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Abstract

It has been recognised that the expressivity of de-
scription logics benefits from the introduction of
non-standard modal operators beyond existential
and number restrictions. Such operators support
notions such as uncertainty, defaults, agency, obli-
gation, or evidence, whose semantics often lies out-
side the realm of relational structures. Coalgebraic
hybrid logic serves as a unified setting for log-
ics that combine non-standard modal operators and
nominals, which allow reasoning about individuals.
In this framework, we prove a generic EXPTIME
upper bound for concept satisfiability over general
TBoxes, which instantiates to novel upper bounds
for many individual logics including probabilistic
logic with nominals.

1 Introduction

Description logics [Baader et al., 2003a], which have evolved
from classical modal logic, are the core knowledge represen-
tation formalism of the semantic web as well as of many
stand-alone ontologies. A key feature of many description
logics is support for nominals, i.e., names for individuals to
be used within concepts, rather than only in a separate collec-
tion of assertions about individuals, the ABox. Nominals al-
low in particular for a direct combination of knowledge about
individuals with terminological knowledge.

Another group of features which is often recognised as de-
sirable, but is not currently included in standard description
logics, is formed by reasoning paradigms which go beyond
the standard relational perspective. The latter is the seman-
tic basis e.g. of existential or universal restrictions IR.C /
VR.C along roles asserting that some or all R-successors,
respectively, of an individual satisfy a concept C, and of
the more general qualified number restrictions >nR.C /
<nR.C which give explicit numerical bounds on the num-
ber of R-successors satisfying C'. Features not supported by
purely relational models include, e.g., reasoning with uncer-
tainty, default implication, coalitional reasoning, or notions
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of agency. There has been some interest in adding such fea-
tures to description logics; see, e.g., the overview in Baader
et al. [2003b] and the more recent survey by Lukasiewicz and
Straccia [2008]. Some of these logics support nominals, e.g.,
Lukasiewicz’s P-SHOZIN (D) [2008]. A common feature
of existing approaches is that they typically add a new rea-
soning principle only at the outermost level, e.g., by replacing
concept inclusions in the TBox with conditional probabilities.

The generic framework of coalgebraic hybrid logic [My-
ers et al., 2009] integrates the basic features of hybrid logic
— nominals and the satisfaction operator — with a wide va-
riety of reasoning principles including, e.g., probability and
other notions of uncertainty, non-monotonic conditionals, and
reasoning about the power of coalitions. The new reasoning
principles are embodied as modal operators and hence can be
applied in a nested fashion. Their semantics often goes far
beyond standard relational semantics, being based, e.g., on
probabilistic structures, selection function models, or game
frames. The common umbrella for all these structures is a
coalgebraic semantics.

The main contribution of the present work is to promote
coalgebraic hybrid logic to a full description logic by pro-
viding reasoning support for general TBoxes. Technically,
we prove that under natural assumptions on the axiomati-
sation of the reasoning principles used in the logic at hand,
in fact the same assumptions as previously used to establish
a generic upper bound PSPACE for various purely modal
logics [Schroder and Pattinson, 2009], concept satisfiability
over general TBoxes is in EXPTIME, typically a tight up-
per bound. We achieve this by first reducing the satisfiability
problem to the existence of tableaux, and, in a second step,
to the existence of winning strategies in parity games. In-
stantiation of the generic EXPTIME bound to particular log-
ics yields, to our knowledge, new results in all non-relational
cases, including the probabilistic case.

We conclude with a discussion of how our framework may
be applied in ontological reasoning. We exploit in particular
that coalgebraic semantics is modular [Schroder and Pattin-
son, 2007] and hence allows for flexibly taylored combina-
tions of reasoning principles and algorithms. We illustrate
this point using different combinations of probabilistic and
relational semantics in an ontology of the Tudor dynasty.



2 Nominals in Coalgebraic Logic

We recall the generic framework of coalgebraic hybrid
logic [Myers et al., 2009]. Tt covers a range of logics that
feature modal operators interpreted over a wide variety of sys-
tem types, nominals designating individuals within a system,
and satisfaction operators that permit to assert properties of
individuals at any place within a formula, thus in particular
allowing for internalisation of ABoxes.

