Q-
values. Across 7 runs, Relational UTree averaged 65% ac-
curacy on the test set after one move. Ramon et al.’s [2001]
approach obtained 35% accuracy on a test set of 1000 prob-
lems generated by GoTools, after training on 2600 problems.
We are encouraged by our results and are exploring this do-
main in greater detail as future work.

4 Discussion
Due to the significant performance difference between Finney
and the large degree of similarities between our algorithm
and Finney’s, it is useful to discuss why Relational UTree
was able to overcome some of the problems previously re-
ported. Relying on observation history to disambiguate states
and using state values to determine a policy before the states
are disambiguated is a difficult problem that can be overcome
through the use of tree restructuring. As the agent contin-
ues to learn, it carries older instances whose histories reflect
outdated policies. As the agent’s performance increases, the
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vast majority of new observations will conform to an increas-
ingly consistent policy. Given sufficient experience with the
new policy, old observations will be in such a minority that
splitting on them will no longer be statistically significant.
Another method would be to remove the oldest memories of
the agent when they are likely to no longer be relevant but this
approach requires another parameter.

Finney’s approach uses a combination of the G-Algorithm
and UTree to learn with a deictic representation. In their ap-
proach, once the tree has been expanded at a node, all the
instance information that caused that split is dropped. This is
in contrast to the approach taken by Relational UTree, which
saves instances and continues to use all observations to de-
cide if a split is utile. We hypothesize that this difference is
the cause of their convergence issues. Each split relies only
on the most recent observations to see how the environment
behaves. This could lead to incorrect assumptions if the cur-
rent set of data is not representative of the entire environment.

Another problem encountered comes from the nature of
POMDPs. If the agent in blocksworld1 performed the action
focus on color(red), its history of observations would not tell
it what state it was in. Finney suggests that history based
decision tree algorithms will never be able to fully disam-
biguate the state space. While it is true that the agent’s his-
tory would not help it to know the current state of the world,
this information is not required for optimal behavior. Instead,
the optimal behavior for this agent is to explore. Balancing
the need to explore to discover information about the environ-
ment, and seeking out potential rewards, is a primary property
of POMDPs [Kaebling et al., 1998]. As such, the optimal pol-
icy would explore the environment, thus providing the agent
with the useful historical observations that it needs.

5 Conclusions and Future Work

We have introduced Relational UTree, a significant modifica-
tion to the UTree algorithm that automatically creates a tree-
based function approximation in a relational representation.
Relational UTree allows us to apply the advantages of the
UTree algorithm to inherently relational environments with-
out the need to convert into propositional logic. We demon-
strated that Relational UTree is able to learn in a blocks world
domain and on the task of Tsume Go. Relational UTree ad-
dresses the exponential growth in search space of a relational
representation using stochastic sampling. We also demon-
strated that temporal sampling was necessary to address the
issues of autocorrelation that arise in a relational representa-
tion. We separately show that incorporating tree restructuring
into Relational UTree gives it the critical ability to learn com-
pact representations and to adapt to changing environments.

Current and future work focuses on applying Relational
UTree to more complex relational domains, including the full
game of Go. We are also exploring ways to improve the ef-
ficiency of storing and handling large numbers of observa-
tions. We are studying knowledge transfer and background
knowledge using Relational UTree. The ability to approxi-
mate a state space independently of a human designer allows
for many interesting future applications.
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