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Abstract

Matrix factorization techniques have been fre-
quently applied in information processing tasks.
Among them, Non-negative Matrix Factorization
(NMF) have received considerable attentions due
to its psychological and physiological interpreta-
tion of naturally occurring data whose representa-
tion may be parts-based in human brain. On the
other hand, from geometric perspective the data is
usually sampled from a low dimensional manifold
embedded in high dimensional ambient space. One
hopes then to find a compact representation which
uncovers the hidden topics and simultaneously re-
spects the intrinsic geometric structure. In this pa-
per, we propose a novel algorithm, called Local-
ity Preserving Non-negative Matrix Factorization
(LPNMF), for this purpose. For two data points,
we use KL-divergence to evaluate their similarity
on the hidden topics. The optimal maps are ob-
tained such that the feature values on hidden topics
are restricted to be non-negative and vary smoothly
along the geodesics of the data manifold. Our em-
pirical study shows the encouraging results of the
proposed algorithm in comparisons to the state-of-
the-art algorithms on two large high-dimensional
databases.

1 Introduction

Data representation has been a fundamental problem in many
areas of information processing. A good representation
can significantly facilitates learning from example in terms
of learnability and computational complexity [Duda et al.,
2000]. On the one hand, each data point may be associated
with some hidden topics. For example, a face image can be
thought of as a combination of nose, mouth, eyes, etc. On the
other hand, from geometrical perspective, the data points may
be sampled from a probability distribution supported on a low
dimensional submanifold embedded in the high dimensional
space. One hopes then to find a compact representation which
respects both hidden topics as well as geometric structure.

In order to discover the hidden topics, matrix factorization
techniques have been frequently applied [Deerwester et al.,
1990; Liu et al., 2008]. For example, the canonical algorithm

Latent Semantic Indexing (LSI, [Deerwester et al., 1990]) ap-
plies Singular Value Decomposition (SVD) to decompose the
original data matrix X into a product of three matrices, that is,

X = USVT. U and V are orthogonal matrices and S is a diag-
onal matrix. The quantities Sii are called the singular values
of X, and the column vectors of U and V are called left and
right singular vectors, respectively. By removing those sin-
gular vectors corresponding to sufficiently small singular val-
ues, we obtain a natural low-rank approximation to the origi-
nal matrix and each dimension corresponds to a hidden topic.
Besides SVD, the other popular matrix factorization tech-
niques include LU-decomposition, QR-decomposition, and
Cholesky decomposition.

Recently Non-negative Matrix Factorization (NMF, [Lee
and Seung, 1999]) have been proposed and achieved great
success due to its theoretical interpretation and practical per-
formance. Previous studies have shown there is psychological
and physiological evidence for parts-based representation in
human brain [Logothetis and Sheinberg, 1996; Palmer, 1977;
Wachsmuth et al., 1994]. The non-negative constraints in
NMF lead to a parts-based representation because it allows
only additive, not subtractive, combinations. NMF has been
shown to be superior to SVD in face recognition [Li et al.,
2001] and document clustering [Xu et al., 2003]. The major
disadvantage of NMF is that it fails to consider the intrinsic
geometric structure in the data.

In this paper, we aim to discover the hidden topics and the
intrinsic geometric structure simultaneously. We propose a
novel algorithm called Locality Preserving Non-negative Ma-
trix Factorization (LPNMF) for this purpose. For two data
points, we use KL-divergence to evaluate their similarity on
the hidden topics. A nearest neighbor graph is constructed to
model the local manifold structure. If two points are suffi-
ciently close on the manifold, then we expect that they have
similar representations on the hidden topics. Thus, the op-
timal maps are obtained such that the feature values on hid-
den topics are restricted to be non-negative and vary smoothly
along the geodesics of the data manifold. We also propose an
efficient method to solve the optimization problem. It is im-
portant to note that this work is fundamentally based on our
previous work GNMF [Cai et al., 2008]. The major differ-
ence is that GNMF evaluates the relationship between two
matrices using Frobenius norm. While in this work, we use
the divergence which has better probabilistic interpretation.
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2 A Brief Review of NMF

Non-negative Matrix Factorization (NMF) [Lee and Seung,
1999] is a matrix factorization algorithm that focuses on the
analysis of data matrices whose elements are nonnegative.

