
Stratified Planning

Yixin Chen

Department of Computer Science

Washington University

chen@cse.wustl.edu

You Xu

Department of Computer Science

Washington University

youxu@wustl.edu

Guohui Yao

Department of Computer Science

Washington University

yaog@cse.wustl.edu

Abstract

Most planning problems have strong structures.
They can be decomposed into subdomains with
causal dependencies. The idea of exploiting the do-
main decomposition has motivated previous work
such as hierarchical planning and factored planing.
However, these algorithms require extensive back-
tracking and lead to few efficient general-purpose
planners. On the other hand, heuristic search has
been a successful approach to automated planning.
The domain decomposition of planning problems,
unfortunately, is not directly and fully exploited by
heuristic search.

We propose a novel and general framework to ex-
ploit domain decomposition. Based on a structure
analysis on the SAS+ planning formalism, we strat-
ify the sub-domains of a planning problem into de-
pendency layers. By recognizing the stratification
of a planning structure, we propose a space re-
duction method that expands only a subset of exe-
cutable actions at each state. This reduction method
can be combined with state-space search, allow-
ing us to simultaneously employ the strength of
domain decomposition and high-quality heuristics.
We prove that the reduction preserves completeness
and optimality of search and experimentally verify
its effectiveness in space reduction.

1 Introduction

We have witnessed significant improvement of the capability
of automated planners in the past decade. Heuristic search
remains one of the key, general-purpose approaches to plan-
ning. The performance improvement is largely due to the de-
velopment of high-quality heuristics. However, as shown by
recent work, developing better heuristics only has some fun-
damental limitations [Helmert and Röger, 2008]. Heuristic
planners still face scalability challenges for large-scale prob-
lems. It is important to develop new, orthogonal ways to im-
prove the efficiency, among which domain decomposition has
been an attractive idea to planning researchers.

A representative work based on domain decomposition is
the automated hierarchical planning methods [Knoblock,

1994; Lansky and Getoor, 1995] that utilize hierarchical fac-
toring of planning domains. However, they typically do not
scale well since they require extensive backtracking across
subdomains. Another work is the factored planning ap-
proach [Amir and Engelhardt, 2003; Brafman and Domsh-
lak, 2006; Kelareva et al., 2007] that finds subplans for each
subproblem before merging some of them into one solution
plan. However, the method requires either enumerating all
subplans for each subproblem, which is very expensive, or ex-
tensive backtracking. Also, it faces difficulties involved with
the length bound of the subplans. It is yet to be investigated
if factored planning can give rise to a practically competitive
approach for general-purpose planning.

In this paper, we propose a novel way to utilize the do-
main structure. Our key observation is that normally a plan-
ning problem P can be stratified into multiple sub-domains
P1, P2, . . . , Pk in such a way that, for i < j, the actions in Pi

may require states in Pj as preconditions, but not vice versa.
We then investigate the intriguing problem: given a stratifi-
cation of a planning problem, can we make the search faster?

We develop a completeness-preserving space reduction
method based on stratification. Our observation is, in stan-
dard search algorithms, each state is composed of the states of
the sub-domains P1, . . . , Pk, and the search will expand the
applicable actions in all the sub-domains P1, . . . , Pk, which
is often unnecessary. We propose a fundamental principle for
systems that can be stratified into layers of sub-domains. Due
to the oneway-ness of the dependencies across the stratified
layers, the search can expand only those actions in a subset of
the sub-domains. In principle, if the preceding action a of a
state is at layer j, 1 ≤ j ≤ k, we only expand actions at layer
j to k and those actions that have direct causal relations with
a at other layers. We prove that such a reduced expansion
scheme preserves completeness (and consequently, optimal-
ity) of search algorithms.

