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Abstract

Recent scaling up of POMDP solvers towards re-
alistic applications is largely due to point-based
methods which quickly converge to an approximate
solution for medium-sized problems. Of this family
HSVI, which uses trial-based asynchronous value
iteration, can handle the largest domains. In this
paper we suggest a new algorithm, FSVI, that uses
the underlying MDP to traverse the belief space to-
wards rewards, finding sequences of useful back-
ups, and show how it scales up better than HSVI on
larger benchmarks.

1 Introduction

Many interesting reinforcement learning (RL) problems can
be modeled as partially observable Markov decision problems
(POMDPs), yet POMDPs are frequently avoided due to the
difficulty of computing an optimal policy. Research has fo-
cused on approximate methods for computing a policy (see
e.g. [Pineau et al., 2003]). A standard way to define a policy
is through a value function that assigns a value to each be-
lief state, thereby also defining a policy over the same belief
space. Smallwood and Sondik [1973] show that a value func-
tion can be represented by a set of vectors and is therefore
piecewise linear and convex.

A promising approach for computing value functions is the
point-based method. A value function is computed over a
finite set of reachable belief points, using a backup operation
over single belief points - point-based backups, generating
a-vectors. The assumption is that the value function would
generalize well to the entire belief space.

Two of the key issues in point-based methods are the
choice of the set of belief points and the order of backups. A
successful approach for addressing both of these issues uses
trial-based value iteration — simulating trajectories and exe-
cuting backups over the encountered belief-states in reversed
order (see e.g. [Bonet and Gefner, 1998]). Such methods use
some type of heuristic to find useful trajectories.
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Heuristic Search Value Iteration (HSVI - [Smith and Sim-
mons, 2005]) is currently the most successful point-based al-
gorithm for larger domains. HSVI maintains both a lower
bound (V) and an upper bound (V') over the optimal value
function. It traverses the belief space using a heuristic based
on both bounds and performs backups over the observed be-
lief points in reversed order. Unfortunately, using V' slows
down the algorithm considerably as updating V' and comput-
ing upper bound projections (V' (b)) are computationally in-
tensive. However, this heuristic pays off, as the overall per-
formance of HSVI is better than other methods.

In this paper we suggest a new method for belief point se-
lection, and for ordering backups which does not use an upper
bound. Rather, our algorithm uses a search heuristic based on
the underlying MDP. Using MDP information is a well known
technique, especially as an initial guess for the value function
(starting with the Q p;pp method of [Littman et al., 1995]),
but did not lead so far to very successful algorithms. Our
novel algorithm — Forward Search Value Iteration (FSVI)
— traverses together both the belief space and the underlying
MDP space. Actions are selected based on the optimal policy
for the MDP, and are applied to the belief space as well, thus
directing the simulation towards the rewards of the domain.
In this sense, our approach strongly utilizes the underlying
MDP policy.

We tested our algorithm on all the domains on which HSVI
was tested, and it both converges faster than HSVI and scales
up better, allowing us to solve certain problems for which
HSVI fails to converge within reasonable time.

2 Background and Related Work

We review the POMDP model and the associated notation,
and provide a short overview of relevant methods.

2.1 MDPs, POMDPs and the belief-space MDP

A Markov Decision Process (MDP) is a tuple (S, A, tr, R)
where S is a set of world states, A is a set of actions,
tr(s,a,s’) is the probability of transitioning from state s to
state s’ using action a, and R(s, a) defines the reward for ex-
ecuting action a in state s.

A Partially Observable Markov Decision Process
(POMDRP) is a tuple (S, A, tr, R,Q, 0, by) where S, A, tr, R
are the same as in an MDP, Q2 is a set of observations and
O(a, s, 0) is the probability of observing o after executing a
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and reaching state s. The agent maintains a belief-state — a
vector b of probabilities such that b(s) is the probability that
the agent is currently at state s. by defines the initial belief
state — the agent belief over its initial state.

