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Abstract

In machine learning problems, labeled data are of-
ten in short supply. One of the feasible solution
for this problem is transfer learning. It can make
use of the labeled data from other domain to dis-
criminate those unlabeled data in the target do-
main. In this paper, we propose a transfer learn-
ing framework based on similarity matrix approxi-
mation to tackle such problems. Two practical al-
gorithms are proposed, which are the label prop-
agation and the similarity propagation. In these
methods, we build a hybrid graph based on all
available data. Then the information is transferred
cross domains through alternatively constructing
the similarity matrix for different part of the graph.
Among all related methods, similarity propagation
approach can make maximum use of all available
similarity information across domains. This leads
to more efficient transfer and better learning result.
The experiment on real world text mining applica-
tions demonstrates the promise and effectiveness of
our algorithms.

1 Introduction

Transfer learning is a powerful ability of human to apply
knowledge and skills learned in previous tasks to novel tasks
[Ormrod, 2004]. In modern machine learning and data min-
ing fields, it has been widely investigated to try to simulate
this human learning mechanism to achieve artificial intelli-
gence [Pan and Yang, 2007]. Recently, the explosive growth
in data warehouse and internet usage has made large amount
of unsorted information potentially available for data mining
problems. Labeling them is a very expensive and time con-
suming work. Transfer learning gives us a possible solution to
optimally discriminate this type of data. It can borrow some
supervised information from other similar tasks to enhance
the discrimination of the learning machine for those unla-
beled data. For instance, the difference between documents
that describe stock and book may help to distinguish the doc-
uments that describe investment and research. Though they
are different topics with different word distributions, stock
and investment both talk about economic stuff, while book
and research are topics that relate to education and academia.

This is a typical transfer learning problem that discriminates
the totally unlabeled data that are under a different distribu-
tion from the labeled data.

In this paper, we focus on above transfer learning approach
cross different domains mainly based on text mining prob-
lems. In this problem, the labeled data are from a domain

D(i) and the unlabeled data are from another domain D(o).
D(i) is called in-domain and D(o) out-of-domain. In addi-
tion, it is assumed that in-domain D(i) and out-of-domain
D(o) are related to make the domain-transfer learning feasi-
ble. The objective is to discriminate the data from out-of-

domain D(o) as accurately as possible with the help of the

data from in-domain D(i). Several previous works have been
done for this problem, which are Co-Clustering based Clas-
sification (CoCC) [Dai et al., 2007] and Cross-Domain Spec-
tral Classification (CDSC) [Ling et al., 2008]. CoCC is based
on information-theoretic co-clustering [Dhillon et al., 2003].
It regularizes the out-of-domain discrimination problem with
the in-domain word partition. The labels of in-domain doc-
uments first propagate to the words and then the clustering
of the words propagate to the out-of-domain documents. The
procedure iterates until convergence. CDSC is based on spec-
tral learning [Kamvar et al., 2003]. It seeks an optimal par-
tition of the data, which preserves the supervised segmenta-
tion information for the in-domain data and splits the out-
of-domain data as separately as possible in terms of the cut
size. The experiments in their papers have shown great im-
provements to conventional supervised and semi-supervised
methods. However, there remain problems.
• The information-theoretic co-clustering heavily relies on

the initialization. The initialization of document clusters are
relatively easy. However, the word clusters may not be well-
established. Even human experts could not well cluster such
large amount of words themselves.
• Both methods have many heuristic parameters which

the result relies on, especially the trade-off parameter for in-
domain and out-of-domain information. To choose satisfied
parameters is difficult for practical applications.

• Each of them only uses a part of the cross domain sim-
ilarity. CoCC focuses on the conjunct word clustering, and
CDSC focuses on the document similarity. In these situations,
neither of them makes full use of the relationship among the
relational data.

Focusing on above problems, we proposed a novel transfer
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(a) Hybrid graph. (b) Label propagation, similar with [Dai et al. 2007]. (c) Similarity propagation.