The proposed scheme has a number of advantages. The re-
duction method is embedded inside a heuristic search. There-
fore, 1) since most domains can be stratified, the method can
effectively prune a lot of redundant paths, leading to signif-
icant reduction of search costs; 2) in the worst-case when
the method cannot give any reduction (such as when all the
subdomains are in one dependency closure and cannot be
stratified), the search will expand the same number of nodes
as the original search; 3) the method can leverage on the

1665

1

7

6

2 3 4 5

a) Causal graph (CG) b) Contracted causal graph (CCG) c) Stratification

Figure 1: The causal graph, contracted causal graph and stratification of Truck-02.

highly sophisticated heuristic functions. Thus, this scheme
seems more practical than those methods that explicitly use
a decomposition-based search, such as factored planning and
hierarchical planning. It combines the strength of both heuris-
tic search and domain decomposition and adapts to the do-
main structure.

In summary, our main contributions are:

• We propose an automatic and domain-independent strat-
ification analysis that gives vital structural information
of a planning problem.

• We tackle the problem of reducing search cost from a
novel perspective. We propose a space reduction method
that can be embedded seamlessly to existing search algo-
rithms. Our approach is orthogonal to the development
of more powerful search algorithms and more accurate
heuristics.

• We prove that a search algorithm combined with our re-
duction method is complete (respectively optimal) if the
original search is complete (respectively optimal).

• We show that two implementations of the proposed
framework can improve the search efficiency on various
planning domains.

2 Background

We present our work based on the SAS+ formal-
ism [Bäckström and Nebel, 1995] of planning, a natural rep-
resentation of domain decomposition. The idea behind our
work is general enough to be applied to other systems whose
components can be stratified into dependency layers.

A SAS+ planning task Π is defined as a tuple Π =
{X, O, S, sI , sG}.

• X = {x1, · · · , xN} is a set of multi-valued state vari-
ables, each with an associated finite domain Dom(xi).

• O is a set of actions and each action o ∈ O is a tu-
ple (pre(o), eff(o)), where both pre(o) and eff(o) de-
fine some partial assignments of variables in the form
xi = vi, vi ∈ Dom(xi). sG is a partial assignment that
defines the goal.

• S is the set of states. A state s ∈ S is a full assignment
to all the state variables. sI ∈ S is the initial state. A
state s is a goal state if sG ⊆ s.

For a given state s and an action o, when all variable as-
signments in pre(o) are met in state s, action o is applicable
at state s. After applying o to s, the state variable assignment
will be changed to a new state s′ according to eff(o). We
denote the resulting state of applying an applicable action o
to s as s′ = apply(s, o).

For a SAS+ planning task, for an action o ∈ O, we define
the following:

• The dependent variable set dep(o) is the set of state
variables that appear in the assignments in pre(o).

• the transition variable set trans(o) is the set of state
variables that appear in both pre(o) and eff(o).

• the affected variable set aff(o) is the set of state vari-
ables that appear in the assignments in eff(o).

Note that trans(o) might be ∅, and it is always true that
trans(o) ⊆ dep(o) and trans(o) ⊆ aff(o).

Definition 1. Given a SAS+ planning task Π with state
variable set X , its causal graph (CG) is a directed graph
CG(Π) = (X, E) with X as the vertex set. There is an edge
(x, x′) ∈ E if and only if x �= x′ and there exists an action o
such that x ∈ trans(o) and x′ ∈ dep(o), or, x ∈ aff(o) and
x′ ∈ trans(o).

Intuitively, the nodes in the CG are state variables and the
arrows in CG describe the dependency relationships between
variables. If the CG contains an arc from xi to xj , then a value
change of xj will possibly affect the applicability of some
action o that involves a transition of xi. Figure 1a shows the
CG of an instance (Truck-02) of the Truck planning domain
used in the 5th International Planning Competition (IPC5).
State variables that define the goal state are in darker color.

3 Stratification of Planning Problems

Now we propose our stratification analysis. Given a SAS+
task, usually its CG is not acyclic, which leads to cyclic
causal dependencies among some of (but often not all) the
state variables. We propose a strongly connected component
analysis on CG.