The transition from belief state b to belief state b’ using
action a is deterministic given an observation o and defines
the 7 transition function. We denote b’ = 7(b, a, 0) where:

oo O(a,s',0) >, b(s)tr(s,a,s")
ble) = priolb,a)

pr(o|b,a) = Z b(s) Z tr(s,a,s")O(a,s',0)  (2)

ey

While the agent is unable to observe the true state of the
world, the world itself still behaves as an MDP, which we call
the underlying MDP.

In many MDP and POMDP examples the agent should ei-
ther reach some state (called the goal state) where it receives
a reward, or collect rewards that can be found in a very small
subset of the state space. Other problems provide varying re-
wards in each state.

2.2 Value Functions for POMDPs

It is well known that the value function V for the belief-
space MDP can be represented as a finite collection of |S|-
dimensional vectors known as « vectors. Thus, V is both
piecewise linear and convex [Smallwood and Sondik, 1973].
A policy over the belief space is defined by associating an ac-
tion a to each vector «, so that a-b = > _ «(s)b(s) represents
the value of taking a in belief state b and following the pol-
icy afterwards. It is therefore standard practice to compute
a value function — a set V' of « vectors. The policy 7y is
immediately derivable using: 7y (b) = argmax,., cy Qq - b.

V' can be iteratively computed using point-based backup
steps, efficiently implemented [Pineau et al., 2003] as:

backup(b) = argmaxgp,,c 4 b - q° 3)

@ =ro+n Z argmaxge ey b 9ao ()
95 (s) = Z O(a, s',0)tr(s,a,s)a’(s')  (5)

The vector representation is suitable only for lower bounds.
An upper bound can be represented as a direct mapping be-
tween belief states and values. The H operator, known as the
Bellman update, updates such a value function:

Qv(b,a) =b-rq+~> , pr(ola,b)V,(r(b,a,0)) (6)
HV (b) = max, Qv (b,a) @)

2.3 Trial-Based Value Iteration

Synchronous value iteration assumes that the entire state
space is updated over each iteration. Asynchronous value it-
eration allows some states to be updated more than others,
based on the assumption that value function accuracy is more
crucial in these states. A well known form of asynchronous
value iteration is trial-based updates, where simulation trials
are executed, creating trajectories of states (for MDPs) or be-
lief states (for POMDPs). Only the states in the trajectory are

Algorithm 1 RTDP
1: Initialize Q(s,a) < 0
2: while true do
3: S < S
4:  while s is not a goal state do
5: for each a € Ado
6: Q(s,a) — R(s,a) + > tr(s,a’,s")V(s)
7: !
8

a — argmax,, Q(s,a
s < sample from tr(s, a, *)

updated and then a new trial is executed. RTDP [Barto e al.,
1995] is a trial-based algorithm for MDPs (Algorithm 1).

RTDP-BEL — an adaptation of RTDP to POMDPs was
suggested by Bonet and Geffner [Bonet and Gefner, 1998].
RTDP-BEL discretizes belief states and maintains ()-values
for the discretized belief states only. Trials are executed over
the POMDP mapping the real belief state into the closest dis-
cretized belief state which is then updated.

An important aspect for the convergence speed of trial-
based algorithms is a good heuristic that leads towards im-
portant states and updates. Unfocused heuristics may cause
the algorithm to spend much time updating useless states.

2.4 Heuristic Search Value Iteration (HSVI)

Computing an optimal value function over the entire belief
space does not seem to be a feasible approach. A possible
approximation is to compute an optimal value function over
a subset of the belief space. An optimal value function for a
subset of the belief space is no more than an approximation
of a full solution. We hope, however, that the computed value
function will generalize well for unobserved belief states.

Point-based algorithms [Pineau er al., 2003; Spaan and
Vlassis, 2005; Smith and Simmons, 2005] compute a value
function only over a reachable subset of the belief space us-
ing point-based backups (Equations 3- 5).