Given a data matrix X = [xij ] = [x1, · · · , xn] ∈ R
m×n,

each column of X is a sample vector. NMF aims to find two
non-negative matrices U = [uik] ∈ R

m×t and V = [vjk] ∈
R

n×t which minimize the following objective function:

O =
∑
i,j

(
xij log

xij

yij

− xij + yij

)
(1)

where Y = [yij ] = UVT . The above objective function is
lower bounded by zero, and vanishes if and only if X = Y.
It is usually referred as “divergence” of X from Y instead of
“distance” between X and Y because it is not symmetric in
X and Y. It reduces to the Kullback-Leibler divergence, or
relative entropy, when

∑
ij xij =

∑
ij yij = 1, so that X and

Y can be regarded as normalized probability distributions. 1

Although the objective function O in Eq. (1) is convex in
U only or V only, it is not convex in both variables together.
Therefore it is unrealistic to expect an algorithm to find the
global minimum of O. Lee & Seung [Lee and Seung, 2001]

presented an iterative update algorithm as follows:

uik ← uik

∑
j (xijvjk/

∑
k uikvjk)∑

j vjk

vjk ← vjk

∑
i (xijuik/

∑
k uikvjk)∑

i uik

(2)

It is proved that the above update steps will find a local mini-
mum of the objective function O [Lee and Seung, 2001].

In reality, we have t � m and t � n. Thus, NMF essen-
tially try to find a compressed approximation of the original

data matrix, X ≈ UVT . We can view this approximation
column by column as

xj ≈

t∑
k=1

ukvjk (3)

where uk is the k-th column vector of U. Thus, each data vec-
tor xj is approximated by a linear combination of the columns
of U, weighted by the components of V. Therefore U can be
regarded as containing a basis that is optimized for the linear
approximation of the data in X. Let zT

j denote the j-th row

of V, zj = [vj1, · · · , vjk]t. zj can be regarded as the new
representation of each data point in the new basis U. Since
relatively few basis vectors are used to represent many data
vectors, good approximation can only be achieved if the ba-
sis vectors discover structure that is latent in the data [Lee and
Seung, 2001].

The non-negative constraints on U and V only allow ad-
dictive combinations among different basis. This is the most
significant difference between NMF and other other matrix

1One can use other cost functions (e.g., Frobenius norm) to mea-
sure how good UVT approximates X. Please refer [Lee and Seung,
2001; Cai et al., 2008] for more details.

factorization methods, e.g., SVD. Unlike SVD, no subtrac-
tions can occur in NMF. For this reason, it is believed that
NMF can learn a parts-based representation [Lee and Seung,
1999]. The advantages of this parts-based representation has
been observed in many real world problems such as face anal-
ysis [Li et al., 2001], document clustering [Xu et al., 2003]

and DNA gene expression analysis [Brunet et al., 2004].

3 Locality Preserving Non-negative Matrix

Factorization

Recall that NMF tries to find a basis that is optimized for
the linear approximation of the data. One might hope that
knowledge of the geometric structure of the data can be ex-
ploited for better discovery of this basis. A natural assump-
tion here could be that if two data points xj , xs are close in
the intrinsic geometry of the data distribution, then zj and
zs, the representations of this two points in the new basis,
are also close to each other. This assumption is usually re-
ferred to as manifold assumption [Belkin and Niyogi, 2001;
He and Niyogi, 2003], which plays an essential rule in de-
veloping various kinds of algorithms including dimensional-
ity reduction algorithms [Belkin and Niyogi, 2001] and semi-
supervised learning algorithms [Belkin et al., 2006].

Recent studies on spectral graph theory [Chung, 1997] and
manifold learning theory [Belkin and Niyogi, 2001] have
demonstrated that the local geometric structure can be effec-
tively modeled through a nearest neighbor graph on a scatter
of data points. Consider a graph with N vertices where each
vertex corresponds to a document in the corpus. Define the
edge weight matrix W as follows:

Wjs =

{
1, if xj ∈ Np(xs) or xs ∈ Np(xj)
0, otherwise.