A directed graph is called strongly connected if there is a
path from each vertex in the graph to every other vertex. For
a directed graph, a strongly connected component (SCC)

1666

a) Satellite02 b) Rover01 c) TPP11

Figure 2: The CCGs of some instances of several planning domains. Each SCC is labelled by x<y>, where x is the ID and y is the number
of state variables in the SCC. The SCCs that contain goals are in a darker color.

is a maximal strongly connected subgraph. A directed graph
can be uniquely decomposed into several SCCs. A partition
of a set X is a set of nonempty subsets of X such that every
element x in X is in exactly one of these subsets.

Definition 2 (Component Set). Given a SAS+ planning task
Π and its causal graph CG(Π) = (X, E), the component set
M(Π) is the partition of X such that all the elements in each
m ∈ M(Π) are in the same SCC of CG(Π).

Definition 3 (Contracted Graph). Given a directed graph
G = (V, E), a contracted graph of G is a directed graph
G′ = (V ′, E′), where each v′ ∈ V ′ is a subset of V and V ′

is a partition of V . There is an arc (v′, w′) ∈ E′ if and only
if there exist v ∈ v′ and w ∈ w′ such that (v, w) ∈ E.

Definition 4 (Contracted Causal Graph (CCG)). Given
a SAS+ planning task Π, its contracted causal graph
CCG(Π) = (V, E) is a contracted graph of CG(Π) such
that V = M(Π).

Figure 1b shows the corresponding CCG of Figure 1a.
Each vertex in the CCG may contain more than one state vari-
able. Intuitively, given the CG of a graph, we find its SCCs
and contract each SCC into a vertex. The resulting graph is
the CCG. Figure 2 shows the CCG of some other domains.
The CCG plays the central role in our structural analysis. It
has an important property.

Proposition 1. For any SAS+ planning task Π, CCG(Π) is
a directed acyclic graph (DAG).

The above statement is true because if the CCG contains
a cycle, then all the vertices on that cycle are strongly con-
nected and should be contracted into one SCC. Therefore, we
see that although there are dependency cycles in the CG, there
is no cycle after we contract each SCC to one vertex. A topo-
logical sort on the CCG gives an list of the SCCs, ordered
by dependency relations. Stratification can be viewed as a
generalization of topological sort.

Definition 5 (Stratification). Given a DAG G = (V, E),
a stratification Str(G) of G is a tuple (U ,L), where U =
{u1, · · · , uk} is a partition of V . U satisfies that there do not
exist i, j, 1 ≤ i < j ≤ k, vi ∈ ui, and vj ∈ uj such that
(vj , vi) ∈ E. The function L : V �→ N

+ is called the layer
function. L(v) = k for any v ∈ V and v ∈ uk.

The stratification of a DAG G = (V, E) is not unique. A
stratification Str(G) = (U ,L) is called a k-stratification if
|U| = k. The upper bound of k is |V |. When k = |V |, U
must be a topological sort of V .

Definition 6 (Stratification of a SAS+ Task). Given a SAS+
planning task Π, a stratification of Π, denoted by Str(Π), is
a stratification of CCG(Π).

Intuitively, a stratification of a CCG gives the flexibility
to cluster state variables while pertaining to the topological
order. There can be one-way dependency or no dependency,
but no two-way dependency, between any two state variables
at different layers under a stratification.

Figure 1c shows an example of stratification of the Truck-
02 problem. Each SCC in Figure 1b is now assigned a layer
and the topological order is maintained in the stratification.
Basicly, the requirement is that there is no arrow pointing
from a larger-numbered layer to a smaller-numbered one.

The stratification defines the layer function for any state
variable x ∈ X . Based on that, we can define the layer func-
tion L(o) for each action o ∈ O.