Of this family of algorithms, HSVI (Algorithm 2) has
shown the best performance over large scale problems. HSVI
[Smith and Simmons, 2005] maintains both an upper bound
(V) and lower bound (V) over the value function. It traverses
the belief space following the upper bound heuristic, greedily
selecting successor belief points where V' (b) — V(b) is max-
imal, until some stopping criteria have been reached. It then
executes backup and H operator updates over the observed
belief points on the explored path in reversed order.

HSVI can be viewed as a trial-based value iteration for
POMDPs, even though the next belief state is not sampled
but selected using the upper and lower bounds.

Even though HSVI is able to handle large problems, the
H operator update and the interpolations used to find the
value V'(b) are computationally intensive, becoming more
time consuming with each explored belief state. As such,
HSVI spends much time maintaining the upper bound that
is used only as a heuristic directing the belief space traversal.

We note, however, that Smith and Simmons also present
theoretical results for the convergence of HSVI, relying on
the existence of the upper bound. As we suggest to remove
the upper bound, these theoretical results no longer apply.
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Algorithm 2 HSVI

Algorithm 3 FSVI

Function HSVI B
1: Initialize V and V
2: while V' (bg) — V(bo) > edo
3. Explore(by, V,V)

Function Explore(b,V,V)

1: if Stopping criteria have not been reached then
2:  a* « argmax, Qi (b, a’) (see Equation 6)
0* — argmax,(V(7(b,a,0)) — V(7(b,a,0))
Explore(7 (b, a*,0*),V, V)

add(V, backup(b, V)
V — HV(b)

A

2.5 Using the underlying MDP

Using the underlying MDP optimal policy for the POMDP is
a very well known idea and has been explored from many as-
pects in the past. Littman et al. [Littman ef al., 1995] suggest
to use the optimal ()-values of the underlying MDP to create
the Qs pp value function for a POMDP:

Qupp(b) = max Q(s,a)b(s) (8)

Many grid-based techniques (e.g. [Zhou and Hansen, 20011)
initialize the upper bound over the value function using the
underlying MDP. RTDP-BEL initializes a () function for the
POMDP using the optimal () function for the MDP.

An important drawback of using the underlying MDP is
the inability of the MDP to assess actions that gather informa-
tion. Agents in a partially observable environment occasion-
ally need to execute actions that do not move them towards a
reward, but only improve their state of information about the
current world state, such as activating a sensor. In an MDP
the world state is always known and therefore information
gathering actions produce no additional value. Agents rely-
ing on the () 57 p p heuristic, for example, will therefore never
execute any such actions.

3 Forward Search Value Iteration

We propose a new algorithm, Forward Search Value Itera-
tion (FSVI), using trial-based updates over the belief space of
the POMDP. FSVI maintains a value function using a-vectors
and updates it using point-based backups.

The heuristic FSVI uses to traverse the belief space is based
on the optimal solution to the underlying MDP. We assume
that such a solution is given as input to FSVI in the form of
a Q-function over MDP states. This assumption is reason-
able, as a solution to the underlying MDP is always simpler
to compute than a solution to the POMDP.

FSVI (Algorithm 3) simulates an interaction of the agent
with the environment, maintaining both the POMDP belief
state b and the underlying MDP state s — the true state of the
environment the agent is at within the simulation. While at
policy execution time the agent is unaware of s, in simulation
we may use s to guide exploration through the environment.

FSVI uses the MDP state to decide which action to apply
next based on the optimal value function for the underlying
MDP, thus providing a path in belief space from the initial

Function FSVI
1: Initialize V'
2: while V' has not converged do
3:  Sample sg from the by distribution
4:  MDPExplore(bg, so)

Function MDPExplore(b, s)
1: if s is not a goal state then
2:  a* « argmax, Q(s,a)
3:  Sample s’ from tr(s, a*, *)
4:  Sample o from O(a*, s, *)
5:  MDPExplore(7(b, a*, 0), s)
6: add(V, backup(b,V))

belief state by to the goal (or towards rewards). As we assume
that the value function of the underlying MDP is optimal, this
heuristic will lead the agent towards states where rewards can
be obtained.