Figure 1: Illustration of hybrid graph.

learning framework on a hybrid graph. We set both docu-
ments and words as vertexes in one graph. The transfer learn-
ing procedure is conducted across different parts of the graph.
First, we present an algorithm label propagation. It employs
spectral analysis of the modified similarity between homo-
geneous relations cross domains to propagated the discrimi-
native information. Moreover, a further algorithm, similarity
propagation, is proposed. It can effectively alleviate above
problems. In this algorithm, we pursue the transferred infor-
mation among both document similarity and word clustering.
It uses all available routes to transfer and get better and more
stable results.

The rest of the paper is organized as follows. In section 2,
we formulate the problem and present our algorithms. Sec-
tion 3 reviews the related works and analyzes the involved
problem. Section 4 shows our experiments. Finally we con-
clude the paper and discuss some future work in section 5.

2 Knowledge Transfer on Hybrid Graph

In this section, we present our transfer learning method on
hybrid graph, and show the two algorithms label propagation
and similarity propagation.

2.1 Problem Formulation

Let D(i) = {d
(i)
1 , d

(i)
2 , ..., d

(i)
Ni
} be the in-domain data set,

with Ni labeled documents, D(o) = {d
(o)
1 , d

(o)
2 , ..., d

(o)
No

} be
the out-of-domain data set, with No unlabeled documents.
Each document is represented as a vector of word frequen-
cies. Both document sets share the same word vocabulary
W = {w1, w2, ..., wM}, where M is the vocabulary size.

Given the document set D = {D(i),D(o)} and the word set
W , we build a hybrid graph with each document and word as
its vertex, and the edge between each pair of vertexes denotes
their similarity. It is similar with the bipartite graph in spec-
tral co-clustering [Dhillon, 2001; Zha et al., 2001]. However
in bipartite graph, it assumes the relations among documents
are zeros.

In this paper, we construct the hybrid graph that involve
all kinds of relationships, which is shown in Fig. 1 (a).
The co-occurrence matrix between documents and words is
still used to represent their similarities, which is R(di,w) ∈
R

Ni×M for in-domain data and R(do,w) ∈ R
No×M for

out-of-domain data. The similarities between documents
are denoted as S(di,di) ∈ R

Ni×Ni , S(di,do) ∈ R
Ni×No ,

S(do,di) = S(di,do)T ∈ R
No×Ni , S(do,do) ∈ R

No×No and
S(w,w) ∈ R

M×M . The whole similarity matrix can be for-
mulated as:

S =

⎡
⎢⎣

S(di,di) R(di,w) S(di,do)

R(di,w)T S(w,w) R(do,w)T

S(di,do)T R(do,w) S(do,do)

⎤
⎥⎦ (1)

which is shown in Fig. 1 (c). We divide the similarity rela-
tionship into two types, defined as follows.

Definition 1. (Homogeneous Relations) The relations
between documents and documents are denoted as homoge-
neous relations, described by S(di,di), S(di,do), S(w,w) and
S(do,do).

Definition 2. (Heterogeneous Relations) The relations
between documents and words are denoted as heterogeneous
relations, described by R(di,w) and R(do,w).

Without loss of generality, we assume the class or cluster-
ing numbers of in-domain documents, out-of-domain docu-
ments and the words are Kdi, Kdo and Kw respectively. Then
we define their indicator matrices as:

C(x)
pq =

{
1q
π

(x)
q

if item p ∈ π
(x)
q

0 otherwise
(2)

where x can be di, do or w, π
(x)
q is the number of objects

in the qth cluster in the corresponding set. And we have

(C(x))T C(x) = IKx
, where IKx

∈ R
Kx×Kx is the identity

matrix.
Using the indicator matrix, we calculate the corresponding

similarity matrix within the homogeneous data sets as:

S(x,x) = C(x)diag(π(x))(C(x))T . (3)

diag(π(di)) ∈ R
Kx×Kx is the diagonal matrix, where the el-

ements are π
(di)
q , q = 1, ..., Kx. The in-domain documents

have the groundtruth labels. Thus we denote the class indica-

tor matrix as C̄(di), and the corresponding similarity matrix

as S̄(di,di).
Moreover, to balance the relations and similarities, we nor-

malize them as

S̄(di,di) ← (D̄(di,di))−
1
2 S̄(di,di)(D̄(di,di))−

1
2

S(do,do) ← (D(do,do))−
1
2 S(do,do)(D(do,do))−

1
2

S(w,w) ← (D(w,w))−
1
2 S(w,w)(D(w,w))−

1
2

R(di,w) ← (D(di,w))−
1
2 R(di,w)(D(w,di))−

1
2

R(do,w) ← (D(do,w))−
1
2 R(do,w)(D(w,do))−

1
2

(4)
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where D̄
(di,di)
pp =

∑
q S̄

(di,di)
pq , D

(do,do)
pp =

∑
q S

(do,do)
pq ,

D
(w,w)
pp =

∑
q S

(w,w)
pq , D

(di,w)
pp =

∑
q R

(di,w)
pq , D

(w,di)
qq =∑

p R
(di,w)
pq , D

(do,w)
pp =

∑
q R

(do,w)
pq and D

(w,do)
qq =∑

p R
(do,w)
pq . This is inspired by the normalized cut [Shi and

Malik, 2000] and spectral co-clustering [Dhillon, 2001]. Af-
ter the normalization, the similarity matrix of in-domain doc-

uments can be re-written as S̄(di,di) = C̄(di)(C̄(di))T and
we can easily verify that the Moore-Penrose pseudoinverse is

(S̄(di,di))† = S̄(di,di).
Based on the description above, our problem is to find the

unknown indicator matrix C(do) for the out-of-domain data.
In the next two subsections, we will present two novel algo-
rithms to deal with this problem.

2.2 Label Propagation

The main idea of label propagation is to transfer the super-
vised information from in-domain to out-of-domain through
the similar word structure they share. We adopt the spectral
relational clustering method [Long et al., 2006] for both in-
domain and out-of-domain data simultaneously. The objec-
tive function is:

J(C(do),C(w),H(di,w),H(do,w))

=
∑

||R(di,w) − C̄(di)H(di,w)(C(w))T ||2F

+
∑

||R(do,w) − C(do)H(do,w)(C(w))T ||2F (5)

where H(di,w) ∈ R
Kdi×Kw and H(do,w) ∈ R

Kdo×Kw denote
the co-occurrence relationship between clusters of documents
and words. This objective aims to find the best partition of
both out-of-domain documents and word vocabulary, under
the restriction from the in-domain relational structure.

Taking in indicator matrixes constraints, the final task is

min J.

s.t.
(C(w))T

C
(w) = IKi

(C(do))T
C

(do) = IKdo

(6)

Based on the analysis in [Long et al., 2006], we can de-

duce that the optimal association matrixes are H(di,w) =
(C̄(di))T R(di,w)C(w) and H(do,w) = (C(do))TR(do,w)C(w)

for our objective. Take these results into the objective func-
tion Eq. (5), we have:

J = tr((R(di,w))T R(di,w)) (7)

− tr((C(w))T (R(di,w))T C̄(di)(C̄(di))T R(di,w)C(w))

+ tr((R(do,w))T R(do,w))

− tr((C(w))T (R(do,w))TC(do)(C(do))T R(do,w)C(w)).

where tr(·) is the trace of a matrix. Note that

tr((R(do,w))TR(do,w)) = tr((R(do,w))(R(do,w))T )

and

tr((C(w))T (R(do,w))TC(do)(C(do))T R(do,w)C(w))

= tr((C(do))T (R(do,w))C(w)(C(w))T (R(do,w))T C(do)).