Definition 7 (Action Layer). For a SAS+ task Π, given a
stratification Str(Π) = (U ,L), for an action o ∈ O, L(o) is
defined as L(x), for an arbitrary x ∈ trans(o), if trans(o)
is nonempty; and L(o) = ∞ if trans(o) = ∅.

We prove that L(o) is well-defined by showing that all x ∈
trans(o) has the same L(x), for any action o ∈ O.

Proposition 2. For a SAS+ task Π, for an action o ∈ O with
trans(o) �= ∅, we have L(xi) = L(xj), ∀xi, xj ∈ trans(o).

Proof. Since xj ∈ trans(o) ⊆ dep(o) and xi ∈ trans(o),
by Definition 1, there is an arc from xj to xi in CG(Π).
Similarly, xi ∈ trans(o) ⊆ dep(o) and xj ∈ trans(o),
an arc exists from xi to xj in CG(Π). This implies that xi

and xj are strongly connected in CG(Π) and are elements
in a same vertex of CCG(Π). By Definition 5, we have
L(xi) = L(xj).

4 Stratified Planning Algorithm

Now we propose our stratified planning algorithm. In fact,
it is not a standalone algorithm but rather a space reduction
method that can be combined with other search algorithms.
It reduces the number of actions that need to be expanded at
each state.

We outline stratified planning in Algorithm 1. The input
is a SAS+ task Π and a stratification Str(Π). It is a general
framework where the open list can be implemented as a stack,
queue or priority queue. The open list contains a list of states
that are generated but not expanded.

1667

Algorithm 1: Stratified planning search(Π, Str(Π))

Input: A SAS+ planning task Π and a stratification
Str(Π) = (U ,L)

Output: A solution plan
closed ← an empty set;1

insert the initial AS pair (no-op,sI) to open;2

while open is not empty do3

(a, s) ← remove-next(open);4

if s is a goal state then return solution;5

if s is not in closed then6

add s to closed;7

Ψ(a, s,L) = stratified expansion(a, s,L) ;8

open ← open∪ Ψ(a, s,L);9

Definition 8. For the purpose of stratified planning, for each
generated state s, we record an action-state (AS) pair (a, s)
in the open list, where a is the action that leads to s during
the search. a is called the leading action of s.

Each time during the search, a remove-next() operation
fetches one AS pair (a, s) from open, checks if the state
s is a goal state or is in the closed list. If not, the strat-
ified expansion() operation will generate a set of AS pairs
(b, s′) to be inserted to open, where s′ is the resulting state
of applying b to s, i.e. s′ = apply(s, b).

The difference between stratified planning and a standard
search is that, in standard search, we will expand all the ac-
tions that are applicable at s, while stratified expansion() may
not expand every applicable action.

Since the initial state sI has no leading action, a special
action no-op is defined as its leading action and its layer is
defined as 0.

Definition 9 (Follow-up Action). For a SAS+ task Π, for
two actions a, b ∈ O, b is a follow-up action of a (denoted as
a � b) if aff(a)∩dep(b) �= ∅ or aff(a)∩aff(b) �= ∅. Any
action is a follow-up action of no-op.

Given this definition, we can describe the strati-
fied expansion() operation, shown in Algorithm 2. Given
a stratification Str(Π) = (U ,L), the procedure of strati-
fied expansion() is quite simple. For any AS pair (a, s) to
be expanded, for each action b ∈ O that is applicable at s, we
consider two cases.

• If L(b) ≥ L(a), we expand b.

• If L(b) < L(a), we expand b only if b is a follow-up
action of a (a � b).

For any AS pair (a, s), all the AS pairs expanded by strati-
fied expansion() forms the set Ψ(a, s,L).

5 Theoretical Analysis

In this section, we show that stratified planning search pre-
serves the completeness and optimality property of the orig-
inal search strategy, decided by the implementation of the
open list and the evaluation function. For example, if open
is a priority queue and the evaluation function is admissible,
then the original search, with a full expansion at each state, is
both complete and optimal.