The trial is ended when the state of the underlying MDP is
a goal state. When the MDP does not have a goal state we
can use other criteria such as reaching a predefined sum of
rewards or number of actions. If the goal is unreachable from
some states we may also add a maximal number of steps after
which the trial ends.

FSVI (Algorithm 3) is apparently very simple. Its simplic-
ity translates into increased speed and efficiency in generating
belief points and updating the values associated with belief
points. FSVI’s method for selecting the next action is very
fast, requiring to check only O(|A|) values (MDP Q-values)
as opposed to any action selection method based on the cur-
rent belief state. For example, RTDP-BEL takes O(|S|) op-
erations for discretizing the belief state before it can select
the next action and HSVI needs O(| 4||0||S||V'|) operations,
where |V| is the number of points in the upper bound, to com-
pute the values of all the successors of the current belief state.
As FSVI generates trajectories using forward projection, it is
easy to determine good sequences of backups, simply going
in reversed order. This ability is shared by HSVI, but not
by other point-based algorithms such as Perseus [Spaan and
Vlassis, 2005] and PBVI [Pineau et al., 2003].

Other algorithms, such as HSVI and RTDP-BEL, use a
heuristic that is initialized based on the MDP @Q-function and
use some form of interpolation over these (-values. These al-
gorithms also improve the heuristic by updating the ()-values
to fit the POMDP values. Such algorithms therefore work ini-
tially much like the @ s pp heuristic which is known to pre-
form badly for many POMDP problems and in many cases
gets stuck in local optima. These algorithms can potentially
need many updates to improve the heuristic to be able to reach
rewards or goal states.

As noted earlier, a major drawback of MDP based ap-
proaches is their inability to perform in information gather-
ing tasks. FSVI is slightly different in that respect. FSVI
uses point-based backups in which information gathering ac-
tions are also evaluated and considered. It is therefore able
to perform single step information gathering actions such as
the activation of a sensor. For example, in the RockSample
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domain [Smith and Simmons, 2005], the robot should acti-
vate a sensor to discover whether a rock is worthwhile, and
indeed FSVI performs very well in the RockSample domain,
executing such actions. However, when the information gath-
ering requires a lengthy sequence of operations, such as in
the heaven-hell problem [Bonet and Gefner, 1998] where the
agent is required to pass a corridor to read a map and then
return to take a reward, FSVI’s heuristic will fail to lead it
through the corridor, and therefore it cannot learn of the ex-
istence of the map. FSVI can learn to read the map (using
an information gathering action) if it is on the path from an
initial state to the goal.

This limitation can be removed by adding an exploration
factor causing FSVI to occasionally choose a non-optimal ac-
tion. In practice, however, it is unlikely that random explo-
ration will rapidly lead towards meaningful trajectories.

4 Empirical Evaluations
4.1 Evaluation Metrics

We evaluate the following criteria:
Value function evaluation — Average discounted reward

#trials E#steps ’yj’r"
(ADR): ==° J=0 2. ADR is filtered using a first

#trials
order filter to reduce the noise in ADR.

Execution time — we report the CPU time but as this is
an implementation specific measurement, we also report the
amount of basic operations such as backup, 7 function, dot
product (- b) and g5, (Equation 5) computations .

Memory — we show the size of the computed value func-
tion and the number of maintained belief points.

4.2 Experimental Setup

As HSVI is known to perform better than other point-based
algorithms such as Perseus [Spaan and Vlassis, 2005] and
PBVI [Pineau et al., 2003], we compare FSVI only to
HSVI. Comparison is done on a number of benchmarks
from the point-based literature: Hallway, Hallway2 [Littman
et al., 1995], TagAvoid [Pineau et al., 2003], RockSample
[Smith and Simmons, 2005] and Network Ring [Poupart and
Boutilier, 2003]. These include all the scalability domains on
which HSVI was tested in [Smith and Simmons, 2005], ex-
cept for Rock Sample 10,10 which could not be loaded on our
system due to insufficient memory. Table 1 contains the prob-
lem measurements for the benchmarks including the size of
the state space, action space and observation space, the num-
ber of trials used to evaluate the solutions, and the error in
measuring the ADR for each problem.