We can see that the objective is convex w.r.t. both C(do) and

C(w). As a result, we use alternating optimization technique

Table 1: Transfer Learning by Label Propagation

Input: The labeled in-domain data set D(i), unlabeled
out-of-domain data set D(o) and the word feature set W .

Initialize: The heterogeneous relations R(di,w) and

R(do,w). The indicator matrices C̄(di) and C(do).

Repeat:

1: Update C(w) by the leading Kw eigenvectors of

(R(di,w))T C̄(di)(C̄(di))T R(di,w)

+ (R(do,w))TC(do)(C(do))T R(do,w) (8)

2: Discretize C(w) as in [Yu and Shi, 2003].

3: Update C(bo) by the leading Ko eigenvectors of

(R(do,w))C(w)(C(w))T (R(do,w))T (9)

4: Discretize C(bo) as in [Yu and Shi, 2003].

Until: Convergence.

Output: The label indicator matrices C(do) and C(w).

to find the optimal solution. The following Ky-Fan theorem
guarantees a closed-form solution for each alternative step.

Theorem 3. (Ky-Fan Theorem) [Bhatia, 1997] Let S be
a symmetric matrix with eigenvalues λ1 � λ2 � ... � λK

and corresponding eigenvectors U = [u1,u2, ...,uK ]. Then∑K

i=1 λi = maxV T V =IK
VTSV. Moreover, the optimal V

is given by UT where T is an arbitrary orthogonal matrix.�
Based on this theorem, we can calculate C(do) and C(w) al-

ternatively until converged. This procedure is shown in Fig. 1
(b). The“labels” of in-domain and out-of-domain documents
first propagate to the words, then the “labels” of words prop-
agate back to the out-of-domain documents. The algorithm
is summarized in Table 1. Since the objective function (5) is
convex for each variable, it has local optimum.

2.3 Similarity Propagation

In the label propagation algorithm, it only uses the hetero-
geneous relations to conduct the transfer procedure, which
is similar with [Dai et al., 2007]. Although we can add a
tradeoff parameter to control the strength of the information
transfer, like [Dai et al., 2007], the homogeneous relations
are still ignored. In this situation, the optimal transfer can
hardly be achieved. In this subsection, we propose a more ef-
ficient algorithm, similarity propagation, to make full use of
the available information.

In the similarity propagation algorithm, we do not merely
stare at the discrimination indication for the documents and
words, but aim at revealing all types of similarities in the hy-
brid graph as shown in Fig. 1 (c). In this setting, the heteroge-
neous relations of the data and the in-domain homogeneous
relations (given by the document labels) are provided. The
task is to recover all other homogeneous relations as better
as possible. During this reconstruction process, the Nytröm
method is needed for matrix approximation.

Theorem 4. (Nytröm approximation) [Williams and
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Seeger, 2001] Let positive semi-definite matrix S be blocked
as

S =

[
O P

PT Q

]
If Q is missing, the the first K eigenvalues of S and the cor-
responding eigenvectors can be approximated as

λS,i =
NS

NP

λP,i and uS,i =

√
NP

NS

1

λP,i

[
O

PT

]
uS,i

where λP,i and uS,i are the leading non-zero eigenvalues and
corresponding eigenvectors of P. And S can be approximated
as

∑
uS,iλS,iuS,i

T . Moreover, the quality of the approxima-
tion can be quantified by the norm of the Schur complement

||Q− PTO†P||F (10)

where || · ||F represents the Frobenius norm of a matrix, O†

is the Moore-Penrose pseudoinverse. �

Based on theorems 3 and 4, we can make use of eigenvalue
decomposition approach to approximate S defined in Eq. (1)
alternatively. Reset the blocked S as

S =

⎡
⎢⎣

S(di,di) S(di,do) R(di,w)

S(di,do)T S(do,do) R(do,w)

R(di,w)T R(do,w)T S(w,w)

⎤
⎥⎦ =

[
O P

PT Q

]

We implement the approximation alternatively by two steps:

first compute Q̂ = PT O†P; second compute Ô = PQ†PT

and reset S(di,di) = S̄(di,di)1. This procedure can be seen as a
propagation of the similarities of full homogeneous relations
through heterogeneous similarity, which is shown in Fig. 1
(c). The propagation stops when the recovered unknown sim-
ilarity blocks are no longer changing. The flow chart is given
in Table 22.