Algorithm 2: stratified expansion(a, s,L)

Input: An AS pair (a, s) and the L function
Output: The set Ψ(a, s,L) of successor AS pairs
Ψ ← ∅;1

foreach applicable action b at s do2

if L(b) ≥ L(a) then3

compute s′ = apply(s, b);4

Ψ ← Ψ ∪ {(b, s′)} ;5

else if a � b then6

compute s′ = apply(s, b);7

Ψ ← Ψ ∪ {(b, s′)} ;8

9

end10

return Ψ ;11

Definition 10 (Valid Path). For a SAS+ task Π and a state
s0, a sequence of actions p = (o1, . . . , on) is a valid path
if, let si = apply(si−1, oi), i = 1, . . . , n, oi is applicable at
si−1 for i = 1, . . . , n. We also say that applying p to s results
in the state sn.

Definition 11 (Stratified Path). For a SAS+ task Π, for a
stratification str(Π) = (U ,L) and a state s0, a sequence of
actions p = (o1, . . . , on) is a stratified path if it is a valid
path and, let si = apply(si−1, oi), i = 1, . . . , n, (oi, si) ∈
Ψ(oi−1, si−1,L) for i = 1, . . . , n, where o0 = no-op.

Intuitively, a stratified path is a sequence of actions that can
possibly be generated by the stratified search.

Lemma 1. For a SAS+ task Π, a stratification str(Π) =
(U ,L) and a state s0, for any valid path p = (a1, . . . , an),
if there exists 2 ≤ i ≤ n, such that L(ai) < L(ai−1)
and that ai is not a follow-up action of ai−1, then p′ =
(a1, . . . , ai−2, ai, ai−1, ai+1, . . . , an) is also a valid path and
leads to the same state from s0 as p does.

Proof. Let sj = apply(sj−1, aj), j = 1, · · · , n. Since ai

is not a follow-up action of ai−1, according to Definition 9,
eff(ai−1) contains no assignment in pre(ai). Therefore,
since ai is applicable at si−1, which is apply(si−2, ai−1), we
know ai is also applicable at si−2.

Since L(ai) < L(ai−1), the SCC in CCG(Π) that con-
tains ai−1 has no dependencies on the SCC that contains
ai. Therefore, eff(ai) contains no assignment in pre(ai−1).
Since the variable assignments in pre(ai−1) are satisfied at
si−2, it is also satisfied at s′ = apply(si−2, ai).

From the above, we see that (ai, ai−1) is an applicable ac-
tion sequence at si−2. Further, since ai is not a follow-up ac-
tion of ai−1, we have that aff(ai)∩ aff(ai−1) = ∅. Hence,
applying (ai, ai−1) to si−2 leads to the same state as apply-
ing (ai−1, ai), which is si. Therefore, p′ is a valid path from
s0 and leads to the same state as p does.

Theorem 1. Given a SAS+ planning task Π and a stratifi-
cation Str(Π), for any state s0 and any valid path pa =
(a1, . . . , an) from s0, there exists a stratified path pb =
(b1, . . . , bn) from s0 such that pa and pb result in the same
state when applied to s0.

Proof. We prove by induction on the number of actions.
When n = 1, since the only action in the path p is a follow-up

1668

action of no-op, p is also a stratified path. Now we assume
the proposition is true for n = k, k ≥ 1 and prove the case
when n = k + 1.

For a valid path p0 = (a1, . . . , ak+1), by our induction hy-
pothesis, we can permute the first k actions to obtain a strati-
fied path (a1

1, . . . , a
1
k).

Now we consider a new path p1 = (a1
1, . . . , a

1
k, ak+1). If

we have L(ak+1) ≤ L(a1
k), or L(ak+1) > L(a1

k) and ak+1

is a follow-up action of a1
k, then p1 is already a stratified path.