The framework is parametric in both syntax and semantics.
The syntax of a given logic is determined by a (modal) sim-
ilarity type A consisting of modal operators with associated
arities, which we fix throughout. For given countably infi-
nite and disjoint sets P of propositional variables and N of
nominals, the set F(A) of hybrid A-formulas is given by the
grammar

FN)2 o u=plil¢AY[=¢]D(¢1,...,0n) | Qig
where p € P, i € Nand © € A is an n-ary modal oper-
ator. We use the standard definitions for the other proposi-
tional operators —, <, V, T, L. The set of nominals occur-
ring in a formula ¢ is denoted by N(¢). A formula of the
form @Q;¢ is called an @-formula. For ¥ C F(A),we put
N(E) = Uges N(¢) and QX = {¢ € ¥ | ¢ Q-formula}.
Semantically, nominals 7 denote individual points in a model,
and an @Q-formula @; ¢ stipulates that ¢ holds at i.

The parametrisation of the semantics is essentially the stan-
dard coalgebraic semantics of modal logics. In particular, the
type of systems underlying the semantics is determined by the
choice of an endofunctor 7' : Set — Set on the category of
sets, to be thought of informally as a parametrised datatype
(formally, T" maps sets X to sets 7X and maps X — Y
to maps TX — TY, compatibly with identities and com-
position). Then, 7T-coalgebras play the roles of frames. A
T-coalgebra is a pair (C, ) where C'is a set of states (or in-
dividuals) and v : C' — T'C is the transition function. When
~ is clear from the context, we identify a T-coalgebra (C, )
with its state space C.

Example 2.1. 1. The (covariant) powerset functor P
maps a set X to its powerset P(X); its coalgebras C —
P(C) are in bijection with Kripke frames (C, R C C x C).

2. The multiset functor B maps a set X to the set of multi-
sets over X, i.e., maps X — NU{oo} assigning multiplicities
to elements of X. Its coalgebras are multigraphs, a variant of
Kripke frames where edges are annotated with positive inte-
ger multiplicities [D’ Agostino and Visser, 2002].

3. The distribution functor D maps a set X to the set of
finitely supported probability distributions on X; its coalge-
bras are Markov chains, also variously referred to as proba-
bilistic type spaces [Heifetz and Mongin, 2001] or probabilis-
tic transition systems.

4. Coalgebras for the functor CF taking a set X to the
set P(X) — P(X) of selection functions over X are pre-
cisely conditional frames [Chellas, 19801, also called selec-
tion function models.

5. Coalgebras for the functor G,, taking a set X to the set
{(S1,.-sSn, f) | Si,...,. S, nonempty sets (of strategies),
f (I Si) = X} of n-player strategic games over X are
Pauly’s game frames [2002].
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The interpretation of an n-ary modal operator © € A is
given by an n-ary predicate lifting [©], i.e., a family of maps
[Clx : P(X)" — P(TX), indexed over all sets X, such
that

[Ohx (A7 [Au], s R [AR]) = (Th)THIODy (As -

forallh: X —Y,Aq,..., A, € PY.

The semantics induced by these parameters, which we
fix throughout, is a satisfaction relation |= between states
¢ € C in (hybrid) T-models M = (C,~,n) and formulas
¢ € F(A). Here, M consists of a T-coalgebra (C, ) and a
hybrid valuation 7, i.e., amap P UN — P(C) that assigns
singleton sets to all nominals ¢+ € N, where we often identify
the singleton set 7(¢) with its unique element. Satisfaction
is inductively defined by the obvious clauses for the proposi-
tional part, and by

e, M = xiffcen(x) e, M= Qiffn(i), M = ¢
e M | Q1 ..., on) iff v(c) € [O]c([o1]ars s [én] )

where z € NUP, i € N, © € A n-ary, and [¢p]rr = {c € C|
¢, M = ¢}. The focus of the present work is on reasoning
over so-called general TBoxes: Given a set I' C F(A) of
global assumptions, the TBox, we say that M is a I'-model if
¢, M | ¢forallc € Candall ¢ € I'. A formula ¢ (a set
of formulas) is I"-satisfiable if there exists a state satisfying ¢
(all formulas in ®) in some I"-model. Note that thanks to the
satisfaction operator, an ABox, i.e., a set of assertions about
individuals, may be encoded either in the formula ¢ itself or
in the TBox I.