Moreover, in the following corollary, we show that label
propagation method can also be formulated as an alternative
Nytröm approximation for the similarity matrix.

Corollary 5. Label propagation is also corresponding to a
two-step Nytröm approximation procedure.

Proof: In this situation, the similarity matrix S is reset as

S =

⎡
⎣ S(di,di) 0 R(di,w)

0 S(do,do) R(do,w)

R(di,w)T R(do,w)T S(w,w)

⎤
⎦ =

[
O P

PT Q

]
.

The Nytröm approximations lead to S(w,w) =

R(di,w)T (S̄(di,di))†R(di,w) + R(do,w)T (S(do,do))†R(do,w)

and S(do,do) = R(do,w)S(w,w)†(R(do,w))T . Using the

similarity definition in Eq. (4) we have (S̄(di,di))† = S̄(di,di),

(S(do,do))† = S(do,do) = C(do)(C(do))T and

1 To guarantee the validity of nytröm method, S
(di,do) will be

re-initialized if the positive semi-definition of S is violated.
2 The initialization of S

(do,do) can be done using any clustering
method or semi-supervised method with the help of the labeled data.

And S
(di,do) can be initially calculated as the inner product of C̄

(di)

and C
(do). Instead of these, we can initialize S

(w,w) and start from
the second step.

Table 2: Transfer Learning by Similarity Propagation

Input: The labeled in-domain data set D(i), unlabeled
out-of-domain data set D(o) and the word feature set W .

Initialize: The heterogeneous relations R(di,w) and

R(do,w). The homogeneous similarities S(di,di) =
S̄(di,di), S(do,do) and S(di,do). Set O, P and Q as the
forms in Eq. (11).

Repeat:

1: Update Q = PTO†P .

2: Update O = PQ†PT .

3: Reset S(di,di) = S̄(di,di).

Until: Convergence.

Output: The label indicator matrices C(do) and C(w) are
computed by using normalized cut algorithm with homo-

geneous similarities S(do,do) and S(w,w).

(S(w,w))† = S(w,w) = C(w)(C(w))T . Take these back
into the above equations, the corollary is proven. �

As it is shown in corollary 5, in label propagation algo-

rithm, it assumes that R(di,do) = 0 and the similarities in
S(do,do) are only propagated from S(w,w). Similarly analysis

can be done to show that CoCC loses R(di,do), and CDSC
loses R(w,w). This is the reason why these methods are in-
sufficient. We will approve this empirically in section 4.

3 Related Works

The most related works to our approach are transfer learn-
ing, semi-supervised learning and spectral clustering. We will
look through these works and present our understanding for
the transfer learning problem in this paper.

3.1 Learning with Labeled and Unlabeled Data

In our problem, there are both labeled and unlabeled data.
The most popular technique used to learn with labeled
and unlabeled data is semi-supervised learning [Zhu, 2005].
Many successful methods have been proposed under this
topic, such as tranductive SVM [Joachims, 1999] and man-
ifold regularization [Belkin et al., 2006]. However, the con-
ventional semi-supervised learning methods have a strict as-
sumption that the labeled and unlabeled data should be sam-
pled from the same distribution, which is always not the case
in real applications [Pan and Yang, 2007].