Now we focus on the case when L(ak+1) > L(a1
k) and

ak+1 is not a follow-up action of a1
k. Consider a new path

p2 = (a1
1, . . . , a

1
k−1, ak+1, a

1
k). From Lemma 1, we know

that p2 is a valid path leading to the same state as p1 does.
By our induction hypothesis, we can permute the first k

actions of p2 to obtain a stratified path (a2
1, . . . , a

2
k). Define

p3 = (a2
1, . . . , a

2
k, a1

k).
Comparing p2 and p3, we know that L(ak+1) > L(a1

k),
namely, the level of the last action in p2 is strictly larger than
that in p3. We can repeat the above process to generate p4,
p5, · · · , as long as pj , (j ∈ Z+) is not a stratified path. For
each pj , the first k actions is a stratified path. Also, every pj

is a valid path that leads to the same state as p0 does.
Since we know that the level of the last action in pj is

monotonically decreasing as j increases, such a process must
stop in a finite number of iterations. Suppose it stops at
pm = (a′

1, . . . , a
′
k, a′

k+1
), m ≥ 1. We must have that

L(a′
k+1

) ≤ L(a′
k), or L(a′

k+1
) > L(a′

k) and a′
k+1

is a

follow-up action of a′
k. Hence pm is a stratified path and the

induction step is proved.

Theorem 2. For a SAS+ task, a complete search is still
complete when combined with stratified expansion(), and an
optimal search is still optimal when combined with strati-
fied expansion().

Proof. For any search algorithm, we define its search graph
as a graph where each vertex is a state and there is an arc
from s to s′ if and only if s′ is expanded as a successor state
of s during the search. For a complete search, if it can find a
solution path p in the original search graph, then according to
Theorem 1, there is another path p′ in the search graph of the
stratified search. Therefore, the complete search combined
with stratified expansion() will find p′.

If a search is optimal, then when it is combined with strat-
ified expansion(), it will find an optimal path p′ in the search
graph of the stratified search. According to Theorem 1, if the
length of the optimal path in the original search graph is n,
there must exist a path in the search graph of the stratified
search with length n. Hence, the length of p′ is n and the new
search is still optimal.

6 Experimental Results

We test on STRIPS problems in the recent International Plan-
ning Competitions (IPCs). We implement our stratification
analysis and stratified search on top the Fast Downward plan-
ner [Helmert, 2006] which gives SAS+ encoding of planning
problems. We still use the causal graph heuristic and only
modify the state expansion part. On a PC with a 2.0 GHz
Xeon CPU and 2GB memory, we set a time limit of 300 sec-
onds for all problem instances.

ID
Fast Downward ∞-stratification 2-stratification
Nodes Time Nodes Time Nodes Time

zenotravel1 10 0 5 0 5 0
zenotravel1 122 0 23 0 23 0
zenotravel3 723 0 236 0 236 0
zenotravel4 455 0 194 0 194 0
zenotravel5 884 0 479 0 479 0
zenotravel6 1895 0 785 0 785 0
zenotravel7 1468 0 883 0 883 0
zenotravel8 1795 0.04 1828 0.02 1828 0.02
zenotravel9 2017 0.04 2938 0.04 2938 0.04
zenotravel10 4218 0.05 8708 0.04 8708 0.04
zenotravel11 3485 0.02 3429 0.02 3429 0.02
zenotravel12 5002 0.06 7671 0.04 7671 0.04
zenotravel13 9654 0.07 6911 0.12 6911 0.12
zenotravel14 495266 0.26 49623 0.18 49623 0.18
zenotravel15 23853 0.52 1254 0.39 1254 0.45

drivelog1 355 0 51 0 152 0
drivelog2 1450 0 633 0.01 743 0.01
drivelog3 774 0 297 0.01 433 0.01
drivelog4 4692 0.01 1549 0.03 3454 0.02
drivelog5 2879 0.01 576 0.01 957 0.01
drivelog6 2394 0 577 0 1442 0.01
drivelog7 1707 0.02 4341 0.03 1948 0.01
drivelog8 531 0 57006 0.35 4372 0.02
drivelog9 18920 0.02 3808 0.03 26991 0.24