The Rock Sample domain provides an opportunity for test-
ing the scalability of different algorithms. However, these
problems are somewhat limited: they assume deterministic
state transitions as well as full observability for the robot loca-
tion, making the problems easier to solve. To overcome these
limitations we added a new domain — Noisy Rock Sample,
in which agent movements are stochastic and it receives noisy
observations as to its current location.

We implemented in Java a standard framework that incor-
porated all the basic operators used by all algorithms such
as vector dot products, backup operations, 7 function and so
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Figure 1: Convergence on the Noisy Rock Sample 5,5 prob-
lem (a), the Rock Sample 7,8 problem (b) and the Rock Sam-
ple 8,8 problem (c). The X axis shows CPU time and the Y
axis shows ADR.
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Figure 2: Normalized comparison of CPU time for the Rock
Sample problems.

forth. All experiments were executed on identical machines:
x86 64-bit machines, dual-proc, 2.6Ghz CPU, 4Gb memory,
2Mb cache, running linux and JRE 1.5.

We focus our attention on convergence speed of the value
function to previously reported ADR. We executed HSVI and
FSVI, interrupting them from time to time to compute the ef-
ficiency of the current value function using ADR. Once the
filtered ADR has reached the same level as reported in past
publications, execution was stopped. The reported ADR was
then measured over additional trials (number of trials and er-
ror in measurement is reported in Table 1).
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Method ADR V| Time | #Backups #go , |B| #r #a-b | |V| V(b) #HV
(secs) x 108 x 10* x 103 x10°% | 10° 10°
Hallway 187ms 0.13us 0.37us 33ns 0.5us 65ms
HSVI 0516 182 314 634 5.85 34 34.52 667 | 042 106.1 1268
FSVI 0.517 233 50 655 7.71 0.05 0.51 7.78
+0.0024 +71 +15 +100 +2.46 +0.01 +0.08 +2.49
Hallway2 222ms 0.17ps 1us 36ns 1ps 126ms
HSVI 0341 172 99 217 1.56 2.11 11.07 181 | 023 372 34
FSVI 0.345 296 49 355 4.28 0.03 0.3 433
+0.0027 +22 +8 +33 +0.73 +0 | +0.03 +0.74
Tag Avoid 311ms 0.92 8 0.568 8.3ns 0.6u8 24.1ms
HSVI 6418 100 52 304 05 0.29 1.74 0.53 .1 293 1635
FSVI -6.612 174 45 182 0.37 0.01 0.14 0.39
+0.15 +25 +8 +27 +0.1 +0 | +0.02 +0.11
Rock Sample 4,4 92ms 0.2us 0.4648 0.031us 0.2us 4.67ms
HSVI 18.036 123 4 207 1.08 0.1 .17 1.09 | 0.34 6.06 414
FSVI 18.029 84 1 204 0.24 0 0.04 0.25
+0.024 +76 +1 +122 +0.41 +0 +0.01 +0.42
Rock Sample 5,5 114ms 1.1ps 2.5us 0.033 s 0.64us 24.1ms
HSVI 1874 348 85 2309 10.39 026 2.34 105 | 08 T01.1 1883
FSVI 19.206 2725 111 626.2 1.47 0.02 0.1 1.49
+0.063 +75 +5 +247 +0.88 +0 +0.02 +0.89
Noisy Rock Sample 5,5 314ms 0.86us 1.9us 0.035us 0.69us 44.5ms
HSVI 10.318 2639 1586 3523 129.11 2.01 23.05 1324 | 088 | 2649 9294