Example 2.2. We recall a few basic examples that use the
functors from Example 2.1.

1. The hybrid version of the modal logic K, hybrid K
for short, has a single unary modal operator O, interpreted
over the powerset functor P by [O]x(A) = {B € P(X) |
B C A}. This coalgebraic definition of satisfaction trans-
lates to the usual semantics of the box operator along the bi-
jection between P-coalgebras and Kripke frames, inducing
the standard semantics of hybrid logic [Areces and ten Cate,
2007]. The description logic ALCQ is a notational variant of
a sublogic of multi-agent hybrid K (captured coalgebraically
using multiple copies of the powerset functor).

2. Graded hybrid logic has modal operators <, ‘in more
than %k successors, it holds that’. It is interpreted over
the multiset functor B by [Cr](A) = {B € B(X) |
> wea B(x) > k}. This captures the semantics of graded
modalities over multigraphs [D’Agostino and Visser, 2002].
One can encode the description logic ALCOQ (which fea-
tures qualified number restrictions > nR and has a relational
semantics) into multi-agent graded hybrid logic with multi-
graph semantics by adding formulas =<4 for all occurring
nominals ¢ to the TBox.

3. Probabilistic hybrid logic, the hybrid extension of
probabilistic modal logic [Larsen and Skou, 1991; Heifetz
and Mongin, 2001], has modal operators L,, ‘in the next step,
it holds with probability at least p that’, for p € [0,1] N Q.
It is interpreted over the distribution functor D by putting
[L,]x(A) = (P € D(X) | PA > p}.

, An)



4. Hybrid CK, the hybrid extension of the basic condi-
tional logic CK, has a single binary modal operator =, writ-
ten in infix notation and read, e.g., as a non-monotonic default
implication. Hybrid CK is interpreted over the functor CF by
putting [=] (4, B) = {f : P(X) — P(X) | f(A) C B}.
Other conditional logics with additional axioms, e.g., cau-
tious monotony, are captured similarly. As a simple example,
the fact that the national football championship is typically
won by team ¢ (an observation that fits a number of coun-
tries) is expressed in hybrid conditional logics by the formula
champion = 3.

5. Hybrid coalition logic, the hybrid version of Pauly’s
coalition logic [2002], has modal operators [C] ‘the coalition
C C {1,...,n} of agents can force ...". These are interpreted
by suitable predicate liftings for the functor G,, [Schroder and
Pattinson, 2009]. Given a G,,-coalgebra (C,~), C is the set
of states in a strategic game, and nominals therefore encode
individual positions.

Our generic complexity result will be based on axiomatisa-
tions in a certain format; we require the following notation.

Definition 2.3. The set of boolean combinations over a set
V is denoted Prop(V'). A clause over a set V' is a disjunc-
tion of literals over V, i.e., elements of V U {—v | v € V}.
The set of clauses over V' is denoted Cl(V'). A conjunctive
normal form (CNF) of ¢ € Prop(V) is a subset of CI(V)
whose disjunction is propositionally equivalent to ¢. For
® C Prop(V), ¢ € Prop(V), we write ® Fpy, ¢ (‘P propo-
sitionally entails ¢’) if there exist ¢, ..., ¢, € @ such that
o1 A ...\ ¢, — 1 is a propositional tautology. A valu-
ation 7 : V. — P(X) for some set X induces in the ob-
vious way an interpretation [¢]r C X. Moreover, we put
AX) = {Q@1,...,zn) | © € An-ary,zq,...,2, € X}.
Given 7 as above, one obtains for ¢ € Prop(A(Prop(V)))
a one-step semantics [¢] C TX extending the assignment

[O(¢1 .- dn)l7 = [l x ([P1]7, -, [Pn] 7).

Using these notions, we can now define the crucial prerequi-
sites for the generic reasoning algorithm.

Definition 2.4. A (one-step) rule R = ¢/ over a set V of
propositional variables consists of a premise ¢ € Prop(V)
and a conclusion ¢» € CI(A(V)). The rule R is one-step
sound if whenever [¢]T = X for a valuation 7 : V —
P(X), then [¢]r TX. A set R of one-step rules is
strictly one-step complete if whenever [x]7 = TX for some
7:V — P(X) and some x € CI(A(V)), then there exist a
rule ¢/1) € R¢ and a V-substitution o such that Yo Fpp, x
and X, 7 | ¢o. Here, R¢ denotes the extension of R with
congruence rules a1 < by;..;a, < b,/QOa1,...,a,) <
(b1, ..., by) for © € A n-ary.