(4)

where Np(xs) denotes the set of p nearest neighbors of xs.
Again, we can use the divergence between the low dimen-

sional representations in the new basis of two samples to mea-
sure the “distance”:

D(zj ||zs) =

t∑
k=1

(
vjk log

vjk

vsk

− vjk + vsk

)
, (5)

since we have zj = [vj1, · · · , vjk]t. Thus, the following term
can be used to measure the smoothness of the low dimen-
sional representation varies smoothly along the geodesics in
the intrinsic geometry of data.

R =
1

2

n∑
j,s=1

(
D(zj ||zs) + D(zs||zj)

)
Wjs

=
1

2

n∑
j,s=1

t∑
k=1

(
vjk log

vjk

vsk

+ vsk log
vsk

vjk

)
Wjs.

(6)

By minimizing R, we get a conditional probability distribu-
tion which is sufficiently smooth on the data manifold. A in-
tuitive explanation of minimizing R is that if two data points
xj and xs are close (i.e. Wjs is big), zj and zs are also close to
each other. Thus, we can name the new algorithm as Locality
Preserving Non-negative Matrix Factorization (LPNMF).
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Given a data matrix X = [xij ] ∈ R
m×n, Our LPNMF aims

to find two non-negative matrices U = [uik] ∈ R
m×t and

V = [vjk] ∈ R
n×t which minimize the following objective

function:

O =

m∑
i=1

n∑
j=1

(
xij log

xij

yij

− xij + yij

)
+ λR (7)

where Y = [yij ] = UVT . The λ ≥ 0 is the regularization
parameter.

3.1 Multiplicative Update Rules

The objective function O of LPNMF in Eq. (7) is not convex
in both U and V together. Therefore it is unrealistic to expect
an algorithm to find the global minimum of O. Similar to
the NMF, we also have two update rules which can achieve a
local minimum.

uik ← uik

∑
j (xijvjk/

∑
k uikvjk)∑

j vjk

(8)

vk ←

 X
i

uikI + λL

!
−1

2
6666664

v1k

P
i

“
xi1uik/

P
k

uikv1k

”
v2k

P
i

“
xi2uik/

P
k uikv2k

”
...

vnk

P
i

“
xinuik/

P
k

uikvnk

”

3
7777775

(9)

where vk is the k-th column of V and I is a n × n identity
matrix. The matrix L is the graph Laplacian [Chung, 1997] of
W. It is defined as D−W, where D is a diagonal matrix whose
entries are column (or row, since W is symmetric) sums of W,
Djj =

∑
s Wsj .

When λ = 0, it is easy to check that the update rules in Eq.
(8) and (9) reduce to the update rules of original NMF. When
λ > 0, we have the following theorem:

Theorem 1. The objective function O in Eq. (7) is nonin-
creasing under the update rules in Eq. (8) and (9). The ob-
jective function is invariant under these updates if and only if
U and V are at a stationary point.

Theorem 1 grantees that the update rules of U and V in
Eq. (8) and (9) converge and the final solution will be a local
optimum. Please see the Appendix for a detailed proof.

4 Experimental Results

Previous studies show that NMF is very powerful on doc-
ument clustering [Xu et al., 2003]. It can achieve similar or
better performance than most of the state-of-the-art clustering
algorithms, including the popular spectral clustering methods
[Shi and Malik, 2000]. Assume that a document corpus is
comprised of k clusters each of which corresponds to a co-
herent topic. To accurately cluster the given document cor-
pus, it is ideal to project the documents into a k-dimensional
semantic space in which each axis corresponds to a particular
topic. In this semantic space, each document can be repre-
sented as a linear combination of the k topics. Because it is
more natural to consider each document as an additive rather

subtractive mixture of the underlying topics, the combination
coefficients should all take non-negative values. These val-
ues can be used to decide the cluster membership. This is
the main motivation of applying NMF on document cluster-
ing. In this section, we also evaluate our LPNMF algorithm
on document clustering problem.