FSVI 10.382 924 210 1153 11.93 0.48 0.53 12.09
+0.069 +170 +52 +224 +4.79 +0.12 +0.14 +4.8
Rock Sample 5,7 143ms 3.7us 26.641s 0.1Tpus 3.0us 256.6ms
HSVI 22.67 274 205 350 0.65 1.0 43 0.99 | 3.44 14.09 702
FSVI 22.82 306.9 343 500 39684 3722 0.4 2.1
+0.63 +91.5 | +13.6 +400.1 +0.02 | +0.014 | +0.001 +2.9
Rock Sample 7,8 567ms 20us 0.25ms 1.1us 15us 3.4sec
HSVI 20.029 533 3045 2039 1451 15 41 14.66 | 3.42 9.53 6238
FSVI 20.369 343.1 239 512.1 2.389 0.049 0.024 2.457
+0.265 | +146.6 | +78.7 +284.8 +2.32 | £0.059 | +0.013 | +2.357
Rock Sample 8,8 570ms 25us 0.35ms 2.6pus 18us 2.7sec
HSVI 19.474 762 | 13917 1317 10.83 201 53.09 1143 | 173 | 58.38 2638
FSVI 19.646 261.4 783 367.8 0.042 0.816 0.176 1.183
+0.337 | +76.9 | +295 +125.1 +0.02 | +0.013 +0.06 | +0.661
Network Ring 8 164ms Tus 2.6ms 4.5ns 11us 31.8ms
HSVI 027 80 19 153 0.004 0.25 8.44 031 | 0.39 8.46 307
FSVI 4239 40.5 6.75 252 0.004 0.022 0.24 0.19
+0.18 +16 +6.1 +146 +0.002 | +0.012 +0.14 +0.19
Network Ring 10 553ms 10.6 s 13.3ms 23.3ns 99.4us 369ms
HSVI 51.43 69 41 103 0.0036 0.29 6.9 0.144 | 1.11 6.9 206
FSVI 51.44 33.25 47 267.7 0.002 0.025 0.255 0.19
+0.03 +6.14 | +£14.3 +85.78 | 4+0.0004 | +0.008 | +0.081 | +0.086
Table 2: Performance measurements. Model rows show rough estimates of basic operations execution time.
[ Problem | [T [ TA[ [ O [ #wials ] ADR Error | 6. Number of computed belief states.
Hallway 61 5 21 10,000 +0.0015 . .
Hallway? 53 < = 10,000 | L0004 7. 7 function computa}tlons count.
Tag Avoid 870 5 30 10,000 +0.045 8 DOt pI'OdllCt operatlons count. B
Rock Sample 44| 257 9 |2 10,000 | £0.075 9. Number of points in the upper bound (|V'|).
Rock Sample 5.5 | 801 10 | 10 | 10000 | 40.3 10. Upper bound projection computations count (V (b)).
Noisy RS 5,5 801 10 | 27 10,000 | £0.3 -
Rock Sample 3,7 | 3201 | 12 | 2 10,000 | £0.25 11. Upper bound value updates count (H V' (b)).
Rock Sample 7.8 | 12,545 | 13 | 2 1,000 | £0.25 The last 3 items refer only to HSVI as FSVI does not main-
Rock Sample 8.8 | 16385 | 13 | 2 1,000 | +£0.25 tain an upper bound. The reported numbers do not include
Network Ring 8 256 17 2 2,000 +1.1 . . ..
Network Ring 10| 1024 3T 5 3,000 1093 the repeated expensive computation of the ADR, or the ini-

Table 1: Benchmark problem parameters

4.3 Results

Table 2 presents our experimental results. For each problem
and method we report:

1. Resulting ADR.

2. Size of the final value function (|V]).

3. CPU time until convergence.

4. Backups count.

5. ga., operations count.

tialization time (identical for both algorithms).

To illustrate the convergence rate of each algorithm, we
also plotted the ADR as a function of CPU time in Figure 1.
These graphs contain data collected over separate executions
with fewer trials, so Table 2 is more accurate.