Strict one-step completeness essentially amounts to absorp-
tion of cut by the rule system. Strictly one-step complete
rule sets for the logics of Example 2.2 are given in [Schréder
and Pattinson, 2009; Pattinson and Schroder, 2008]. E.g., for
hybrid K, the set of rules a3 A ... A a, — b/Oay A ... A
Oa,, — 0Ob is strictly one-step complete. The axiomatisation
of graded and probabilistic logics is more complicated, but
still tractable in a sense recalled below. In the following, we
fix a strictly one-step complete set R.
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3 Generic Complexity Bounds

We proceed to develop a decision procedure for global conse-
quence in coalgebraic hybrid logic, i.e., for I'-satisfiability of
formulas given a TBox I', where ABoxes are internalised us-
ing satisfaction operators. We translate the satisfiability prob-
lem into the problem of finding a winning strategy in a parity
game. The latter will be played on a game board built from a
I'-closed set X of formulas.

Definition 3.1. Let = C F(A). A (X-)Hintikka set is a sub-
set of X which is maximally consistent w.r.t. propositional
reasoning. We say that X is closed if X is closed under sub-
formulas, negation, and @; with ¢ € N(X), where we identify
== with ¢, @Q;—¢ with -Q,¢, and Q;Q, ¢ with Q,¢p. We say
that X is I'-closed if I' C ¥ and X is closed. The I'-closure
of a set A is the smallest I"-closed set containing A.

Let ¢ be a formula, to be checked for I'-satisfiability. As ¢ is
I'-satisfiable iff @Q;¢ is I'-satisfiable for a fresh nominal ¢, we
can assume that ¢ is an @-formula. We form the I'-closure
Y of {¢} (which is of polynomial size in T, ¢). Note that ¢
is I'-satisfiable iff there exists a I"-satisfiable @Y.-Hintikka set
K such that ¢ € K; as going through all such K yields an ex-
ponential factor and we are aiming for EXPTIME decidabil-
ity, we can focus on deciding I'-satisfiability of @Y.-Hintikka
sets. We can then apply Q-elimination [Myers et al., 2009]:

Definition 3.2. A hybrid formula is @Q-free if it does not con-
tain occurrences of @Q. A set of @Q-formulas is @Q-eliminated
if it consists of formulas @;p with p @Q-free. For p € X, p[ K]
denotes the Q-free formula obtained by replacing every sub-
formula @;x of p not contained in further occurrences of @
by T if @,x € K, and by L otherwise.

One shows easily that a model satisfies K iff it satisfies the
@-eliminated set {@;p[K] | @;p € K}. Thus, we assume in
the following w.l.o.g. that K is Q-eliminated and hence that
the X-Hintikka sets K; = {p | Q;p € K} (i € N(X)) are Q-
free; intuitively, we have reduced to checking I'-satisfiability
of an ABox K. Note that the K; need not be pairwise distinct.
If one of the K; does not contain I, then K is immediately
rejected as I'-unsatisfiable.

In the tableau system for global entailment, possible non-
termination arises both from the presence of global assump-
tions, which may propagate indefinitely, as well as from the
presence of nominals, which may force loops. The game-
theoretic approach that we apply below allows us to deal with
infinite paths in tableaux, and eliminates the need to consider
blocking conditions. We introduce a notion of tableau graph
that captures all possible tableaux, i.e., all possible rule appli-
cations at every node, within a single object:

Definition 3.3. If H is a X-Hintikka set, x /¢ € R,and o is a
substitution such that ¢»)o € Prop(X) and H Fp;, —t0o, then
—xo is a demand of H. A I'-tableau graph for K is a graph
whose set of nodes consists of >-Hintikka sets and includes
the X-Hintikka sets K;, such that

1. for every demand p of a node H, there exists an edge
H — Gsuchthat G Fpp, p

2. whenever H +py, i for some node H and some 7 €
N(X), then H = K;,



3. H DT for every node H.

Theorem 3.4. The set K is I'-satisfiable iff there exists a I'-
tableau graph for K.