Transfer learning is thus adopted to solve such a complex
problem. Besides, it can be used in many other cases, such
as learning with different training and test data distributions
[Sugiyama et al., 2007] and learning multiple tasks [Caruana,
1997]. The problem in this paper is just a particular setting
for transfer learning, which transfers the labeled information
to a totally unsupervised task. We can not arbitrarily judge
whether the out-of-domain task is a classification or a clus-
tering task. As the data have hiberarchical structure. In the
small scale, these data have their own class attributes which
are different from the in-domain label information. In the
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Table 3: Transfer Learning Data Sets.
Data Set D

(i)
D

(o)

comp vs rec comp.graphics comp.sys.ibm.pc.hardware

comp.os.ms-windows.misc comp.sys.mac.hardware

rec.autos rec.sport.baseball

rec.motorcycles rec.sport.hockey

comp vs sci comp.graphics comp.sys.ibm.pc.hardware

comp.os.ms-windows.misc comp.sys.mac.hardware

sci.crypt sci.electronics

sci.med sci.space

comp vs talk comp.graphics comp.sys.ibm.pc.hardware

comp.os.ms-windows.misc comp.sys.mac.hardware

talk.politics.guns talk.politics.misc

talk.politics.mideast

rec vs sci rec.autos rec.sport.baseball

rec.motorcycles rec.sport.hockey

sci.crypt sci.electronics

sci.med sci.space

rec vs talk rec.autos rec.sport.baseball

rec.motorcycles rec.sport.hockey

talk.politics.guns talk.politics.misc

talk.politics.mideast

sci vs talk sci.crypt sci.electronics

sci.med sci.space

talk.politics.guns talk.politics.misc

talk.politics.mideast

large scale, the data out-of-domain and in-domain may be
subject to a same wide type. From this point of view, both
conventional clustering methods and semi-supervised meth-
ods can be modified to tackle this transfer learning problem.
What we borrow is the spectral clustering method.

3.2 Spectral Learning

When we represent the data as a graph, spectral analysis is
easily adopted to investigate the structure of these data. The
normalized cut [Shi and Malik, 2000] is one of the most rep-
resentative work for spectral clustering. [Kamvar et al., 2003]

extends this type of methods to more learning situations,
e.g. under pairwise link constraints or with labeled exam-
ples. Instead of clustering data using homogeneous relations,
co-clustering techniques have been developed to cluster data
using heterogeneous information with bipartite relationships,
which are mainly used for document clustering [Dhillon,
2001]. Recently, spectral clustering has been extended to
multi-type relational data and many well-known algorithms
are unified into a general framework [Long et al., 2006;
2007].

In next section, we will compare the mainly related meth-
ods described in this section with our algorithms for our trans-
fer learning problem.

4 Experiments

In the experiments, we use the real text data to demonstrate
the effectiveness of our algorithms.

20-NewsGroups Data: The 20-newsgroups data set col-
lects approximately 20,000 documents across 20 different
newsgroups. It is widely used to test the performance of
text mining algorithms. The data is preprocessed as [Zhong
and Ghosh, 2005]. And we set up the cross domain trans-
fer learning data sets in a similar way as [Dai et al., 2007;
Ling et al., 2008], which focus on binary problems3. It means

3Our algorithm is designed using arbitrary class numbers to de-
sign a general framework. However, the compared methods are bi-
nary. We will leave the multi-class case for future study.

Ki = Ko = 2. Table 3 shows the data sets in the experiments.

Compared Methods: Most of the related state-of-the-
art methods are compared. They are support vector ma-
chine (SVM), LapSVM for manifold learning [Belkin et
al., 2006], transductive SVM (TSVM) [Joachims, 1999], S-
Kmeans [Dhillon and Modha, 2001], normalized cut (NCut)
[Shi and Malik, 2000], spectral co-clustering (S-Co-C), infor-
mation theoretical co-clustering (IT-Co-C), CoCC [Dai et al.,
2007] and CDSC [Ling et al., 2008].