drivelog10 10356 0.02 4317 0.04 8965 0.07
drivelog11 3755 0.05 2435 0.04 3616 0.06
drivelog12 64714 0.31 21252 0.28 135518 2.18
drivelog13 10995 0.13 5659 0.14 9333 0.22
drivelog14 14344 0.06 3195 0.1 7388 0.21
drivelog15 140305 1.25 14371 1.39 14369 0.79
drivelog16 1554010 44.49 180020 29.39 - -
drivelog17 2218657 51.33 860136 33.81 3986057 167.69

Table 1: Comparison of Fast Downward and two stratification
strategies. We give the number of generated nodes and CPU time
in seconds. ”-” means timeout after 300 seconds.

In practice, how to determine the granularity of stratifi-
cation is an important issue. We test two extremal cases in
our experiments. On one extreme, we test ∞-stratification,
which performs a topological sort on the CCG and treats each
SCC as a layer. This represents the finest granularity of strati-
fication. On the other extreme, we test 2-stratification, which
partitions the CCG into two layers and represents the coars-
est granularity of stratification. We also implement a factor
γ, 0 < γ < 1 for 2-stratification, which specifies the ratio of
the number of state variables in Layer 1 to the total number
of state variables. We topologically sort the CCG and find the
dividing point that gives a ratio closest to γ. We use γ = 0.7
in our experiments.

The results are shown in Tables 1 and 2. We did not in-
clude the domains, such as pipesworld and freecell, where
the CG is only one SCC and cannot be stratified. We can see
that both ∞-stratification and 2-stratification can give reduc-
tion for most problem instances. The reduction of the num-
ber of generated nodes can be more than an order of magni-
tude. Comparing ∞-stratification to 2-stratification, we see
that they give similar performance. Despite the reduction in
number of generated nodes, the CPU time reduction is more
modest. This is due to the fact that our preliminary imple-
mentation is not efficient. For example, we check whether an

1669

action is a follow-up action of another one at each state, al-
though a preprocessing phase will save much time. We will
develop more efficient implementations in our future work.

7 Discussions

The idea of stratified planning can be explained by looking
at a simple 2-stratification. In a 2-stratification, all the state
variables are divided into two groups, U1 and U2, where U1

depends on U2. Therefore, during the search, whenever we
expand an action a in U2, there are only two purposes: to
transform a state in U2 to a goal state, or to provide a precon-
dition for an action in U1. Therefore, we allow to further ex-
pand actions in U2 but do not allow actions in U1 except those
directly supported by a. In other words, we do not expand any
action in U1 that is not a follow-up action of a because it is a
”loose” partial order that can be pruned.

From the above, we see that stratified search can avoid re-
dundant orderings between ancestor/offspring SCCs. Besides
that, another source of reduction is that stratified planning im-
poses certain partial orders between sibling SCCs. For exam-
ple, in Figure 1b, the SCCs numbered 1 to 5 are siblings in
the CCG. However, after we stratify the CCG as in Figure 1c,
we impose certain partial orders. For example, we are forced
to place actions in SCC 1 before SCC 5 whenever possible.
Such a reduction can be significant for many domains.

Acknowledgement

This work is supported by NSF grant IIS-0713109, a DOE
ECPI award, and a Microsoft Research New Faculty Fellow-
ship.

References

[Amir and Engelhardt, 2003] E. Amir and B. Engelhardt.
Factored planning. In Proc. IJCAI, 2003.

[Bäckström and Nebel, 1995] C. Bäckström and B. Nebel.
Complexity results for SAS+ planning. Computational In-
telligence, 11:17–29, 1995.

[Brafman and Domshlak, 2006] R. Brafman and C. Domsh-
lak. Factored planning: How, when, and when not. In
Proc. AAAI, 2006.