Proof sketch. ‘Only if’ is by straightforward extraction of a
tableau graph from a I'-model for K. ‘If’ is by construction of
a so-called coherent coalgebra structure & on the set of nodes
in a tableau graph such that the graph becomes a supporting
Kripke frame, i.e., for every node H, {(H) € TY where Y is
the set of successor nodes of H. Here, £ is called coherent if
for all O(py, ..., pn) € X and all nodes H,

S(H) € [[@]](1617 7/A)n> iff@(ph -~-7pn) €H

where p is the set of successor nodes G of H such that p € G.
Existence of a coherent structure £ is proved by means of
strict one-step completeness, analogously as in [Schroder
and Pattinson, 2009] but avoiding induction over the depth
of nodes. Coherence then allows the inductive proof of a
truth lemma, which entails that the model constructed sat-
isfies both I" and K. O

As the nodes of the tableau graph are subsets of 3, we obtain
a small model property for hybrid coalgebraic logic relative
to an arbitrary background theory.

Corollary 3.5. Every I'-satisfiable formula ¢ is satisfiable in
a I'-model of exponential size in " and ¢.

Having reduced the satisfiability problem to existence of
tableau graphs, we now show that the latter can be further
reduced to existence of winning strategies in certain par-
ity games, as follows. The game is played by two players,
Abelard (V) and Eloise (3); 3 tries to prove that K is I'-
satisfiable, while V tries to prove the opposite. A move by
V consists in the choice of rule to be applied, giving rise to a
demand, while a move by 3 consists in the choice of a Hin-
tikka set that satisfies the demand. Formally:

Definition 3.6 (Tableau Game). The I"-tableau game for K
is a graph game S = (B3, By, E) where

e By, the set of positions owned by V, consists of an
initial position ¢nit and all X-Hintikka sets H such that a)
FCHandb)ieNX) = H=K,.

e B3, the set of positions owned by 3, consists of pairs
(R,0), where R = /1 is arule in R and o is a substitution
such that Yo € Prop(X)

e F is the set of permissible moves, where V may move
from a X-Hintikka-set H to a pair (x /1, o) such that H Fpp,
—1po, and 3 may move from (x /v, o) to a X-Hintikka set H
such that H Fp;, —xo. Additionally, ¥ may move to any of
the K; from init.

The set of all positions on the game board is B = B3 U By.

(Note that By is a priori infinite if there are infinitely many
rules; we will introduce additional assumptions later that al-
low reducing to a finite board.)

A full play in the tableau game is a finite or infinite
sequence of moves (bg,b1,bo,...) such that by = init,
(bi,biy1) € E forall i > 0, and — in case the sequence is
finite — the last position has no permissible moves. A finite
full play is lost by the player who owns the last position (and
hence cannot move), and infinite full plays are won by 3.

920

Remark 3.7. We note that the tableau game can be seen as
a (very simple) parity game where we assign priority O to all
positions of the game so that — by the parity condition — 3
wins all infinite games [Mazala, 2001]. Hence, he tableau
game is history free determined.

Definition 3.8. A history-free strategy for 3 is a function f :
B3 — B such that (b, f(b)) € E for all b € B3. We say
that f is a winning strategy for 3 if 3 wins all full plays that
conform with f in the obvious sense.

Lemma 3.9. Eloise has a history-free winning strategy in
the I'-tableau game for K iff there exists a I'-tableau graph
for K.

Proof sketch. ‘If’ is clear. ‘Only if’: construct the I'-tableau
graph starting from the initial set of nodes {K; | i € N(X)}
and successively introducing additional nodes and edges ac-
cording to the strategy of 3 for every possible move of V, i.e.,
for all arising demands. O

We now show that the existence of a winning strategy for 3 in
the tableau game can be decided in exponential time, subject
to a mild condition on the rule sets that is satisfied in all our
examples. We require the modal tableau rules to be tractable
in a similar sense as in Schroder and Pattinson [2009]; the
main condition here is that one may restrict to rule sets with
at most polynomial-size codes (regarding the remaining con-
ditions, we can be slightly more generous in the context of
EXPTIMFE bounds relevant here).