4.4 Discussion

Our results clearly indicate that FSVI converges faster than
HSVI and scales up better. The convergence rate shown in
Figure 1 is always faster, the time required to reach optimal
ADR is also always faster, and this difference become more
pronounced as problem size increases. Figure 2 presents a
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more focused comparison of the relative ability of the two
solvers to scale up. Overall, it appears that HSVI is slowed
down considerably by its upper bound computation and its
updates. While it is possible that HSVI’s heuristic leads to a
more informed selection of belief points, FSVI is able to han-
dle more belief points, and faster. In fact, in the Rock Sam-
ple domains, we can see that FSVI is able to converge with
fewer belief points and even slightly improved ADR. Thus,
on these domains, the heuristic guidance in point selection
offered by the MDP policy is superior to the bounds-based
choice of HSVI. Indeed, we can also see that the number of
backups FSVI executes is in most cases less than HSVI, hint-
ing that the chosen trajectories (and hence backups) are also
better than those selected by HSVIL.

Observe that the upper bound of HSVI allows the definition
of additional properties such as a stopping criterion based on
the gap between bounds over the initial belief point by, and an
upper bound over the number of trials required to close that
gap. In practice, however, HSVI never manages to reduce
this gap considerably (as also noted in [Smith and Simmons,
2005]) and reaches maximal performance when the gap is still
very large. This is to be expected, as the the convergence
guarantees for HSVI relies on the eventual exploration of the
entire And-Or search graph for the domain until an appropri-
ate depth that grows as «y approaches 1.

As noted above, FSVI is not able to deal adequately with
longer information-gathering sequences, such as those re-
quired in the heaven-hell domain. HSVI performs better than
FSVI on these domains, although it, too, does not do too
well. We tested both algorithms on a deterministic version
of heaven-hell. HSVI took 52ms to converge and required 71
backups, while FSVI needed 137ms and 937 backups using
an exploration factor of 0.5. When only the activation of sin-
gle step information gathering actions is needed, such as all
the Rock Sample and Network domains, FSVI performs well.

Given that different approximation algorithms for
POMDPs are likely to perform well on different classes
of domains, it is desirable to be able to determine prior to
execution of an algorithm whether it will work well on a
given problem. FSVI appears to be the best current candidate
for domains in which long information seeking plans are
not required. Thus, it is interesting to ask whether such
domains are easy to recognize. We believe that the following
initial schema we are currently exploring might work well.
Roughly, we start by defining informative states as states
where observations are available that result in radically
reduced belief state entropy. If all such states are visited
with reasonably high probability by following the underlying
MDP optimal policy, then FSVI should perform well. In
comparison to the cost of solving the POMDP, this test is
relatively cheap to perform.

5 Conclusions

This paper presents a new point-based algorithm — Forward
Search Value Iteration (FSVI) — that executes asynchronous
value iteration. FSVI simulates trajectories through the belief
space choosing actions based on the underlying MDP optimal
action. Once the trajectory has reached a goal state, FSVI

performs backups on the belief states in reversed order.

FSVI is a simple algorithm that is easy to implement and
leads to good quality solutions rapidly. This was demon-
strated by comparing FSVI to a state-of-the-art algorithm,
HSVI, a closely related point-based algorithm that uses a dif-
ferent heuristic for belief space traversals. Our experiments
show that FSVI is much faster and scales up better on almost
all benchmark domains from the literature.

The underlying MDP provides a heuristic that is both fast
to compute and use and also always directs the agent towards
rewards. This heuristic, however, limits the ability of the
agent to recognize traversals that will improve its state in-
formation. Namely, information gathering tasks that require
lengthy traversals to gather information cannot be solved by
FSVI. This deficiency was demonstrated on the heaven-hell
problem which requires a detour in order to collect impor-
tant information. Thus, it is apparent that future work should
consider how to revise FSVI so that its generated trajectories
will visit such states. This can perhaps be done by executing
simulations that try to reduce the entropy of the current be-
lief space, using information visible to the underlying MDP,
or by examining some augmented state space. Given FSVI’s
performance and simplicity, we believe that such useful mod-
ifications are possible.
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