[Helmert and Röger, 2008] M. Helmert and G. Röger. How
good is almost perfect. In Proc. AAAI, 2008.

[Helmert, 2006] M. Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Kelareva et al., 2007] E. Kelareva, O. Buffet, J. Huang, and
S. Thiébaux. Factored planning using decomposition trees.
In Proc. IJCAI, 2007.

[Knoblock, 1994] C. Knoblock. Automatically generating
abstractions for planning. Artificial Intelligence, 68:243–
302, 1994.

[Lansky and Getoor, 1995] A. Lansky and L. Getoor. Scope
and abstraction: two criteria for localized planning. In
Proc. AAAI, 1995.

ID
Fast Downward ∞-stratification 2-stratification
Nodes Time Nodes Time Nodes Time

depots1 117 0.01 34 0.01 46 0.01
depots2 1647 0.02 390 0.02 432 0.02
depots3 150297 3.28 42363 3.13 43238 2.65
depots4 295799 6.16 53191 5.37 185819 13.2
depots5 1754366 79.46 67146 9.98 70296 7.39
depots7 926076 21.79 64395 5.09 223034 10.32

depots10 - - 21544464 211.1 27737 1.08

tpp1 8 0 5 0 3 0
tpp2 20 0 7 0 7 0
tpp3 40 0 15 0 17 0
tpp4 67 0 24 0 28 0
tpp5 139 0 51 0 52 0
tpp6 1081 0.04 1132 0.02 1949 0.01
tpp7 12444 0.11 1436 0.02 4282 0.08
tpp8 20536 0.19 14060 0.49 7373 0.14
tpp9 24641 0.3 4128 0.21 7926 0.48

tpp10 298225 3.14 175383 2.5 130502 2.12

truck1 356 0.01 426 0 426 0
truck2 1664 0.02 493 0.04 493 0.04
truck3 6676 0.02 5475 0.04 5475 0.04
truck4 991625 11.66 41066 0.48 41066 0.48
truck5 13313 0.65 6561 0.07 6561 0.07
truck6 238523 3.7 27267 0.30 27267 0.30
truck7 612647 4.89 74485 1.47 74485 1.47
truck8 22827 0.3 37491 0.5 37492 0.5
truck9 - - 5090375 212.26 5090375 132.26

truck10 - - 528454 13.44 528254 11.08
truck11 - - 926217 11.12 926217 8.17
truck12 - - 928489 16.55 928489 12.57
truck14 - - 1631138 23.0 1631138 15.1
truck15 - - 928489 16.63 - -

satellite01 226 0 97 0 91 0
satellite02 512 0 240 0 233 0
satellite03 1551 0.01 2168 0.01 744 0.01
satellite04 5036 0.01 2470 0.01 2342 0.01
satellite05 7455 0.02 3674 0.01 3483 0.02
satellite06 20452 0.04 10049 0.02 9681 0.03
satellite07 52902 0.08 26212 0.08 26012 0.04
satellite08 54250 0.11 27118 0.1 26940 0.04
satellite09 104051 0.18 1268 0.12 51173 0.12
satellite10 318621 1.54 129971 1.01 531861 0.78

rover01 228 0 78 0 128 0
rover02 263 0 114 0 102 0
rover03 617 0 218 0 199 0
rover04 225 0 88 0 95 0
rover05 2106 0.01 763 0.01 890 0
rover06 419655 3.84 319500 11.16 572341 11.86
rover07 3659 0.02 1396 0.03 1420 0.05
rover08 20480 0.11 2736 0.06 6003 0.71
rover09 - - 6003 0.04 29477 0.72
rover10 49789 0.3 22023 0.41 19024 0.38

Table 2: Comparison of Fast Downward and two stratification
strategies. We give the number of generated nodes and CPU time
in seconds. ”-” means timeout after 300 seconds.

1670