Definition 3.10. The set R of modal rules is EXPTIME-
tractable if there exists a coding of the rules such that, up to
propositional equivalence, all demands of a Hintikka set can
be generated by rules with codes of polynomially bounded
size, and such that validity of codes, matching of rule codes
for x/v € R to Hintikka sets H (in the sense of finding o
such that H +p;, =)o), and membership of clauses in a CNF
of a rule premise are all decidable in EXPTIME.

Lemma 3.11. If R is EXPTIME-tractable, then it can be
decided in EXPTIME whether 3 has a winning strategy in
the I'-tableau game for K.

Proof Sketch. Given that the rule set is tractable, we may re-
place the positions B3 owned by 3 by codes of polynomial
size in I', K. This leads to a game board whose size n is at
most exponential in I'; K. As we have a parity game with
only one priority, it takes at most O(n*) * k steps to deter-
mine whether 3 has a winning strategy [Klauck, 20011, where
k is such that one can decide in at most k steps whether
(b,b’) € E. Tractability of the rule set guarantees that k
is at most exponential, so that we obtain overall complexity
EXPTIME. O

Corollary 3.12. If R is EXPTIME-tractable, then T'-
satisfiability of formulas ¢ over general TBoxes T is decid-
able in EXPTIME.

The above corollary yields decidability in EXPTIME of rea-
soning over general TBoxes for all logics mentioned in Ex-
ample 2.2. In particular, this reproves the known tight upper
bound for hybrid K (which follows from an EXPTIME up-
per bound for the graded pu-calculus [Areces and ten Cate,



2007]), as well as for the description logics ALCOQ and,
with minor adjustments of the argument, ALCHO Q [Tobies,
20001, and in fact even the more expressive ALCHO Q° that
features satisfaction operators [Liu et al., 2006]. The use of
games in this context appears to be new. The (tight) upper
bounds for TBox reasoning in probabilistic hybrid logic, con-
ditional hybrid logic, and hybrid coalition logic are, to our
knowledge, previously unknown. We discuss some examples
of this type in more detail below.

4 Two Views on Probabilistic Successors

We discuss two applications that highlight the generality of
our results. In both examples, we combine classical relational
successors and uncertainty, but in two different ways. Both
are phrased in terms of descendancy, where states in a model
represent persons.

4.1 Probabilistic Successors

We imagine a situation where we only have probabilistic
knowledge about the offspring of a certain person. Sup-
pose for instance that the probability that ¢ (Catherine Carey)
is a child of h (Henry VIII) is known to be at least 0.8,
and similarly we know that 4’ (Henry Carey) is a child of
h with likelihood 0.6. To model this situation, we con-
sider a structure of type C — DP(C) where P(X) is the
powerset of a set X and D(X) = {u : X — [0,1] |
supp(u) is finite, - p(x) = 1} is the set of finitely sup-
ported probability distributions over X as in Example 2.2. In
other words, given a person z € C, an application of the
structure map yields a probability distribution over sets (!)
of persons. If this distribution assigns probability p to a set
C' C C, we interpret this as the fact that the probability that
C' are (precisely) the children of x equals p. (Note that this
model applies primarily when z is male.)

This situation can be syntactically described using modal
operators of the form L, <, where L, ¢ reads ‘the probabil-
ity that there exists a successor that satisfies ¢ is at least p’,
together with the companion modality L,0 expressing the
same statement relative to all successors.

Assume we know that the probability that every king has
at least one illegitimate child is at least 0.8. This is expressed
using the global assumption

king — Ly gCillegitimate,

while the above assertions about Catherine and Henry Carey

take the form
@hLo,gOC and @hLQ.GQhI.

Moreover, we know that Henry is a king, and m (Mary) is
certainly a child of Henry, and either ¢ or i’ is illegitimate,
whereas e is legitimate, which we express by

@pking @p(1)m @.—illegitimate
Qcillegitimate V @) illegitimate.

Now consider the concept

king A Ly gO—illegitimate
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asserting that all children of a king are legitimate with prob-
ability at least 0.9. This concept is satisfiable, but & is not an
instance of ¢y (as e is a legitimate child of h).