2 4 8 16 32 64 128 256 512
50

60

70

80

90

100

#Word Clusters

A
cc

ur
ac

y

Figure 2: The accuracy curve over the number of word clus-
ters for all six data sets in similarity propagation.

Experimental Result: The supervised method is trained
in-domain and tested using out-of-domain data; The semi-
supervised methods are applied in a transductive setting using
all available data. The clustering methods are conducted di-
rectly for out-of-domain data. As the existence of supervised
information, all clustering methods can assign the cluster in
their result with the most relevant in-domain class as in [Dai
et al., 2007]. Then the learning accuracy can be used as the
performance measure for all compared methods. For the pa-
rameter setting, Kw = Ki + Ko = 4 is fix for label propaga-
tion as the algorithm demands. In similarity propagation, the
result is not sensitive to Kw, which is shown in Fig 2. These
make our methods have few heuristic factors and easy to ap-
ply. The parameters for all other compared methods are set to
a relatively best one according to the referenced papers.

Each experiment has 20 repeated runs and the average
learning accuracy with standard deviation is presented in Ta-
ble 4. S-Co-C-LP is our label propagation algorithm, and
S-Co-C-SP is the similarity propagation. The results show
our methods perform the best, which approves our analysis
in section 2. Note that the normalized cut sometimes gets
the similar good result, which means the unlabeled data set is
well discriminated itself.

5 Conclusion and Discussion

In this paper, we analysis the across domains transfer learn-
ing problem, establish a framework of transfer learning with
similarity matrix on hybrid graph, and propose two practical
algorithms. During the transfer process, we seek all possi-
ble approaches to transfer the useful information from the in-
domain data to the out-of domain data. The experiments on
text data mining show the efficiency of our method.
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Table 4: Learning accuracy for 20-newsgroups data (mean ± std%).
comp vs rec comp vs sci comp vs talk rec vs sci rec vs talk sci vs talk

SVM 85.31(9.16) 72.15(5.09) 95.75(1.20) 73.44(8.58) 82.49(8.76) 78.41(7.06)
LapSVM 86.23(7.50) 71.78(5.05) 95.40(1.24) 72.60(8.09) 83.01(7.90) 73.81(8.85)
TSVM 91.51(2.26) 80.63(4.35) 96.88(0.88) 86.05(5.60) 92.50(2.06) 86.39(4.76)

S-Kmeans 82.81(9.16) 76.18(9.51) 93.07(8.56) 65.30(12.02) 83.79(13.28) 74.79(12.73)
NCut 89.44(7.30) 81.88(9.18) 96.08(0.74) 76.15(8.34) 93.86(2.16) 88.69(6.65)

S-Co-C 79.21(18.39) 68.56(14.84) 89.96(15.91) 80.59(11.42) 87.26(13.79) 82.99(13.87)
IT-Co-C 86.31(12.85) 80.65(10.79) 91.74(9.63) 78.70(14.67) 82.06(10.85) 80.85(11.54)
CoCC 88.75(7.67) 81.10(6.78) 96.33(3.82) 82.48(7.84) 91.49(5.71) 82.21(6.82)
CDSC 82.55 ( 7.24) 78.70(4.35) 96.23(4.8) 82.65(3.32) 92.43 (5.49) 83.41 (4.14)

S-Co-C-LP 91.94(2.72) 83.59(3.67) 96.97(0.88) 86.41(3.62) 92.96(2.13) 88.20(4.35)
S-Co-C-SP 93.55(6.91) 80.31(11.59) 96.99(1.04) 89.49(6.79) 94.32(2.22) 90.00(5.11)

This paper solves the problem of how to transfer and how
to make optimal use of the available information. However, it
assumes that the data in different domains are closely related
to make the domain-transfer learning feasible. In practical
problems, it is still inconvenient for users to find the similar
tasks themselves. So it is more contributive to solve the what
to transfer problem. This is an interesting and challenge issue
for our future study.
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