The largest 30 categories in TDT2 2 and Reuters3 are used
in our experiment. The TDT2 corpus consists of data col-
lected during the first half of 1998 and taken from 6 sources,
including 2 newswires (APW, NYT), 2 radio programs (VOA,
PRI) and 2 television programs (CNN, ABC). The Reuters
data set was originally collected and labeled by Carnegie
Group, Inc. and Reuters, Ltd. In this experiment, those doc-
uments appearing in two or more categories were removed.
Finally we have 9,394 documents in TDT2 corpus and 8,076
documents in Reuters corpus. In both of the two data sets, the
stop words are removed and each document is represented as
a tf-idf vector.

4.1 Evaluation Metric

The clustering result is evaluated by comparing the obtained
label of each document with that provided by the document
corpus. The normalized mutual information metric (NMI) is
used to measure the performance [Xu et al., 2003; Cai et al.,
2005].

Let C denote the set of clusters obtained from the ground
truth and C′ obtained from our algorithm. Their mutual in-
formation metric MI(C, C′) is defined as follows:

MI(C, C′) =
∑

ci∈C,c′
j
∈C′

p(ci, c
′

j) · log
p(ci, c

′

j)

p(ci) · p(c′j)

where p(ci) and p(c′j) are the probabilities that a document
arbitrarily selected from the corpus belongs to the clusters ci

and c′j , respectively, and p(ci, c
′

j) is the joint probability that
the arbitrarily selected document belongs to the clusters ci as
well as c′j at the same time. In our experiments, we use the
normalized mutual information NMI as follows:

NMI(C, C′) =
MI(C, C′)

max(H(C), H(C′))

where H(C) and H(C′) are the entropies of C and C′, re-
spectively. It is easy to check that NMI(C, C′) ranges from
0 to 1. NMI = 1 if the two sets of clusters are identical, and
NMI = 0 if the two sets are independent.

4.2 Performance Evaluations and Comparisons

To demonstrate how the document clustering performance
can be improved by our method, we compared LPNMF with
other four popular document clustering algorithms as follows:

• Canonical kmeans clustering method (kmeans in short).

• Two representative spectral clustering methods: Aver-
age Association (AA in short) [Zha et al., 2001], and

2Nist Topic Detection and Tracking corpus at
http://www.nist.gov/speech/tests/tdt/tdt98/index.htm

3Reuters-21578 corpus is at
http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 1: Clustering performance on TDT2 (% NMI)
k kmeans AA NC NMF LPNMF

2 82.7 74.7 97.7 95.7 98.3
3 83.4 82.2 95.1 89.0 95.1
4 80.7 76.7 89.6 86.2 94.4
5 78.1 75.9 92.1 83.6 93.9
6 81.6 79.5 92.3 91.9 92.1
7 79.2 79.7 87.7 84.8 88.6
8 78.1 74.2 83.1 81.7 86.6
9 79.8 75.6 87.7 86.6 90.9
10 73.1 69.2 76.7 81.2 83.4

Avg 79.6 76.4 89.1 86.7 91.5

Table 2: Clustering performance on Reuters (% NMI)
k kmeans AA NC NMF LPNMF

2 44.9 39.2 56.3 60.2 64.0
3 37.5 39.2 51.2 50.7 55.4
4 50.4 43.9 57.8 61.1 62.9
5 46.9 42.1 50.6 51.3 53.1
6 55.1 45.1 59.1 59.3 59.9
7 54.0 44.9 54.0 56.3 57.7
8 41.8 32.4 39.7 40.4 44.7
9 43.9 36.2 45.1 45.9 48.1

10 54.8 44.7 51.5 55.4 55.5

Avg 47.7 40.9 51.7 53.4 55.7
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Figure 1: The performance of LPNMF vs. parameters λ and p. The LPNMF is very stable with respect to both the parameter λ
and p. It achieves consistent good performance with the λ varying from 100 to 1000 and p varying from 5 to 17.

Normalized Cut (NC in short) [Shi and Malik, 2000].
Interestingly, Zha et al. [Zha et al., 2001] has shown that
the AA is equivalent to that of the SVD followed by the
kmeans clustering method if the inner product is used to
measure the document similarity.