Similarly, the ABox

@, L10(illegitimate — (cV 1))

formalising that c is legitimate and ¢ and h’ are the only pos-
sible illegitimate children of h is satisfiable (and the global
assumption forces that i’ be a child of i with likelihood at
least 0.8) but it becomes unsatisfiable if we stipulate for ex-
ample that i’ is a child of h with probability at most 0.7. The
proof rules that govern this situation are a straightforward
combination of the rules discussed in [Schréder and Pattin-
son, 2009], which immediately yields tractability of the ensu-
ing combined rule set. As a consequence, we have that global
consequence for the logic of probabilistic successors is decid-
able in EXPTIME.

4.2 Probabilistic Identities

Now let us suppose that someone internal to Henry’s court
has observed that none of the children of ¢’ (Catherine of
Aragon) had really died, but they were rather removed from
court, and we are left with only probabilistic knowledge con-
cerning their identities.

To model this situation, we need to consider a different
combination of relational successors and probability distri-
butions. Our knowledge base is modelled by structures of
the form C' — P(D(C)) where P and D are as above. The
main difference is now that, from each state of the model, we
can observe a set of relational successors (corresponding to
the person’s offspring), but each successor carries a proba-
bility distribution over the model that expresses uncertainty
concerning the successor’s identity.

Syntactically, this leads to modal operators of the form
&L, asserting that there exists a (relational) successor that
satisfies a given formula with probability at least p. How-
ever, we use a slightly richer set of modal operators, where
we can interpose propositional connectives between the re-
lational and probabilistic operators. Formally, this leads to
a two-sorted logical language where one sort describes re-
lational successors and the second models quantitative un-
certainty; tractability of such combinations is established in
[Schroder and Pattinson, 20071, so that we obtain decidabil-
ity in EXPTIME of global consequence in this situation
(formally, the logic of the previous section arises as a sim-
ilar combination, the second sort corresponding to possible
worlds).

Suppose that ¢’ had one female child, whose identity is
known to be m (Queen Mary) with certainty, and she also
had a male child, believed to be a with likelihood at least 0.2
and b with likelihood at least 0.8. We take it for granted that
a queen’s offspring is always legitimate, leading to the global
assumption

Q,—illegitimate

queen — O-Ljillegitimate

where we have made use of the ability to apply propositional
connectives to subformulas of the same (here: probabilistic)
type. This assumption expresses that at least one of the possi-
ble candidates (with non-zero probability) for any given child
of a queen, namely the actual child, must be legitimate.



In addition, we have the ABox

Q. queen @C/O(LU.QG/ AN Lo‘gb)
Q,, female

@C/ <>L1m

@Q,—female @,—female

that formalises our assumptions concerning ¢’’s offspring.
We may now ask whether it is possible that both @ and b are
illegitimate, i.e.,

Qgillegitimate A @Qyillegitimate.

This formula is not satisfiable as it would violate the global
assumption. In contrast, the statement that a queen has at least
one child who will be queen with likelihood at least 0.7, i.e.,
the formula

queen — &Ly 7queen

is consistent with our (hypothetical) knowledge — we may,
e.g., consider models satisfying @,,,queen.

5 Conclusion

We have extended the algorithmic framework surrounding
coalgebraic hybrid logic [Myers et al., 2009] to deal with
global logical consequence. In description logic terms, we
internalise the ABox and provide support for concept sat-
isfiability and instance checking relative to a general TBox.
Specifically, we have established a small model property for
coalgebraic hybrid logic over general TBoxes (Corollary 3.5),
and a criterion for EXPTIMFE decidability of global conse-
quence (Corollary 3.12). The prime achievement of this work
is its generality: instantiations of the coalgebraic framework
yield new EXPTIME bounds for a large number of modal
and description logics far beyond Kripke semantics including
various conditional logics, coalition logic, and logics for un-
certainty. The complexity bounds are obtained by reducing
satisfiability to the existence of winning strategies on a game
played on a tableau graph, which also implies completeness
of a tableau calculus with suitable blocking conditions. Fur-
ther extensions of the framework, such as local binding [Hor-
rocks et al., 2007] and the addition of temporal operators via
suitable fixpoints, as well as the analysis of further reason-
ing tasks and the possibility of efficient reasoning using SMT
solvers for local tasks, are the subject of ongoing research.
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