• Nonnegative Matrix Factorization based clustering
(NMF in short).

There are two parameters in our LPNMF approach: the
number of nearest neighbors p and the regularization param-
eter λ. Throughout our experiments, we empirically set the
number of nearest neighbors p to 5, the value of the regular-
ization parameter λ to 100.

Table 1 and 2 show the evaluation results using the TDT2
and the Reuters corpus, respectively. The evaluations were
conducted with the cluster numbers ranging from two to ten.
For each given cluster number k, 20 test runs were conducted
on different randomly chosen clusters and the average perfor-
mance is reported in the tables. These experiments reveal a
number of interesting points:

• The non-negative matrix factorization based methods,
both NMF and LPNMF, outperform the AA method
(SVD+kmeans), which suggests the superiority of NMF
in discovering the hidden topic structure than other ma-
trix factorization methods, e.g., SVD.

• Our LPNMF approach gets significantly better perfor-
mance than the ordinary NMF. This shows that by con-
sidering the intrinsic geometrical structure of the data,

LPNMF can learn a better compact representation in the
sense of semantic structure.

• The improvement of LPNMF over other methods is
more significant on the TDT2 corpus than the Reuters
corpus. One possible reason is that the document clus-
ters in TDT2 are generally more compact and focused
than the clusters in Reuters. Thus, the nearest neighbor
graph constructed over TDT2 can better capture the ge-
ometrical structure of the document space.

4.3 Parameters Selection

Our LPNMF model has two essential parameters: the num-
ber of nearest neighbors p and the regularization parameter λ.
Figure 1 show how the performance of LPNMF varies with
the parameters λ and p (We only show the result on TDT2
corpus due to the space limitation. The curves are similar
on Reuters corpus). As we can see, the LPNMF is very sta-
ble with respect to both the parameter λ and p. It achieves
consistent good performance with the λ varying from 100 to
1000 and p varying from 5 to 17.

5 Conclusion

We have presented a novel method for matrix factorization,
called Locality Preserving Non-negative Matrix Factoriza-
tion (LPNMF). LPNMF models the data space as a subman-
ifold embedded in the ambient space and performs the non-
negative matrix factorization on this manifold in question. As
a result, LPNMF can have more discriminating power than
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the ordinary NMF approach which only considers the Eu-
clidean structure of the data. Experimental results on doc-
ument clustering show that LPNMF provides better represen-
tation in the sense of semantic structure.
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Appendix (Proofs of Theorem 1):

The objective function O of LPNMF in Eq. (7) is certainly
bounded from below by zero. To prove Theorem 1, we need
to show that O is nonincreasing under the update steps in Eq.
(8) and (9). Since the second term of O is only related to V,
we have exactly the same update formula for U in LPNMF as
the original NMF. Thus, we can use the convergence proof of
NMF to show that O is nonincreasing under the update step
in Eq. (8). Please see [Lee and Seung, 2001] for details.

Now we only need to prove that O is nonincreasing under
the update step in Eq. (9). we will follow the similar pro-
cedure described in [Lee and Seung, 2001]. Our proof will
make use of an auxiliary function similar to that used in the
Expectation-Maximization algorithm [Dempster et al., 1977].
We begin with the definition of the auxiliary function.

Definition G(V, V′) is an auxiliary function for F (V) if the
conditions

G(V, V′) ≥ F (V), G(V, V) = F (V)

are satisfied.

The auxiliary function is very useful because of the follow-
ing lemma.

Lemma 2. If G is an auxiliary function of F , then F is non-
increasing under the update

V
(q+1) = arg min

V

G(V, V
(q)) (10)

Proof.

F (V
(q+1)) ≤ G(V

(q+1), V
(q)) ≤ G(V

(q), V
(q)) = F (V

(q))

Now we will show that the update step for V in Eq. (9) is
exactly the update in Eq. (10) with a proper auxiliary func-
tion.

We rewrote the objective function O of LPNMF in Eq. (7)
as follows

O =
∑
i,j

(
xij log

xij∑
k uikvjk

− xij +
∑

k

uikvjk

)

+
λ

2

∑
j,s,k

(
vjk log

vjk

vsk

+ vsk log
vsk

vjk

)
Wjs

(11)

Lemma 3. Function

G(V, V
(q))

=
∑
i,j

(
xij log xij − xij +

∑
k

uikvjk

)

−
∑
i,j,k

(
xij

uikv
(q)
jk∑

k uikv
(q)
jk

(
log uikvjk − log

uikv
(q)
jk∑

k uikv
(q)
jk

))

+
λ

2

∑
j,s,k

(
vjk log

vjk

vsk

+ vsk log
vsk

vjk

)
Wjs

is an auxiliary function for

F (V) =
∑
i,j

(
xij log

xij∑
k uikvjk

− xij +
∑

k

uikvjk

)

+
λ

2

∑
j,s,k

(
vjk log

vjk

vsk

+ vsk log
vsk

vjk

)
Wjs

Proof. It is straightforward to verify that G(V, V) = F (V).

To show that G(V, V(q)) ≥ F (V), we use convexity of the
log function to derive the inequality

− log

(∑
k

uikvjk

)
≤ −

∑
k

(
αk log

uikvjk

αk

)

which holds for all nonnegative αk that sum to unity. Setting

αk =
uikv

(q)
jk∑

k uikv
(q)
jk

,

we obtain

− log

(∑
k

uikvjk

)
≤

−
∑

k

(
uikv

(q)
jk∑

k uikv
(q)
jk

(
log uikvjk − log

uikv
(q)
jk∑

k uikv
(q)
jk

))
.

From this inequality it follows that G(V, V(q)) ≥ F (V).

Theorem 1 then follows from the application of Lemma 2:

Proof of Theorem 1. The minimum of G(V, V(q)) with re-
spect to V is determined by setting the gradient to zero:

∑
i

uik−
∑

i

xij

uikv
(q)
jk∑

k uikv
(q)
jk

1

vjk

+
λ

2

∑
s

(
log

vjk

vsk

+ 1 −
vsk

vjk

)
Wjs = 0,

1 ≤ j ≤ n, 1 ≤ k ≤ t

(12)
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Because of the log term, it is really hard to solve the above
equations system. Let us recall the motivation of the regular-
ization term. We hope that if two data points xj and xs are
close (i.e. Wjs is big), zj) will be close to zs and vjk/vsk will
approximately be 1. Thus, we can use the following approxi-
mation:

log(x) ≈ 1 −
1

x
, x → 1.

The above approximation is based on the first order expansion
of Tylor series of log function. With this approximation, the
equations in Eq. (12) can be written as

∑
i

uik−
∑

i

xij

uikv
(q)
jk∑

k uikv
(q)
jk

1

vjk

+
λ

vjk

∑
s

(vjk − vsk) Wjs = 0,

1 ≤ j ≤ n, 1 ≤ k ≤ t

(13)

Let D denote a diagonal matrix whose entries are column (or
row, since W is symmetric) sums of W, Djj =

∑
s Wjs.

Define L = D−W. Let vk denote the k-th column of V, vk =
[v1k, · · · , vnk]T . It is easy to verify that

∑
s (vjk − vsk) Wjs

equals to the j-th element of vector Lvk.

The equations system in Eq. (13) can be rewritten as

X
i

uikIvk + λLvk =

2
6664

v
(q)
1k

P
i

“
xi1uik/

P
k

uikv
(q)
1k

”
...

v
(q)
nk

P
i

“
xinuik/

P
k

uikv
(q)
nk

”
3
7775

1 ≤ k ≤ t.

Thus, the update rule of Eq. (10) takes the form

v
(q+1)
k =

“X
i

uikI + λL
”
−1

2
6664

v
(q)
1k

P
i

“
xi1uik/

P
k

uikv
(q)
1k

”
...

v
(q)
nk

P
i

“
xinuik/

P
k

uikv
(q)
nk

”
3
7775

1 ≤ k ≤ t.

Since G is an auxiliary function, F is nonincreasing under
this update.
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